JP5423046B2 - Method for leaching copper raw materials containing copper sulfide minerals - Google Patents

Method for leaching copper raw materials containing copper sulfide minerals Download PDF

Info

Publication number
JP5423046B2
JP5423046B2 JP2009043406A JP2009043406A JP5423046B2 JP 5423046 B2 JP5423046 B2 JP 5423046B2 JP 2009043406 A JP2009043406 A JP 2009043406A JP 2009043406 A JP2009043406 A JP 2009043406A JP 5423046 B2 JP5423046 B2 JP 5423046B2
Authority
JP
Japan
Prior art keywords
copper
leaching
raw material
pressure
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009043406A
Other languages
Japanese (ja)
Other versions
JP2010196125A (en
Inventor
聡 浅野
賢二 竹田
範幸 長瀬
雅俊 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009043406A priority Critical patent/JP5423046B2/en
Publication of JP2010196125A publication Critical patent/JP2010196125A/en
Application granted granted Critical
Publication of JP5423046B2 publication Critical patent/JP5423046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、硫化銅鉱物を含む銅原料の浸出方法に関し、さらに詳しくは、硫化銅鉱物を含む銅原料、特に、黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料から、加圧容器中で酸素ガスを送入しつつ銅を浸出する方法において、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出する方法に関する。   The present invention relates to a method for leaching a copper raw material containing a copper sulfide mineral, and more specifically, from a copper raw material containing a copper sulfide mineral, in particular, from a low-grade copper raw material containing a large amount of pyrite and containing a small amount of copper sulfide mineral, The present invention relates to a method of leaching copper while feeding oxygen gas in a pressurized container, and leaching copper in a high yield while suppressing the oxidation of sulfur in the copper raw material to a minimum.

一般に、硫化銅鉱物を含有する銅鉱石には、黄銅鉱(キャルコパイライト:CuFeS)、輝銅鉱(キャルコサイト:CuS)、斑銅鉱(ボーナイト:CuFeS)、銅藍(コベライト:CuS)などの硫化銅鉱物とともに、黄鉄鉱、その他の脈石成分が共存している。これらの硫化銅鉱物を含有する銅鉱石から、銅を分離回収するには、まず、銅鉱石を選鉱して得た銅精鉱を熔錬炉に装入し、高温下で熔融して不純物元素を分離し、得た粗銅を電解精製して製品銅を回収するという乾式製錬法と電解精製を組み合わせた方法が一般的である。
一方、湿式製錬法として、銅精鉱等の硫化銅鉱物を濃縮した銅原料から、塩素ガス、塩化物イオン、又は硫酸を用いて銅を浸出し、浸出液から溶媒抽出、中和処理などの方法によって不純物元素を分離し、次いで電解採取する方法も開発されている。
In general, copper ores containing copper sulfide minerals include chalcopyrite (charcopyrite: CuFeS 2 ), chalcocite (charcosite: Cu 2 S), chalcopyrite (bonite: Cu 5 FeS 4 ), copper indigo ( Pyrite and other gangue components coexist with copper sulfide minerals such as kobelite (CuS). In order to separate and recover copper from copper ores containing these copper sulfide minerals, first, copper concentrate obtained by beneficiation of copper ore is charged into a smelting furnace and melted at a high temperature to produce impurity elements. In general, a dry smelting method in which the obtained crude copper is electrolytically purified to recover product copper is combined with electrolytic purification.
On the other hand, as a hydrometallurgical method, copper is leached from a copper raw material enriched with copper sulfide minerals such as copper concentrate using chlorine gas, chloride ions, or sulfuric acid, and solvent extraction from the leachate, neutralization treatment, etc. A method of separating impurity elements by a method and then performing electrowinning has also been developed.

例えば、10〜40g/Lの鉄イオンと10〜60g/Lの硫酸を含有し、かつ3価の鉄イオンと2価の鉄イオンの含有割合が、[Fe3+/Fe2+]比で2以上である浸出始液を用いて、酸素分圧を0.2〜0.7MPaに、かつ温度を50〜105℃に調整して硫化銅鉱物を浸出する方法(例えば、特許文献1参照。)が提案されている。この方法では、比較的低温度で、かつ低酸素分圧で大気圧下に浸出されるので、硫化銅鉱物中のイオウの酸化が抑制されるという特徴がある。ここで、酸化されなかったイオウは、単体イオウとして分離回収できるので、取扱いが容易な点、及びイオウの酸化により生成する硫酸の中和処理の手間とコストが節減される点で有利となる。しかしながら、浸出温度が低いために硫化銅鉱物の酸化速度が遅いので、銅の高浸出率を得るためには、長時間を要するという工業生産上の問題がある。特に、浸出温度が80℃未満では、浸出液中の鉄濃度が充分にあっても浸出率が著しく低下してしまう。 For example, it contains 10 to 40 g / L of iron ions and 10 to 60 g / L of sulfuric acid, and the content ratio of trivalent iron ions to divalent iron ions is 2 or more in the [Fe 3+ / Fe 2+ ] ratio. A method of leaching a copper sulfide mineral by adjusting the oxygen partial pressure to 0.2 to 0.7 MPa and the temperature to 50 to 105 ° C. using a leaching start solution (see, for example, Patent Document 1). Proposed. This method is characterized in that it is leached under atmospheric pressure at a relatively low temperature and with a low oxygen partial pressure, so that oxidation of sulfur in the copper sulfide mineral is suppressed. Here, since the unoxidized sulfur can be separated and recovered as a single sulfur, it is advantageous in that it is easy to handle and that the time and cost of neutralizing sulfuric acid produced by sulfur oxidation are reduced. However, since the leaching temperature is low and the oxidation rate of the copper sulfide mineral is slow, there is a problem in industrial production that it takes a long time to obtain a high leaching rate of copper. In particular, when the leaching temperature is less than 80 ° C., the leaching rate is significantly reduced even if the iron concentration in the leaching solution is sufficient.

