JP2017119623A - Method for recovering tellurium - Google Patents

Method for recovering tellurium Download PDF

Info

Publication number
JP2017119623A
JP2017119623A JP2017011443A JP2017011443A JP2017119623A JP 2017119623 A JP2017119623 A JP 2017119623A JP 2017011443 A JP2017011443 A JP 2017011443A JP 2017011443 A JP2017011443 A JP 2017011443A JP 2017119623 A JP2017119623 A JP 2017119623A
Authority
JP
Japan
Prior art keywords
copper
tellurium
leaching
electrolyte
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017011443A
Other languages
Japanese (ja)
Inventor
大輔 倉井
Daisuke Kurai
大輔 倉井
石井 敏文
Toshifumi Ishii
敏文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2017011443A priority Critical patent/JP2017119623A/en
Publication of JP2017119623A publication Critical patent/JP2017119623A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering tellurium from a copper electrolytic slime capable of achieving enhancement of recovery efficiency of tellurium as whole treatment process.SOLUTION: There is provided a method for recovering tellurium from a copper electrolytic slime including supplying an alkali leach residue containing tellurium after leaching copper telluride to a copper removal leach treatment tank containing the copper electrolyte and copper electrolytic slime in a copper removal leach process for removing copper from the copper electrolytic slime by dissolving the copper electrolytic slime into the copper electrolyte and leaching impurities containing copper and tellurium into the electrolyte.SELECTED DRAWING: Figure 1

Description

本発明は、テルルの回収方法に関し、より具体的には、銅電解殿物からのテルルの回収方法にする。   The present invention relates to a method for recovering tellurium, and more specifically, a method for recovering tellurium from a copper electrolytic deposit.

銅の電解精製は、転炉からの粗銅を、精製炉において99.5%程度に精製し、鋳造した陽極(アノード)と陰極としての種板あるいはステンレス板を、電解槽に交互に数十枚一組で吊して実施する。種板あるいはステンレス板上に電着した銅は電気銅と呼ばれる。電解槽の底には陽極中に含まれる不純物が泥状に沈積する。この沈積物は銅電解殿物(アノードスライム)と呼ばれる。銅電解物中には、銅に加えて金を始め原料中の種々の貴金属が濃縮しており、貴金属回収の主要原料とされている。   In the electrolytic refining of copper, the crude copper from the converter is refined to about 99.5% in the refining furnace, and the cast anode (anode) and the seed plate or stainless steel plate as the cathode are alternately placed in the electrolytic cell. Hang in one set. Copper electrodeposited on a seed plate or stainless steel plate is called electrolytic copper. Impurities contained in the anode deposit in a muddy state at the bottom of the electrolytic cell. This deposit is called copper electrolytic deposit (anode slime). In the copper electrolyte, various precious metals in the raw material including gold are concentrated in addition to copper, and are used as a main raw material for precious metal recovery.

銅電解殿物の処理においては、乾式法、湿式法のいずれの処理法も実用化されているが、設備コスト、処理流れなどの面から、湿式法の有用性が高いと考えられてきている。湿式法においては、銅電解殿物を電解液でリパルプし、殿物中に残留している銅、テルル、砒素その他の溶解可能な不純物を溶解させ、貴金属、セレンなどを主体とする不溶解物と固液分離し、貴金属の濃縮精製を行う。不溶解物の主要な成分は、銀、セレン、金、白金族、テルル、鉛等である。   In the treatment of copper electrolytic deposits, both dry methods and wet methods have been put into practical use, but it has been considered that the wet method is highly useful in terms of equipment cost, treatment flow, etc. . In the wet method, copper electrolytic porcelain is repulped with an electrolytic solution, copper, tellurium, arsenic and other soluble impurities remaining in the porcelain are dissolved, and insoluble matter mainly composed of noble metals, selenium, etc. And solid-liquid separation and concentration and purification of precious metals. The main components of the insoluble material are silver, selenium, gold, platinum group, tellurium, lead and the like.

銅電解殿物の処理フローの例を図2に示す。まず、脱銅浸出工程において、電解殿物を銅電解液を用いて溶解し、銅、テルル、砒素等の不純物を浸出する。浸出残渣は塩酸溶液と酸化剤を用いて溶解した後、銀等を塩化物として固液分離する(塩化浸出工程)。分離後の浸出後液から金を、ジブチルカルビトール(DBC)等を用いた溶媒抽出により分離し(金抽出工程)、金還元処理を行って製品金を得る。   An example of the processing flow of the copper electrolytic deposit is shown in FIG. First, in the copper removal leaching step, the electrolytic deposit is dissolved using a copper electrolyte, and impurities such as copper, tellurium, arsenic, etc. are leached. The leaching residue is dissolved using a hydrochloric acid solution and an oxidizing agent, and then solid-liquid separated with silver or the like as a chloride (chlorinated leaching step). Gold is separated from the leached solution after separation by solvent extraction using dibutyl carbitol (DBC) or the like (gold extraction step), and gold reduction treatment is performed to obtain product gold.

