JP2011517856A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2011517856A5 JP2011517856A5 JP2011504199A JP2011504199A JP2011517856A5 JP 2011517856 A5 JP2011517856 A5 JP 2011517856A5 JP 2011504199 A JP2011504199 A JP 2011504199A JP 2011504199 A JP2011504199 A JP 2011504199A JP 2011517856 A5 JP2011517856 A5 JP 2011517856A5
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- switching material
- resistance switching
- forming
- memory element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 22
- 229910052799 carbon Inorganic materials 0.000 claims 20
- 239000000463 material Substances 0.000 claims 20
- 239000004020 conductor Substances 0.000 claims 7
- 238000000137 annealing Methods 0.000 claims 4
- 238000000034 method Methods 0.000 claims 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims 4
- 210000004027 cells Anatomy 0.000 claims 3
- 239000002184 metal Substances 0.000 claims 3
- 239000000758 substrate Substances 0.000 claims 3
- 229910003481 amorphous carbon Inorganic materials 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 2
- 230000002441 reversible Effects 0.000 claims 2
- 230000001590 oxidative Effects 0.000 claims 1
Claims (18)
- メモリセルを形成する方法であって、
基板の上方にステアリング素子を形成するステップと、
前記ステアリング素子に結合されるメモリ素子を形成するステップと、を含み、
前記メモリ素子が2つの導電体層間に挟み込まれた炭素系抵抗スイッチング材料を含む金属−絶縁物−金属(MIM)スタックを含み、前記炭素系抵抗スイッチング材料が2つの導電体層のうちの一方の上方に配置され、もう一方の導電体層が前記炭素系抵抗スイッチング材料の上方に配置され、前記炭素系抵抗スイッチング材料が10原子層を超えない厚みを有する方法。 - 請求項1記載の方法において、
前記ステアリング素子が、p−nまたはp−i−nダイオードを含む方法。 - 請求項2記載の方法において、
前記ステアリング素子が、多結晶ダイオードを含む方法。 - 請求項1記載の方法において、
前記メモリ素子が、可逆抵抗スイッチング素子を含む方法。 - 請求項4記載の方法において、
前記炭素系抵抗スイッチング材料が、非晶質炭素を含む方法。 - 請求項1記載の方法において、
前記メモリ素子を形成するステップが、300℃〜600℃の処理温度で実施されるプラズマ促進化学蒸着技法を用いて前記炭素系抵抗スイッチング材料を堆積することを含む方法。 - 請求項6記載の方法において、
前記プラズマ促進化学蒸着技法が、300℃〜450℃の処理温度で実施される方法。 - メモリセルを形成する方法であって、
基板の上方にステアリング素子を形成するステップと、
前記ステアリング素子に結合されるメモリ素子を形成するステップと、を含み、
前記メモリ素子が2つの導電体層間に挟み込まれた炭素系抵抗スイッチング材料を含む金属−絶縁物−金属(MIM)スタックを含み、前記炭素系抵抗スイッチング材料が2つの導電体層のうちの一方の上方に配置され、もう一方の導電体層が前記炭素系抵抗スイッチング材料の上方に配置され、
前記炭素系抵抗スイッチング材料が、
前記炭素系抵抗スイッチング材料の1原子層を含む1つの単層の厚みを有する炭素系抵抗スイッチング材料の層を形成するステップと、
前記炭素系抵抗スイッチング材料の層に熱アニールを受けさせるステップと、を繰り返し実施することによって形成される方法。 - 請求項8記載の方法において、
前記ステアリング素子が、p−nまたはp−i−nダイオードを含む方法。 - 請求項9記載の方法において、
前記ステアリング素子が、多結晶ダイオードを含む方法。 - 請求項8記載の方法において、
前記メモリ素子が、可逆抵抗スイッチング素子を含む方法。 - 請求項8記載の方法において、
前記炭素系抵抗スイッチング材料が、非晶質炭素を含む方法。 - 請求項8記載の方法において、
前記炭素系抵抗スイッチング材料の層を形成するステップが、300℃〜600℃の処理温度で実施されるプラズマ促進化学蒸着技法を用いて前記炭素系抵抗スイッチング材料を堆積することを含む方法。 - 請求項13記載の方法において、
前記プラズマ促進化学蒸着技法が、300℃〜450℃の処理温度で実施される方法。 - 請求項8記載の方法において、
前記熱アニールが、250℃〜850℃の処理温度で実施される方法。 - 請求項8記載の方法において、
前記熱アニールが、350℃〜650℃の処理温度で実施される方法。 - 請求項8記載の方法において、
前記熱アニールが、無酸化環境を用いて実施される方法。 - メモリセルであって、
基板の上方のステアリング素子と、
前記ステアリング素子に結合されるメモリ素子と、を備え、
前記メモリ素子が2つの導電体層間に挟み込まれた炭素系抵抗スイッチング材料を含む金属−絶縁物−金属(MIM)スタックを含み、前記炭素系抵抗スイッチング材料が2つの導電体層のうちの一方の上方に配置され、もう一方の導電体層が前記炭素系抵抗スイッチング材料の上方に配置され、前記炭素系抵抗スイッチング材料が10原子層を超えない厚みを有するメモリセル。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4439908P | 2008-04-11 | 2008-04-11 | |
US61/044,399 | 2008-04-11 | ||
US12/418,855 | 2009-04-06 | ||
US12/418,855 US8110476B2 (en) | 2008-04-11 | 2009-04-06 | Memory cell that includes a carbon-based memory element and methods of forming the same |
PCT/US2009/040183 WO2009126871A1 (en) | 2008-04-11 | 2009-04-10 | A memory cell that includes a carbon-based memory element and methods of forming the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011517856A JP2011517856A (ja) | 2011-06-16 |
