JP2011505663A - Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same - Google Patents

Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same Download PDF

Info

Publication number
JP2011505663A
JP2011505663A JP2010535875A JP2010535875A JP2011505663A JP 2011505663 A JP2011505663 A JP 2011505663A JP 2010535875 A JP2010535875 A JP 2010535875A JP 2010535875 A JP2010535875 A JP 2010535875A JP 2011505663 A JP2011505663 A JP 2011505663A
Authority
JP
Japan
Prior art keywords
separator
binder
coating layer
mixture
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010535875A
Other languages
Japanese (ja)
Other versions
JP5551077B2 (en
Inventor
キム、ジョン‐フン
リー、サン‐ヤン
パク、ピル‐キュ
ホン、ジャン‐ヒュク
シン、ビャン‐ジン
キム、イン‐チュル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40988128&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011505663(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2011505663A publication Critical patent/JP2011505663A/en
Application granted granted Critical
Publication of JP5551077B2 publication Critical patent/JP5551077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明のセパレータは多数の気孔を有する多孔性基材と、前記多孔性基材の少なくとも一面にコートされており、多数の無機物粒子及びバインダーの混合物で形成された多孔性コーティング層とを備え、前記バインダーは架橋された構造のバインダーを含むことを特徴とする。本発明によって架橋された構造のバインダーを含む多孔性コーティング層を備えたセパレータは耐熱性と電解液に対する不溶性及び含浸性が増加するので、電気化学素子の高温サイクル性能、放電特性及び耐熱性を向上させることができる。  The separator of the present invention comprises a porous substrate having a large number of pores, and a porous coating layer coated on at least one surface of the porous substrate and formed of a mixture of a large number of inorganic particles and a binder, The binder includes a binder having a crosslinked structure. The separator having a porous coating layer containing a binder having a cross-linked structure according to the present invention increases the heat resistance, insolubility and impregnation properties of the electrolyte, thereby improving the high temperature cycle performance, discharge characteristics and heat resistance of the electrochemical device. Can be made.

Description

本発明は、リチウム二次電池のような電気化学素子のセパレータ及びこれを備えた電気化学素子に関するものであって、より詳しくは、多孔性基材の表面に無機物粒子とバインダー高分子との混合物で多孔性コーティング層が形成されたセパレータ及びこれを備えた電気化学素子に関する。   TECHNICAL FIELD The present invention relates to a separator for an electrochemical element such as a lithium secondary battery and an electrochemical element including the separator, and more specifically, a mixture of inorganic particles and a binder polymer on the surface of a porous substrate. The present invention relates to a separator having a porous coating layer formed thereon and an electrochemical device including the separator.

最近エネルギー貯蔵技術に対する関心がますます高まっている。携帯電話、カムコーダー及びノートPC、ひいては電気自動車のエネルギーまで適用分野が拡大されるに伴い、電気化学素子の研究と開発に対する努力がますます具体化されている。電気化学素子はこのような面で最も注目されている分野であり、その中でも充・放電可能な二次電池の開発は関心の焦点になっている。   Recently, interest in energy storage technology is increasing. As the field of application expands to the energy of mobile phones, camcorders and notebook PCs, and eventually electric vehicles, efforts to research and develop electrochemical devices are becoming more and more concrete. Electrochemical elements are the field that has received the most attention in this respect, and among them, the development of rechargeable secondary batteries is the focus of interest.

現在適用されている二次電池の中で1990年代初に開発されたリチウム二次電池は、Ni‐MHなどの従来の電池に比べて作動電圧が高くエネルギー密度が高いという長所により脚光を浴びている。しかし、リチウム二次電池は使用環境に応じて発熱現象が発生して爆発を起こす恐れがある。特に、電気化学素子のセパレータとして通常使われるポリオレフィン系多孔性基材は、材料的特性と延伸を含む製造工程上の特性によって100度以上の温度で激しい熱収縮挙動を見せることで、カソードとアノード間の短絡を起こすという問題点がある。   Among secondary batteries currently in use, lithium secondary batteries developed in the early 1990s have been highlighted due to the advantages of higher operating voltage and higher energy density than conventional batteries such as Ni-MH. Yes. However, lithium secondary batteries may explode due to heat generation depending on the usage environment. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit severe thermal shrinkage behavior at temperatures of 100 ° C. or more due to material characteristics and manufacturing process characteristics including stretching. There is a problem of causing a short circuit.

このような電気化学素子の安全性問題を解決するために、特許文献1及び特許文献2などには、多数の気孔を有する多孔性基材の少なくとも一面に、無機物粒子とバインダー高分子との混合物からなった多孔性コーティング層を形成したセパレータが提案された。このようなセパレータにおいて、多孔性基材に形成された多孔性コーティング層内の無機物粒子は多孔性コーティング層の物理的形態を維持する一種のスペーサ(Spacer)の役割をすることで、電気化学素子が過熱されるとき多孔性基材が熱収縮することを抑制し、多孔性基材が損傷される場合にもカソードとアノードとが直接接触することを防止する。   In order to solve the safety problem of such an electrochemical element, Patent Document 1 and Patent Document 2 disclose a mixture of inorganic particles and a binder polymer on at least one surface of a porous substrate having a large number of pores. A separator with a porous coating layer made of was proposed. In such a separator, the inorganic particles in the porous coating layer formed on the porous substrate serve as a kind of spacer that maintains the physical form of the porous coating layer, thereby allowing the electrochemical element to function. When the substrate is overheated, the porous base material is prevented from being thermally contracted, and even when the porous base material is damaged, the cathode and the anode are prevented from coming into direct contact.

このように、多孔性基材に形成された多孔性コーティング層は電気化学素子の熱的安定性向上に寄与するが、電気化学素子の耐熱性をさらに向上させることができるセパレータに対する開発が続けられている。また、電気化学素子の高温サイクル性能と放電特性とを改善することができるセパレータに対する開発も要求されている。   As described above, the porous coating layer formed on the porous substrate contributes to the improvement of the thermal stability of the electrochemical device, but the development of the separator capable of further improving the heat resistance of the electrochemical device is continued. ing. There is also a need for development of separators that can improve the high temperature cycle performance and discharge characteristics of electrochemical devices.

韓国特許公開第10‐2006‐72065号公報Korean Patent Publication No. 10-2006-72065 韓国特許公開第10‐2007‐231号公報Korean Patent Publication No. 10-2007-231

したがって、本発明が解決しようとする課題は、前述の問題点を解決して熱的安定性に優れており電気化学素子が過熱される場合にもカソードとアノード間の短絡を抑制できるだけでなく、電解液に対する不溶性と含浸性が増加して電気化学素子の高温サイクル性能及び放電特性を向上させることができるセパレータ、その製造方法及びこれを備えた電気化学素子を提供することにある。   Therefore, the problem to be solved by the present invention is to solve the above-mentioned problems and is excellent in thermal stability and not only can suppress a short circuit between the cathode and the anode even when the electrochemical device is overheated, It is an object of the present invention to provide a separator capable of improving the high-temperature cycle performance and discharge characteristics of an electrochemical device by increasing insolubility and impregnation with an electrolytic solution, a manufacturing method thereof, and an electrochemical device including the separator.

前記課題を達成するために本発明のセパレータは、多数の気孔を有する多孔性基材と、前記多孔性基材の少なくとも一面にコートされており、多数の無機物粒子及びバインダーの混合物で形成された多孔性コーティング層とを備え、前記バインダーは架橋された構造のバインダーを含むことを特徴とする。   In order to achieve the above object, the separator of the present invention is formed of a porous base material having a large number of pores and a mixture of a large number of inorganic particles and a binder, which is coated on at least one surface of the porous base material. And a porous coating layer, wherein the binder includes a binder having a crosslinked structure.

本発明のセパレータにおいて、前記架橋された構造のバインダーは、3個以上の反応性基を有する高分子、3個以上の反応性基を有する低分子またはこれらの混合物からなる群より選択されたバインダー間の反応によって架橋されたバインダーであり得、もしくは2個以上の反応性基を有する高分子、2個以上の反応性基を有する低分子またはこれらの混合物からなる群より選択されたバインダーが架橋剤によって互いに架橋されたバインダーであり得る。   In the separator of the present invention, the binder having the crosslinked structure is a binder selected from the group consisting of a polymer having 3 or more reactive groups, a low molecule having 3 or more reactive groups, or a mixture thereof. A binder selected from the group consisting of a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof It may be a binder that is cross-linked to each other by an agent.

また、本発明のセパレータにおいて、バインダーは前記架橋された構造のバインダー及び非架橋構造のバインダーの混合物を使うことができ、非架橋構造のバインダーとしては、ポリビニリデンフルオライド‐ヘキサフルオロプロピレン(polyvinylidene fluoride‐co‐hexafluoropropylene)、ポリビニリデンフルオライド‐トリクロロエチレン(polyvinylidene fluoride‐co‐trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene‐co‐vinyl acetate)、ポリエチレンオキシド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxylmethyl cellulose)、アクリロニトリルスチレンブタジエン共重合体(acrylonitrile‐styrene‐butadiene copolymer)、ポリイミド(polyimide)などをそれぞれ単独でまたはこれらを2種以上混合して用いることができる。   In the separator of the present invention, the binder may be a mixture of a crosslinked binder and a non-crosslinked binder, and the non-crosslinked binder may be polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride). -Co-hexafluoropropylene), polyvinylidenefluoride-trichloroethylene, polymethylmethrylpropylene, polyacrylonitrile (polypropylene), polyacrylonitrile (polypropylene), polyacrylonitrile (polypropylene) (Polyvinylacetate), ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide (polyethylene oxide), cellulose acetate (cellulose acetate), cellulose acetate butyrate (cellulose acetate butyrate) acetic acid propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sulphonate Acetylene-butylene copolymer, acrylonitrile-styrene-butadiene copolymer, unipoly or polymide, and polymide (poly), polynitrile cellulose, pulmonyl cellulose, carboxymethylcellulose, acrylonitrile styrene-butadiene copolymer, Can be used.

また、本発明のセパレータ製造方法は、(S1)架橋性高分子、架橋性低分子及びこれらの混合物からなる群より選択された架橋性バインダー成分を含むコーティング液を用意する段階;(S2)前記コーティング液に無機物粒子を添加して無機物粒子が分散されたコーティング液を製造する段階;(S3)前記無機物粒子が分散されたコーティング液を多孔性基材の少なくとも一面に適用してコーティング層を形成する段階;及び(S4)前記コーティング層内の架橋性バインダー成分を架橋させて多孔性コーティング層を形成する段階を含む。   The separator manufacturing method of the present invention comprises (S1) a step of preparing a coating liquid containing a crosslinkable binder component selected from the group consisting of a crosslinkable polymer, a crosslinkable low molecule, and a mixture thereof; A step of producing a coating liquid in which inorganic particles are dispersed by adding inorganic particles to the coating liquid; (S3) forming a coating layer by applying the coating liquid in which the inorganic particles are dispersed to at least one surface of the porous substrate; And (S4) crosslinking the crosslinkable binder component in the coating layer to form a porous coating layer.

