JP2015089963A - Method for concentrating rhodium and ruthenium - Google Patents

Method for concentrating rhodium and ruthenium Download PDF

Info

Publication number
JP2015089963A
JP2015089963A JP2013231439A JP2013231439A JP2015089963A JP 2015089963 A JP2015089963 A JP 2015089963A JP 2013231439 A JP2013231439 A JP 2013231439A JP 2013231439 A JP2013231439 A JP 2013231439A JP 2015089963 A JP2015089963 A JP 2015089963A
Authority
JP
Japan
Prior art keywords
leaching
ruthenium
alkali
rhodium
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013231439A
Other languages
Japanese (ja)
Other versions
JP6250365B2 (en
Inventor
大輔 倉井
Daisuke Kurai
大輔 倉井
伸明 岡島
Nobuaki Okajima
伸明 岡島
石井 敏文
Toshifumi Ishii
敏文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013231439A priority Critical patent/JP6250365B2/en
Publication of JP2015089963A publication Critical patent/JP2015089963A/en
Application granted granted Critical
Publication of JP6250365B2 publication Critical patent/JP6250365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for concentrating rhodium and ruthenium capable of concentrating rhodium and ruthenium at a low cost and with high efficiency without leaching rhodium and ruthenium.SOLUTION: There is provided a method for concentrating rhodium and ruthenium which comprises: a step of alkali-leaching selenium and tellurium by adding an alkali to a leached residue containing selenium, tellurium, rhodium and ruthenium to blow air; a step of solid-liquid separating a solution after the alkali-leaching step to obtain an alkali-leached residue containing a solution after alkali-leaching containing selenium and tellurium and rhodium and ruthenium; and a step of repeating a part of the alkali-leached residue to the alkali-leaching step.

Description

本発明は、ロジウム及びルテニウムの濃縮方法に関し、より具体的には、銅電解殿物の湿式処理により得られるセレン、テルル、ロジウム及びルテニウムを含むアルカリ浸出残渣のロジウム及びルテニウムの濃縮に好適なロジウム及びルテニウムの濃縮方法に関する。   TECHNICAL FIELD The present invention relates to a method for concentrating rhodium and ruthenium, and more specifically, rhodium suitable for concentrating rhodium and ruthenium in an alkaline leaching residue containing selenium, tellurium, rhodium and ruthenium obtained by wet treatment of a copper electrolytic product. And a method for concentrating ruthenium.

銅の電解精製は、転炉からの粗銅を、精製炉において99.5%程度に精製し、鋳造した陽極(アノード)と陰極としての種板あるいはステンレス板を、電解槽に交互に数十枚一組で吊して実施する。種板あるいはステンレス板上に電着した銅は電気銅と呼ばれる。電解槽の底には陽極中に含まれる不純物が泥状に沈積する。この沈積物は銅電解殿物(アノードスライム)と呼ばれる。銅電解物中には、銅に加えて金を始め原料中の種々の貴金属が濃縮しており、貴金属回収の主要原料とされている。   In the electrolytic refining of copper, the crude copper from the converter is refined to about 99.5% in the refining furnace, and the cast anode (anode) and the seed plate or stainless steel plate as the cathode are alternately placed in the electrolytic cell. Hang in one set. Copper electrodeposited on a seed plate or stainless steel plate is called electrolytic copper. Impurities contained in the anode deposit in a muddy state at the bottom of the electrolytic cell. This deposit is called copper electrolytic deposit (anode slime). In the copper electrolyte, various precious metals in the raw material including gold are concentrated in addition to copper, and are used as a main raw material for precious metal recovery.

銅電解殿物の処理においては、乾式法、湿式法のいずれの処理法も実用化されているが、設備コスト、処理流れなどの面から、湿式法の有用性が高いと考えられてきている。湿式法においては、銅電解殿物を脱銅工程、塩化浸出工程、金抽出工程を経由する予備処理の後、亜硫酸ガスを用いて白金属を還元し白金属含有還元物を得て、さらに亜硫酸ガスを用いてセレン、テルルを含む還元残渣を得る。   In the treatment of copper electrolytic deposits, both dry methods and wet methods have been put into practical use, but it has been considered that the wet method is highly useful in terms of equipment cost, treatment flow, etc. . In the wet method, after the copper electrolytic deposit is pretreated through a copper removal step, a chlorination leaching step, and a gold extraction step, white metal is reduced using sulfurous acid gas to obtain a white metal-containing reduced product, and further, sulfurous acid. A reducing residue containing selenium and tellurium is obtained using gas.

このセレン、テルルを含む還元残渣には、セレン、テルルの他にロジウム、ルテニウムが含有しているため、還元残渣を処理施設へ運搬してロジウム、ルテニウムを回収する工程が行われている。   Since the reduction residue containing selenium and tellurium contains rhodium and ruthenium in addition to selenium and tellurium, a process of transporting the reduction residue to a treatment facility and recovering rhodium and ruthenium is performed.

しかしながらこの還元残渣中のロジウム、ルテニウムの品位はそれほど高くないため、ロジウム、ルテニウムを回収するための前処理として、還元残渣から不純物であるセレン及びテルルを更に浸出させ、ロジウム、ルテニウムを浸出残渣中に濃縮することが望ましい。   However, since the quality of rhodium and ruthenium in this reduction residue is not so high, as a pretreatment for recovering rhodium and ruthenium, impurities selenium and tellurium are further leached from the reduction residue, and rhodium and ruthenium are contained in the leaching residue. It is desirable to concentrate it.