JP2011517856A5 true JP2011517856A5 (ja) | 2012-05-17 |
JP5564035B2 JP5564035B2 (ja) | 2014-07-30 |
Family
ID=40796299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011504199A Expired - Fee Related JP5564035B2 (ja) | 2008-04-11 | 2009-04-10 | 炭素系メモリ素子を含むメモリセルおよびその形成方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8110476B2 (ja) |
EP (1) | EP2263256B1 (ja) |
JP (1) | JP5564035B2 (ja) |
KR (1) | KR101597845B1 (ja) |
CN (1) | CN102067312B (ja) |
TW (1) | TW201010007A (ja) |
WO (1) | WO2009126871A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110476B2 (en) | 2008-04-11 | 2012-02-07 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
US8133793B2 (en) * | 2008-05-16 | 2012-03-13 | Sandisk 3D Llc | Carbon nano-film reversible resistance-switchable elements and methods of forming the same |
US8569730B2 (en) * | 2008-07-08 | 2013-10-29 | Sandisk 3D Llc | Carbon-based interface layer for a memory device and methods of forming the same |
US20100032640A1 (en) * | 2008-08-07 | 2010-02-11 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
US8252653B2 (en) * | 2008-10-21 | 2012-08-28 | Applied Materials, Inc. | Method of forming a non-volatile memory having a silicon nitride charge trap layer |
US8198671B2 (en) * | 2009-04-22 | 2012-06-12 | Applied Materials, Inc. | Modification of charge trap silicon nitride with oxygen plasma |
US8298891B1 (en) | 2009-08-14 | 2012-10-30 | Intermolecular, Inc. | Resistive-switching memory element |
JP5439147B2 (ja) | 2009-12-04 | 2014-03-12 | 株式会社東芝 | 抵抗変化メモリ |
WO2011156787A2 (en) * | 2010-06-11 | 2011-12-15 | Crossbar, Inc. | Pillar structure for memory device and method |
US8699259B2 (en) | 2011-03-02 | 2014-04-15 | Sandisk 3D Llc | Non-volatile storage system using opposite polarity programming signals for MIM memory cell |
US8852996B2 (en) | 2012-12-20 | 2014-10-07 | Intermolecular, Inc. | Carbon doped resistive switching layers |
US9806129B2 (en) | 2014-02-25 | 2017-10-31 | Micron Technology, Inc. | Cross-point memory and methods for fabrication of same |
US9484196B2 (en) | 2014-02-25 | 2016-11-01 | Micron Technology, Inc. | Semiconductor structures including liners comprising alucone and related methods |
US11223014B2 (en) | 2014-02-25 | 2022-01-11 | Micron Technology, Inc. | Semiconductor structures including liners comprising alucone and related methods |
US10249819B2 (en) | 2014-04-03 | 2019-04-02 | Micron Technology, Inc. | Methods of forming semiconductor structures including multi-portion liners |
US10497867B1 (en) * | 2018-07-02 | 2019-12-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-layer structure to increase crystalline temperature of a selector device |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4499557A (en) * | 1980-10-28 | 1985-02-12 | Energy Conversion Devices, Inc. | Programmable cell for use in programmable electronic arrays |
US4646266A (en) * | 1984-09-28 | 1987-02-24 | Energy Conversion Devices, Inc. | Programmable semiconductor structures and methods for using the same |
US6756605B1 (en) * | 1999-09-20 | 2004-06-29 | Yale University | Molecular scale electronic devices |
US5915167A (en) * | 1997-04-04 | 1999-06-22 | Elm Technology Corporation | Three dimensional structure memory |