本発明のセパレータ製造方法において、前記架橋性バインダー成分は、3個以上の反応性基を有する高分子、3個以上の反応性基を有する低分子またはこれらの混合物からなる群より選択された何れか一つを用い得る。また、コーティング液は、2個以上の反応性基を有する高分子、2個以上の反応性基を有する低分子またはこれらの混合物からなる群より選択された架橋性バインダー成分及び架橋剤を含み得る。   In the separator manufacturing method of the present invention, the crosslinkable binder component is selected from the group consisting of a polymer having three or more reactive groups, a low molecule having three or more reactive groups, or a mixture thereof. Can be used. In addition, the coating liquid may include a crosslinkable binder component and a crosslinking agent selected from the group consisting of a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof. .

このようなセパレータは、カソードとアノードとの間に介されてリチウム二次電子やスーパーキャパシター素子のような電気化学素子に利用できる。   Such a separator can be used for an electrochemical device such as a lithium secondary electron or a supercapacitor device through a cathode and an anode.

明細書内に統合されており明細書の一部を構成する添付図面は、発明の現在の望ましい実施例を例示し、以下の望ましい実施例の詳細な説明とともに本発明の原理を説明する役割をする。
本発明の一実施例によるセパレータを概略的に示す断面図である。 本発明の他の実施例によるセパレータを概略的に示す断面図である。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate the presently preferred embodiments of the invention and serve to explain the principles of the invention in conjunction with the following detailed description of the preferred embodiments. To do.
It is sectional drawing which shows schematically the separator by one Example of this invention. It is sectional drawing which shows schematically the separator by the other Example of this invention.

以下、本発明に対して詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはいけず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例と図面に示された構成は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Hereinafter, the present invention will be described in detail. Prior to this, the terms and words used in the specification and claims should not be construed in a normal or lexicographic sense, and the inventor will explain his invention in the best possible way. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there can be various equivalents and variations that can be substituted for these.

本発明のセパレータは、多数の気孔を有する多孔性基材と、前記多孔性基材の少なくとも一面にコートされており、多数の無機物粒子及びバインダーの混合物で形成された多孔性コーティング層とを備え、前記バインダーは架橋された構造のバインダーを含む。多孔性コーティング層を構成するバインダーが、架橋された構造のバインダーを含むことで、電解液に対する含浸率が向上してイオン伝導度増加による電気化学素子の放電特性が改善する。また、架橋された構造のバインダーによって電解液に対するバインダーの溶解度が減少しこれによって多孔性コーティング層の安定性が向上する。さらに、架橋された構造のバインダーは、多孔性コーティング層の寸法安定性を向上させるので、電気化学素子の高温性能及び安定性向上に寄与する。   The separator of the present invention comprises a porous substrate having a large number of pores, and a porous coating layer coated on at least one surface of the porous substrate and formed of a mixture of a large number of inorganic particles and a binder. The binder includes a crosslinked binder. Since the binder constituting the porous coating layer contains a binder having a crosslinked structure, the impregnation ratio with respect to the electrolytic solution is improved, and the discharge characteristics of the electrochemical device due to an increase in ionic conductivity are improved. Further, the solubility of the binder with respect to the electrolytic solution is decreased by the crosslinked structure, thereby improving the stability of the porous coating layer. Furthermore, since the crosslinked binder improves the dimensional stability of the porous coating layer, it contributes to the high temperature performance and stability of the electrochemical device.

本発明のセパレータにおいて、架橋された構造のバインダーは、3個以上の反応性基を有する高分子や3個以上の反応性基を有する低分子またはこれらの混合物が互いに反応して形成され得、もしくは2個以上の反応性基を有する高分子や2個以上の反応性基を有する低分子またはこれらの混合物が架橋剤によって互いに架橋されて形成され得る。反応性基としては、熱または光によって反応し得る、ビニル基、エポキシ基、ヒドロキシル基、エステル基、シアネート基などを挙げることができ、架橋剤としては、前述の反応性基を3個以上有する化合物を挙げることができる。下記化学式1及び化学式2に反応性基を有するバインダー成分と架橋剤成分をそれぞれ例示した。反応性基間のエステル反応、エステル交換反応、ウレタン反応、ウレア反応などによって架橋された構造のバインダーが形成される。反応性基を有する低分子が架橋されたバインダーは、反応性基を有する高分子が架橋されたバインダーに比べて柔軟性と弾性とは減少するが、少ない量を使っても比較的高い架橋度を示すので、多孔性コーティング層の高温における寸法安定性向上により有効に用いることができる。

Figure 2011505663
Figure 2011505663
In the separator of the present invention, the crosslinked binder may be formed by reacting a polymer having three or more reactive groups, a low molecule having three or more reactive groups, or a mixture thereof, Alternatively, a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof may be cross-linked with a cross-linking agent. Examples of the reactive group include a vinyl group, an epoxy group, a hydroxyl group, an ester group, and a cyanate group that can react by heat or light, and the crosslinking agent has three or more of the above-described reactive groups. A compound can be mentioned. In the following chemical formula 1 and chemical formula 2, a binder component having a reactive group and a crosslinker component are exemplified. A binder having a crosslinked structure is formed by ester reaction between reactive groups, transesterification reaction, urethane reaction, urea reaction, or the like. Binders with low molecular weight cross-links with reactive groups are less flexible and elastic than binders with cross-linked high polymer with reactive groups, but a relatively high degree of cross-linking with smaller amounts. Therefore, it can be used effectively by improving the dimensional stability of the porous coating layer at a high temperature.
Figure 2011505663
Figure 2011505663

架橋構造は物理的または化学的結合によって形成されるが、このような架橋構造を持つバインダーとしては、架橋ポリエチレンオキシド、架橋ポリプロピレンオキシド、架橋ポリメチルメタアクリレート、架橋ポリビニリデンフルオライド、架橋ポリビニリデンフルオライド‐ヘキサフルオロプロピレン共重合体、架橋ポリアクリロニトリル、架橋ポリシロキサン、架橋ポリエステル、架橋ポリウレタン、架橋ポリウレア、架橋セルロースアセテートまたはこれらのうち2種以上の架橋バインダーなどを挙げることができ、その重量平均分子量は10,000g/mol以上が望ましい。   The cross-linked structure is formed by physical or chemical bonding, and examples of the binder having such a cross-linked structure include cross-linked polyethylene oxide, cross-linked polypropylene oxide, cross-linked polymethyl methacrylate, cross-linked polyvinylidene fluoride, and cross-linked polyvinylidene fluoride. Ride-hexafluoropropylene copolymer, cross-linked polyacrylonitrile, cross-linked polysiloxane, cross-linked polyester, cross-linked polyurethane, cross-linked polyurea, cross-linked cellulose acetate or a cross-linked binder of two or more of these can be mentioned, and its weight average molecular weight Is preferably 10,000 g / mol or more.

また、本発明のセパレータにおいて、多孔性コーティング層を構成するバインダーとしては、前述の架橋された構造のバインダー以外に非架橋構造のバインダーがさらに混合され得る。非架橋構造のバインダーとしては、ポリビニリデンフルオライド‐ヘキサフルオロプロピレン(polyvinylidene fluoride‐co‐hexafluoropropylene)、ポリビニリデンフルオライド‐トリクロロエチレン(polyvinylidene fluoride‐co‐trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene‐co‐vinyl acetate)、ポリエチレンオキシド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxylmethyl cellulose)、アクリロニトリルスチレンブタジエン共重合体(acrylonitrile‐styrene‐butadiene copolymer)、ポリイミド(polyimide)などをそれぞれ単独でまたはこれらを2種以上混合して用いることができる。   In the separator of the present invention, as the binder constituting the porous coating layer, a binder having a non-crosslinked structure may be further mixed in addition to the above-mentioned crosslinked structure binder. Non-crosslinked binders include polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride-co-trichloroethylene), poly (vinylidene fluoride-trichloroethylene), and poly (vinylidene fluoride-co-trimethylethylene). polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate) ), Polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpolycyanopropyl Cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose yl cellulose), acrylonitrile-styrene-butadiene copolymer (acrylonitrile-styrene-butadiene copolymer), or polyimide (polyimide) and each alone may be used as a mixture of two or more of these.

本発明のセパレータにおいて、多孔性コーティング層の形成に用いられる無機物粒子は、電気化学的に安定していれば特に制限されない。すなわち、本発明で用いられる無機物粒子は、適用される電気化学素子の作動電圧範囲(例えは、Li/Li基準で0〜5V)で酸化及び/または還元反応が発生しないものであれば特に制限されない。特に、イオン伝達能力のある無機物粒子を用いる場合、電気化学素子内のイオン伝導度を高めて性能向上を図ることができる。 In the separator of the present invention, the inorganic particles used for forming the porous coating layer are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles used in the present invention are not particularly limited as long as oxidation and / or reduction reactions do not occur in the operating voltage range of the applied electrochemical device (for example, 0 to 5 V on the basis of Li / Li + ). Not limited. In particular, when using inorganic particles having an ion transfer capability, the performance can be improved by increasing the ionic conductivity in the electrochemical element.

また、無機物粒子として誘電率が高い無機物粒子を用いる場合、液体電解質内の電解質塩、例えばリチウム塩の解離度増加に寄与して電解液のイオン伝導度を向上させることができる。   In addition, when inorganic particles having a high dielectric constant are used as the inorganic particles, the ionic conductivity of the electrolytic solution can be improved by contributing to an increase in the dissociation degree of an electrolyte salt in the liquid electrolyte, for example, a lithium salt.

前述した理由により、前記無機物粒子は、誘電率定数が5以上、望ましくは10以上である高誘電率無機物粒子、リチウムイオンの伝達能力を有する無機物粒子またはこれらの混合体を含むことが望ましい。誘電率定数が5以上である無機物粒子の非制限的な例としては、BaTiO、Pb(Zr,Ti)O(PZT)、Pb1−xLaZr1−yTi(PLZT)、PB(MgNb2/3)O‐PbTiO(PMN‐PT)、hafnia(HfO)、SrTiO、SnO、CeO、MgO、NiO、CaO、ZnO、ZrO、Y、Al、TiO、SiCまたはこれらの混合体などがある。 For the reasons described above, the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, inorganic particles having lithium ion transmission ability, or a mixture thereof. Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT). ), PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 There are O 3 , Al 2 O 3 , TiO 2 , SiC, or a mixture thereof.

特に、前述したBaTiO、Pb(Zr,Ti)O(PZT)、Pb1−xLaZr1−yTi(PLZT)、PB(MgNb2/3)O‐PbTiO(PMN‐PT)及びhafnia(HfO)のような無機物粒子は、誘電率定数が100以上である高誘電率特性を示すだけでなく、一定の圧力を印加して引張りまたは圧縮する場合電荷が発生して両面間に電位差が発生する圧電性(piezoelectricity)を有することで、外部衝撃による両電極の内部短絡発生を防止して電気化学素子の安全性向上を図ることができる。また、前述した高誘電率無機物粒子とリチウムイオン伝達能力を有する無機物粒子とを混用する場合これらの上昇効果は倍加できる。 In particular, BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 Inorganic particles such as (PMN-PT) and hafnia (HfO 2 ) not only exhibit high dielectric constant characteristics with a dielectric constant of 100 or more, but also when charged or tensioned by applying a certain pressure. Due to the piezoelectricity that generates a potential difference between both surfaces due to the occurrence of the occurrence of internal short circuit between the two electrodes due to external impact, the safety of the electrochemical device can be improved. In addition, when the above-described high dielectric constant inorganic particles and inorganic particles having lithium ion transmission ability are mixedly used, these rising effects can be doubled.