例えば特開2005−126800号公報には、セレン、テルルを含む還元滓中に含まれるロジウム、ルテニウムを濃縮する方法として、セレン、テルルを含む還元残渣を水酸化ナトリウムにリパルプし、一定量の過酸化水素を添加し続ける方法で、セレン、テルルを酸化浸出する方法が提案されている。   For example, Japanese Patent Application Laid-Open No. 2005-126800 discloses a method for concentrating rhodium and ruthenium contained in a reducing slag containing selenium and tellurium by repulping the reduction residue containing selenium and tellurium into sodium hydroxide and adding a certain amount of excess. A method of oxidizing and leaching selenium and tellurium has been proposed by a method in which hydrogen oxide is continuously added.

特開2007−270233号公報には、ロジウム及びルテニウムを含む残渣を、セレン及び又はテルルのモル数の合計に対して水酸化ナトリウムのモル数が2〜5倍である水溶液と混合させて空気を吹き込む方法が提案されている。   In JP 2007-270233 A, a residue containing rhodium and ruthenium is mixed with an aqueous solution in which the number of moles of sodium hydroxide is 2 to 5 times the total number of moles of selenium and tellurium. A method of blowing is proposed.

特開2005−126800号公報JP 2005-126800 A 特開2007−270233号公報JP 2007-270233 A

しかしながら、特許文献1に記載された方法では、過酸化水素の薬液コストが大きくなるという問題がある。更に一定の酸化還元電位で浸出を終了しても、水溶液中に残存する過酸化水素の影響により、酸化反応が停止するまでの反応が一定しないため、浸出反応が進みすぎてルテニウム又はロジウムを浸出させてしまう問題がある。   However, the method described in Patent Document 1 has a problem that the chemical cost of hydrogen peroxide increases. Furthermore, even if leaching is completed at a constant oxidation-reduction potential, the reaction until the oxidation reaction stops due to the effect of hydrogen peroxide remaining in the aqueous solution is not constant, so the leaching reaction proceeds too much and leaching of ruthenium or rhodium. There is a problem that will let you.

特許文献2に記載された方法では、過酸化水素の代わりに空気を吹き込んでセレン、テルルを酸化浸出することで、特許文献1に比べて薬液コストも小さく、より安定的に反応を進めることができるが、処理効率の面を鑑みると未だ改善の余地がある。   In the method described in Patent Document 2, by blowing air instead of hydrogen peroxide to oxidize and leach out selenium and tellurium, the chemical cost is lower than that in Patent Document 1, and the reaction can proceed more stably. However, there is still room for improvement in view of processing efficiency.

上記課題を鑑み、本発明は、ロジウム及びルテニウムを浸出させることなく、安価で効率良くロジウム及びルテニウムを濃縮することが可能なロジウム及びルテニウムの濃縮方法を提供する。   In view of the above problems, the present invention provides a method for concentrating rhodium and ruthenium that can efficiently concentrate rhodium and ruthenium without leaching out rhodium and ruthenium.

上記課題を解決するために、本発明者が鋭意検討した結果、セレン、テルル、ロジウム及びルテニウムを含む残渣をアルカリ浸出すること(アルカリ浸出工程)によってアルカリ浸出残渣とアルカリ浸出後液を得て、得られた浸出残渣を硫酸で浸出すること(硫酸浸出工程)により硫酸浸出残渣と硫酸浸出後液とを得る処理方法において、アルカリ浸出工程及び/又は硫酸浸出工程で得られるアルカリ浸出残渣及び/又は硫酸浸出残渣の一部をアルカリ浸出工程に繰り返すことにより、ロジウム及びルテニウムを安価で効率的に濃縮できることを見出した。   In order to solve the above-mentioned problems, the present inventors diligently studied. As a result, an alkali leaching residue and an alkali leaching solution were obtained by alkali leaching a residue containing selenium, tellurium, rhodium and ruthenium (alkali leaching step), In the treatment method of obtaining a sulfuric acid leaching residue and a solution after sulfuric acid leaching by leaching the obtained leaching residue with sulfuric acid (sulfuric acid leaching step), an alkali leaching residue obtained by the alkali leaching step and / or the sulfuric acid leaching step and / or It has been found that rhodium and ruthenium can be efficiently concentrated at low cost by repeating a part of the sulfuric acid leaching residue in the alkaline leaching step.

以上の知見を基礎として完成した本発明は一側面において、セレン、テルル、ロジウム及びルテニウムを含む浸出残渣にアルカリを添加し、空気を吹き込むことによりセレン及びテルルをアルカリ浸出するアルカリ浸出工程と、アルカリ浸出工程後の溶液を固液分離し、セレン及びテルルを含むアルカリ浸出後液とロジウム及びルテニウムとを含むアルカリ浸出残渣を得る固液分離工程と、アルカリ浸出残渣の一部をアルカリ浸出工程へ繰り返すことを含むロジウム及びルテニウムの濃縮方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, an alkali leaching step of adding alkali to a leaching residue containing selenium, tellurium, rhodium and ruthenium, and leaching the selenium and tellurium by alkali blowing, and an alkali The solution after the leaching step is subjected to solid-liquid separation to obtain a solution after alkali leaching containing selenium and tellurium and a solid-liquid separating step to obtain an alkali leaching residue containing rhodium and ruthenium, and a part of the alkali leaching residue is repeated to the alkali leaching step. This is a method for concentrating rhodium and ruthenium.