AUPO613797A0 (en) | 1997-04-09 | 1997-05-08 | University Of Sydney, The | Digital information storage |
FR2786794B1 (fr) | 1998-12-02 | 2001-03-02 | Commissariat Energie Atomique | Couche monoatomique et monocristalline de grande taille, en carbone de type diamant, et procede de fabrication de cette couche |
KR100408576B1 (ko) * | 1999-03-19 | 2003-12-03 | 인피니언 테크놀로지스 아게 | 기억 셀 어레이 및 그의 제조 방법 |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
DE10006964C2 (de) * | 2000-02-16 | 2002-01-31 | Infineon Technologies Ag | Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements |
US6566278B1 (en) * | 2000-08-24 | 2003-05-20 | Applied Materials Inc. | Method for densification of CVD carbon-doped silicon oxide films through UV irradiation |
US7112366B2 (en) * | 2001-01-05 | 2006-09-26 | The Ohio State University | Chemical monolayer and micro-electronic junctions and devices containing same |
US6632735B2 (en) | 2001-08-07 | 2003-10-14 | Applied Materials, Inc. | Method of depositing low dielectric constant carbon doped silicon oxide |
US20050148174A1 (en) * | 2002-05-06 | 2005-07-07 | Infineon Technologies Ag | Contact-connection of nanotubes |
US6764949B2 (en) * | 2002-07-31 | 2004-07-20 | Advanced Micro Devices, Inc. | Method for reducing pattern deformation and photoresist poisoning in semiconductor device fabrication |
US6753561B1 (en) * | 2002-08-02 | 2004-06-22 | Unity Semiconductor Corporation | Cross point memory array using multiple thin films |
US6900002B1 (en) * | 2002-11-19 | 2005-05-31 | Advanced Micro Devices, Inc. | Antireflective bi-layer hardmask including a densified amorphous carbon layer |
GB0229033D0 (en) | 2002-12-12 | 2003-01-15 | Isis Innovation | Purification of nanotubes |
US7176064B2 (en) * | 2003-12-03 | 2007-02-13 | Sandisk 3D Llc | Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide |
AU2003296988A1 (en) * | 2002-12-19 | 2004-07-29 | Matrix Semiconductor, Inc | An improved method for making high-density nonvolatile memory |
US7767499B2 (en) * | 2002-12-19 | 2010-08-03 | Sandisk 3D Llc | Method to form upward pointing p-i-n diodes having large and uniform current |
US7713592B2 (en) | 2003-02-04 | 2010-05-11 | Tegal Corporation | Nanolayer deposition process |
DE10306076B4 (de) | 2003-02-08 | 2005-02-17 | Hahn-Meitner-Institut Berlin Gmbh | Quantenpunkt aus elektrisch leitendem Kohlenstoff, Verfahren zur Herstellung und Anwendung |
US7309616B2 (en) * | 2003-03-13 | 2007-12-18 | Unity Semiconductor Corporation | Laser annealing of complex metal oxides (CMO) memory materials for non-volatile memory integrated circuits |
JP2004335595A (ja) * | 2003-05-02 | 2004-11-25 | Sharp Corp | 半導体記憶装置 |
US20050006640A1 (en) * | 2003-06-26 | 2005-01-13 | Jackson Warren B. | Polymer-based memory element |
WO2005019104A2 (en) | 2003-08-18 | 2005-03-03 | President And Fellows Of Harvard College | Controlled nanotube fabrication and uses |
US7109087B2 (en) | 2003-10-03 | 2006-09-19 | Applied Materials, Inc. | Absorber layer for DSA processing |
US7354631B2 (en) | 2003-11-06 | 2008-04-08 | Micron Technology, Inc. | Chemical vapor deposition apparatus and methods |
WO2005060005A1 (ja) * | 2003-12-18 | 2005-06-30 | Fuji Electric Holdings Co., Ltd. | スイッチング素子 |
US7608467B2 (en) | 2004-01-13 | 2009-10-27 | Board of Regents University of Houston | Switchable resistive perovskite microelectronic device with multi-layer thin film structure |