また、別の方法として、例えば、圧力容器中において、硫化銅鉱物と硫酸鉄を含有する水溶液又は硫酸水溶液とをスラリーとし、220〜275℃、好ましくは235℃以上の温度を維持しつつ、酸素ガス又は空気を導入して硫化銅鉱物を浸出する方法(例えば、特許文献2参照。)が提案されている。この方法では、高温度で鉱石全体が強力に酸化されるので、反応速度が速いため、高収率で銅を浸出することができる。ここで、硫化銅鉱物のすべてが溶解され、イオウはすべて硫酸イオンになる。また、硫化銅鉱物に含有される鉄成分は、硫酸と反応して硫酸鉄として溶液中に溶出し、さらに、高温の酸化雰囲気下では加水分解され、硫酸分を分離し、ヘマタイトと呼ばれる酸化鉄(III)(Fe)の形態となる。 As another method, for example, in a pressure vessel, an aqueous solution containing copper sulfide mineral and iron sulfate or an aqueous sulfuric acid solution is used as a slurry, and oxygen is maintained at a temperature of 220 to 275 ° C., preferably 235 ° C. or higher. A method of leaching a copper sulfide mineral by introducing gas or air (see, for example, Patent Document 2) has been proposed. In this method, since the whole ore is strongly oxidized at a high temperature, the reaction rate is fast, so that copper can be leached in a high yield. Here, all of the copper sulfide mineral is dissolved, and all the sulfur becomes sulfate ions. In addition, the iron component contained in the copper sulfide mineral reacts with sulfuric acid and elutes into the solution as iron sulfate. Further, it is hydrolyzed in a high-temperature oxidizing atmosphere to separate the sulfuric acid component, and iron oxide called hematite. (III) (Fe 2 O 3 ).

したがって、鉱石自体に含有されるイオウから硫酸を生成することができるため、浸出開始時に浸出始液中に硫酸を存在させる必要がないという利点がある反面、加水分解により、硫酸鉄の硫酸分は硫酸に再生されるため、浸出液から銅を回収する工程の前に、中和剤を添加して余剰の硫酸分を中和するなどの処理が必要であり、中和剤に多くのコストを必要とするという問題があった。しかも、200℃を超える高温高圧下で操業するためには、圧力、温度、さらには腐食に耐えうる材質を有する加圧容器及びポンプが必要となるので、設備投資及び補修費用が高額になるという問題もあった。   Therefore, since sulfuric acid can be generated from sulfur contained in the ore itself, there is an advantage that sulfuric acid does not need to be present in the leaching start liquid at the start of leaching, but the sulfuric acid content of iron sulfate is reduced by hydrolysis. Because it is regenerated into sulfuric acid, a process such as adding a neutralizing agent to neutralize excess sulfuric acid is required before the process of recovering copper from the leachate. There was a problem that. Moreover, in order to operate at a high temperature and high pressure exceeding 200 ° C., a pressure vessel and a pump having a material that can withstand pressure, temperature, and further corrosion are required, so that capital investment and repair costs are high. There was also a problem.

また、別の方法として、例えば、圧力容器中において、銅精鉱と触媒として石炭を共存させつつ、容器内の温度を120〜180℃、好ましくは135〜175℃に維持しながら、容器内の圧力を0.1〜3MPa相当に維持するように酸素ガスを送入して浸出する方法(例えば、特許文献3参照。)が提案されている。この方法では、上記二つの浸出方法の中間となる温度範囲で浸出する方法であり、両者のそれぞれの問題点である銅の浸出速度の向上とイオウの酸化率の抑制をある程度まで解決することができるという利点を有している。
すなわち、硫化銅鉱物の中で銅を含有する割合が高い斑銅鉱(CuFeS)、輝銅鉱(CuS)又は銅藍(CuS)では、硫酸及び酸素ガスとの反応が早く、イオウの酸化抑制と銅の高浸出率とを同時に達成することができる。ところが、硫化銅鉱物として豊富に産出される最も一般的な黄銅鉱(CuFeS)は、硫酸及び酸素ガスとの反応が遅く、浸出されにくいという性質があるため、浸出条件を強化して浸出する際にイオウの酸化も増加するという問題があった。
As another method, for example, in a pressure vessel, while coexisting copper concentrate and coal as a catalyst, while maintaining the temperature in the vessel at 120 to 180 ° C, preferably 135 to 175 ° C, There has been proposed a method in which oxygen gas is fed and leached so as to maintain the pressure at a value corresponding to 0.1 to 3 MPa (see, for example, Patent Document 3). This method is a method of leaching in a temperature range that is intermediate between the above two leaching methods, and can solve the problems of both of them, namely, the improvement of copper leaching rate and the suppression of sulfur oxidation rate to some extent. It has the advantage of being able to.
That is, in copper sulfide minerals with a high proportion of copper, the reaction with sulfuric acid and oxygen gas is fast in sphalerite (Cu 5 FeS 4 ), chalcocite (Cu 2 S) or copper indigo (CuS). It is possible to achieve both oxidation inhibition and high copper leaching rate at the same time. However, the most common chalcopyrite (CuFeS 2 ) produced abundantly as a copper sulfide mineral has a property that it reacts slowly with sulfuric acid and oxygen gas and is difficult to be leached, so that it is leached by strengthening the leaching conditions. At the same time, there was a problem that sulfur oxidation also increased.