本発明は別の一側面において、セレン、テルル、ロジウム及びルテニウムを含む浸出残渣にアルカリを添加し、空気を吹き込むことにより、セレン及びテルルをアルカリ浸出するアルカリ浸出工程と、アルカリ浸出工程後の溶液を固液分離し、セレン及びテルルを含むアルカリ浸出後液とロジウム及びルテニウムとを含むアルカリ浸出残渣を得る第1の固液分離工程と、アルカリ浸出残渣に酸を添加し、アルカリ浸出残渣に含まれるセレンを浸出させる酸浸出工程と、酸浸出工程後の溶液を固液分離し、セレンを含む酸浸出後液とロジウム及びルテニウムを含む酸浸出残渣とを得る第2の固液分離工程と、酸浸出残渣の一部をアルカリ浸出工程へ繰り返すことを含むロジウム及びルテニウムの濃縮方法である。   In another aspect of the present invention, an alkali leaching step of alkali leaching selenium and tellurium by adding alkali to a leaching residue containing selenium, tellurium, rhodium and ruthenium and blowing air, and a solution after the alkali leaching step A solid-liquid separation, a first solid-liquid separation step to obtain an alkali leaching solution containing selenium and tellurium and an alkali leaching residue containing rhodium and ruthenium, and an acid is added to the alkali leaching residue and contained in the alkali leaching residue An acid leaching step for leaching selenium, a second solid-liquid separation step for solid-liquid separation of the solution after the acid leaching step, and obtaining an acid leaching solution containing selenium and an acid leaching residue containing rhodium and ruthenium; A method for concentrating rhodium and ruthenium comprising repeating part of the acid leaching residue to an alkali leaching step.

本発明に係るロジウム及びルテニウムの濃縮方法は別の一実施態様において、酸浸出残渣の20〜70質量%をアルカリ浸出工程へ繰り返すことを含む。   In another embodiment, the method for concentrating rhodium and ruthenium according to the present invention includes repeating 20 to 70% by mass of the acid leaching residue to the alkali leaching step.

本発明に係るロジウム及びルテニウムの濃縮方法は更に別の一実施態様において、アルカリ浸出残渣の20〜70質量%をアルカリ浸出工程へ繰り返すことを含む。   In yet another embodiment, the method for concentrating rhodium and ruthenium according to the present invention includes repeating 20 to 70% by mass of the alkali leaching residue to the alkali leaching step.

本発明に係るロジウム及びルテニウムの濃縮方法は更に別の一実施態様において、アルカリ浸出工程が、50〜150g/Lのパルプ濃度で50〜150g/Lの苛性ソーダを添加しながら空気を吹き込んで液中の酸化還元電位を−150〜−240mVの範囲に調整することを含む。   In yet another embodiment of the method for concentrating rhodium and ruthenium according to the present invention, the alkali leaching step is performed by blowing air while adding 50 to 150 g / L of caustic soda at a pulp concentration of 50 to 150 g / L. Adjusting the oxidation-reduction potential of -150 to -240 mV.

本発明に係るロジウム及びルテニウムの濃縮方法は更に別の一実施態様において、酸浸出工程が、100〜150g/Lのパルプ濃度で30〜80g/Lの硫酸を添加しながら70〜90℃で8時間以上撹拌することを含む。   In yet another embodiment of the method for concentrating rhodium and ruthenium according to the present invention, the acid leaching step is carried out at 70 to 90 ° C. while adding 30 to 80 g / L sulfuric acid at a pulp concentration of 100 to 150 g / L. Including stirring for more than an hour.

本発明によれば、ロジウム及びルテニウムを浸出させることなく、安価で効率良くロジウム及びルテニウムを濃縮することが可能なロジウム及びルテニウムの濃縮方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the rhodium and the ruthenium concentration method which can concentrate rhodium and ruthenium efficiently cheaply and without leaching rhodium and ruthenium can be provided.

本発明の第1の実施の形態に係るロジウム及びルテニウムの濃縮方法を表す処理フロー図である。It is a processing flow figure showing the concentration method of rhodium and ruthenium which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るロジウム及びルテニウムの濃縮方法を表す処理フロー図である。It is a processing flow figure showing the concentration method of rhodium and ruthenium which concerns on the 2nd Embodiment of this invention.

<処理対象とする残渣>
以下、本発明の詳細について説明する。本発明に係るロジウム及びルテニウムの濃縮方法が処理対象とする残渣は、セレン、テルル、ロジウム及びルテニウムを少なくとも含む残渣である。
<Residue to be treated>
Details of the present invention will be described below. The residue to be treated by the method for concentrating rhodium and ruthenium according to the present invention is a residue containing at least selenium, tellurium, rhodium and ruthenium.

この残渣は、典型的には、銅電解殿物の湿式処理工程で得られるセレン、テルル、ロジウム、ルテニウムを含む残渣である。より具体的には、銅電解殿物に対して脱銅浸出、塩化浸出、金抽出、セレン還元処理を行った後のテルル還元滓を、苛性ソーダによりアルカリ浸出した後のアルカリ浸出残渣が利用可能である。   This residue is typically a residue containing selenium, tellurium, rhodium, and ruthenium obtained in a wet processing step of a copper electrolytic product. More specifically, it is possible to use the alkaline leaching residue after alkali leaching of tellurium-reduced soot after performing copper removal leaching, chloride leaching, gold extraction, and selenium reduction treatment with copper caustic soda. is there.