一方、金抽出後液からは、亜硫酸ガス(SO2)を吹き込むセレン還元処理により液中のセレン濃度が2.5〜4g/Lになるまで行ってセレン滓を得た後、真空蒸留処理によりセレンを取り出す。一方、セレン滓を回収した後のセレン還元後液中にはテルル、セレン等の有価金属が未だ含まれるため、更に亜硫酸ガスを吹き込んでセレン濃度が1mg/L以下になるまで還元した後、テルル還元滓を得る。テルル還元滓は、苛性ソーダによりテルルを浸出するアルカリ浸出工程へと送られる。 On the other hand, from the gold-extracted solution, selenium reduction is performed by blowing in sulfurous acid gas (SO 2 ) until the selenium concentration in the solution becomes 2.5 to 4 g / L to obtain selenium soot, followed by vacuum distillation. Remove selenium. On the other hand, since valuable metals such as tellurium and selenium are still contained in the liquid after reducing selenium after recovering selenium soot, after further reducing the selenium concentration to 1 mg / L or less by blowing in sulfurous acid gas, tellurium Get reduced soot. Tellurium reduced soot is sent to an alkaline leaching process in which tellurium is leached with caustic soda.

一方、脱銅浸出工程で得られた浸出後液に対しては、脱テルル処理が行われ、テルル化銅が取り出される。テルル化銅からテルルを回収するために、アルカリ浸出工程において、苛性ソーダによりテルルの浸出を行う。ろ過後の浸出後液は、硫酸を加えることによりテルルを単離させて二酸化テルルを得る(中和工程)。   On the other hand, the post-leaching solution obtained in the decopper leaching step is subjected to detellation treatment, and copper telluride is taken out. In order to recover tellurium from copper telluride, tellurium is leached with caustic soda in the alkaline leaching step. The post-leaching solution after filtration is obtained by isolating tellurium by adding sulfuric acid to obtain tellurium dioxide (neutralization step).

中和後液には亜硫酸ガス(SO2)を吹き込んで還元処理を行うことによりセレンを抽出する(脱セレン工程)。脱セレン後の還元後液及び還元残渣は、貴金属回収のための別工程へ送られる。一方、テルルのアルカリ浸出処理において生成されたアルカリ浸出残渣は再び製錬に繰り返される。 Sulfurous acid gas (SO 2 ) is blown into the post-neutralization solution to perform reduction treatment, thereby extracting selenium (de-selenium step). The post-reduction liquid and reduction residue after deselenization are sent to a separate process for precious metal recovery. On the other hand, the alkali leaching residue produced in the tellurium alkali leaching treatment is repeated for smelting again.

銅電解電物処理においてセレン、テルルの回収効率を高めるために、二酸化テルル、セレン等を取り出すための様々な検討が行われてきた(例えば、特許文献1参照)。しかしながら、銅電解殿物を処理するためのプロセス全体を鑑みると、テルルを含む材料が依然として廃液処理或いは製錬等に繰り返されている工程もあり、処理プロセス全体から判断した場合のテルルの回収率向上を実現するためには、まだ検討の余地がある。   In order to increase the recovery efficiency of selenium and tellurium in copper electrolytic treatment, various studies have been made to extract tellurium dioxide, selenium, and the like (see, for example, Patent Document 1). However, in view of the overall process for treating copper electrolytic deposits, there are processes in which tellurium-containing materials are still repeated for waste liquid treatment or smelting, etc., and tellurium recovery rate when judged from the overall treatment process There is still room for consideration to achieve improvement.

そこで、処理プロセス全体を鑑みた場合のテルルの回収率向上対策として、従来ただ単に製錬に繰り返されるだけであったテルル化銅をアルカリ浸出した後のアルカリ浸出残渣に着目し、この残渣を処理系内へ戻すことが試みられた。例えば、特許文献2には、アルカリ浸出残渣を、セレン還元工程後液と混合させて、混合物中に含まれるテルルを酸浸出させた後、酸浸出後の浸出後液を亜硫酸ガスで還元してテルルを回収することが提案されている。   Therefore, as a measure to improve the recovery rate of tellurium when considering the entire treatment process, attention was paid to the alkali leaching residue after alkali leaching of copper telluride, which had been merely repeated for smelting in the past, and this residue was treated. An attempt was made to return it to the system. For example, in Patent Document 2, an alkaline leaching residue is mixed with a solution after a selenium reduction step, and tellurium contained in the mixture is acid leached, and then the leached solution after acid leaching is reduced with sulfurous acid gas. It has been proposed to recover tellurium.

しかしながら、特許文献2に記載された方法を銅電解殿物処理工場で連続的に採用すると、理屈上は問題無く還元されるはずのテルルが、実際には還元されず、その結果、処理プロセス全体としてのテルルの回収効率が向上しない場合があることが分かった。   However, if the method described in Patent Document 2 is continuously adopted in a copper electrolytic processing plant, tellurium that should be reduced without any problem in theory is not actually reduced, and as a result, the entire treatment process is performed. As a result, it has been found that the recovery efficiency of tellurium may not be improved.

特開2005−126800号公報JP 2005-126800 A 特開2012−211027号公報JP 2012-211027 A

上記課題を鑑み、本発明は、処理プロセス全体としてのテルルの回収効率の向上を図ることが可能な銅電解殿物からのテルルの回収方法を提供する。   In view of the above problems, the present invention provides a method for recovering tellurium from a copper electrolytic product capable of improving the recovery efficiency of tellurium as a whole treatment process.

上記課題を解決するために、本発明者は、テルル化銅をアルカリ浸出した後のテルルを含むアルカリ浸出残渣を、銅電解殿物の脱銅浸出工程へ戻すことを試みたところ、脱銅浸出工程に悪影響を及ぼすことなく、処理プロセス全体としてのテルルの回収効率が向上できることが分かった。   In order to solve the above problems, the present inventor tried to return the alkali leaching residue containing tellurium after alkali leaching of copper telluride to the copper electrolysis residue decopper leaching process. It was found that the tellurium recovery efficiency as a whole treatment process can be improved without adversely affecting the process.