また、別の方法として、例えば、黄銅鉱を主体鉱物とする高品位の銅鉱石を浮選して得られた銅精鉱を高温高圧下で浸出を行い、第2鉄イオン及び硫酸を含有する銅浸出液を得て、低品位の銅鉱石に対するヒープリーチング又はバットリーチングに該銅浸出液を使用する銅鉱石からの銅回収方法(例えば、特許文献4参照。)が提案されている。ここで、高温高圧下での浸出では、温度が、好ましくは150〜220℃であり、圧力を大気圧より高くして行い、さらに酸素分圧が、好ましくは0.1〜2.0MPaである条件下に、イオウを硫酸イオンにまで酸化することが開示されている。したがって、この方法では、高温高圧下での浸出で生成された硫酸が、後続の低品位の銅鉱石の浸出剤として利用されるものの、従来方法と同様に高温高圧下での浸出に伴う設備及びコストの問題が解決されない。   As another method, for example, copper concentrate obtained by flotation of high-grade copper ore mainly composed of chalcopyrite is leached under high temperature and high pressure, and contains ferric ion and sulfuric acid. There has been proposed a method for recovering copper from a copper ore by obtaining a copper leachate and using the copper leachate for heap leaching or butt leaching of low-grade copper ore (see, for example, Patent Document 4). Here, in leaching under high temperature and high pressure, the temperature is preferably 150 to 220 ° C., the pressure is set higher than atmospheric pressure, and the oxygen partial pressure is preferably 0.1 to 2.0 MPa. Under conditions, it is disclosed to oxidize sulfur to sulfate ions. Therefore, in this method, although sulfuric acid produced by leaching under high temperature and high pressure is used as a leaching agent for the subsequent low-grade copper ore, the equipment and equipment associated with leaching under high temperature and high pressure as in the conventional method are used. Cost problem is not solved.

以上のように、従来の方法では、硫化銅鉱物として豊富に産出される最も一般的な黄銅鉱(CuFeS)の浸出において、イオウの酸化抑制と銅の高浸出率とを同時に達成することができないという問題があった。 As described above, in the conventional method, in the leaching of the most common chalcopyrite (CuFeS 2 ) abundantly produced as a copper sulfide mineral, it is possible to simultaneously achieve sulfur oxidation inhibition and a high copper leaching rate. There was a problem that I could not.

さらに、他の問題として、硫化銅鉱物と共存する黄鉄鉱に関わる課題がある。すなわち、硫化銅鉱物、特に、硫化銅鉱物として黄銅鉱を主成分として含有する銅鉱石には、黄鉄鉱(パイライト:FeS)などの硫化鉄鉱物が共存していることが通常である。ここで、黄銅鉱と硫酸塩との間の標準酸化還元電位(標準水素電極)は380mVであり、一方黄鉄鉱と硫酸塩との間の標準酸化還元電位(標準水素電極)は424mVであり、酸化還元電位だけを比較すると、理論上は黄鉄鉱の方が酸化されにくいことになるが、実際には、イオウの融点以上の温度領域では、黄鉄鉱が優先的に酸化されるということが知られている。なお、この理由については、後述する。
このため、黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料を、硫酸を用いて浸出処理すると、黄鉄鉱の含有量が少ない銅原料を処理した場合より、得られる浸出液に含有される硫酸濃度が大幅に増加し、後工程での中和処理のコストと手間を増加させてしまうという問題があった。
Furthermore, another problem is related to pyrite coexisting with copper sulfide minerals. That is, it is normal that iron sulfide minerals such as pyrite (pyrite: FeS 2 ) coexist in copper sulfide minerals, particularly copper ores containing chalcopyrite as a main component as copper sulfide minerals. Here, the standard oxidation-reduction potential (standard hydrogen electrode) between chalcopyrite and sulfate is 380 mV, while the standard oxidation-reduction potential (standard hydrogen electrode) between pyrite and sulfate is 424 mV. Comparing only the reduction potential, in theory, pyrite is less likely to be oxidized, but in fact, it is known that pyrite is preferentially oxidized in the temperature range above the melting point of sulfur. . This reason will be described later.
For this reason, when a low-grade copper raw material containing a large amount of pyrite and containing a small amount of copper sulfide mineral is leached using sulfuric acid, it is contained in the obtained leachate, compared to the case of treating a copper raw material with a low pyrite content. There is a problem that the concentration of sulfuric acid is greatly increased, which increases the cost and labor of the neutralization treatment in the subsequent process.

以上の状況から、硫化銅鉱物を含む銅原料、特に黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料から、銅を浸出する方法において、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出する方法が求められていた。   From the above situation, in the method of leaching copper from a copper raw material containing a copper sulfide mineral, particularly a low grade copper raw material containing a large amount of pyrite and containing a small amount of copper sulfide mineral, oxidation of sulfur in the copper raw material is carried out. There has been a need for a method of leaching copper in high yield while minimizing it.

米国特許第6537440号明細書US Pat. No. 6,537,440 米国特許第6497745号明細書US Pat. No. 6,497,745 米国特許第5730776号明細書US Pat. No. 5,730,776 特開2003−328050号公報(第1頁、第2頁、段落0034)JP 2003-328050 A (first page, second page, paragraph 0034)

本発明の目的は、上記の従来技術の問題点に鑑み、硫化銅鉱物を含む銅原料、特に黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料から、加圧容器中で酸素ガスを送入しつつ銅を浸出する方法において、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出する方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to produce a copper raw material containing a copper sulfide mineral, particularly a low-grade copper raw material containing a large amount of pyrite and containing a small amount of copper sulfide mineral, in a pressurized container. An object of the present invention is to provide a method for leaching copper in a high yield while suppressing oxidation of sulfur in the copper raw material to a minimum in a method for leaching copper while feeding oxygen gas.