本発明においてリチウムイオン伝達能力を有する無機物粒子は、リチウム元素を含有するがリチウムを貯蔵せずにリチウムイオンを移動させる機能を有する無機物粒子を称するものであって、リチウムイオン伝達能力を有する無機物粒子は粒子構造内部に存在する一種の欠陥(defect)によってリチウムイオンを伝達及び移動させることができるので、電池内リチウムイオン伝導度が向上し、これにより電池性能の向上を図ることができる。上記リチウムイオン伝達能力を有する無機物粒子の非制限的な例としては、リチウムフォスフェイト(LiPO)、リチウムチタンフォスフェイト(LiTi(PO、0<x<2、0<y<3)、リチウムアルミニウムチタンフォスフェイト(LiAlTi(PO、0<x<2、0<y<1、0<z<3)、14LiO‐9Al‐38TiO‐39Pなどのような(LiAlTiP)系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LiLaTiO、0<x<2、0<y<3)、Li3.25Ge0.250.75などのようなリチウムゲルマニウムチオフォスフェイト(LiGe、0<x<4、0<y<1、0<z<1、0<w<5)、LiNなどのようなリチウムナイトライド(Li、0<x<4、0<y<2)、LiPO‐LiS‐SiSなどのようなSiS系列ガラス(LiSi、0<x<3、0<y<2、0<z<4)、LiI‐LiS‐PなどのようなP系列ガラス(Li、0<x<3、0<y<3、0<z<7)またはこれらの混合物などがある。 In the present invention, the inorganic particles having lithium ion transfer capability refer to inorganic particles containing lithium element but having a function of moving lithium ions without storing lithium, and having lithium ion transfer capability Since lithium ions can be transmitted and moved by a kind of defect existing inside the particle structure, the lithium ion conductivity in the battery is improved, thereby improving battery performance. Non-limiting examples of the inorganic particles having lithium ion transfer capability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), lithium aluminum titanium phosphate (Li x Al y Ti z ( PO 4) 3, 0 <x <2,0 <y <1,0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5, such as (LiAlTiP) x O y series glass (0 <x <4,0 <y <13), lithium lanthanum titanate (Li x La y TiO 3, 0 <x < 2, 0 <y <3), lithium germanium thiophosphates such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S w , 0 <x <4, 0 < y <1, 0 <z <1, 0 <w <5 , Lithium nitride such as Li 3 N (Li x N y , 0 <x <4,0 <y <2), SiS 2 series glasses, such as Li 3 PO 4 -Li 2 S- SiS 2 ( Li x Si y S z, 0 <x <3,0 <y <2,0 <z <4), P 2 S 5 series glass such as LiI-Li 2 S-P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) or a mixture thereof.

本発明のセパレータにおいて、多孔性コーティング層の無機物粒子のサイズに制限はないが、均一な厚さのコーティング層形成及び適切な孔隙率のために、可能な限り0.01ないし10μm範囲であることが望ましい。0.01μm未満である場合分散性が低下してセパレータの物性を調節することが容易ではなく、10μmを超える場合多孔性コーティング層の厚さが増加して機械的物性が低下し得、また大きすぎる気孔のサイズにより電池の充・放電時に内部短絡が生じる確率が高くなる。   In the separator of the present invention, the size of the inorganic particles in the porous coating layer is not limited, but it should be in the range of 0.01 to 10 μm as much as possible in order to form a coating layer with a uniform thickness and appropriate porosity. Is desirable. When the thickness is less than 0.01 μm, the dispersibility is lowered and it is not easy to adjust the physical properties of the separator. When the thickness exceeds 10 μm, the thickness of the porous coating layer is increased and the mechanical properties can be lowered. The excessive pore size increases the probability of an internal short circuit during battery charging / discharging.

本発明によってセパレータにコートされた多孔性コーティング層の無機物粒子と架橋された構造のバインダーとの組成比は、例えば50:50ないし99:1範囲が望ましく、さらに望ましくは60:40ないし95:5である。無機物粒子とバインダーとから構成される多孔性コーティング層の厚さは特に制限はないが、0.01ないし20μm範囲が望ましい。また、気孔のサイズ及び気孔度にも特に制限はないが、気孔のサイズは0.01ないし10μmの範囲が望ましく、気孔度は5ないし90%の範囲が望ましい。   The composition ratio between the inorganic particles of the porous coating layer coated on the separator according to the present invention and the binder having a crosslinked structure is, for example, preferably in the range of 50:50 to 99: 1, and more preferably in the range of 60:40 to 95: 5. It is. The thickness of the porous coating layer composed of the inorganic particles and the binder is not particularly limited, but is preferably in the range of 0.01 to 20 μm. The pore size and porosity are not particularly limited, but the pore size is preferably in the range of 0.01 to 10 μm, and the porosity is preferably in the range of 5 to 90%.

本発明のセパレータは、多孔性コーティング層の成分として前述の無機物粒子及び高分子以外に、その他添加剤をさらに含み得る。   The separator of the present invention may further contain other additives in addition to the aforementioned inorganic particles and polymer as components of the porous coating layer.

また、本発明のセパレータにおいて、多孔性コーティング層が形成される多孔性基材としては、通常電気化学素子に用いられる多孔性基材であれば何れも使用可能である。   In the separator of the present invention, any porous substrate that is usually used in electrochemical devices can be used as the porous substrate on which the porous coating layer is formed.

図1を参照すれば、本発明のセパレータ10は、多孔性基材としてポリオレフィン系多孔性膜1aを用い、その一面または両面に無機物粒子3と架橋された構造のバインダー5とからなった多孔性コーティング層が形成され得る。ポリオレフィン系多孔性膜は例えば、高密度ポリエチレン、線形低密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレンのようなポリエチレン、ポリプロピレン、ポリブチレン、ポリペンテンなどのポリオレフィン系高分子をそれぞれ単独でまたはこれらを混合した高分子で形成した膜(membrane)を挙げることができる。   Referring to FIG. 1, a separator 10 of the present invention uses a porous polyolefin-based membrane 1 a as a porous substrate, and has a porous structure composed of a binder 5 having a structure in which one side or both sides are crosslinked with inorganic particles 3. A coating layer may be formed. Polyolefin porous membranes are, for example, polyethylene polymers such as high density polyethylene, linear low density polyethylene, low density polyethylene, and ultrahigh molecular weight polyethylene, polypropylene polymers such as polypropylene, polybutylene, and polypentene, either singly or in combination. A membrane formed of a polymer can be given.

また、図2に示すように、本発明のセパレータ20は、多孔性基材として不織布1bを用い、その一面または両面に無機物粒子3と架橋された構造のバインダー5とからなった多孔性コーティング層が形成され得る。不織布としては、前述のポリオレフィン系不織布以外に例えば、ポリエチレンテレフタレート(polyethyleneterephthalate)、ポリブチレンテレフタレート(polybutyleneterephthalate)、ポリエステル(polyester)、ポリアセタール(polyacetal)、ポリアミド(polyamide)、ポリカーボネート(polycarbonate)、ポリイミド(polyimide)、ポリエーテルエーテルケトン(polyetheretherketone)、ポリエーテルスルホン(polyethersulfone)、ポリフェニレンオキシド(polyphenyleneoxide)、ポリフェニレンスルフィドロ(polyphenylenesulfidro)、ポリエチレンナフタレン(polyethylenenaphthalene)などをそれぞれ単独でまたはこれらを混合した高分子で形成した不織布を挙げることができる。不織布の構造は長繊維から構成されたスパンボンド(Spunbond)式不織布またはメルトブローン(Melt‐blown)不織布であることが望ましい。   In addition, as shown in FIG. 2, the separator 20 of the present invention uses a nonwoven fabric 1b as a porous substrate, and a porous coating layer comprising a binder 5 having a structure in which one side or both sides are crosslinked with inorganic particles 3 Can be formed. Examples of the non-woven fabric include, in addition to the above-described polyolefin-based non-woven fabric, for example, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polymide, polymide, polymide, polymide, polymide, polymide, and polymide. , Polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylenesulfene (polyphenylenesulfurene), polyphenylenesulfide (polyphenylenesulfide), polyphenylene oxide (polyphenylenesulfide), polyphenylene sulfide (polyphenylenesulfide) fidro), or alone respectively or polyethylene naphthalene (polyethylenenaphthalene), mention may be made of nonwoven fabric formed by these mixed polymer. The structure of the nonwoven fabric is preferably a spunbond type nonwoven fabric or a melt-blown nonwoven fabric composed of long fibers.

多孔性基材の厚さは特に制限されないが、5ないし50μmが望ましく、多孔性基材に存在する気孔のサイズ及び気孔度も特に制限されないが、それぞれ0.01ないし50μm及び10ないし95%であることが望ましい。   The thickness of the porous substrate is not particularly limited, but is preferably 5 to 50 μm, and the size and porosity of the pores existing in the porous substrate are not particularly limited, but are 0.01 to 50 μm and 10 to 95%, respectively. It is desirable to be.

本発明によって多孔性コーティング層がコートされたセパレータの望ましい製造方法を以下に例示するが、これに限定されるのではない。   Although the desirable manufacturing method of the separator by which the porous coating layer was coated by this invention is illustrated below, it is not limited to this.

まず、架橋性高分子、架橋性低分子及びこれらの混合物からなる群より選択された架橋性バインダー成分を含むコーティング液を用意する(S1段階)。   First, a coating liquid containing a crosslinkable binder component selected from the group consisting of a crosslinkable polymer, a crosslinkable low molecule, and a mixture thereof is prepared (Step S1).

架橋性バインダー成分としては前述のように、3個以上の反応性基を有する高分子、3個以上の反応性基を有する低分子またはこれらの混合物を用い得る。また、架橋性バインダー成分を含むコーティング液は、2個以上の反応性基を有する高分子、2個以上の反応性基を有する低分子またはこれらの混合物である架橋性バインダー成分と、架橋剤とを含み得る。必要に応じては、コーティング液には熱開始剤または光開始剤のような架橋開始剤と反応触媒などをさらに添加することができる。   As described above, as the crosslinkable binder component, a polymer having three or more reactive groups, a low molecule having three or more reactive groups, or a mixture thereof can be used. Moreover, the coating liquid containing a crosslinkable binder component comprises a crosslinkable binder component which is a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof, and a crosslinking agent. Can be included. If necessary, a crosslinking initiator such as a thermal initiator or a photoinitiator and a reaction catalyst can be further added to the coating solution.

架橋性バインダー成分として架橋性高分子のみを使う場合、適切な溶媒に溶解させてコーティング液を用意する。架橋性バインダー成分として架橋性低分子が含まれる場合、架橋性高分子は架橋性低分子に溶解できるので、溶媒を使わなくてもよい場合がある。   When only a crosslinkable polymer is used as the crosslinkable binder component, a coating solution is prepared by dissolving in a suitable solvent. When a crosslinkable low molecule is contained as the crosslinkable binder component, the crosslinkable polymer can be dissolved in the crosslinkable low molecule, and thus there is a case where a solvent may not be used.