この還元残渣には、セレンが50〜80質量%、テルルが10〜40質量%、ロジウムが0.05〜0.25質量%、ルテニウムが0.5〜2.5質量%含まれている。本発明では、この残渣を処理し、ロジウム及びルテニウムを濃縮するための2つの実施形態について以下に説明する。   The reduction residue contains 50 to 80% by mass of selenium, 10 to 40% by mass of tellurium, 0.05 to 0.25% by mass of rhodium, and 0.5 to 2.5% by mass of ruthenium. In the present invention, two embodiments for treating this residue and concentrating rhodium and ruthenium are described below.

(第1の実施の形態)
第1の実施の形態に係るロジウム及びルテニウムの濃縮方法は、図1に示すように、アルカリ浸出工程、第1の固液分離工程、第1の固液分離工程後の残渣繰り返し工程、酸浸出工程、第2の固液分離工程を含む。
(First embodiment)
As shown in FIG. 1, the rhodium and ruthenium concentration method according to the first embodiment includes an alkali leaching step, a first solid-liquid separation step, a residue repeating step after the first solid-liquid separation step, and an acid leaching. A process and a second solid-liquid separation process.

アルカリ浸出工程では、セレン、テルル、ロジウム及びルテニウムを含む残渣を、50〜150g/L、より好ましくは70〜100g/Lのパルプ濃度で50〜150g/L、より好ましくは80〜100g/Lの苛性ソーダなどのアルカリ水溶液にリパルプし、溶液を70〜90℃、より好ましくは75〜85℃に加熱しながら空気を吹き込むことで、溶液中にセレン、テルルを浸出させる。セレン、テルルを効率良く浸出させるためには、溶液の酸化還元電位(銀−塩化銀基準)を−150〜−240mV、より好ましくは−180〜−220mVで空気の吹き込みを止め、アルカリ浸出反応を停止させることが好ましい。   In the alkaline leaching step, the residue containing selenium, tellurium, rhodium and ruthenium is 50 to 150 g / L, more preferably 70 to 100 g / L at a pulp concentration of 50 to 150 g / L, more preferably 80 to 100 g / L. Repulping into an alkaline aqueous solution such as caustic soda, and blowing the air while heating the solution to 70 to 90 ° C., more preferably 75 to 85 ° C., allows selenium and tellurium to be leached into the solution. In order to efficiently leach selenium and tellurium, the blowing of air is stopped at an oxidation-reduction potential (silver-silver chloride standard) of the solution of −150 to −240 mV, more preferably −180 to −220 mV, and the alkali leaching reaction is performed. It is preferable to stop.

次に、アルカリ浸出工程後の水溶液を固液分離し、セレン及びテルルを含むアルカリ浸出後液とロジウム及びルテニウムとを含むアルカリ浸出残渣とを得る。固液分離方法としては特に制限されないが、例えばフィルタープレス等を用いた固液分離方法が利用可能である。   Next, the aqueous solution after the alkali leaching step is subjected to solid-liquid separation to obtain an alkali leached solution containing selenium and tellurium and an alkali leaching residue containing rhodium and ruthenium. The solid-liquid separation method is not particularly limited, but for example, a solid-liquid separation method using a filter press or the like can be used.

第1の固液分離工程で得られたアルカリ浸出残渣には、回収対象とするロジウム及びルテニウムの他にも、不純物としてのセレン、テルルが含まれている。最終的に得られる残渣中のロジウム及びルテニウムの含有率を上げるため、アルカリ浸出残渣の一部をアルカリ浸出工程へ繰り返す。   The alkali leaching residue obtained in the first solid-liquid separation step contains selenium and tellurium as impurities in addition to rhodium and ruthenium to be recovered. In order to increase the content of rhodium and ruthenium in the residue finally obtained, a part of the alkali leaching residue is repeated to the alkali leaching step.

アルカリ浸出工程へ繰り返すアルカリ浸出残渣の量は、アルカリ浸出反応により得られるアルカリ浸出残渣の総質量の20%以上とするのが好ましい。得られたアルカリ浸出残渣の全量をアルカリ浸出工程へ繰り返してもよいが、アルカリ浸出処理にアルカリ浸出残渣を全量繰り返すことで処理時間が長くなり処理効率が向上しない場合がある。また、その後のロジウム、ルテニウムの回収用原料として回収すべき残渣(酸浸出残渣)の発生量を考慮すると、繰り返し量は、得られるアルカリ浸出残渣の全質量に対して20〜70%、より好ましくは20〜50%、更に好ましくは1/3(33%)程度である。   The amount of the alkali leaching residue repeated to the alkali leaching step is preferably 20% or more of the total mass of the alkali leaching residue obtained by the alkali leaching reaction. Although the total amount of the obtained alkali leaching residue may be repeated in the alkali leaching step, the treatment time may be increased by repeating the entire amount of the alkali leaching residue in the alkali leaching process, and the processing efficiency may not be improved. In consideration of the amount of residue (acid leaching residue) to be recovered as a subsequent raw material for recovering rhodium and ruthenium, the repetition amount is more preferably 20 to 70% with respect to the total mass of the alkali leaching residue obtained. Is 20 to 50%, more preferably about 1/3 (33%).