本発明者らは、上記目的を達成するために、加圧容器中で酸素ガスを送入しつつ硫化銅鉱物を含む銅原料から銅を浸出する方法について、鋭意研究を重ねた結果、加圧容器中に、銅原料と硫酸水溶液からなるスラリーを形成し、かつ該容器内の温度を所定値に維持しながら、該容器内の酸素ガスによる昇圧を所定値になるように、送入する酸素ガスを調節して浸出したところ、黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料においても、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出することができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted extensive research on a method of leaching copper from a copper raw material containing a copper sulfide mineral while feeding oxygen gas in a pressurized container. Oxygen to be fed so as to form a slurry composed of a copper raw material and a sulfuric acid aqueous solution in a container and maintain the temperature in the container at a predetermined value so that the pressure increase by the oxygen gas in the container becomes a predetermined value. When the gas was leached out, high yields of copper were achieved even with low grade copper raw materials that contained a large amount of pyrite and low copper sulfide minerals while minimizing the oxidation of sulfur in the copper raw materials. The present invention was completed by finding that it can be leached at a high rate.

すなわち、本発明の第1の発明によれば、加圧容器中で酸素ガスを送入しつつ黄銅鉱を含む銅原料から銅を浸出する方法であって、
加圧容器中に、銅原料と硫酸水溶液からなるスラリーを形成し、かつ該容器内の温度を102〜112℃に維持しながら、該容器内の圧力が、その温度での平衡気相分圧に0.6〜2MPaを昇圧した値になるように送入する酸素ガスを調節することを特徴とする黄銅鉱を含む銅原料の浸出方法が提供される。
That is, according to the first invention of the present invention, a method of leaching copper from a copper raw material containing chalcopyrite while feeding oxygen gas in a pressurized container,
In the pressure vessel, a slurry composed of a copper raw material and an aqueous sulfuric acid solution is formed, and while maintaining the temperature in the vessel at 102 to 112 ° C., the pressure in the vessel is the equilibrium gas phase partial pressure at that temperature. A method for leaching a copper raw material containing chalcopyrite is provided in which the oxygen gas fed is adjusted so that the pressure is increased to 0.6 to 2 MPa.

また、本発明の第2の発明によれば、第1の発明において、前記スラリー中に含有される硫酸量は、前記黄銅鉱に含有される銅を硫酸銅に変換するのに必要な化学当量の1〜2倍であることを特徴とする黄銅鉱を含む銅原料の浸出方法が提供される。 According to the second invention of the present invention, in the first invention, the amount of sulfuric acid contained in the slurry is a chemical equivalent required for converting copper contained in the chalcopyrite into copper sulfate. The method of leaching a copper raw material containing chalcopyrite characterized by being 1 to 2 times the above is provided.

また、本発明の第3の発明によれば、第1発明において、前記スラリーの浸出開始時のスラリー濃度は、10〜300g/Lであることを特徴とする黄銅鉱を含む銅原料の浸出方法が提供される。 According to a third invention of the present invention, in the first invention, the slurry concentration at the start of leaching of the slurry is 10 to 300 g / L, and the method for leaching copper raw material containing chalcopyrite Is provided.

本発明の硫化銅鉱物を含む銅原料の浸出方法は、硫化銅鉱物を含む銅原料、特に黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料から、加圧容器中で酸素ガスを送入しつつ銅を浸出する方法において、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出することできるので、その工業的価値は極めて大きい。すなわち、これにより、銅原料中のイオウを、処理の容易な単体イオウ又は黄鉄鉱として浸出残渣中に分離でき、かつ浸出液の処理に際し、中和剤の使用量を削減することができるので設備費用と処理コストを低減することができる。   The method for leaching a copper raw material containing a copper sulfide mineral according to the present invention includes a copper raw material containing a copper sulfide mineral, particularly a low-grade copper raw material containing a large amount of pyrite and a small amount of copper sulfide mineral, in a pressurized container. In the method of leaching copper while feeding gas, copper can be leached in a high yield while suppressing the oxidation of sulfur in the copper raw material to a minimum, and its industrial value is extremely large. That is, sulfur in the copper raw material can be separated into the leaching residue as simple sulfur or pyrite that can be easily treated, and the amount of neutralizing agent used can be reduced when treating the leachate. Processing costs can be reduced.

以下、本発明の硫化銅鉱物を含む銅原料の浸出方法を詳細に説明する。
本発明の硫化銅鉱物を含む銅原料の浸出方法は、加圧容器中で酸素ガスを送入しつつ硫化銅鉱物を含む銅原料から銅を浸出する方法であって、加圧容器中に、銅原料と硫酸水溶液からなるスラリーを形成し、かつ該容器内の温度を102〜112℃に維持しながら、該容器内の圧力が、その温度での平衡気相分圧に0.5〜2MPaを昇圧した値になるように、送入する酸素ガスを調節することを特徴とする。
Hereinafter, the leaching method of the copper raw material containing the copper sulfide mineral of the present invention will be described in detail.
The method for leaching a copper raw material containing a copper sulfide mineral of the present invention is a method of leaching copper from a copper raw material containing a copper sulfide mineral while feeding oxygen gas in a pressurized vessel, While forming a slurry comprising a copper raw material and a sulfuric acid aqueous solution and maintaining the temperature in the container at 102 to 112 ° C., the pressure in the container is 0.5 to 2 MPa to the equilibrium gas phase partial pressure at that temperature. The oxygen gas to be fed is adjusted so as to be a value obtained by boosting the pressure.