溶媒としては使用しようとする架橋性高分子または架橋性低分子と溶解度指数が類似し、沸点が低いものが望ましい。これは、混合が均一にでき、以後溶媒を容易に除去することができるからである。溶媒の非制限的な例としては、アセトン(acetone)、テトラヒドロフラン(tetrahydrofuran)、塩化メチレン(methylene chloride)、クロロホルム(chloroform)、ジメチルホルムアミド(dimethylformamide)、N‐メチル‐2‐ピロリドン(N‐methyl‐2‐pyrrolidone、NMP)、シクロヘキサン(cyclohexane)、水またはこれらの混合体などがある。   As the solvent, those having a solubility index similar to that of the crosslinkable polymer or crosslinkable low molecule to be used and having a low boiling point are desirable. This is because mixing can be made uniform and the solvent can be easily removed thereafter. Non-limiting examples of solvents include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (N-methyl-). 2-pyrrolidone (NMP), cyclohexane, water or mixtures thereof.

次いで、用意したコーティング液に無機物粒子を添加して無機物粒子が分散されたコーティング液を製造する(S2段階)。   Next, inorganic particles are added to the prepared coating liquid to produce a coating liquid in which the inorganic particles are dispersed (step S2).

コーティング液に無機物粒子を添加した後、無機物粒子の破砕を行うことが望ましい。このとき、破砕時間は1ないし20時間が適切であり、破砕された無機物粒子の粒度は前述したように0.01ないし10μmが望ましい。破砕方法としては通常の方法を使うことができ、特にボールミル(ball mill)法が望ましい。   It is desirable to crush the inorganic particles after adding the inorganic particles to the coating liquid. At this time, the crushing time is appropriately 1 to 20 hours, and the particle size of the crushed inorganic particles is preferably 0.01 to 10 μm as described above. As a crushing method, a usual method can be used, and a ball mill method is particularly desirable.

その後、無機物粒子が分散されたコーティング液を多孔性基材の少なくとも一面に適用してコーティング層を形成する(S3段階)。   Thereafter, the coating liquid in which the inorganic particles are dispersed is applied to at least one surface of the porous substrate to form a coating layer (step S3).

無機物粒子が分散されたコーティング液を多孔性基材上にコートする方法は、当業界に知られた通常のコーティング方法を使うことができ、例えばディップ(dip)コーティング、ダイ(die)コーティング、ロール(roll)コーティング、コンマ(comma)コーティング、またはこれらの混合方式など多様な方式を用いることができる。また、多孔性コーティング層は多孔性基材の両面または一面にのみ選択的に形成し得る。   As a method of coating the porous substrate with the coating liquid in which the inorganic particles are dispersed, a conventional coating method known in the art can be used, for example, dip coating, die coating, roll Various methods such as a (roll) coating, a comma coating, or a mixed method thereof may be used. Further, the porous coating layer can be selectively formed only on both surfaces or one surface of the porous substrate.

次いで、コーティング層内の架橋性バインダー成分を架橋させて多孔性コーティング層を形成する(S4段階)。   Next, the crosslinkable binder component in the coating layer is crosslinked to form a porous coating layer (step S4).

架橋性バインダー成分の架橋は当業界で一般的に使われる硬化方法を使うことができる。例えば、コーティング層が熱硬化可能な場合、オーブンまたは加熱式チャンバーで常温〜200℃の間の温度で処理してバッチ式または連続式で硬化可能である。また、コーティング層が光反応により硬化可能な場合、適切な温度で光を照射して硬化させればよい。硬化反応中に縮合物や副反応物が発生する場合は、減圧下で硬化を行うことが望ましく、圧力は0.01torr〜500torrが適合である。0.01torr以下の急減圧条件は量産条件として具現しにくく、500torr以上の圧力条件では縮合物や副反応物の除去が容易ではない。   For crosslinking of the crosslinkable binder component, a curing method commonly used in the art can be used. For example, when the coating layer can be thermally cured, it can be cured batchwise or continuously by treatment at a temperature between room temperature and 200 ° C. in an oven or a heated chamber. Moreover, when a coating layer can be hardened | cured by photoreaction, what is necessary is just to cure by irradiating light at appropriate temperature. When a condensate or a side reaction product is generated during the curing reaction, it is desirable to perform the curing under a reduced pressure, and the pressure is adapted to 0.01 to 500 torr. A rapid pressure reduction condition of 0.01 torr or less is difficult to be realized as a mass production condition, and a condensate or a side reaction product is not easily removed under a pressure condition of 500 torr or more.

コーティング液に溶媒が添加された場合、追加的にコーティング層の乾燥過程が必要なのは言うまでもない。乾燥条件は使われた溶媒の蒸気圧を考慮した温度範囲でオーブンまたは加熱式チャンバーを使ってバッチ式または連続式で可能である。   Needless to say, when a solvent is added to the coating solution, an additional drying process of the coating layer is required. Drying conditions can be batch or continuous using an oven or heated chamber in a temperature range that takes into account the vapor pressure of the solvent used.

このように製造された本発明のセパレータは、電気化学素子のセパレータとして用いることができる。すなわち、カソードとアノードとの間に介させたセパレータとして本発明のセパレータが有用に用いられる。   The separator of the present invention thus produced can be used as a separator for electrochemical devices. That is, the separator of the present invention is usefully used as a separator interposed between the cathode and the anode.

電気化学素子は電気化学反応をする全ての素子を含み、具体的に例を挙げれば、全ての種類の一次、二次電池、燃料電池、太陽電池、またはスーパーキャパシタ素子のようなキャパシタ(capacitor)などがある。特に、前記二次電池の中で、リチウム金属二次電池、リチウムイオン二次電池、リチウムポリマー二次電池、またはリチウムイオンポリマー二次電池などを含むリチウム二次電池が望ましい。   Electrochemical elements include all elements that react electrochemically, and, by way of example, all kinds of capacitors such as primary, secondary batteries, fuel cells, solar cells, or supercapacitor elements. and so on. In particular, among the secondary batteries, lithium secondary batteries including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries are preferable.

電気化学素子は当技術分野に知られた通常の方法で製造することができ、この一実施例を挙げれば、カソードとアノードとの間に前述のセパレータを介させて組み立てた後、電解液を注入することで製造することができる。本発明のセパレータを適用するとき、必要に応じて通常のポリオレフィン系多孔性膜を共に用い得る。   The electrochemical device can be manufactured by a conventional method known in the art. For example, after assembling the separator between the cathode and the anode through the separator, It can be manufactured by injection. When applying the separator of the present invention, an ordinary polyolefin-based porous membrane can be used together as necessary.

本発明のセパレータと共に適用される電極は、特に制限されず、当業界に知られた通常の方法に従って電極活物質を電極電流集電体に結着させた形態で製造することができる。前記電極活物質の中でカソード活物質の非制限的な例としては、従来電気化学素子のカソードとして用いられる通常のカソード活物質が使用可能であり、特にリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウム鉄酸化物またはこれらを組み合わせたリチウム複合酸化物を用いることが望ましい。アノード活物質の非制限的な例としては、従来電気化学素子のアノードとして用いられる通常のアノード活物質が使用可能であり、特にリチウム金属またはリチウム合金、炭素、石油コーク(petroleum coke)、活性化炭素(activated carbon)、グラファイト(graphite)またはその他炭素類などのようなリチウム吸着物質などが望ましい。カソード電流集電体の非制限的な例としては、アルミニウム、ニッケルまたはこれらの組み合わせによって製造されるホイルなどがあり、アノード電流集電体の非制限的な例としては、銅、金、ニッケルまたは銅合金、もしくはこれらの組み合わせによって製造されるホイルなどがある。   The electrode applied together with the separator of the present invention is not particularly limited, and can be manufactured in a form in which an electrode active material is bound to an electrode current collector according to a usual method known in the art. Among the electrode active materials, as a non-limiting example of the cathode active material, a conventional cathode active material conventionally used as a cathode of an electrochemical device can be used, particularly lithium manganese oxide, lithium cobalt oxide, It is desirable to use lithium nickel oxide, lithium iron oxide, or a lithium composite oxide combining these. As a non-limiting example of the anode active material, a conventional anode active material conventionally used as an anode of an electrochemical element can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activation Lithium adsorbents such as activated carbon, graphite or other carbons are desirable. Non-limiting examples of cathode current collectors include foils made from aluminum, nickel or combinations thereof, and non-limiting examples of anode current collectors include copper, gold, nickel or There are foils manufactured from copper alloys or combinations thereof.

本発明で用いることができる電解液はAのような構造の塩であり、AはLi、Na、Kのようなアルカリ金属陽イオン、またはこれらの組み合わせからなるイオンを含み、BはPF 、BF 、Cl、Br、I、ClO 、AsF 、CHCO 、CFSO 、N(CFSO 、C(CFSO のような陰イオン、またはこれらの組み合わせからなるイオンを含む塩が、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、N‐メチル‐2‐ピロリドン(NMP)、エチルメチルカーボネート(EMC)、ガンマブチロラクトン(γ‐ブチロラクトン)、またはこれらの混合物からなる有機溶媒に溶解または解離されたものがあるが、これに限定されるのではない。 The electrolyte that can be used in the present invention is a salt having a structure such as A + B , and A + is an ion composed of an alkali metal cation such as Li + , Na + , K + , or a combination thereof. B is PF 6 , BF 4 , Cl , Br , I , ClO 4 , AsF 6 , CH 3 CO 2 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 -, C (CF 2 sO 2 ) 3 - anions or salts, propylene carbonate containing ions a combination thereof, such as (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate ( DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydro Examples include, but are not limited to, those dissolved or dissociated in organic solvents consisting of orchid, N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), gamma butyrolactone (γ-butyrolactone), or mixtures thereof. It is not done.

前記電解液の注入は最終製品の製造工程及び要求物性に応じて、電池製造工程の中で適切な段階で行うことができる。すなわち、電池組立ての前または電池組立ての最終段階などに適用することができる。   The electrolyte can be injected at an appropriate stage in the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, the present invention can be applied before battery assembly or at the final stage of battery assembly.

本発明のセパレータを電池に適用する工程としては、一般的な工程である巻取り(winding)以外にも、セパレータと電極の積層(lamination、stack)及び折り畳み(folding)工程が可能である。特に、前記工程の中で積層工程に本発明のセパレータを適用する場合、電気化学素子の熱的安定性の向上効果は顕著になる。これは、一般的な巻取り工程によって製造された電池に比べて積層及び折り畳み工程によって製造された電池は、分離膜の熱収縮がより激しく生じることに起因する。また、積層工程に本発明のセパレータを適用するとき、架橋された構造のバインダーが持つ優れた熱安定性及び接着力特性によって、より高温で容易に組立てが可能である。   As a process of applying the separator of the present invention to a battery, in addition to a general process of winding, there can be a lamination and stacking process of a separator and an electrode and a folding process. In particular, when the separator of the present invention is applied to the laminating process among the above processes, the effect of improving the thermal stability of the electrochemical device becomes significant. This is because the thermal contraction of the separation membrane is more severe in the battery manufactured by the stacking and folding process than in the battery manufactured by the general winding process. In addition, when the separator of the present invention is applied to the laminating process, it can be easily assembled at a higher temperature due to the excellent thermal stability and adhesive strength characteristics of the crosslinked binder.