次いで、固液分離によって得られたアルカリ浸出残渣に酸を加え、100〜150g/Lのパルプ濃度で30〜80g/Lの酸を添加しながら70〜90℃で8時間以上撹拌し、アルカリ浸出残渣中のセレンを更に浸出させる。酸としては、硫酸が利用可能である。   Next, acid is added to the alkali leaching residue obtained by solid-liquid separation, and the mixture is stirred at 70 to 90 ° C. for 8 hours or more while adding 30 to 80 g / L acid at a pulp concentration of 100 to 150 g / L, and alkali leaching. The selenium in the residue is further leached. As the acid, sulfuric acid can be used.

酸浸出後の水溶液をフィルタープレスなどにより固液分離し、ロジウム及びルテニウムとを含む酸浸出残渣とセレンを含む酸浸出後液を得る。得られた酸浸出残渣は、ロジウム及びルテニウム回収用の原料残渣として、ロジウム、ルテニウム回収工程へ送られる。   The aqueous solution after acid leaching is subjected to solid-liquid separation by a filter press or the like to obtain an acid leaching residue containing rhodium and ruthenium and a solution after acid leaching containing selenium. The obtained acid leaching residue is sent to a rhodium and ruthenium recovery step as a raw material residue for recovering rhodium and ruthenium.

第1の実施の形態に係るロジウム及びルテニウムの濃縮方法によれば、固液分離後のアルカリ浸出残渣の一部(例えば1/3)をアルカリ浸出工程へ繰り返すことで、ロジウム及びルテニウムを浸出させることなく、安価で効率良くロジウム及びルテニウムを濃縮することが可能となる。   According to the rhodium and ruthenium concentration method according to the first embodiment, rhodium and ruthenium are leached by repeating a part (for example, 1/3) of the alkali leaching residue after solid-liquid separation to the alkali leaching step. Therefore, it is possible to concentrate rhodium and ruthenium efficiently at low cost.

(第2の実施の形態)
第2の実施の形態に係るロジウム及びルテニウムの濃縮方法は、図2に示すように、アルカリ浸出工程、第1の固液分離工程、酸浸出工程、第2の固液分離工程、及び第2の固液分離工程で得られた酸浸出残渣の一部をアルカリ浸出工程へ繰り返す工程を含んでいる。特に第2の実施形態では、酸浸出残渣をアルカリ浸出工程に繰り返す点が、第1の実施の形態と異なる。
(Second Embodiment)
As shown in FIG. 2, the rhodium and ruthenium concentration method according to the second embodiment includes an alkali leaching step, a first solid-liquid separation step, an acid leaching step, a second solid-liquid separation step, and a second The step of repeating a part of the acid leaching residue obtained in the solid-liquid separation step to the alkali leaching step is included. In particular, the second embodiment is different from the first embodiment in that the acid leaching residue is repeated in the alkali leaching step.

第2の固液分離後で得られた酸浸出残渣には、回収対象とするロジウム及びルテニウムの他にも不純物としてのセレン、テルルがまだ含まれている。酸浸出残渣の一部をアルカリ浸出工程へ繰り返すことで、セレン、テルル等の不純物を更に浸出させることができるため、最終的に得られるロジウム、ルテニウム回収用残渣中のロジウム及びルテニウムの品位が従来に比べて向上する。   The acid leaching residue obtained after the second solid-liquid separation still contains selenium and tellurium as impurities in addition to rhodium and ruthenium to be recovered. By repeating a part of the acid leaching residue to the alkali leaching step, impurities such as selenium and tellurium can be further leached. Compared to

アルカリ浸出工程へ繰り返す酸浸出残渣の量は、酸浸出反応により得られる酸浸出残渣の総質量の20%以上とするのが好ましい。酸浸出残渣の全量をアルカリ浸出工程へ繰り返してもよいが、アルカリ浸出処理に酸浸出残渣を全量繰り返すことで処理時間が長くなり処理効率が向上しない場合がある。また、ロジウム、ルテニウムの回収用原料として回収すべき最終的に得られる残渣(図2の酸浸出残渣)の発生量を考慮すると、繰り返し量は、得られるアルカリ浸出残渣の全質量に対して20〜70%とするのが好ましく、より好ましくは20〜50%、更に好ましくは1/3(33%)程度である。その他の各工程(アルカリ浸出工程、第1の固液分離工程、酸浸出工程、第2の固液分離工程)は第1の実施の形態と実質的に同様であるので重複した説明を省略する。   The amount of the acid leaching residue repeated to the alkali leaching step is preferably 20% or more of the total mass of the acid leaching residue obtained by the acid leaching reaction. Although the total amount of the acid leaching residue may be repeated in the alkali leaching step, the processing time may not be improved by repeating the entire amount of the acid leaching residue in the alkali leaching process. In consideration of the amount of residue (acid leaching residue in FIG. 2) that is finally obtained as a raw material for collecting rhodium and ruthenium, the repetition amount is 20 with respect to the total mass of the alkali leaching residue obtained. It is preferable to set it to -70%, More preferably, it is 20-50%, More preferably, it is about 1/3 (33%). The other steps (alkali leaching step, first solid-liquid separation step, acid leaching step, second solid-liquid separation step) are substantially the same as those in the first embodiment, and therefore redundant description is omitted. .