本発明において、加圧容器内の温度を102〜112℃に維持すること、及び該容器内の圧力が、その温度での平衡気相分圧に0.5〜2MPaを昇圧した値になるように、送入する酸素ガスを調節することが重要である。これによって、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出することできる。   In the present invention, the temperature in the pressurized container is maintained at 102 to 112 ° C., and the pressure in the container is set to a value obtained by increasing the equilibrium gas phase partial pressure at that temperature by 0.5 to 2 MPa. It is important to adjust the oxygen gas to be fed. Thereby, copper can be leached in a high yield while suppressing oxidation of sulfur in the copper raw material to a minimum.

すなわち、従来の方法において、前述した黄鉄鉱が優先的に酸化されるという現象に関して、黄銅鉱及び黄鉄鉱を含有する銅原料と硫酸水溶液からなるスラリーを形成し、120℃以上の温度で、酸素ガスの送入に伴い黄銅鉱及び黄鉄鉱が浸出される挙動を顕微鏡観察した。その結果、まず、酸化により表面に生成したイオウが融解し、次いで、この融体となったイオウで、黄銅鉱が優先的にイオウ液滴中に包含される一方、黄鉄鉱は、ほとんどイオウ液滴中に取り込まれず単独粒子として水溶液中に分散することが分かった。
ここで、このイオウ融体に取り込まれた黄銅鉱は、疎水性のイオウで覆われているため、硫酸水溶液との接触がさえぎられて酸化が抑制される。一方、黄鉄鉱は、水溶液中に単独で存在し、かつ他に酸化されやすいものがないため、その酸化が進行される。すなわち、従来の方法では、黄鉄鉱が黄銅鉱に優先的に酸化されることになる。
That is, in the conventional method, regarding the phenomenon that pyrite is oxidized preferentially, a slurry composed of a copper raw material containing chalcopyrite and pyrite and an aqueous sulfuric acid solution is formed, and at a temperature of 120 ° C. or higher, oxygen gas The behavior of leaching of chalcopyrite and pyrite with feeding was observed with a microscope. As a result, first, sulfur generated on the surface by the oxidation is melted, and then, in the melted sulfur, chalcopyrite is preferentially included in the sulfur droplets, while pyrite is almost entirely contained in the sulfur droplets. It was found that it was not taken in and dispersed in the aqueous solution as single particles.
Here, since the chalcopyrite taken in this sulfur melt is covered with hydrophobic sulfur, the contact with the sulfuric acid aqueous solution is interrupted and the oxidation is suppressed. On the other hand, pyrite exists alone in an aqueous solution, and there is no other material that is easily oxidized. That is, in the conventional method, pyrite is preferentially oxidized to chalcopyrite.

これに対し、本発明の方法では、加圧容器内の温度を102〜112℃に保持することにより、銅原料中の黄鉄鉱の酸化を抑制して黄銅鉱の酸化を優先させることができる。すなわち、イオウの融点は一般に113℃前後であることが知られている。したがって、イオウが融体を形成しない融点以下の温度、例えば112℃以下に維持することにより、黄銅鉱がイオウに包含されることを防ぐことができる。その結果、前述した酸化還元電位の値の通り、黄銅鉱のみを選択的に浸出することができるの、銅の浸出率を向上することができる。一方、低温とするほど反応速度が低下し、102℃未満の浸出温度では、実用的な反応速度が得られないので、銅の浸出率が低下する。   On the other hand, in the method of the present invention, by maintaining the temperature in the pressure vessel at 102 to 112 ° C., oxidation of pyrite in the copper raw material can be suppressed and priority can be given to oxidation of chalcopyrite. That is, it is known that the melting point of sulfur is generally around 113 ° C. Therefore, by maintaining the temperature below the melting point at which sulfur does not form a melt, for example, 112 ° C. or less, it is possible to prevent chalcopyrite from being included in sulfur. As a result, only the chalcopyrite can be selectively leached according to the value of the oxidation-reduction potential described above, and the leaching rate of copper can be improved. On the other hand, the lower the temperature, the lower the reaction rate. At a leaching temperature lower than 102 ° C., a practical reaction rate cannot be obtained, so the copper leaching rate decreases.

また、本発明の方法では、加圧容器内の圧力がその温度での平衡気相分圧に0.5〜2MPaを昇圧した値になるように送入する酸素ガスを調節することにより、イオウの酸化を最小限に抑制しつつ、銅の浸出率を上昇させることができる。すなわち、酸素ガスによる昇圧が0.5MPa未満では、酸素分圧が低くなり、酸化反応が不十分であるため、銅の浸出率が低い。一方、酸素ガスによる昇圧が2MPaを超えると、酸素分圧が高くなり、イオウの酸化が促進される。   In the method of the present invention, the sulfur gas is adjusted by adjusting the oxygen gas to be fed so that the pressure in the pressurized container becomes a value obtained by increasing the equilibrium gas phase partial pressure at that temperature by 0.5 to 2 MPa. The copper leaching rate can be increased while minimizing the oxidation of the copper. That is, when the pressure increase by oxygen gas is less than 0.5 MPa, the oxygen partial pressure becomes low and the oxidation reaction is insufficient, so that the copper leaching rate is low. On the other hand, when the pressure increase by oxygen gas exceeds 2 MPa, the oxygen partial pressure increases and the oxidation of sulfur is promoted.

ここで、黄銅鉱の硫酸による浸出反応としては、下記の式(1)にしたがって行なわれる。その後、得られる硫酸鉄(II)は、酸素共存下では加水分解され、ヘマタイトの形態となり固定される。すなわち、ヘマタイトは酸に対し安定であり、最も適した固定形態となる。   Here, the leaching reaction of chalcopyrite with sulfuric acid is performed according to the following formula (1). Thereafter, the obtained iron (II) sulfate is hydrolyzed in the presence of oxygen and fixed in the form of hematite. That is, hematite is stable to acid and is the most suitable fixed form.