以下、本発明を具体的に説明するために実施例を挙げて詳しく説明する。しかし、本発明による実施例は多くの形態に変形でき、本発明の範囲が後述する実施例に限定されると解釈されてはいけない。本発明の実施例は、当業界において通常の知識を持つ者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified in many forms, and the scope of the present invention should not be construed to be limited to the embodiments described later. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

実施例1
1-1.セパレータの製造
下記化学式3に表される架橋性バインダー(TA10、2重量%)と架橋開始剤であるAIBN(0.04%wt/wt)とをアセトンに約30℃で約1時間溶解させた。この溶液に平均粒度が約1μmであるアルミナ粉末を全体固形分の20重量%濃度で添加し分散させた。以後、この混合溶液をディップコーティング法を利用して厚さ20μm程度のポリエチレン多孔性基材(気孔度35%)にコートし、90℃の乾燥オーブンで約10分間硬化及び乾燥を同時に行った。最終的に形成されたコーティング層の厚さは約2μm程度になるように調節した。気孔率測定装置(porosimeter)で測定した結果、ポリエチレン多孔性基材に形成された多孔性コーティング層内の気孔のサイズ及び気孔度はそれぞれ0.4μm及び40%であった。

Figure 2011505663
Example 1
1-1. Production of Separator A crosslinkable binder (TA10, 2% by weight) represented by the following chemical formula 3 and AIBN (0.04% wt / wt) as a crosslinking initiator in acetone at about 30 ° C. for about 1 It was dissolved for hours. To this solution, an alumina powder having an average particle size of about 1 μm was added and dispersed at a concentration of 20% by weight of the total solid content. Thereafter, this mixed solution was coated on a polyethylene porous substrate (porosity 35%) having a thickness of about 20 μm by using a dip coating method, and was simultaneously cured and dried in a drying oven at 90 ° C. for about 10 minutes. The thickness of the finally formed coating layer was adjusted to be about 2 μm. As a result of measurement with a porosity measuring device (porosimeter), the size and porosity of the pores in the porous coating layer formed on the polyethylene porous substrate were 0.4 μm and 40%, respectively.
Figure 2011505663

1-2.リチウム二次電池の製造
カソード活物質としてLiCoO94重量%、導電材としてカーボンブラック(carbon black)3重量%、結合剤としてPVdF3重量%を溶剤であるN‐メチル‐2‐ピロリドン(NMP)に添加してカソード混合物スラリーを製造した。前記カソード混合物スラリーを、カソード集電体である厚さが20μm程度のアルミニウム(Al)薄膜に塗布、乾燥してカソードを製造した。
1-2. Production of Lithium Secondary Battery N-methyl-2-pyrrolidone as a solvent with LiCoO 2 94% by weight as a cathode active material, carbon black 3% by weight as a conductive material, and PVdF 3% by weight as a binder (NMP) was added to produce a cathode mixture slurry. The cathode mixture slurry was applied to an aluminum (Al) thin film having a thickness of about 20 μm, which was a cathode current collector, and dried to produce a cathode.

アノード活物質として炭素粉末、結合剤としてPVdF、導電材としてカーボンブラックをそれぞれ96重量%、3重量%及び1重量%にして溶剤であるNMPに添加してアノード混合物スラリーを製造した。前記アノード混合物スラリーを、アノード集電体である厚さが10μmの銅(Cu)薄膜に塗布、乾燥してアノードを製造した。   Anode powder slurry was prepared by adding carbon powder as an anode active material, PVdF as a binder, and carbon black as a conductive material to 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent. The anode mixture slurry was applied to a 10 μm thick copper (Cu) thin film serving as an anode current collector and dried to produce an anode.

前述の方法で製造したカソード、アノード及びセパレータをスタッキング(stacking)方式で組み立て、組み立てられた電池に1Mのリチウムヘキサフルオロフォスフェイト(LiPF)が溶解されたエチレンカーボネート/プロピレンカーボネート/ジエチルカーボネート(EC/PC/DEC=30:20:50重量%)系電解液を注入してリチウム二次電池を製造した。 The cathode, anode, and separator manufactured by the above-described method are assembled in a stacking manner, and ethylene carbonate / propylene carbonate / diethyl carbonate (EC) in which 1M lithium hexafluorophosphate (LiPF 6 ) is dissolved in the assembled battery. / PC / DEC = 30: 20: 50 wt%) based electrolyte solution was injected to manufacture a lithium secondary battery.

実施例2
厚さ約20μmのポリエチレンテレフタレート不織布を多孔性基材として用いたことを除いては、前記実施例1と同一の方法でセパレータ及びリチウム二次電池を製造した。製造されたセパレータの多孔性コーティング層の気孔のサイズは0.6μm以下であり、気孔度は55%レベルであった。
Example 2
A separator and a lithium secondary battery were manufactured in the same manner as in Example 1 except that a polyethylene terephthalate nonwoven fabric having a thickness of about 20 μm was used as the porous substrate. The pore size of the porous coating layer of the manufactured separator was 0.6 μm or less, and the porosity was at the 55% level.

比較例1
架橋性バインダーと架橋開始剤の代わりに、PVdF‐HFPを2重量%で用いたことを除いては、前記実施例1と同一の方法でセパレータ及びリチウム二次電池を製造した。製造されたセパレータの多孔性コーティング層の気孔のサイズは0.5μm以下であり、気孔度は42%レベルであった。
Comparative Example 1
A separator and a lithium secondary battery were manufactured in the same manner as in Example 1 except that PVdF-HFP was used at 2% by weight instead of the crosslinkable binder and the crosslinking initiator. The pore size of the porous coating layer of the manufactured separator was 0.5 μm or less, and the porosity was at a level of 42%.

比較例2
実施例2で用いた架橋性バインダーと架橋開始剤の代わりに、PVdF‐HFPを2重量%で用いたことを除いては、実施例2と同一の方法でセパレータ及びリチウム二次電池を製造した。製造されたセパレータの多孔性コーティング層の気孔のサイズは0.8μm以下であり、気孔度は58%レベルであった。
Comparative Example 2
A separator and a lithium secondary battery were produced in the same manner as in Example 2 except that PVdF-HFP was used at 2% by weight instead of the crosslinkable binder and crosslinking initiator used in Example 2. . The pore size of the porous coating layer of the manufactured separator was 0.8 μm or less, and the porosity was at the 58% level.

前述の実施例及び比較例に従って製造した電池の高温性能及び高温安全性を下記のように評価した。   The high-temperature performance and high-temperature safety of the batteries manufactured according to the above-described examples and comparative examples were evaluated as follows.

60℃でのサイクル性能
実施例及び比較例による各電池を60℃の高温でそれぞれ1C/1C充・放電サイクル実験を行い、100、200、300サイクル後に測定した容量を初期容量で割った百分率値を表1に示した。
Cycle performance at 60 ° C. Each battery according to the example and comparative example was subjected to 1C / 1C charge / discharge cycle experiment at a high temperature of 60 ° C., and the percentage value obtained by dividing the capacity measured after 100, 200, and 300 cycles by the initial capacity. Are shown in Table 1.

本発明によって架橋された構造のバインダーを含む多孔性コーティング層を備えたセパレータを用いた実施例の電池が、対照群である比較例の電池に比べて充・放電サイクル回数が多いほど容量減少が著しく減る結果を示した。これは、60℃の高温で架橋された構造のバインダーの使用によってセパレータの多孔性コーティング層の熱的安定性が増加することで、電極との界面が安定した状態を維持することになり、ゆえにより高温性能が大きく増加したことを示す。

Figure 2011505663
In the battery of the example using the separator having the porous coating layer containing the binder having a crosslinked structure according to the present invention, the capacity decrease is larger as the number of charge / discharge cycles is larger than the battery of the comparative example as the control group. Results were significantly reduced. This is because the use of a binder having a structure crosslinked at a high temperature of 60 ° C. increases the thermal stability of the porous coating layer of the separator, thereby maintaining a stable interface with the electrode. It shows that the high-temperature performance has greatly increased.
Figure 2011505663

放電特性(C‐rate)
実施例及び比較例の電池を常温でそれぞれ0.2C、0.5C、1C、2Cの放電速度でサイクリングを行い、これらの放電容量をC‐rate特性毎に0.2C容量に対する百分率で計算して下記表2に記載した。

Figure 2011505663
Discharge characteristics (C-rate)
The batteries of the examples and comparative examples were cycled at discharge rates of 0.2C, 0.5C, 1C, and 2C, respectively, at room temperature, and these discharge capacities were calculated as a percentage of the 0.2C capacity for each C-rate characteristic. Table 2 below.
Figure 2011505663

本発明によって架橋された構造のバインダーを含む多孔性コーティング層を備えたセパレータを用いた実施例の電池が、対照群である比較例の電池に比べて放電速度増加による放電容量減少が非常に少ないことが分かる。これは、架橋された構造のバインダーが含まれた多孔性コーティング層が電解液に対する含浸率を増加させて電池のイオン伝導度が向上することによると考えられる。   The battery of the example using the separator provided with the porous coating layer containing the binder having a crosslinked structure according to the present invention has a very small decrease in the discharge capacity due to the increase of the discharge speed as compared with the battery of the comparative example as the control group. I understand that. This is considered to be because the porous coating layer containing a binder having a crosslinked structure increases the impregnation ratio with respect to the electrolytic solution, thereby improving the ionic conductivity of the battery.

ホットボックス実験
実施例及び比較例の電池を150℃及び160℃の高温でそれぞれ1時間及び2時間保存し、以後電池の状態を下記表3に記載した。
The batteries of the hot box experimental examples and comparative examples were stored at a high temperature of 150 ° C. and 160 ° C. for 1 hour and 2 hours, respectively, and the state of the batteries is shown in Table 3 below.

表3に示すように、比較例1と比較例2の電池は160℃の温度で2時間保存時、電池の爆発現象が現われた。これに比べて、実施例1と実施例2の電池は160℃の温度で2時間保存時にも安全であった。これは、架橋された構造のバインダーによって多孔性コーティング層の熱的安定性が大きく増大して、高温で長期間電池を保管する場合にもカソードとアノードとの内部短絡を防止したということを意味する。

Figure 2011505663
As shown in Table 3, when the batteries of Comparative Examples 1 and 2 were stored at a temperature of 160 ° C. for 2 hours, an explosion phenomenon of the batteries appeared. In comparison, the batteries of Examples 1 and 2 were safe when stored at 160 ° C. for 2 hours. This means that the cross-linked binder greatly increases the thermal stability of the porous coating layer, preventing internal short circuit between the cathode and anode even when the battery is stored for long periods at high temperatures. To do.
Figure 2011505663

本発明によって架橋された構造のバインダーを含む多孔性コーティング層を備えたセパレータは、電解液に対する不溶性及び高温での寸法安定性が向上するので、電気化学素子が過熱される場合にもカソードとアノード間の短絡を抑制することができ、電気化学素子の高温サイクル特性を向上させる。また、セパレータの電解液に対する含浸性が増加するので、イオン伝導度向上による放電特性が改善する。   A separator having a porous coating layer containing a binder having a crosslinked structure according to the present invention is insoluble in an electrolyte and has improved dimensional stability at high temperatures, so that a cathode and an anode can be used even when an electrochemical device is overheated. The short circuit can be suppressed, and the high-temperature cycle characteristics of the electrochemical element are improved. Moreover, since the impregnation property with respect to the electrolyte solution of a separator increases, the discharge characteristic by ionic conductivity improvement improves.