第1の固液分離工程後に得られるアルカリ浸出残渣はベトベトとしており、残渣の一部を繰り返し用に分けることが難しい場合がある。一方、第2の固液分離工程後に得られる酸浸出残渣は、第1の固液分離工程後に得られるアルカリ浸出残渣に比べて粘性が低く、操作者による取り扱いが容易であり、不純物が酸浸出され、残渣発生量も減るため、第1の実施の形態に比べて作業効率をより向上させることが可能となる。また、第2の固液分離工程で得られる酸浸出残渣の一部をアルカリ浸出工程へ繰り返すことで、残渣中の不純物(セレン、テルル)が更に除去されるため、ルテニウム回収用原料中のロジウム、ルテニウムの高濃度化が可能となる。なお、図2に図示はしていないが、第2の実施の形態においては第1の固液分離工程で得られたアルカリ浸出残渣の一部を更にアルカリ浸出残渣工程に繰り返してもよいことは勿論である。   The alkali leaching residue obtained after the first solid-liquid separation step is sticky, and it may be difficult to separate a part of the residue for repeated use. On the other hand, the acid leaching residue obtained after the second solid-liquid separation step has a lower viscosity than the alkali leaching residue obtained after the first solid-liquid separation step, is easy to handle by the operator, and the impurities are acid leached. In addition, since the amount of generated residue is also reduced, it is possible to further improve the work efficiency compared to the first embodiment. Further, by repeating a part of the acid leaching residue obtained in the second solid-liquid separation step to the alkali leaching step, impurities (selenium, tellurium) in the residue are further removed, so rhodium in the ruthenium recovery raw material It is possible to increase the concentration of ruthenium. Although not shown in FIG. 2, in the second embodiment, a part of the alkali leaching residue obtained in the first solid-liquid separation step may be further repeated in the alkali leaching residue step. Of course.

なお、第2の実施の形態においてアルカリ浸出工程へ一部繰り返す酸浸出残渣としては、図2の第2の固液分離工程後に得られる酸浸出残渣に限定されるものではなく、セレン、テルル、ロジウム、ルテニウムを含む他の工程由来の酸浸出残渣であっても構わない。例えば、セレンを10〜65質量%、テルルを5〜30質量%、ロジウムが1〜3質量%、ルテニウムを10〜25質量%含む酸浸出残渣であれば、本発明に利用可能である。   Note that the acid leaching residue that is partially repeated in the alkali leaching step in the second embodiment is not limited to the acid leaching residue obtained after the second solid-liquid separation step in FIG. 2, but selenium, tellurium, It may be an acid leaching residue derived from another process containing rhodium and ruthenium. For example, any acid leaching residue containing 10 to 65% by mass of selenium, 5 to 30% by mass of tellurium, 1 to 3% by mass of rhodium, and 10 to 25% by mass of ruthenium can be used in the present invention.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

(実施例1)
表1に示すようにセレンを21質量%、テルルを13質量%、ロジウムを1質量%、ルテニウムを13質量%含む銅電解殿物由来のアルカリ浸出残渣を25質量%苛性ソーダと水により、パルプ濃度80g/L、苛性ソーダ濃度90g/Lに調整してリパルプした。この水溶液を80℃に加熱した後、撹拌しながら空気を吹き込んでアルカリ浸出処理を開始した。銀−塩化銀基準の酸化還元電位が−200mVになったところで空気の吹き込みを止めて反応を終了させ、これをフィルタープレスでろ過して、アルカリ浸出残渣と浸出後液を得た。
Example 1
As shown in Table 1, the pulp concentration of caustic soda and water is 25% by weight of alkaline leaching residue derived from copper electrolytic residue containing 21% by weight of selenium, 13% by weight of tellurium, 1% by weight of rhodium and 13% by weight of ruthenium. Repulping was carried out after adjusting to 80 g / L and caustic soda concentration of 90 g / L. After heating this aqueous solution to 80 degreeC, air was blown in with stirring and the alkali leaching process was started. When the redox potential on the basis of silver-silver chloride reached -200 mV, the blowing of air was stopped to terminate the reaction, and this was filtered with a filter press to obtain an alkaline leaching residue and a liquid after leaching.

得られたアルカリ浸出残渣の総重量の1/3を抽出して原料と混合させ、上記と同様の条件で第2回目のアルカリ浸出処理を実施し、銀−塩化銀基準の酸化還元電位が−200mVになったところで空気の吹き込みを止めて反応を終了させ、これをフィルタープレスによる固液分離でアルカリ浸出残渣と浸出後液を得た。固液分離により得られたアルカリ浸出残渣と浸出後液の各成分組成を表2及び表3に示す。   1/3 of the total weight of the obtained alkaline leaching residue was extracted and mixed with the raw material, and the second alkaline leaching treatment was performed under the same conditions as described above, and the oxidation-reduction potential based on silver-silver chloride was- At 200 mV, air blowing was stopped to terminate the reaction, and this was subjected to solid-liquid separation by a filter press to obtain an alkaline leaching residue and a liquid after leaching. Tables 2 and 3 show the composition of each component of the alkaline leaching residue obtained by solid-liquid separation and the liquid after leaching.