式(1):CuFeS+O+2HSO→CuSO+FeSO+2S+2HFormula (1): CuFeS 2 + O 2 + 2H 2 SO 4 → CuSO 4 + FeSO 4 + 2S 0 + 2H 2 O

上記方法において、前記スラリー中に含有される硫酸量としては、特に限定されるものではないが、スラリー中に含まれる硫化銅鉱物に含有される銅を硫酸銅に変換するのに必要な化学当量の1〜2倍であることが好ましい。すなわち、浸出の初期に、硫酸量を銅に対して2倍モル以下では、反応は上記の式(1)におけるように進行するので、イオウの酸化を抑制することができる。一方、硫酸量が銅に対し1倍未満では、浸出反応の進行が不十分となる。   In the above method, the amount of sulfuric acid contained in the slurry is not particularly limited, but the chemical equivalent required to convert copper contained in the copper sulfide mineral contained in the slurry to copper sulfate. It is preferable that it is 1-2 times. That is, at the initial stage of leaching, when the amount of sulfuric acid is not more than 2 times the mol of copper, the reaction proceeds as in the above formula (1), so that sulfur oxidation can be suppressed. On the other hand, if the amount of sulfuric acid is less than 1 times that of copper, the progress of the leaching reaction is insufficient.

上記方法において、浸出開始時のスラリー濃度としては、特に限定されるものではないが、10〜300g/Lであることが好ましい。すなわち、そのスラリー濃度が10g/L未満では、浸出設備の単位体積あたりの銅の浸出量が少なく、設備が巨大化し、生産性も低下する。一方、そのスラリー濃度が300g/Lを超えると、硫酸銅及び硫酸鉄が溶解度を超え、鉱石粒子を被覆し、反応性が低下する。   In the above method, the slurry concentration at the start of leaching is not particularly limited, but is preferably 10 to 300 g / L. That is, if the slurry concentration is less than 10 g / L, the amount of leaching of copper per unit volume of the leaching equipment is small, the equipment becomes huge, and the productivity also decreases. On the other hand, when the slurry concentration exceeds 300 g / L, copper sulfate and iron sulfate exceed the solubility, coat the ore particles, and the reactivity decreases.

上記方法で用いる銅原料としては、特に限定されるものではないが、黄銅鉱(キャルコパイライト:CuFeS)、輝銅鉱(キャルコサイト:CuS)、斑銅鉱(ボーナイト:CuFeS)、銅藍(コベライト:CuS)などの硫化銅鉱物とともに、黄鉄鉱、その他の脈石成分が共存している銅鉱石、該銅鉱石を浮遊選鉱に付して得られた銅精鉱、或いは、乾式熔錬法又は湿式製錬法で得られる硫化物形態の銅を含む銅製錬中間物から選ばれる少なくとも1種であるものが用いられる。特に、黄銅鉱と黄鉄鉱を含有する銅原料が好ましく用いられる。 The copper material used in the above method, is not particularly limited, chalcopyrite (Cal Kopai Light: CuFeS 2), chalcocite (Cal co Site: Cu 2 S), bornite (Bonaito: Cu 5 FeS 4 ), Copper ore in which pyrite, other gangue components coexist with copper sulfide minerals such as copper indigo (Cobelite: CuS), copper concentrate obtained by subjecting the copper ore to flotation, or What is at least 1 sort (s) chosen from the copper smelting intermediate containing the copper of the sulfide form obtained by a dry smelting method or a wet smelting method is used. In particular, a copper raw material containing chalcopyrite and pyrite is preferably used.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析は、ICP発光分析法で行った。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal used in the examples and comparative examples was analyzed by ICP emission analysis.

(実施例1)
組成が、Cu:20.6質量%、Fe:25.7質量%、及びS:24.6質量%であり、顕微鏡観察により黄銅鉱と黄鉄鉱が主鉱物である銅精鉱を用いた。
まず、前記銅精鉱を10μm以下の粒子が80質量%以上を占める粒度分布になるように、湿式ビーズミルを用いて粉砕した。
次に、粉砕した銅精鉱200gを、組成が、Cu:1.3g/L、Fe:45.3g/L、S:64.2g/L、及び遊離硫酸濃度:95g/Lである硫酸水溶液からなる浸出始液1リットルと混合してスラリーを得て、軽く攪拌した。なお、銅精鉱中の銅と浸出始液中の硫酸とのモル比は、約1.6である。また、スラリー濃度は、95g/Lである。さらに、このスラリーに、イオウと銅鉱石の剥離性を改善する界面活性剤として、リグニンスルホン酸ナトリウム0.5g/Lを混合した。
続いて、スラリーを圧力容器中に装入し、攪拌しながら、105℃まで昇温した。105℃における圧力は、約0.1MPaであった。ここで、この温度を維持しながら、酸素ガスを吹き込み、1.5MPaまで昇圧してこの状態を2時間維持した。
その後、反応後のスラリーを取り出し、濾過して濾液と残渣とに分離し、それぞれの分析を行ない、銅が濾液に分配した割合から銅浸出率を求めた。また、濾液中のイオウの濃度変化と残渣中の元素イオウ、硫化物イオウ、及び硫酸形態のイオウ品位とを分析し、硫化銅鉱物に含有されたイオウが硫酸イオンに変化した割合を算出してイオウ酸化率を求めた。結果を表1に示す。
Example 1
The composition was Cu: 20.6% by mass, Fe: 25.7% by mass, and S: 24.6% by mass, and copper concentrate containing chalcopyrite and pyrite as main minerals was used by microscopic observation.
First, the copper concentrate was pulverized using a wet bead mill so that particles having a size of 10 μm or less accounted for 80% by mass or more.
Next, 200 g of the pulverized copper concentrate was mixed with a sulfuric acid aqueous solution having a composition of Cu: 1.3 g / L, Fe: 45.3 g / L, S: 64.2 g / L, and free sulfuric acid concentration: 95 g / L. A slurry was obtained by mixing with 1 liter of a leaching starting solution consisting of and stirred lightly. The molar ratio of copper in the copper concentrate and sulfuric acid in the leaching start solution is about 1.6. The slurry concentration is 95 g / L. Furthermore, 0.5 g / L of sodium lignin sulfonate was mixed with this slurry as a surfactant that improves the peelability of sulfur and copper ore.
Subsequently, the slurry was charged into a pressure vessel and heated to 105 ° C. while stirring. The pressure at 105 ° C. was about 0.1 MPa. Here, while maintaining this temperature, oxygen gas was blown in, the pressure was increased to 1.5 MPa, and this state was maintained for 2 hours.
Thereafter, the slurry after the reaction was taken out and filtered to separate into a filtrate and a residue. Each analysis was performed, and the copper leaching rate was determined from the ratio of copper distributed to the filtrate. Analyze the sulfur concentration change in the filtrate and the elemental sulfur, sulfide sulfur, and sulfuric acid sulfur grade in the residue, and calculate the ratio of sulfur contained in the copper sulfide mineral to sulfate ion. The sulfur oxidation rate was determined. The results are shown in Table 1.