以上の知見を基礎として完成した本発明は一側面において、銅電解殿物からのテルルの回収方法であって、銅電解液中に銅電解殿物を溶解させて該銅電解液中に銅及びテルルを含む不純物を浸出させることにより該銅電解殿物から銅を除去する脱銅浸出工程において、銅電解液と銅電解殿物を含む脱銅浸出処理槽中へ、テルル化銅を浸出した後のテルルを含むアルカリ浸出残渣を供給することを含む銅電解殿物からのテルルの回収方法が提供される。   The present invention completed on the basis of the above knowledge is, in one aspect, a method for recovering tellurium from a copper electrolyte, wherein the copper electrolyte is dissolved in the copper electrolyte, and copper and copper are dissolved in the copper electrolyte. After leaching copper telluride into a decopper leaching treatment bath containing a copper electrolyte and a copper electrolytic deposit in a copper leaching step of removing copper from the copper electrolytic deposit by leaching impurities containing tellurium A method is provided for recovering tellurium from a copper electrolysate comprising supplying an alkaline leaching residue containing no tellurium.

本発明に係る銅電解殿物からのテルルの回収方法は一実施態様において、アルカリ浸出残渣を、スラリー濃度10〜40g/Lで供給することを含む。   In one embodiment, the method for recovering tellurium from a copper electrolytic product according to the present invention includes supplying an alkali leaching residue at a slurry concentration of 10 to 40 g / L.

本発明に係る銅電解殿物からのテルルの回収方法は別の一実施態様において、アルカリ浸出残渣が、テルルを5〜20質量%含む苛性ソーダ浸出残渣である。   In another embodiment of the method for recovering tellurium from the copper electrolytic product according to the present invention, the alkali leaching residue is a caustic soda leaching residue containing 5 to 20% by mass of tellurium.

本発明に係る銅電解殿物からのテルルの回収方法は更に別の一実施態様において、銅電解液が、銅濃度90〜120g/L、硫酸濃度350〜400g/Lである。   In another embodiment of the method for recovering tellurium from the copper electrolytic product according to the present invention, the copper electrolyte has a copper concentration of 90 to 120 g / L and a sulfuric acid concentration of 350 to 400 g / L.

本発明は、別の一側面において、テルルを含むアルカリ浸出残渣を、銅電解殿物と銅電解液とを含む処理槽中に供給し、その銅電解液中に銅及びテルルを含む不純物を浸出させることを含むテルルの回収方法が提供される。   In another aspect of the present invention, an alkaline leaching residue containing tellurium is supplied into a treatment tank containing a copper electrolyte and a copper electrolyte, and impurities containing copper and tellurium are leached in the copper electrolyte. A method for recovering tellurium is provided.

本発明によれば、処理プロセス全体としてのテルルの回収効率の向上を図ることが可能な銅電解殿物からのテルルの回収方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the recovery method of the tellurium from the copper electrolytic deposit which can aim at the improvement of the recovery efficiency of the tellurium as the whole processing process can be provided.

本発明の実施の形態に係る銅電解殿物からのテルルの回収方法の一例を表す処理フロー図である。It is a processing flow figure showing an example of the recovery method of tellurium from the copper electrolysis thing concerning an embodiment of the invention. 従来の銅電解殿物の処理方法を表す処理フロー図である。It is a processing flow figure showing the processing method of the conventional copper electrolytic deposit.

本発明の実施の形態に係るテルルの回収方法は、図1に示すように、テルルを含むアルカリ浸出残渣を、銅電解殿物処理の最初の工程である脱銅浸出工程へ戻すことを含むものである。   As shown in FIG. 1, the tellurium recovery method according to the embodiment of the present invention includes returning the alkali leaching residue containing tellurium to the decopper leaching step which is the first step of the copper electrolytic residue treatment. .

<テルルを含むアルカリ浸出残渣>
本発明の実施の形態に係るテルルの回収方法で用いられる「テルルを含むアルカリ浸出残渣」とは、銅電解殿物処理工程で得られるアルカリ浸出残渣であって、より具体的には、例えば図1に示す脱テルル処理後のテルル化銅をアルカリ浸出した後のアルカリ浸出残渣、及び/又は、銅電解殿物に対して脱銅浸出、塩化浸出、金抽出、亜硫酸ガス還元処理(セレン還元処理)を行った後のテルル還元滓を、苛性ソーダによりアルカリ浸出した後のアルカリ浸出残渣等が利用可能である。
<Alkali leaching residue containing tellurium>
The “alkaline leaching residue containing tellurium” used in the tellurium recovery method according to the embodiment of the present invention is an alkali leaching residue obtained in the copper electrolyzing residue treatment step, and more specifically, for example, FIG. Desulfurization leaching, chloride leaching, gold extraction, sulfurous acid gas reduction treatment (selenium reduction treatment) for the alkali leaching residue and / or copper electrolytic deposit after the copper telluride after detellurization treatment shown in 1 It is possible to use the alkali leaching residue after alkali leaching of the tellurium-reduced soot after having been carried out with caustic soda.