Figure 2015089963
Figure 2015089963

Figure 2015089963
Figure 2015089963

Figure 2015089963
Figure 2015089963

表1〜表3に示すように、アルカリ浸出残渣の一部を繰り返して更にアルカリ浸出を実施することにより、Rh、Ruを浸出させることなく、セレン及びテルルを浸出後液中に移行させることができ、効率良くロジウム及びルテニウムを濃縮することができていることが分かる。但し、実施例1でアルカリ浸出工程へ繰り返したアルカリ浸出残渣はベトベトとしており、繰り返し用に所定量分けることが難しい結果となった。   As shown in Tables 1 to 3, it is possible to transfer selenium and tellurium into the solution after leaching without leaching Rh and Ru by further carrying out alkali leaching by repeating a part of the alkali leaching residue. It can be seen that rhodium and ruthenium can be efficiently concentrated. However, the alkali leaching residue repeated in the alkali leaching step in Example 1 was sticky, and it was difficult to separate a predetermined amount for repetition.

(実施例2)
表5に示す酸浸出残渣の総重量の1/3を表4に示すアルカリ浸出残渣に混合し、25質量%苛性ソーダと水により、パルプ濃度80g/L、苛性ソーダ濃度90g/Lに調整してリパルプした。この水溶液を80℃に加熱した後、撹拌しながら空気を吹き込んでアルカリ浸出処理を開始した。銀−塩化銀基準の酸化還元電位が−200mVになったところで空気の吹き込みを止めて反応を終了させ、これをフィルタープレスでろ過して、アルカリ浸出残渣と浸出後液を得た。得られたアルカリ浸出残渣と浸出後液の各成分組成を表6及び表7に示す。
(Example 2)
1/3 of the total weight of the acid leaching residue shown in Table 5 is mixed with the alkali leaching residue shown in Table 4, and adjusted to a pulp concentration of 80 g / L and a caustic soda concentration of 90 g / L with 25% by mass of caustic soda and water. did. After heating this aqueous solution to 80 degreeC, air was blown in with stirring and the alkali leaching process was started. When the redox potential on the basis of silver-silver chloride reached -200 mV, the blowing of air was stopped to terminate the reaction, and this was filtered with a filter press to obtain an alkaline leaching residue and a liquid after leaching. Tables 6 and 7 show the composition of each component of the obtained alkali leaching residue and the liquid after leaching.

Figure 2015089963
Figure 2015089963

Figure 2015089963
Figure 2015089963

Figure 2015089963
Figure 2015089963

Figure 2015089963
Figure 2015089963

酸浸出残渣とアルカリ浸出残渣を混合して更にアルカリ浸出を実施することにより、Rh、Ruを浸出させることなく、セレンを浸出後液中に浸出させることができ、効率良くロジウム及びルテニウムを濃縮することができた。   By mixing the acid leaching residue and the alkali leaching residue and further performing alkali leaching, selenium can be leached into the solution after leaching without leaching Rh and Ru, and rhodium and ruthenium are efficiently concentrated. I was able to.

Claims (6)

セレン、テルル、ロジウム及びルテニウムを含む浸出残渣にアルカリを添加し、空気を吹き込むことによりセレン及びテルルをアルカリ浸出するアルカリ浸出工程と、
前記アルカリ浸出工程後の溶液を固液分離し、セレン及びテルルを含むアルカリ浸出後液とロジウム及びルテニウムとを含むアルカリ浸出残渣を得る固液分離工程と、
前記アルカリ浸出残渣の一部を前記アルカリ浸出工程へ繰り返すこと
を含むロジウム及びルテニウムの濃縮方法。
An alkali leaching step of adding alkali to a leaching residue containing selenium, tellurium, rhodium and ruthenium, and leaching the selenium and tellurium by alkali by blowing air; and
Solid-liquid separation of the solution after the alkali leaching step to obtain an alkali leaching residue containing rhodium and ruthenium after the alkali leaching solution containing selenium and tellurium; and
A method for concentrating rhodium and ruthenium, comprising repeating a part of the alkali leaching residue to the alkali leaching step.
セレン、テルル、ロジウム及びルテニウムを含む浸出残渣にアルカリを添加し、空気を吹き込むことにより、セレン及びテルルをアルカリ浸出するアルカリ浸出工程と、
前記アルカリ浸出工程後の溶液を固液分離し、セレン及びテルルを含むアルカリ浸出後液とロジウム及びルテニウムとを含むアルカリ浸出残渣を得る第1の固液分離工程と、
前記アルカリ浸出残渣に酸を添加し、アルカリ浸出残渣に含まれるセレンを浸出させる酸浸出工程と、
前記酸浸出工程後の溶液を固液分離し、セレンを含む酸浸出後液とロジウム及びルテニウムを含む酸浸出残渣とを得る第2の固液分離工程と
前記酸浸出残渣の一部をアルカリ浸出工程へ繰り返すこと
を含むロジウム及びルテニウムの濃縮方法。
An alkali leaching step of alkali leaching selenium and tellurium by adding alkali to a leaching residue containing selenium, tellurium, rhodium and ruthenium and blowing air;
A first solid-liquid separation step of solid-liquid separation of the solution after the alkali leaching step to obtain an alkali leaching solution containing selenium and tellurium and an alkali leaching residue containing rhodium and ruthenium;
An acid leaching step of adding an acid to the alkali leaching residue and leaching selenium contained in the alkali leaching residue;
The solution after the acid leaching step is solid-liquid separated to obtain a solution after acid leaching containing selenium and an acid leaching residue containing rhodium and ruthenium, and alkali leaching a part of the acid leaching residue A method for concentrating rhodium and ruthenium, comprising repeating the steps.
前記酸浸出残渣の20〜70質量%をアルカリ浸出工程へ繰り返すことを含む請求項2に記載のロジウム及びルテニウムの濃縮方法。   The method for concentrating rhodium and ruthenium according to claim 2, comprising repeating 20 to 70% by mass of the acid leaching residue to the alkali leaching step. 前記アルカリ浸出残渣の20〜70質量%を前記アルカリ浸出工程へ繰り返すことを含む請求項1〜3のいずれか1項に記載のロジウム及びルテニウムの濃縮方法。   The method for concentrating rhodium and ruthenium according to any one of claims 1 to 3, comprising repeating 20 to 70 mass% of the alkali leaching residue to the alkali leaching step. 前記アルカリ浸出工程が、50〜150g/Lのパルプ濃度で50〜150g/Lの苛性ソーダを添加しながら空気を吹き込んで液中の酸化還元電位を−150〜−240mVの範囲に調整することを含む請求項1〜4のいずれか1項に記載のロジウム及びルテニウムの濃縮方法。   The alkali leaching step includes adjusting the redox potential in the liquid to a range of −150 to −240 mV by blowing air while adding 50 to 150 g / L of caustic soda at a pulp concentration of 50 to 150 g / L. The method for concentrating rhodium and ruthenium according to any one of claims 1 to 4. 酸浸出工程が、100〜150g/Lのパルプ濃度で30〜80g/Lの硫酸を添加しながら70〜90℃で8時間以上撹拌することを含む請求項2〜5のいずれか1項に記載のロジウム及びルテニウムの濃縮方法。   The acid leaching step includes stirring at 70 to 90 ° C for 8 hours or more while adding 30 to 80 g / L sulfuric acid at a pulp concentration of 100 to 150 g / L. Method for concentrating rhodium and ruthenium.
JP2013231439A 2013-11-07 2013-11-07 Method for concentrating rhodium and ruthenium Active JP6250365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231439A JP6250365B2 (en) 2013-11-07 2013-11-07 Method for concentrating rhodium and ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013231439A JP6250365B2 (en) 2013-11-07 2013-11-07 Method for concentrating rhodium and ruthenium