(実施例2)
圧力容器内の温度が、110℃であったこと、及びそのときの圧力は、約0.15MPaであり、この温度を維持しながら、酸素ガスを吹き込み、0.75MPaまで昇圧し、さらに全圧を揃えるため、約1.5MPaまで窒素ガスを吹き込んだこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Example 2)
The temperature in the pressure vessel was 110 ° C., and the pressure at that time was about 0.15 MPa. While maintaining this temperature, oxygen gas was blown in, the pressure was increased to 0.75 MPa, and the total pressure was increased. In order to make the same, except that nitrogen gas was blown up to about 1.5 MPa, it was carried out in the same manner as in Example 1, and the copper leaching rate and the sulfur oxidation rate were determined. The results are shown in Table 1.

(比較例1)
圧力容器内の温度が、160℃であったこと、及びそのときの圧力は、約0.6MPaであり、この温度を維持しながら、酸素ガスを吹き込み、2.0MPaまで昇圧したこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Comparative Example 1)
The temperature inside the pressure vessel was 160 ° C., and the pressure at that time was about 0.6 MPa. While maintaining this temperature, oxygen gas was blown in and the pressure was increased to 2.0 MPa. It carried out similarly to Example 1 and calculated | required the copper leaching rate and the sulfur oxidation rate. The results are shown in Table 1.

(比較例2)
圧力容器内の温度が、120℃であったこと、及びそのときの圧力は、約0.2MPaであり、この温度を維持しながら、酸素ガスを吹き込み、2.0MPaまで昇圧したこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Comparative Example 2)
The temperature in the pressure vessel was 120 ° C., and the pressure at that time was about 0.2 MPa. While maintaining this temperature, oxygen gas was blown in and the pressure was increased to 2.0 MPa. It carried out similarly to Example 1 and calculated | required the copper leaching rate and the sulfur oxidation rate. The results are shown in Table 1.

(比較例3)
圧力容器内の温度が、95℃であったこと、及びこの温度を維持しながら、酸素ガスを吹き込み、1.5MPaまで昇圧したこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that the temperature in the pressure vessel was 95 ° C. and oxygen gas was blown into the pressure vessel and the pressure was increased to 1.5 MPa. The oxidation rate was determined. The results are shown in Table 1.

(比較例4)
圧力容器内の酸素ガスの吹き込み後の圧力が、0.3MPaであったこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Comparative Example 4)
Except that the pressure after the oxygen gas was blown into the pressure vessel was 0.3 MPa, the same procedure as in Example 1 was performed to determine the copper leaching rate and the sulfur oxidation rate. The results are shown in Table 1.

(比較例5)
圧力容器内の酸素ガスの吹き込み後の圧力が、2.5MPaであったこと以外は、実施例1と同様に行い、銅浸出率とイオウ酸化率を求めた。結果を表1に示す。
(Comparative Example 5)
The copper leaching rate and the sulfur oxidation rate were determined in the same manner as in Example 1 except that the pressure after the oxygen gas was blown into the pressure vessel was 2.5 MPa. The results are shown in Table 1.

Figure 0005423046
Figure 0005423046

表1より、実施例1又は2では、銅原料と硫酸水溶液からなるスラリーを形成し、かつ圧力容器内の温度を102〜112℃に維持しながら、該容器内の圧力が、その温度での平衡気相分圧に0.5〜2MPaを昇圧した値になるように、送入する酸素ガスを調節して、本発明の方法に従って行われたので、銅原料中のイオウの酸化を抑制しながら、銅を高収率で浸出することができることが分かる。これに対して、比較例1〜5では、圧力容器内の温度又は酸素ガスによる昇圧がこれらの条件に合わないので、銅浸出率又はイオウ酸化率において満足すべき結果が得られないことが分かる。   From Table 1, in Example 1 or 2, in the slurry which consists of a copper raw material and sulfuric acid aqueous solution, and maintaining the temperature in a pressure vessel at 102-112 degreeC, the pressure in this container is the temperature in that temperature. Since the oxygen gas to be fed was adjusted so that the equilibrium gas phase partial pressure was increased to 0.5 to 2 MPa and the method according to the present invention was performed, oxidation of sulfur in the copper raw material was suppressed. However, it can be seen that copper can be leached in high yield. On the other hand, in Comparative Examples 1-5, since the temperature in a pressure vessel or the pressure | voltage rise by oxygen gas does not meet these conditions, it turns out that a satisfactory result is not obtained in a copper leaching rate or a sulfur oxidation rate. .