このアルカリ浸出残渣中には、例えば、5〜20質量%のテルル(Te)が含まれている。脱テルル処理後のテルル化銅をアルカリ浸出した後のアルカリ浸出残渣には、テルルに加えて例えば50〜70質量%の銅(Cu)と微量の鉛(Pb)等が含まれている。また、銅電解殿物に対して脱銅浸出、塩化浸出、金抽出、セレン還元処理を行った後のテルル還元滓を、苛性ソーダによりアルカリ浸出した後のアルカリ浸出残渣中には、テルルに加えて更に0〜2質量%のセレン(Se)、0.01〜0.02質量%のロジウム(Rh)、0.05〜0.2質量%のルテニウム(Ru)、銅等が含まれている。   In this alkali leaching residue, for example, 5 to 20% by mass of tellurium (Te) is contained. The alkali leaching residue after alkali leaching of the copper telluride after the detellurization treatment contains, for example, 50 to 70% by mass of copper (Cu) and a trace amount of lead (Pb) in addition to tellurium. In addition, tellurium-reduced soot after copper leaching, chloride leaching, gold extraction, and selenium reduction treatment for copper electrolytic deposits are added to tellurium in the alkaline leaching residue after alkaline leaching with caustic soda. Furthermore, 0-2 mass% selenium (Se), 0.01-0.02 mass% rhodium (Rh), 0.05-0.2 mass% ruthenium (Ru), copper, etc. are contained.

<脱銅浸出工程>
処理対象とする銅電解殿物には、25〜35質量%の銅の他に、1〜5質量%のテルル(Te)、2〜5質量%の砒素(As)、1〜3質量%の金(Au)、5〜15質量%のセレン(Se)、0.02〜0.08質量%の白金(Pt)、0.002〜0.01質量%のロジウム(Rh)、0.05〜0.25質量%のルテニウム(Ru)、1〜5質量%の鉛(Pb)、15〜25質量%の銀(Ag)等が含まれている。
<Decopper leaching process>
In addition to 25 to 35% by mass of copper, the copper electrolytic product to be treated is 1 to 5% by mass of tellurium (Te), 2 to 5% by mass of arsenic (As), and 1 to 3% by mass of copper. Gold (Au), 5 to 15% by mass of selenium (Se), 0.02 to 0.08% by mass of platinum (Pt), 0.002 to 0.01% by mass of rhodium (Rh), 0.05 to 0.25 mass% ruthenium (Ru), 1-5 mass% lead (Pb), 15-25 mass% silver (Ag), etc. are contained.

脱銅浸出工程では、この銅電解殿物を、処理槽(脱銅浸出処理槽)において銅電解液中に溶解させて、銅電解液中に、銅、テルル、砒素等の不純物を浸出させることにより、銅電解物から銅を除去する。   In the copper removal leaching process, the copper electrolytic product is dissolved in a copper electrolytic solution in a treatment tank (decopper leaching treatment tank), and impurities such as copper, tellurium and arsenic are leached into the copper electrolytic solution. To remove copper from the copper electrolyte.

処理に用いられる銅電解液の組成としては、例えば、銅濃度90〜120g/L、硫酸濃度350〜400g/Lの銅電解液が利用可能である。   As a composition of the copper electrolyte solution used for the treatment, for example, a copper electrolyte solution having a copper concentration of 90 to 120 g / L and a sulfuric acid concentration of 350 to 400 g / L can be used.

脱銅浸出処理槽にテルルを含むアルカリ浸出残渣を供給する方法としては、バッチ供給であっても連続供給であっても構わない。しかしながら、多量のアルカリ浸出残渣を処理槽中に一度に供給しすぎると、その後に行われる銅電解殿物の各処理工程に悪影響を及ぼす場合がある。   The method for supplying the alkali leaching residue containing tellurium to the copper removal leaching treatment tank may be batch supply or continuous supply. However, if a large amount of alkali leaching residue is supplied too much into the treatment tank at one time, it may adversely affect each treatment step of the copper electrolytic product performed thereafter.

例えば、アルカリ浸出残渣の供給量が多すぎると、図1に示す脱テルル処理後に得られたテルル化銅が変色する問題が発生する場合がある。更に、脱銅浸出後の図1に示すセレン還元処理において、還元滓がタンクの中で塊状に固まり、タンクの詰まりの原因となり、銅電解殿物から回収される各種金属の回収効率が低下する場合がある。また、アルカリ浸出残渣投入量を増やすことにより、脱銅浸出後液を濾過設備(フィルタープレス)でろ過する際に、ろ布が目詰まりする場合がある。   For example, if the supply amount of the alkali leaching residue is too large, there may be a problem that the copper telluride obtained after the detellurization treatment shown in FIG. Furthermore, in the selenium reduction treatment shown in FIG. 1 after copper leaching, the reducing soot is solidified in the tank, causing clogging of the tank and reducing the recovery efficiency of various metals recovered from the copper electrolytic deposit. There is a case. Moreover, when the amount of alkali leaching residue input is increased, the filter cloth may be clogged when the liquid after decopper leaching is filtered with a filtration facility (filter press).