1a …ポリオレフィン系多孔性膜
1b …不織布
3 …無機物粒子
5 …架橋された構造のバインダー
10 …セパレータ
20 …セパレータ
DESCRIPTION OF SYMBOLS 1a ... Polyolefin-type porous membrane 1b ... Nonwoven fabric 3 ... Inorganic substance particle 5 ... Binder of the bridge | crosslinked structure 10 ... Separator 20 ... Separator

Claims (14)

多数の気孔を有する多孔性基材と、
前記多孔性基材の少なくとも一面にコートされており、多数の無機物粒子及びバインダーの混合物で形成された多孔性コーティング層とを備えてなるものであり、
前記バインダーが、架橋された構造のバインダーを包含してなることを特徴とする、セパレータ。
A porous substrate having a large number of pores;
It is coated on at least one surface of the porous substrate, and comprises a porous coating layer formed of a mixture of a large number of inorganic particles and a binder,
The separator includes a binder having a crosslinked structure.
前記架橋された構造のバインダーが、3個以上の反応性基を有する高分子、3個以上の反応性基を有する低分子、またはこれらの混合物からなる群より選択されたバインダー間の反応によって架橋されたバインダーであることを特徴とする、請求項1に記載のセパレータ。   The binder having the crosslinked structure is crosslinked by a reaction between binders selected from the group consisting of a polymer having three or more reactive groups, a low molecule having three or more reactive groups, or a mixture thereof. The separator according to claim 1, wherein the separator is a bonded binder. 前記架橋された構造のバインダーが、2個以上の反応性基を有する高分子、2個以上の反応性基を有する低分子、またはこれらの混合物からなる群より選択されたバインダーが架橋剤によって互いに架橋されたバインダーであることを特徴とする、請求項1に記載のセパレータ。   The cross-linked binder is a polymer selected from the group consisting of a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof. The separator according to claim 1, wherein the separator is a crosslinked binder. 前記バインダーが、前記架橋された構造のバインダー及び非架橋構造のバインダーの混合物であることを特徴とする、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the binder is a mixture of the crosslinked structure binder and the non-crosslinked structure binder. 前記非架橋構造のバインダーが、ポリビニリデンフルオライド‐ヘキサフルオロプロピレン(polyvinylidene fluoride‐co‐hexafluoropropylene)、ポリビニリデンフルオライド‐トリクロロエチレン(polyvinylidene fluoride‐co‐trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene‐co‐vinyl acetate)、ポリエチレンオキシド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxyl methyl cellulose)、アクリロニトリルスチレンブタジエン共重合体(acrylonitrile‐styrene‐butadiene copolymer)及びポリイミド(polyimide)からなる群より選択された何れかの一種又は二種以上の混合物であることを特徴とする、請求項4に記載のセパレータ。   The non-crosslinked binder may be polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride-co-trichloroethylene, polyvinylethylene fluoride-co-trichloroethylene). polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate) , Polyethylene oxide (polyethylene oxide), cellulose acetate (cellulose acetate), cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpulylpropylene (cyanoethylpropylene) Ethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose 1 cellulose), acrylonitrile-styrene-butadiene copolymer, and one or a mixture of two or more selected from the group consisting of polyimide and polyimide 4. The separator according to 4. 前記無機物粒子のサイズが、0.01ないし10μmであることを特徴とする、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the inorganic particles have a size of 0.01 to 10 µm. 前記無機物粒子と前記架橋された構造のバインダーとの重量比が50:50ないし99:1であることを特徴とする、請求項1に記載のセパレータ。   The separator according to claim 1, wherein a weight ratio of the inorganic particles and the crosslinked binder is 50:50 to 99: 1. 前記多孔性コーティング層の気孔のサイズが、0.01ないし10μmであり、前記多孔性コーティング層の気孔の気孔度が、5ないし95%であることを特徴とする、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the pore size of the porous coating layer is 0.01 to 10 µm, and the porosity of the pores of the porous coating layer is 5 to 95%. . 前記多孔性基材が、ポリオレフィン系多孔性膜であることを特徴とする、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the porous substrate is a polyolefin-based porous film. 前記多孔性基材が、ポリエチレンテレフタレート(polyethyleneterephthalate)、ポリブチレンテレフタレート(polybutyleneterephthalate)、ポリエステル(polyester)、ポリアセタール(polyacetal)、ポリアミド(polyamide)、ポリカーボネート(polycarbonate)、ポリイミド(polyimide)、ポリエーテルエーテルケトン(polyetheretherketone)、ポリエーテルスルホン(polyethersulfone)、ポリフェニレンオキシド(polyphenyleneoxide)、ポリフェニレンスルフィドロ(polyphenylenesulfidro)及びポリエチレンナフタレン(polyethylenenaphthalene)からなる群より選択された何れか一種の高分子又は二種以上の混合物で形成された不織布であることを特徴とする、請求項1に記載のセパレータ。   The porous substrate is made of polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyether, ether, polyether, ether, polyether, ether polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene And wherein the selected from the group consisting of Polyethylenenaphthalene) is any type of polymer or nonwoven fabric made of a mixture of two or more, separator according to claim 1. (S1)架橋性高分子、架橋性低分子及びこれらの混合物からなる群より選択された架橋性バインダー成分を含むコーティング液を用意する段階と;
(S2)前記コーティング液に無機物粒子を添加して無機物粒子が分散されたコーティング液を製造する段階と;
(S3)前記無機物粒子が分散されたコーティング液を多孔性基材の少なくとも一面に適用してコーティング層を形成する段階と;及び
(S4)前記コーティング層内の架橋性バインダー成分を架橋させて多孔性コーティング層を形成する段階を含んでなる、セパレータの製造方法。
(S1) providing a coating liquid containing a crosslinkable binder component selected from the group consisting of a crosslinkable polymer, a crosslinkable low molecule, and a mixture thereof;
(S2) adding inorganic particles to the coating liquid to produce a coating liquid in which the inorganic particles are dispersed;
(S3) applying a coating liquid in which the inorganic particles are dispersed to at least one surface of a porous substrate to form a coating layer; and (S4) cross-linking the crosslinkable binder component in the coating layer to make the coating layer porous. A method for producing a separator, comprising the step of forming a conductive coating layer.
前記架橋性バインダー成分が、3個以上の反応性基を有する高分子、3個以上の反応性基を有する低分子、またはこれらの混合物からなる群より選択された何れか一つであることを特徴とする、請求項11に記載のセパレータの製造方法。   The crosslinkable binder component is any one selected from the group consisting of a polymer having 3 or more reactive groups, a low molecule having 3 or more reactive groups, or a mixture thereof. The separator manufacturing method according to claim 11, wherein 前記コーティング液が、2個以上の反応性基を有する高分子、2個以上の反応性基を有する低分子、またはこれらの混合物からなる群より選択された架橋性バインダー成分及び架橋剤を含むことを特徴とする、請求項11に記載のセパレータの製造方法。   The coating liquid contains a crosslinkable binder component and a crosslinking agent selected from the group consisting of a polymer having two or more reactive groups, a low molecule having two or more reactive groups, or a mixture thereof. The manufacturing method of the separator of Claim 11 characterized by these. 電気化学素子であって、
カソードと、アノードと、前記カソードとアノードとの間に介されたセパレータとを備えてなり、
前記セパレータが請求項1〜10のうち何れか一項に記載のセパレータであることを特徴とする、電気化学素子。
An electrochemical element,
A cathode, an anode, and a separator interposed between the cathode and the anode,
The said separator is a separator as described in any one of Claims 1-10, The electrochemical element characterized by the above-mentioned.
JP2010535875A 2007-11-29 2008-11-25 Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same Active JP5551077B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20070122965 2007-11-29
KR10-2007-0122965 2007-11-29
KR10-2008-0097364 2008-10-02
KR1020080097364A KR101002161B1 (en) 2007-11-29 2008-10-02 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
PCT/KR2008/006944 WO2009069928A2 (en) 2007-11-29 2008-11-25 Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same

Publications (2)

Publication Number Publication Date
JP2011505663A true JP2011505663A (en) 2011-02-24
JP5551077B2 JP5551077B2 (en) 2014-07-16

Family

ID=40988128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010535875A Active JP5551077B2 (en) 2007-11-29 2008-11-25 Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same

Country Status (7)

Country Link
US (2) US20100316903A1 (en)
EP (1) EP2225787B1 (en)
JP (1) JP5551077B2 (en)
KR (1) KR101002161B1 (en)
CN (1) CN101874319B (en)
TW (1) TWI467832B (en)
WO (1) WO2009069928A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198493B1 (en) 2011-06-07 2012-11-06 한국과학기술원 mussel-inspired polymer for preventing thermal shrinkage of polyolefin separator film, method for preventing thermal shrinkage of polyolefin separator film, polyolefin separator film with improved thermal shrinkage property and lithium secondary cell comprising the polyolefin separator film
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2012176669A1 (en) * 2011-06-22 2012-12-27 日産自動車株式会社 Separator having heat resistant insulation layers
JP2013235824A (en) * 2012-05-10 2013-11-21 Samsung Sdi Co Ltd Separator and method of manufacturing the same, and lithium secondary battery including the separator
WO2013176276A1 (en) 2012-05-23 2013-11-28 三菱製紙株式会社 Lithium-ion battery separator
JP2014002954A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Method for manufacturing separator and nonaqueous electrolyte secondary battery
WO2014073451A1 (en) 2012-11-06 2014-05-15 積水化学工業株式会社 Heat-resistant synthetic resin microporous film and process for producing same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN104124416A (en) * 2014-05-22 2014-10-29 江苏华东锂电技术研究院有限公司 Polyolefin composite membrane and preparation method thereof as well as lithium ion battery
JP2015534233A (en) * 2013-08-29 2015-11-26 エルジー・ケム・リミテッド Electrode assembly for polymer secondary battery cell
JP2016535401A (en) * 2013-10-31 2016-11-10 エルジー・ケム・リミテッド Electrode assembly and lithium secondary battery including the same
WO2017104760A1 (en) * 2015-12-16 2017-06-22 積水化学工業株式会社 Synthetic resin microporous film and method for manufacturing same, separator for power storage device, and power storage device
JP2017191777A (en) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. Porous heat-resistant layer composition, separation film including porous heat-resistant layer, and electrochemical battery using the same
US10211442B2 (en) 2015-11-27 2019-02-19 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer and nonaqueous electrolyte secondary battery laminated separator
JP2019527751A (en) * 2016-07-22 2019-10-03 セルガード エルエルシー Improved coating, coated separator, battery, and related methods
KR20190120081A (en) * 2018-04-13 2019-10-23 주식회사 엘지화학 Method of Improving Properties of Separator by Post Cross-linking and The Separator Produced Thereby
US10530006B2 (en) 2013-08-29 2020-01-07 Lg Chem, Ltd. Electrode assembly for polymer secondary battery cell