以上より明らかなように、本発明の硫化銅鉱物を含む銅原料の浸出方法は、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出するので、特に、黄銅鉱と黄鉄鉱を含有する銅原料の浸出方法として好適である。   As is clear from the above, the leaching method of the copper raw material containing the copper sulfide mineral of the present invention leaches copper in a high yield while minimizing the oxidation of sulfur in the copper raw material. It is suitable as a leaching method for copper raw materials containing chalcopyrite and pyrite.

Claims (3)

加圧容器中で酸素ガスを送入しつつ黄銅鉱を含む銅原料から銅を浸出する方法であって、
加圧容器中に、銅原料と硫酸水溶液からなるスラリーを形成し、かつ該容器内の温度を102〜112℃に維持しながら、該容器内の圧力が、その温度での平衡気相分圧に0.6〜2MPaを昇圧した値になるように、送入する酸素ガスを調節することを特徴とする黄銅鉱を含む銅原料の浸出方法。
A method of leaching copper from a copper raw material containing chalcopyrite while feeding oxygen gas in a pressurized container,
In the pressure vessel, a slurry composed of a copper raw material and an aqueous sulfuric acid solution is formed, and while maintaining the temperature in the vessel at 102 to 112 ° C., the pressure in the vessel is the equilibrium gas phase partial pressure at that temperature. A method for leaching a copper raw material containing chalcopyrite , wherein oxygen gas to be fed is adjusted so that the pressure is increased to 0.6 to 2 MPa.
前記スラリー中に含有される硫酸量は、前記黄銅鉱に含有される銅を硫酸銅に変換するのに必要な化学当量の1〜2倍であることを特徴とする請求項1に記載の黄銅鉱を含む銅原料の浸出方法。 Amount of sulfuric acid contained in the slurry is yellow of claim 1, characterized in that the copper contained in the chalcopyrite is 1-2 times the stoichiometric amount required to convert the copper sulfate A method for leaching copper raw materials containing copper ore . 前記スラリーの浸出開始時のスラリー濃度は、10〜300g/Lであることを特徴とする請求項1に記載の黄銅鉱を含む銅原料の浸出方法。 The method for leaching a copper raw material containing chalcopyrite according to claim 1, wherein the slurry concentration at the start of leaching of the slurry is 10 to 300 g / L.
JP2009043406A 2009-02-26 2009-02-26 Method for leaching copper raw materials containing copper sulfide minerals Active JP5423046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043406A JP5423046B2 (en) 2009-02-26 2009-02-26 Method for leaching copper raw materials containing copper sulfide minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043406A JP5423046B2 (en) 2009-02-26 2009-02-26 Method for leaching copper raw materials containing copper sulfide minerals

Publications (2)

Publication Number Publication Date
JP2010196125A JP2010196125A (en) 2010-09-09
JP5423046B2 true JP5423046B2 (en) 2014-02-19

Family

ID=42821140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043406A Active JP5423046B2 (en) 2009-02-26 2009-02-26 Method for leaching copper raw materials containing copper sulfide minerals

Country Status (1)

Country Link
JP (1) JP5423046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852172B (en) * 2023-02-13 2023-05-30 锦益创典(天津)科技有限责任公司 Tantalum-niobium slurry decomposition system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637371A (en) * 1967-02-10 1972-01-25 Sherritt Gordon Mines Ltd Direct pressure leaching of copper-iron sulphides
US3616331A (en) * 1968-08-03 1971-10-26 Int Nickel Co Recovery of nickel and copper from sulfides
US3917519A (en) * 1974-02-27 1975-11-04 Freeport Minerals Co Process for the manufacture of electrolytic copper

Also Published As

Publication number Publication date
JP2010196125A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
Zhang et al. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide
Wang Copper leaching from chalcopyrite concentrates
US9322104B2 (en) Recovering lead from a mixed oxidized material
FI125027B (en) Method of metal recycling from materials containing them
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
US9322105B2 (en) Recovering lead from a lead material including lead sulfide
CA2597354C (en) Method for the treatment of copper-bearing materials
EA013353B1 (en) Method for processing nickel bearing raw material in chloride-based leaching
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2008266774A (en) Zinc recovery method
AU2011232311A1 (en) Process for leaching refractory uraniferous minerals
Rotuska et al. Growing role of solvent extraction in copper ores processing
JP5477009B2 (en) Method for separating and recovering copper from copper-containing iron sulfides
EA023157B1 (en) Method for leaching chalcopyrite concentrate
JP2011195878A (en) Method for recovering copper from copper sulfide
ZA200501592B (en) Method for the recovery of metals using chloride leaching and extraction
JP4962078B2 (en) Nickel sulfide chlorine leaching method
KR20210105406A (en) Method for recovering metal from multimetal nodules
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP3948342B2 (en) Method for recovering copper from copper ore
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP5423046B2 (en) Method for leaching copper raw materials containing copper sulfide minerals
US7494528B2 (en) Method for smelting copper concentrates
JP4525354B2 (en) Reduction method of cupric chloride ion
JP4506660B2 (en) Silver recovery method in wet copper smelting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150