そのため、本発明の実施の形態に係るテルルの回収方法においては、アルカリ浸出残渣をスラリー濃度10〜40g/L、より好ましくは10〜20g/L、更に好ましくは10〜15g/Lで脱銅浸出処理槽へ供給することが好ましい。即ち、スラリー濃度が350〜400g/Lの銅電解液に対してアルカリ浸出残渣を10〜40g/L、より好ましくは10〜20g/L、更に好ましくは10〜15g/Lで供給する。これにより、脱銅浸出処理槽にアルカリ浸出残渣を供給したとしても、脱銅浸出以降の各金属回収工程に与える影響を小さくできる。なお、脱銅浸出工程における銅電解液の液温は、78〜82℃程度で好適に行うことができる。   Therefore, in the tellurium recovery method according to the embodiment of the present invention, the copper leaching is carried out at a slurry concentration of 10 to 40 g / L, more preferably 10 to 20 g / L, and still more preferably 10 to 15 g / L. It is preferable to supply to a processing tank. That is, the alkali leaching residue is supplied at a rate of 10 to 40 g / L, more preferably 10 to 20 g / L, and still more preferably 10 to 15 g / L with respect to a copper electrolyte having a slurry concentration of 350 to 400 g / L. Thereby, even if it supplies an alkali leaching residue to a copper removal leaching processing tank, the influence which it has on each metal recovery process after a copper removal leaching can be made small. In addition, the liquid temperature of the copper electrolyte solution in a copper removal leaching process can be suitably performed at about 78 to 82 ° C.

テルル化銅を浸出した後のテルルを含むアルカリ浸出残渣には、図2に示すテルル還元滓よりも高濃度のテルルが含まれている。従来は、得られたアルカリ浸出残渣中のテルルを有効利用するために、セレン還元滓へ繰り返すことへの検討が行われ、本発明のように、脱銅浸出工程に繰り返すことは行われなかった。これは、銅電解殿物からテルル化銅を浸出した後のテルルを含むアルカリ浸出残渣にはテルルと銅が含まれるため、脱銅工程で銅が除去しきれなくなる恐れと、金や、銀中のテルル品位が上昇する恐れが考えられたからである。また、脱銅浸出工程に繰り返すことにより、脱銅浸出工程以降の各工程に悪影響を及ぼし、金、セレン、テルルなどの各金属の回収効率が下がることが考えられていたからである。或いは、不純物を投入することで、各工程で詰まりなどのトラブルが増大することが懸念されていたからである。   The alkali leaching residue containing tellurium after leaching copper telluride contains a higher concentration of tellurium than the tellurium reduced soot shown in FIG. Conventionally, in order to effectively use the tellurium in the obtained alkali leaching residue, it has been studied to repeat to selenium reduction soot, and was not repeated in the decopper leaching step as in the present invention. . This is because the alkali leaching residue containing tellurium after leaching copper telluride from the copper electrolytic deposit contains tellurium and copper, so that copper may not be completely removed in the copper removal process, This is because there was a possibility that the tellurium quality of the future would rise. Moreover, it is because repeating to a copper removal leaching process had a bad influence on each process after a copper removal leaching process, and it was thought that collection | recovery efficiency of each metal, such as gold | metal | money, selenium, and tellurium, falls. Alternatively, there is a concern that troubles such as clogging may increase in each process by introducing impurities.

本発明の実施の形態に係るテルルの回収方法によれば、テルル化銅を浸出した後のテルルを含むアルカリ浸出残渣を、従来行われなかった脱銅浸出工程へ投入する。これにより、アルカリ浸出残渣中のテルルを有効利用でき、脱銅浸出工程後の各金属回収フローにも悪影響を及ぼすことなく、且つ処理プロセス全体としてのテルルの回収効率の向上を図ることが可能となる。また、テルルを含むアルカリ浸出残渣を製錬に繰り返すことがないため、アルカリ浸出残渣中の不純物を製錬工程に混入させることがなく、製錬処理で生産される銅アノード中の不純物品位を下げることができる。   According to the tellurium recovery method according to the embodiment of the present invention, an alkaline leaching residue containing tellurium after leaching copper telluride is introduced into a copper removal leaching process that has not been conventionally performed. As a result, tellurium in the alkaline leaching residue can be effectively used, and it is possible to improve the recovery efficiency of tellurium as a whole treatment process without adversely affecting each metal recovery flow after the copper removal leaching process. Become. Moreover, since the alkaline leaching residue containing tellurium is not repeated for smelting, impurities in the alkaline leaching residue are not mixed into the smelting process, and the impurity quality in the copper anode produced by the smelting process is lowered. be able to.

上記のように本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの考案を限定するものであると理解すべきではない。例えば、上記の方法ではアルカリ浸出残渣として、図1の脱テルル処理後のテルル化銅をアルカリ浸出した後のアルカリ浸出残渣、及び/又は、銅電解殿物に対して脱銅浸出、塩化浸出、金抽出、セレン還元処理を行った後のセレン還元後液を、苛性ソーダによりアルカリ浸出した後のアルカリ浸出残渣等を用いる例を示しているが、上記の例に制限されることなく、図1に示した電解殿物処理工程以外の処理工程で得られるテルルを含むあらゆるアルカリ浸出残渣に対して適用可能である。   Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. For example, in the above method, as the alkali leaching residue, the alkali leaching residue after the copper telluride after the detellation treatment of FIG. 1 is leached with alkali, and / or the copper electrolytic deposit, leaching copper leaching, chloride leaching, Although an example using an alkali leaching residue after leaching alkali with caustic soda after selenium reduction after gold extraction and selenium reduction treatment is shown, it is not limited to the above example, and FIG. The present invention is applicable to any alkali leaching residue containing tellurium obtained in a treatment process other than the electrolytic deposit treatment process shown.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

図1に示す銅電解殿物処理フローにおいて、脱銅浸出工程における脱銅浸出処理槽へアルカリ浸出残渣を投入した場合と、投入しない場合との物量バランスを比較し、脱銅浸出処理工程及び脱銅浸出工程以降の処理工程への影響を評価した。   In the copper electrolytic process flow shown in FIG. 1, the balance of the quantity of when the alkali leaching residue is introduced into the decopper leaching treatment tank in the decopper leaching process is compared with the case where the alkali leaching residue is not added. The influence on the treatment process after the copper leaching process was evaluated.