US7220982B2 (en) * | 2004-07-27 | 2007-05-22 | Micron Technology, Inc. | Amorphous carbon-based non-volatile memory |
US7288784B2 (en) * | 2004-08-19 | 2007-10-30 | Micron Technology, Inc. | Structure for amorphous carbon based non-volatile memory |
US7405465B2 (en) * | 2004-09-29 | 2008-07-29 | Sandisk 3D Llc | Deposited semiconductor structure to minimize n-type dopant diffusion and method of making |
KR100719346B1 (ko) * | 2005-04-19 | 2007-05-17 | 삼성전자주식회사 | 저항 메모리 셀, 그 형성 방법 및 이를 이용한 저항 메모리배열 |
US7479654B2 (en) * | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US20060250836A1 (en) * | 2005-05-09 | 2006-11-09 | Matrix Semiconductor, Inc. | Rewriteable memory cell comprising a diode and a resistance-switching material |
US20070007579A1 (en) | 2005-07-11 | 2007-01-11 | Matrix Semiconductor, Inc. | Memory cell comprising a thin film three-terminal switching device having a metal source and /or drain region |
US7426128B2 (en) | 2005-07-11 | 2008-09-16 | Sandisk 3D Llc | Switchable resistive memory with opposite polarity write pulses |
US7838943B2 (en) | 2005-07-25 | 2010-11-23 | International Business Machines Corporation | Shared gate for conventional planar device and horizontal CNT |
EP1763037A1 (en) | 2005-09-08 | 2007-03-14 | STMicroelectronics S.r.l. | Nanotube memory cell with floating gate based on passivated nanoparticles and manufacturing process thereof |
US7834338B2 (en) * | 2005-11-23 | 2010-11-16 | Sandisk 3D Llc | Memory cell comprising nickel-cobalt oxide switching element |
US20070202614A1 (en) * | 2006-02-10 | 2007-08-30 | Chiang Tony P | Method and apparatus for combinatorially varying materials, unit process and process sequence |
JP5205670B2 (ja) * | 2006-03-20 | 2013-06-05 | 独立行政法人物質・材料研究機構 | 固体素子構造とそれを使用した電気・電子素子及び電気・電子機器 |
WO2008021911A2 (en) | 2006-08-08 | 2008-02-21 | Nantero, Inc. | Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks |
JP2008118108A (ja) * | 2006-08-25 | 2008-05-22 | Qimonda Ag | 情報記憶素子およびその製造方法 |
US8030637B2 (en) * | 2006-08-25 | 2011-10-04 | Qimonda Ag | Memory element using reversible switching between SP2 and SP3 hybridized carbon |
EP1892722A1 (en) * | 2006-08-25 | 2008-02-27 | Infineon Technologies AG | Information storage elements and methods of manufacture thereof |
US20080102278A1 (en) * | 2006-10-27 | 2008-05-01 | Franz Kreupl | Carbon filament memory and method for fabrication |
CN100442438C (zh) | 2006-12-20 | 2008-12-10 | 南京大学 | 一种非晶碳膜半导体制备方法 |
US7901776B2 (en) | 2006-12-29 | 2011-03-08 | 3M Innovative Properties Company | Plasma deposited microporous carbon material |
US7982209B2 (en) * | 2007-03-27 | 2011-07-19 | Sandisk 3D Llc | Memory cell comprising a carbon nanotube fabric element and a steering element |
EP2140492A1 (en) | 2007-03-27 | 2010-01-06 | Sandisk 3D LLC | Memory cell comprising a carbon nanotube fabric element and a steering element and methods of forming the same |
US7667999B2 (en) * | 2007-03-27 | 2010-02-23 | Sandisk 3D Llc | Method to program a memory cell comprising a carbon nanotube fabric and a steering element |
KR20090011933A (ko) | 2007-07-27 | 2009-02-02 | 주식회사 하이닉스반도체 | 반도체 소자의 제조방법 |
US8236623B2 (en) * | 2007-12-31 | 2012-08-07 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same |