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
TWI560928B (en) * 2012-01-20 2016-12-01 Prologium Technology Co Ltd Electricity supply system and ceramic separator thereof
KR101002161B1 (en) * 2007-11-29 2010-12-17 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
US8420260B2 (en) 2009-08-14 2013-04-16 Lg Chem, Ltd. Binder for secondary battery exhibiting excellent adhesive force
KR101029672B1 (en) * 2009-11-27 2011-04-15 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and electrochemical device containing the same
KR101187767B1 (en) 2010-03-17 2012-10-05 주식회사 엘지화학 A separator and electrochemical device containing the same
EP2551937B1 (en) * 2010-03-23 2016-03-23 LG Chem, Ltd. Separator for electrochemical device, manufacturing method thereof, and electrochemical device comprising the same
DE102010013293A1 (en) 2010-03-29 2011-09-29 Schott Ag Lithium ion battery cell comprises components, which contain inorganic multifunctional component having a low thermal conductivity, where the inorganic multifunctional component has a reciprocal of the thermal diffusivity
US9105908B2 (en) 2010-03-29 2015-08-11 Schott Ag Components for battery cells with inorganic constituents of low thermal conductivity
DE102010013294A1 (en) 2010-03-29 2011-09-29 Schott Ag Lithium ion battery cell comprises components, which contain inorganic multifunctional component having a low thermal conductivity, where the inorganic multifunctional component has a reciprocal of the thermal diffusivity
DE102010013295A1 (en) 2010-03-29 2011-09-29 Schott Ag Lithium ion battery cell comprises components, which contain inorganic multifunctional component having a low thermal conductivity, where the inorganic multifunctional component has a reciprocal of the thermal diffusivity
WO2012033321A2 (en) * 2010-09-06 2012-03-15 주식회사 엘지화학 Separator, production method for same and electrochemical device equipped with same
KR101491059B1 (en) * 2011-03-25 2015-02-10 주식회사 엘지화학 Separator and preparation method of separator thereof
US8729185B2 (en) 2011-04-05 2014-05-20 Shin-Etsu Chemical Co., Ltd. Method for producing 2-cyanoethyl group-containing organic compound
US8916283B2 (en) * 2011-04-05 2014-12-23 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
US8771880B2 (en) 2011-04-05 2014-07-08 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR101367754B1 (en) * 2011-07-07 2014-02-27 주식회사 엘지화학 Electrode assembly for electrochemical device and electrochemical device comprising the same
US10461358B2 (en) * 2011-10-11 2019-10-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
EP2779275B1 (en) 2011-11-11 2017-02-15 LG Chem, Ltd. Separator, and electrochemical device comprising same
DE102011120474A1 (en) * 2011-12-08 2013-06-13 Treofan Germany Gmbh & Co. Kg Highly porous separator film with coating
DE102011121236A1 (en) * 2011-12-12 2013-06-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solid electrolyte for use in lithium-air or lithium-water storage batteries
KR101318728B1 (en) * 2011-12-16 2013-10-16 한밭대학교 산학협력단 A separator having anion-receptive and heat-resistant coating layer and electrochemical device containing the same
KR101663540B1 (en) * 2011-12-19 2016-10-10 주식회사 엘지화학 A separator having porous coating and electrochemical device containing the same
KR101696311B1 (en) * 2011-12-23 2017-01-24 주식회사 엘지화학 A separator and electrochemical device having the same
CN103247768A (en) * 2012-02-07 2013-08-14 辉能科技股份有限公司 Electric energy supply unit and ceramic separating layer thereof
US9911958B2 (en) 2012-02-24 2018-03-06 Research & Business Foundation Sungkyunkwan University Separator with enhanced heat resistance and electrochemical device containing the same
JP5888012B2 (en) 2012-03-08 2016-03-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101332282B1 (en) * 2012-03-14 2013-11-22 주식회사 엘지화학 Electrode Assembly of Novel Structure and Battery Cell Comprising the Same
CN104221185A (en) * 2012-04-10 2014-12-17 住友化学株式会社 Use for binder-resin composition, resin composition for treating surface of substrate for separator for nonaqueous-electrolyte secondary battery, separator for nonaqueous-electrolyte battery, method for manufacturing said separator, and nonaqueous-electrolyte secondary battery
TW201351758A (en) 2012-06-11 2013-12-16 Enerage Inc Isolation film of electrochemical device and manufacturing method thereof
TW201351757A (en) * 2012-06-11 2013-12-16 Enerage Inc Structure of an electrochemical separation membrane and manufacturing method for fabricating the same
CN103515561B (en) * 2012-06-29 2016-01-20 安炬科技股份有限公司 Electrochemical appliance barrier film and preparation method thereof
CN103531733A (en) * 2012-07-04 2014-01-22 安炬科技股份有限公司 Electrochemical separation membrane structure and manufacturing method thereof
CN102856522B (en) * 2012-10-09 2015-04-29 中国海诚工程科技股份有限公司 High temperature-resistant cellulose fiber base material-containing lithium ion battery diaphragm and preparation method of the same
KR101699037B1 (en) * 2012-11-12 2017-01-23 주식회사 엘지화학 Manufacturing method of a separator, separator fabricated thereby and electrochemical device including the same
WO2014130725A1 (en) * 2013-02-21 2014-08-28 Robert Bosch Gmbh Lithium battery with composite solid electrolyte
JP2014179321A (en) * 2013-03-13 2014-09-25 Samsung Sdi Co Ltd Separator and rechargeable lithium battery including the same
EP2978047B1 (en) * 2013-03-19 2017-11-22 Sony Corporation Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
US9680143B2 (en) * 2013-10-18 2017-06-13 Miltec Uv International Llc Polymer-bound ceramic particle battery separator coating
CN105324870B (en) * 2013-10-31 2018-06-29 株式会社Lg 化学 Organic/inorganic composite porous film and diaphragm and electrode structure comprising the film
WO2015065116A1 (en) * 2013-10-31 2015-05-07 주식회사 엘지화학 Organic-inorganic complex porous membrane, separator comprising same, and electrode structure body
KR20150106811A (en) * 2013-11-21 2015-09-22 삼성에스디아이 주식회사 Separators and secondary battery using the separator
JP6210301B2 (en) * 2013-11-29 2017-10-11 トヨタ自動車株式会社 Separator for non-aqueous electrolyte secondary battery and battery equipped with the separator
CN105206778B (en) * 2014-06-12 2018-04-06 宁德时代新能源科技股份有限公司 Lithium ion secondary battery, isolating membrane and preparation method thereof
CN113067102A (en) * 2014-07-18 2021-07-02 米尔泰克紫光国际有限公司 UV or electron beam cured polymer bonded ceramic particle lithium secondary battery separator and method of making same
JP6461328B2 (en) * 2014-12-08 2019-01-30 エルジー・ケム・リミテッド Electrode assembly with improved safety, method for producing the same, and electrochemical device including the electrode assembly
CN116190918A (en) 2014-12-29 2023-05-30 赛尔格有限责任公司 Material chemistry: microporous battery separator with a polylactam coating
KR101709697B1 (en) * 2014-12-30 2017-02-23 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101618681B1 (en) 2014-12-30 2016-05-11 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR101551757B1 (en) 2014-12-30 2015-09-10 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR20160115599A (en) 2015-03-27 2016-10-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101754915B1 (en) 2015-03-31 2017-07-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
WO2017002947A1 (en) * 2015-07-02 2017-01-05 帝人株式会社 Separator for nonaqueous secondary batteries, nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery
US20170040605A1 (en) * 2015-08-03 2017-02-09 Google Inc. Micro-Porous Battery Substrate
KR101880237B1 (en) * 2015-08-28 2018-08-17 삼성에스디아이 주식회사 Porous heat-resistant layer, separator comprising the porous heat-resistant layer, secondary battery using the separator, and method for preparing thereof
KR101792681B1 (en) 2015-11-06 2017-11-02 삼성에스디아이 주식회사 Separator for rechargeable battery and rechargeable battery including the same
KR101904296B1 (en) 2015-12-22 2018-11-13 삼성에스디아이 주식회사 A separator comprising porous bonding layer and an electrochemical battery comprising the separator
KR102005870B1 (en) 2016-01-15 2019-07-31 삼성에스디아이 주식회사 Separator for rechargeable battery and rechargeable battery including the same
US11289769B2 (en) 2016-03-03 2022-03-29 Apple Inc. Binders for wet and dry lamination of battery cells
US9786887B2 (en) 2016-03-03 2017-10-10 Apple Inc. Binders for wet and dry lamination of battery cells
WO2017180264A2 (en) * 2016-03-08 2017-10-19 Giner, Inc. Separator for use in electrochemical cells and method of fabrication thereof
JP6904345B2 (en) * 2016-06-09 2021-07-14 日本ゼオン株式会社 Binder composition for solid electrolyte batteries and slurry composition for solid electrolyte batteries
JP6545638B2 (en) * 2016-06-09 2019-07-17 三菱製紙株式会社 Heat resistant wet non-woven
KR101858566B1 (en) 2016-06-27 2018-06-28 (주)피엔티 Method and apparatus for manufacturing separator of secondary battery
KR102138258B1 (en) 2016-10-07 2020-07-28 주식회사 엘지화학 A separator for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP6976635B2 (en) * 2017-07-06 2021-12-08 エルジー・ケム・リミテッド Composite material manufacturing method
EP3657569A4 (en) * 2017-07-21 2021-06-09 Zeon Corporation Layered product for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
CN109585896A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Flexible battery
CN107895766A (en) * 2017-10-19 2018-04-10 中航锂电(洛阳)有限公司 A kind of battery diaphragm for coating high-temperaure coating and preparation method thereof
KR20190049581A (en) * 2017-10-31 2019-05-09 주식회사 엘지화학 Separator without separator base member and electrochemical device comprising thereof
KR102477424B1 (en) * 2017-12-07 2022-12-14 에스케이아이이테크놀로지주식회사 Porous composites separator for secondary battery and lithium secondary battery containing the same
KR102079187B1 (en) * 2018-03-20 2020-02-19 주식회사 제라브리드 Manufacturing method of separator for secondary battery
WO2019199137A1 (en) * 2018-04-13 2019-10-17 주식회사 엘지화학 Method for improving properties of separator through post-treatment crosslinking and separator thereby
KR102351623B1 (en) 2018-05-14 2022-01-14 주식회사 엘지에너지솔루션 Separator without separator base member
US11289731B2 (en) * 2018-05-29 2022-03-29 Global Graphene Group, Inc. Fire-resistant lithium battery containing an electrode-protecting layer
US20190372174A1 (en) * 2018-05-29 2019-12-05 Nanotek Instruments, Inc. Method of improving fire-resistance of a lithium battery
KR102644540B1 (en) * 2018-07-04 2024-03-06 현대자동차주식회사 A method of manufacturing a thin membrane electrode assembly with minimized interfacial resistance
CN109065807A (en) * 2018-08-01 2018-12-21 河北金力新能源科技股份有限公司 A kind of oiliness PVDF coating, its preparation process and its coating method for lithium ion battery separator
CN109360921A (en) * 2018-09-17 2019-02-19 湖北江升新材料有限公司 A kind of lithium ion battery ceramic diaphragm and manufacturing method
CN109461872A (en) * 2018-09-29 2019-03-12 湖北江升新材料有限公司 A kind of ceramic slurry and lithium ion battery separator
CN109200834A (en) * 2018-10-16 2019-01-15 上海恩捷新材料科技有限公司 A kind of hydrophilic polyolefin microporous barrier and preparation method thereof
KR102376444B1 (en) 2019-03-05 2022-03-17 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
WO2020190101A1 (en) * 2019-03-21 2020-09-24 주식회사 엘지화학 Separation membrane for electrochemical device, and method for manufacturing same
KR20210006242A (en) * 2019-07-08 2021-01-18 주식회사 엘지화학 Separator for secondary battery and secondary battery containing the same
KR20210053035A (en) * 2019-11-01 2021-05-11 주식회사 엘지화학 Separator, lithium secondary battery including the separator and manufacturing method thereof
KR102492157B1 (en) 2020-12-14 2023-01-26 주식회사 에스에프에이 Transfer system for manufacturing secondary battery
KR20220125022A (en) * 2021-03-04 2022-09-14 삼성에스디아이 주식회사 Composition for Coating Separator, Method for preparing Separator, Seaparator, and Lithium battery comprising the Separator
CN115477876A (en) * 2021-06-16 2022-12-16 深圳市星源材质科技股份有限公司 Coating slurry, coating diaphragm and preparation method of coating diaphragm
CN114094274B (en) * 2021-10-27 2024-03-01 中材锂膜有限公司 Battery separation film, preparation method thereof and secondary battery
CN114243207A (en) * 2021-11-26 2022-03-25 四川大学 Preparation method of ultraviolet-curing modified polyolefin battery diaphragm
KR20230129926A (en) * 2022-03-02 2023-09-11 주식회사 엘지에너지솔루션 Separator for lithium secondary battery and method of making the same
WO2023239031A1 (en) * 2022-06-07 2023-12-14 주식회사 엘지에너지솔루션 Method for manufacturing separator for lithium secondary battery, separator for lithium secondary battery manufactured thereby, and method for manufacturing lithium secondary battery using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529891A (en) * 1998-11-04 2002-09-10 ビーエーエスエフ アクチェンゲゼルシャフト Composite materials and electrochemical cells
WO2006112658A1 (en) * 2005-04-19 2006-10-26 Lg Chem, Ltd. Safety-improved electrode by introducing crosslinkable polymer and electrochemical device comprising the same
WO2007066768A1 (en) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953241A (en) * 1970-03-12 1976-04-27 Westinghouse Electric Corporation Heat resistant substrates and battery separators made therefrom
GB1452807A (en) * 1973-03-30 1976-10-20 Sekisui Chemical Co Ltd Proeuction of resin sheets suitable for use as electrode separators
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
US6096456A (en) * 1995-09-29 2000-08-01 Showa Denko K.K. Film for a separator of electrochemical apparatus, and production method and use thereof
JPH10154500A (en) * 1996-11-21 1998-06-09 Mitsui Chem Inc Separator for lead-acid battery and manufacture
JPH1180395A (en) * 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
DE19855889A1 (en) * 1998-12-03 2000-06-08 Basf Ag Membrane suitable for electrochemical cells
US6194098B1 (en) * 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
JP4158071B2 (en) * 1999-05-20 2008-10-01 東洋紡績株式会社 Polymer electrolyte gel composition
US20030064282A1 (en) * 2000-03-31 2003-04-03 Hiroe Nakagawa Battery-use separator, battery-use power generating element and battery
US7470488B2 (en) * 2000-08-12 2008-12-30 Lg Chemical Co., Ltd. Multi-component composite film method for preparing the same
KR100419864B1 (en) * 2001-11-15 2004-03-04 한국화학연구원 New Cross-linker, and Cross-linkable Solid polymer Electrolytes using the same
KR100431966B1 (en) 2002-01-03 2004-05-22 김동원 Multi-layered Gelling Separators and Rechargeable Lithium Batteries Using Same
US7318984B2 (en) * 2002-05-17 2008-01-15 Nitto Denko Corporation Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
JP4381054B2 (en) * 2002-11-13 2009-12-09 日東電工株式会社 Partially crosslinked adhesive-supporting porous film for battery separator and its use
JP4549621B2 (en) * 2002-12-02 2010-09-22 日東電工株式会社 Crosslinkable polymer-supported porous film for battery separator and battery manufacturing method using the same
US20040224233A1 (en) * 2003-05-05 2004-11-11 Show -An Chen Method for preparation of chemically crosslinked polyacrylonitrile polymer electrolyte as separator for secondary battery
JP4662533B2 (en) * 2003-08-26 2011-03-30 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
KR100542213B1 (en) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
US20050100794A1 (en) * 2003-11-06 2005-05-12 Tiax, Llc Separator for electrochemical devices and methods
KR100588475B1 (en) * 2004-06-07 2006-06-09 한국화학연구원 Solid polymer electrolyte composite using polysiloxane-based compound
KR100749301B1 (en) 2004-07-07 2007-08-14 주식회사 엘지화학 New organic/inorganic composite porous film and electrochemical device prepared thereby
JP4743747B2 (en) * 2004-12-08 2011-08-10 日立マクセル株式会社 Separator, manufacturing method thereof, and nonaqueous electrolyte battery
KR100775310B1 (en) * 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP4791044B2 (en) * 2005-01-11 2011-10-12 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
KR100659854B1 (en) * 2005-04-28 2006-12-19 삼성에스디아이 주식회사 Lithium secondary battery
KR100858214B1 (en) 2005-06-27 2008-09-10 주식회사 엘지화학 Bi-layered organic/inorganic composite microporous separator with heterogeneous surface and electrochemical device using the same
RU2403653C2 (en) * 2005-12-06 2010-11-10 Эл Джи Кем, Лтд. Organic/inorganic composit divider with morphology gradient, method for making thereof and electrochemical device containing same
JP4184404B2 (en) 2005-12-08 2008-11-19 日立マクセル株式会社 Electrochemical element separator and electrochemical element
JP5196780B2 (en) * 2005-12-22 2013-05-15 旭化成イーマテリアルズ株式会社 Multilayer porous membrane and method for producing the same
US8097213B2 (en) * 2007-10-24 2012-01-17 Intercat Equipment, Inc. Calibration system, material delivery system, and methods for such delivery and calibration
KR101002161B1 (en) * 2007-11-29 2010-12-17 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529891A (en) * 1998-11-04 2002-09-10 ビーエーエスエフ アクチェンゲゼルシャフト Composite materials and electrochemical cells
WO2006112658A1 (en) * 2005-04-19 2006-10-26 Lg Chem, Ltd. Safety-improved electrode by introducing crosslinkable polymer and electrochemical device comprising the same
WO2007066768A1 (en) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
KR101198493B1 (en) 2011-06-07 2012-11-06 한국과학기술원 mussel-inspired polymer for preventing thermal shrinkage of polyolefin separator film, method for preventing thermal shrinkage of polyolefin separator film, polyolefin separator film with improved thermal shrinkage property and lithium secondary cell comprising the polyolefin separator film
US9312527B2 (en) 2011-06-22 2016-04-12 Nissan Motor Co., Ltd. Separator having heat resistant insulation layers
WO2012176669A1 (en) * 2011-06-22 2012-12-27 日産自動車株式会社 Separator having heat resistant insulation layers
US10096810B2 (en) 2012-05-10 2018-10-09 Samsung Sdi Co., Ltd. Separator and method of manufacturing the same and rechargeable lithium battery including the same
JP2013235824A (en) * 2012-05-10 2013-11-21 Samsung Sdi Co Ltd Separator and method of manufacturing the same, and lithium secondary battery including the separator
JP2017143076A (en) * 2012-05-23 2017-08-17 三菱製紙株式会社 Lithium ion battery separator
JPWO2013176276A1 (en) * 2012-05-23 2016-01-14 三菱製紙株式会社 Lithium ion battery separator
WO2013176276A1 (en) 2012-05-23 2013-11-28 三菱製紙株式会社 Lithium-ion battery separator
JP2014002954A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Method for manufacturing separator and nonaqueous electrolyte secondary battery
WO2014073451A1 (en) 2012-11-06 2014-05-15 積水化学工業株式会社 Heat-resistant synthetic resin microporous film and process for producing same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2015534233A (en) * 2013-08-29 2015-11-26 エルジー・ケム・リミテッド Electrode assembly for polymer secondary battery cell
US10530006B2 (en) 2013-08-29 2020-01-07 Lg Chem, Ltd. Electrode assembly for polymer secondary battery cell
JP2016535401A (en) * 2013-10-31 2016-11-10 エルジー・ケム・リミテッド Electrode assembly and lithium secondary battery including the same
CN104124416A (en) * 2014-05-22 2014-10-29 江苏华东锂电技术研究院有限公司 Polyolefin composite membrane and preparation method thereof as well as lithium ion battery
US10211442B2 (en) 2015-11-27 2019-02-19 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer and nonaqueous electrolyte secondary battery laminated separator
WO2017104760A1 (en) * 2015-12-16 2017-06-22 積水化学工業株式会社 Synthetic resin microporous film and method for manufacturing same, separator for power storage device, and power storage device
US10361417B2 (en) 2016-04-14 2019-07-23 Samsung Sdi Co., Ltd. Composition for forming porous heat-resistant layer, separator including the porous heat-resistant layer, and electrochemical battery including the separator
JP2017191777A (en) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. Porous heat-resistant layer composition, separation film including porous heat-resistant layer, and electrochemical battery using the same
JP2019527751A (en) * 2016-07-22 2019-10-03 セルガード エルエルシー Improved coating, coated separator, battery, and related methods
KR20190120081A (en) * 2018-04-13 2019-10-23 주식회사 엘지화학 Method of Improving Properties of Separator by Post Cross-linking and The Separator Produced Thereby
KR102314366B1 (en) 2018-04-13 2021-10-20 주식회사 엘지에너지솔루션 Method of Improving Properties of Separator by Post Cross-linking and The Separator Produced Thereby