(試験条件)
図1の脱銅浸出工程における条件を以下の条件A〜Cとした。
条件A:アルカリ浸出残渣投入無し:銅電解殿物処理総量4304dry−kg
条件B:アルカリ浸出残渣投入あり:銅電解殿物処理総量4238dry−kg
条件C:アルカリ浸出残渣投入あり:銅電解殿物処理総量4323dry−kg
(Test conditions)
The conditions in the copper removal leaching process of FIG.
Condition A: Alkali leaching residue is not charged: Total amount of copper electrolytic residue treated is 4304 dry-kg
Condition B: Alkali leaching residue introduced: Total amount of copper electrolytic residue treated 4238 dry-kg
Condition C: Alkali leaching residue input: Total amount of copper electrolytic deposit processed 4323 dry-kg

条件Bでは、銅電解殿物総量(乾量)4238dry−kgに対し、テルルを含むアルカリ浸出残渣として、銅電解殿物の脱テルル処理後の苛性ソーダ浸出残渣(水酸化銅)を総量で149dry−kg(テルル含有量18.3kg、テルル品位12.3質量%)を脱銅浸出処理槽に供給した。   In condition B, a total amount of caustic soda leaching residue (copper hydroxide) after de-tellurium treatment of the copper electrolytic deposit was 149 dry− as an alkaline leaching residue containing tellurium with respect to the copper electrolytic deposit total amount (dry amount) of 4238 dry-kg. kg (tellurium content: 18.3 kg, tellurium quality: 12.3% by mass) was supplied to a decopper leaching treatment tank.

条件Cでは、銅電解殿物総量4323dry−kgに対し、テルルを含むアルカリ浸出残渣として、銅電解殿物の脱テルル処理後の苛性ソーダ浸出残渣(水酸化銅)を総量で171dry−kg(テルル含有量21.0kg、テルル品位12.3質量%)を脱銅浸出処理槽に供給した。   Under condition C, the total amount of caustic soda leaching residue (copper hydroxide) after detellurization of the copper electrolytic deposit was 171 dry-kg (tellurium-containing) as the alkaline leaching residue containing tellurium with respect to the total amount of copper electrolytic deposit 4323 dry-kg. A quantity of 21.0 kg, tellurium grade 12.3% by mass) was supplied to a decopper leaching treatment tank.

(処理フロー)
銅電解殿物の処理工程は、図1に示すように多岐にわたるため、ここでは脱銅浸出、塩化浸出、脱テルル処理後の各浸出残渣及び各浸出後液に着目し、これらの濃度と、各工程のプロセス上のトラブルの影響について評価した。脱銅浸出工程、塩化浸出工程、脱テルル化処理工程の詳細は以下の通りである。
(Processing flow)
Since the processing steps of the copper electrolytic deposit are diverse as shown in FIG. 1, paying attention to each leaching residue and each leaching solution after decopper leaching, chloride leaching, detellurization treatment, and their concentrations, The influence of trouble on each process was evaluated. The details of the copper removal leaching process, the chloride leaching process, and the detellurization treatment process are as follows.

−脱銅浸出工程−
銅濃度90〜120g/L、硫酸濃度350〜400g/Lの銅電解液を収容した脱銅浸出処理槽内に銅電解殿物を溶解させ、銅、テルル、砒素等の不純物を浸出させて、浸出残渣と浸出後液を得た。条件Bでは、脱銅浸出処理槽内にスラリー濃度15g/Lでテルルを含むアルカリ浸出残渣を供給し、アルカリ浸出残渣に含まれるテルルを更に浸出させた。条件Cでは、脱銅浸出処理槽内にスラリー濃度17g/Lでテルルを含むアルカリ浸出残渣を供給し、アルカリ浸出残渣に含まれるテルルを更に浸出させた。得られた脱銅浸出残渣と脱銅浸出後液の組成を表1に示す。
-Decopper leaching process-
A copper electrolytic deposit is dissolved in a copper removal leaching treatment tank containing a copper electrolytic solution having a copper concentration of 90 to 120 g / L and a sulfuric acid concentration of 350 to 400 g / L, and impurities such as copper, tellurium and arsenic are leached. A leaching residue and a liquid after leaching were obtained. In Condition B, an alkali leaching residue containing tellurium was supplied into the copper removal leaching treatment tank at a slurry concentration of 15 g / L, and the tellurium contained in the alkali leaching residue was further leached. Under condition C, an alkali leaching residue containing tellurium was supplied into the decopper leaching treatment tank at a slurry concentration of 17 g / L, and tellurium contained in the alkali leaching residue was further leached. Table 1 shows the composition of the obtained decopper leaching residue and the liquid after decopper leaching.