Publications (2)

Publication Number Publication Date
JP2015089963A true JP2015089963A (en) 2015-05-11
JP6250365B2 JP6250365B2 (en) 2017-12-20

Family

ID=53193641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231439A Active JP6250365B2 (en) 2013-11-07 2013-11-07 Method for concentrating rhodium and ruthenium

Country Status (1)

Country Link
JP (1) JP6250365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147991A (en) * 2018-02-27 2019-09-05 Jx金属株式会社 Method of recovering ruthenium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309313A (en) * 1995-05-12 1996-11-26 Dowa Mining Co Ltd Wet treatment method for fly ash containing heavy metal from high temperature treatment furnace
JP2007270233A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for leaching element from article to be treated including selenium and/or tellurium and ruthenium and/or rhodium
JP2011058018A (en) * 2009-09-07 2011-03-24 Sumitomo Metal Mining Co Ltd Method for recovering gold concentrate from leach residue of copper sulfide minerals
JP2011255317A (en) * 2010-06-09 2011-12-22 Sumitomo Metal Mining Co Ltd Method for separating iridium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309313A (en) * 1995-05-12 1996-11-26 Dowa Mining Co Ltd Wet treatment method for fly ash containing heavy metal from high temperature treatment furnace
JP2007270233A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for leaching element from article to be treated including selenium and/or tellurium and ruthenium and/or rhodium
JP2011058018A (en) * 2009-09-07 2011-03-24 Sumitomo Metal Mining Co Ltd Method for recovering gold concentrate from leach residue of copper sulfide minerals
JP2011255317A (en) * 2010-06-09 2011-12-22 Sumitomo Metal Mining Co Ltd Method for separating iridium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147991A (en) * 2018-02-27 2019-09-05 Jx金属株式会社 Method of recovering ruthenium
JP6994984B2 (en) 2018-02-27 2022-01-14 Jx金属株式会社 How to recover ruthenium

Also Published As

Publication number Publication date
JP6250365B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5539777B2 (en) Method for treating reduced soot containing selenium and tellurium
JP2009235519A (en) Method for recovering metal from ore
US20150053572A1 (en) Hydrometallurgical process for the recovery of tellurium from high lead bearing copper refinery anode slime
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP5370683B2 (en) Method for recovering copper from copper sulfide
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP2009035778A (en) Method for recovering tin
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP2007270243A (en) Dry type refining method for copper
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2007270233A (en) Method for leaching element from article to be treated including selenium and/or tellurium and ruthenium and/or rhodium
JP2004285368A (en) Method for refining cobalt aqueous solution
JP6475403B2 (en) How to recover tellurium
JP5591748B2 (en) How to recover tellurium
JP6250365B2 (en) Method for concentrating rhodium and ruthenium
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
JP2012214307A (en) Method for recovering tellurium
JP7415226B2 (en) Method for producing metal cadmium
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2011068528A (en) Method for recovering tellurium from copper electrolysis precipitation
JP2010089976A (en) Method for producing and washing scorodite
JP2017119623A (en) Method for recovering tellurium
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP2019131838A (en) METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
JP6585955B2 (en) Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250