Also Published As

Publication number Publication date
EP2225787A4 (en) 2013-03-06
CN101874319B (en) 2014-07-23
US10916754B2 (en) 2021-02-09
CN101874319A (en) 2010-10-27
KR101002161B1 (en) 2010-12-17
US20100316903A1 (en) 2010-12-16
EP2225787A2 (en) 2010-09-08
US20160056438A1 (en) 2016-02-25
TWI467832B (en) 2015-01-01
EP2225787B1 (en) 2014-04-16
WO2009069928A2 (en) 2009-06-04
WO2009069928A3 (en) 2009-08-27
JP5551077B2 (en) 2014-07-16
TW200935644A (en) 2009-08-16
KR20090056811A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5551077B2 (en) Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same
KR101173202B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP5719306B2 (en) Lithium secondary battery
US9005795B2 (en) Separator having porous coating layer, manufacturing method of the same, and electrochemical device having the same
KR101040482B1 (en) A separator having porous coating layer and electrochemical device containing the same
US8632652B2 (en) Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
KR101389022B1 (en) A separator having microcapsules and electrochemical device containing the same
KR101173201B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP2014512650A (en) Separator, method for producing the same, and electrochemical device including the same
US10586967B2 (en) Cellulose-based multilayer separator
KR101841805B1 (en) Separator for electrochemical device with porous coating layer and Electrochemical device comprising the same
CN116057771A (en) Separator for secondary battery and secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250