Figure 2017119623
Figure 2017119623

−塩化浸出工程−
(塩化浸出処理)
脱銅浸出工程で得られた脱銅浸出残渣を35質量%の塩酸溶液中に過酸化水素を使用しながら溶解させ、反応温度70〜74℃で、銀等を塩化物として固液分離させて、塩化浸出残渣と塩化浸出後液を得た。得られた塩化浸出残渣と塩化浸出後液の組成を表2に示す。
-Chloride leaching process-
(Chloride leaching treatment)
The decopper leaching residue obtained in the decopper leaching step is dissolved in a 35% by mass hydrochloric acid solution using hydrogen peroxide, and is subjected to solid-liquid separation at a reaction temperature of 70 to 74 ° C. as silver chloride. A chloride leaching residue and a solution after chloride leaching were obtained. Table 2 shows the composition of the obtained leaching residue and the solution after leaching.

Figure 2017119623
Figure 2017119623

(塩化冷却処理)
塩化浸出処理で得られた塩化浸出後液を冷却して塩化鉛や三酸化アンチモンを析出させ、塩化冷却残渣と塩化冷却後液を得た。得られた塩化冷却残渣と塩化冷却後液の組成を表3に示す。
(Chlorine cooling treatment)
The solution after leaching with chloride obtained by the leaching treatment was cooled to precipitate lead chloride and antimony trioxide to obtain a chloride cooling residue and a solution after cooling with chloride. Table 3 shows the composition of the obtained chloride cooling residue and the solution after chloride cooling.

Figure 2017119623
Figure 2017119623

−脱テルル化処理−
脱銅浸出工程で得られた脱銅浸出後液に対して銅板とのセメンテーションによる脱テルル処理を行い、テルル化銅と脱テルル後液を得た。得られたテルル化銅と脱テルル後液の組成を表4に示す。
-Detellurization treatment-
The post-decopper leaching solution obtained in the decopper leaching step was detellurized by cementation with a copper plate to obtain copper telluride and post-detellurium solution. Table 4 shows the composition of the obtained copper telluride and post-de tellurium solution.

Figure 2017119623
Figure 2017119623

(結果)
塩化冷却処理で得られた塩化冷却後液、塩化冷却残渣及び脱テルル工程で得られたテルル化銅中に含まれるテルル濃度を参考に、処理前のテルル濃度に基づくテルル回収率を評価したところ、テルルを含むアルカリ浸出残渣を脱銅浸出工程に投入すること(条件B、C)によって、アルカリ浸出残渣を投入しなかった場合(条件A)に比べて、テルルの回収率が3%程度向上した。これにより、テルルを含むアルカリ浸出残渣を脱銅浸出工程に繰り返すことによって、各工程のテルルの回収率を低下させることなく問題なくテルルを回収できることが分かった。また、処理プロセス全体として見た場合には、テルルを含むアルカリ残渣を系内に繰り返すことでテルルの総回収物量を増加させることができるため、処理プロセス全体としてのテルルの回収効率の向上も図れることが分かった。
(result)
Evaluation of the tellurium recovery rate based on the tellurium concentration before treatment with reference to the tellurium concentration contained in the post-cooling solution obtained by the chloride cooling treatment, the chloride cooling residue and the copper telluride obtained in the detellurization step , By introducing an alkaline leaching residue containing tellurium into the copper removal leaching process (conditions B and C), the tellurium recovery rate is improved by about 3% compared to when no alkaline leaching residue is added (condition A). did. Thus, it was found that tellurium can be recovered without any problem without reducing the tellurium recovery rate in each step by repeating the alkaline leaching residue containing tellurium in the copper removal leaching step. Further, when viewed as a whole treatment process, the total amount of tellurium recovered can be increased by repeating alkali residue containing tellurium in the system, so that the tellurium recovery efficiency as a whole treatment process can be improved. I understood that.

アルカリ浸出残渣を脱銅浸出処理槽に投入した条件B、Cでは、脱銅浸出工程における不純物投入による金、銀中のテルル品位の上昇や配管等の詰りといった悪影響は見られなかった。即ち、テルル化銅を処理した後のテルルを含むアルカリ浸出残渣を脱銅浸出工程における処理槽に投入した場合においても、脱銅浸出工程に悪影響を及ぼすことなく、処理プロセス全体としてのテルルの回収効率が向上できることが分かった。   Under the conditions B and C in which the alkali leaching residue was put into the copper removal leaching treatment tank, no adverse effects such as an increase in the tellurium quality in gold and silver and clogging of piping were observed due to the introduction of impurities in the copper removal leaching process. That is, even when the alkaline leaching residue containing tellurium after treating copper telluride is put into the treatment tank in the decopper leaching process, recovery of tellurium as a whole treatment process without adversely affecting the decopper leaching process. It was found that the efficiency can be improved.

アルカリ浸出残渣の供給量を適正範囲で行った条件Bでは、図1の脱テルル処理後に得られたテルル化銅の変色も見られず、セレン還元工程によるタンクの詰まりなどの工程トラブルも見られなかった。条件Cでは、テルル化銅が通常時よりも青緑色に変色する場合があった。また、セレン還元工程においてタンクの詰まりが発生した。   In condition B where the amount of alkali leaching residue supplied was within an appropriate range, discoloration of the copper telluride obtained after the detellurization treatment in FIG. 1 was not observed, and process troubles such as tank clogging due to the selenium reduction process were also observed. There wasn't. Under condition C, copper telluride sometimes turned blue-green rather than normal. In addition, the tank was clogged in the selenium reduction process.