US7768016B2 (en) | 2008-02-11 | 2010-08-03 | Qimonda Ag | Carbon diode array for resistivity changing memories |
US8110476B2 (en) | 2008-04-11 | 2012-02-07 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
US8530318B2 (en) | 2008-04-11 | 2013-09-10 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same |
US8304284B2 (en) | 2008-04-11 | 2012-11-06 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same |
US20100032640A1 (en) * | 2008-08-07 | 2010-02-11 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
EP2351877A1 (en) | 2008-10-22 | 2011-08-03 | Rohm Co., Ltd. | Method for forming boron-containing thin film and multilayer structure |
JP2010165950A (ja) | 2009-01-16 | 2010-07-29 | Toshiba Corp | 不揮発性半導体メモリ及びその製造方法 |
-
2009
- 2009-04-06 US US12/418,855 patent/US8110476B2/en not_active Expired - Fee Related
- 2009-04-10 JP JP2011504199A patent/JP5564035B2/ja not_active Expired - Fee Related
- 2009-04-10 EP EP09729975.4A patent/EP2263256B1/en active Active
- 2009-04-10 TW TW098112117A patent/TW201010007A/zh unknown
- 2009-04-10 WO PCT/US2009/040183 patent/WO2009126871A1/en active Application Filing
- 2009-04-10 KR KR1020107022345A patent/KR101597845B1/ko not_active IP Right Cessation
- 2009-04-10 CN CN200980122112.1A patent/CN102067312B/zh active Active
-
2012
- 2012-01-17 US US13/351,468 patent/US8536015B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011517856A5 (ja) | ||
Pan et al. | Coexistence of grain‐boundaries‐assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride | |
Gueye et al. | All-polymeric flexible transparent heaters | |
Wang et al. | Chemical Growth of 1T‐TaS2 Monolayer and Thin Films: Robust Charge Density Wave Transitions and High Bolometric Responsivity | |
Bitla et al. | Oxide heteroepitaxy for flexible optoelectronics | |
Liang et al. | Novel Cu nanowires/graphene as the back contact for CdTe solar cells | |
US10147839B2 (en) | Method of forming a metal silicide transparent conductive electrode | |
Qian et al. | Direct observation of indium conductive filaments in transparent, flexible, and transferable resistive switching memory | |
Ke et al. | Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices | |
JP5139368B2 (ja) | 薄膜トランジスタの製造方法 | |
Zhao et al. | High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions | |
Singh et al. | Silver nanowires binding with sputtered ZnO to fabricate highly conductive and thermally stable transparent electrode for solar cell applications | |
Jeong et al. | Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films | |
JP2012507150A5 (ja) | ||
Seo et al. | Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices | |
WO2010017054A3 (en) | Indium tin oxide (ito) layer forming | |
Kim et al. | Flexible Crossbar‐Structured Phase Change Memory Array via Mo‐Based Interfacial Physical Lift‐Off | |
Panca et al. | Flexible oxide thin film transistors, memristors, and their integration | |
JP2008192721A5 (ja) | ||
JP2010282729A5 (ja) | ||
Chu et al. | Facile synthesis of few-layer graphene with a controllable thickness using rapid thermal annealing | |
JP2015530743A5 (ja) | ||
Hong et al. | Room temperature wafer-scale synthesis of highly transparent, conductive CuS nanosheet films via a simple sulfur adsorption-corrosion method | |
CN103490009A (zh) | 一种基于氧化石墨烯的柔性阻变存储器及其制备方法 | |
WO2014007603A2 (en) | A method of fabricating a gas sensor |