Claims (5)

銅電解殿物からのテルルの回収方法であって、
銅電解液中に銅電解殿物を溶解させて該銅電解液中に銅及びテルルを含む不純物を浸出させることにより該銅電解殿物から銅を除去する脱銅浸出工程において、
銅電解液と銅電解殿物を含む脱銅浸出処理槽中へ、テルル化銅を浸出した後のテルルを含むアルカリ浸出残渣を供給すること
を含むことを特徴とする銅電解殿物からのテルルの回収方法。
A method for recovering tellurium from a copper electrolytic deposit,
In a decopper leaching step of removing copper from the copper electrolyte by dissolving the copper electrolyte in the copper electrolyte and leaching impurities containing copper and tellurium in the copper electrolyte,
Tellurium from a copper electrolytic deposit characterized by supplying an alkaline leaching residue containing tellurium after leaching copper telluride into a decopper leaching treatment bath containing a copper electrolyte and a copper electrolytic deposit. Recovery method.
前記アルカリ浸出残渣を、スラリー濃度10〜40g/Lで供給することを含む請求項1に記載の銅電解殿物からのテルルの回収方法。   The method for recovering tellurium from a copper electrolytic deposit according to claim 1, comprising supplying the alkali leaching residue at a slurry concentration of 10 to 40 g / L. 前記アルカリ浸出残渣が、テルルを5〜20質量%含む苛性ソーダ浸出残渣である請求項1又は2に記載の銅電解殿物からのテルルの回収方法。   The method for recovering tellurium from a copper electrolytic deposit according to claim 1 or 2, wherein the alkaline leaching residue is a caustic soda leaching residue containing 5 to 20% by mass of tellurium. 前記銅電解液が、銅濃度90〜120g/L、硫酸濃度350〜400g/Lである請求項1〜3のいずれか1項に記載の銅電解殿物からのテルルの回収方法。   The method for recovering tellurium from a copper electrolyte according to any one of claims 1 to 3, wherein the copper electrolyte has a copper concentration of 90 to 120 g / L and a sulfuric acid concentration of 350 to 400 g / L. テルルを含むアルカリ浸出残渣を、銅電解殿物と銅電解液とを含む処理槽中に供給し、該銅電解液中に銅及びテルルを含む不純物を浸出させることを含むことを特徴とするテルルの回収方法。   The tellurium is characterized by comprising supplying an alkaline leaching residue containing tellurium into a treatment tank containing a copper electrolyte and a copper electrolyte, and leaching impurities containing copper and tellurium into the copper electrolyte. Recovery method.
JP2017011443A 2017-01-25 2017-01-25 Method for recovering tellurium Pending JP2017119623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011443A JP2017119623A (en) 2017-01-25 2017-01-25 Method for recovering tellurium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011443A JP2017119623A (en) 2017-01-25 2017-01-25 Method for recovering tellurium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013067322A Division JP6475403B2 (en) 2013-03-27 2013-03-27 How to recover tellurium

Publications (1)

Publication Number Publication Date
JP2017119623A true JP2017119623A (en) 2017-07-06

Family

ID=59271385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011443A Pending JP2017119623A (en) 2017-01-25 2017-01-25 Method for recovering tellurium

Country Status (1)

Country Link
JP (1) JP2017119623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424176A (en) * 2020-02-25 2020-07-17 东北大学 Treatment method for precipitation slag in cyanide barren solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145321A (en) * 1978-04-12 1979-11-13 Inco Ltd Recovering valued metal from anode slime
JP2012211028A (en) * 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2013067322A (en) * 2011-09-26 2013-04-18 Yazaki Corp Signal transceiver apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145321A (en) * 1978-04-12 1979-11-13 Inco Ltd Recovering valued metal from anode slime
JP2012211028A (en) * 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2013067322A (en) * 2011-09-26 2013-04-18 Yazaki Corp Signal transceiver apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424176A (en) * 2020-02-25 2020-07-17 东北大学 Treatment method for precipitation slag in cyanide barren solution

Similar Documents

Publication Publication Date Title
JP3616314B2 (en) Method for treating copper electrolytic deposits
JP3879126B2 (en) Precious metal smelting method
JP3474526B2 (en) How to recover silver
CN106119554A (en) High Purity Gold the method being enriched with silver, platinum and palladium is prepared from silver anode slime
RU2650663C1 (en) Hydro-metallurgical processing of anode slime
US4002544A (en) Hydrometallurgical process for the recovery of valuable components from the anode slime produced in the electrolytical refining of copper
JP2007270250A (en) Method for recovering platinum from waste solution containing selenium using hydrazine
JP4298712B2 (en) Method for electrolytic purification of copper
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP6475403B2 (en) How to recover tellurium
PL205994B1 (en) Method for processing anode sludge
JP2012246198A (en) Method for purifying selenium by wet process
JP5591748B2 (en) How to recover tellurium
JP2009209421A (en) Method for producing high purity silver
JP2017119623A (en) Method for recovering tellurium
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JP2012214307A (en) Method for recovering tellurium
EP0232380B1 (en) Process for purifying silver refinery slimes
KR100415448B1 (en) Method of recovering silver
CN102274978A (en) Method for quickly wet-process refining non-standard coarse gold powder
JP2008106348A (en) Method of separating and recovering zinc
JP2007231397A (en) Method for refining silver chloride
JP6983083B2 (en) A method for removing SiO2 from a slurry containing silver and SiO2 and a method for purifying silver.
JP2005054249A (en) Method for removing copper from anode slime after copper electrolysis
JP3407600B2 (en) Silver extraction and recovery method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326