WO2012176669A1 - Separator having heat resistant insulation layers - Google Patents

Separator having heat resistant insulation layers Download PDF

Info

Publication number
WO2012176669A1
WO2012176669A1 PCT/JP2012/065100 JP2012065100W WO2012176669A1 WO 2012176669 A1 WO2012176669 A1 WO 2012176669A1 JP 2012065100 W JP2012065100 W JP 2012065100W WO 2012176669 A1 WO2012176669 A1 WO 2012176669A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
resistant insulating
insulating layer
battery
Prior art date
Application number
PCT/JP2012/065100
Other languages
French (fr)
Japanese (ja)
Inventor
宏信 村松
珠生 平井
一希 宮竹
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/127,741 priority Critical patent/US9312527B2/en
Priority to MX2013014658A priority patent/MX349899B/en
Priority to EP12802928.7A priority patent/EP2725636B1/en
Priority to BR112013032308A priority patent/BR112013032308A2/en
Priority to KR1020147001329A priority patent/KR101639923B1/en
Priority to RU2014101718/07A priority patent/RU2562970C2/en
Priority to CN201280028947.2A priority patent/CN103608948B/en
Publication of WO2012176669A1 publication Critical patent/WO2012176669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator with a heat-resistant insulating layer.
  • lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charge and discharge, and there is a tendency for higher capacity to be further developed. Therefore, ensuring the safety of lithium ion secondary batteries has become increasingly important.
  • a lithium ion secondary battery generally includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of the negative electrode current collector. And the said positive electrode and a negative electrode are connected through the electrolyte layer which hold
  • a polyolefin microporous film having a thickness of about 20 to 30 ⁇ m is often used.
  • a microporous polyolefin membrane may cause thermal shrinkage due to temperature rise in the battery and a short circuit associated therewith.
  • Patent Document 1 describes that such a separator is used for a wound lithium ion battery, and thermal contraction due to temperature rise in the battery is suppressed.
  • the present invention has been made in view of such problems of the conventional technology. And the objective is to provide the separator with a heat resistant insulating layer which can suppress the generation
  • a separator with a heat-resistant insulating layer includes a resin porous substrate and a heat-resistant insulating layer formed on both surfaces of the resin porous substrate and containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher.
  • the parameter X represented by Equation 1 is 0.15 or more:
  • a ′ and A ′′ are the thicknesses ( ⁇ m) of the respective heat-resistant insulating layers formed on both surfaces of the porous resin substrate, where A ′ ⁇ A ′′, and C is the value of the separator with the heat-resistant insulating layer.
  • FIG. 1 is a cross-sectional view schematically showing a flat plate type non-bipolar lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of a separator with a heat-resistant insulating layer in one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a separator with a heat-resistant insulating layer in one embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing the appearance of a flat plate type non-bipolar lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a curl height measuring method in the embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a flat plate type non-bipolar lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of a separator with a heat-resistant insulating layer in one embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the value of parameter X and the curl height in the separators produced in the examples and comparative examples.
  • FIG. 7 is a graph showing the relationship between the value of parameter Y, curl height, and battery rate characteristics in the separators produced in the examples and comparative examples.
  • an electric device using the separator with a heat-resistant insulating layer of the present embodiment is excellent as a driving power source or an auxiliary power source for a vehicle.
  • the electrical device of the present embodiment is not particularly limited as long as it uses a separator with a heat resistant insulating layer described below.
  • a lithium ion battery will be described as an example of the electric device.
  • a lithium ion battery As a usage form of a lithium ion battery, it may be used for either a lithium ion primary battery or a lithium ion secondary battery. Since it is preferably excellent in high cycle durability, it is desirable to use it as a lithium ion secondary battery for a vehicle driving power source or for portable devices such as a mobile phone.
  • the separator with a heat-resistant insulating layer can be applied to a flat plate type (flat type) battery.
  • a flat plate type battery structure By adopting a flat plate type battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • the separator with a heat-resistant insulating layer can be applied to a solution electrolyte type battery using a solution electrolyte such as a non-aqueous electrolyte solution.
  • the present invention can also be applied to an electrolyte layer such as a gel electrolyte type battery using a polymer gel electrolyte.
  • FIG. 1 shows an overall structure of a flat plate type (flat type) lithium ion secondary battery according to an embodiment of the present invention. Note that a flat plate type lithium ion secondary battery is also simply referred to as a “stacked battery”.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction proceeds is sealed inside a battery exterior material 29.
  • the power generation element 21 has a configuration in which a positive electrode, an electrolyte layer 17, and a negative electrode are stacked.
  • the positive electrode has a configuration in which positive electrode active material layers 13 are disposed on both surfaces of the positive electrode current collector 11.
  • the electrolyte layer 17 has a configuration in which an electrolyte (electrolytic solution or electrolyte gel) is held in a separator.
  • the negative electrode has a configuration in which the negative electrode active material layers 15 are disposed on both surfaces of the negative electrode current collector 12. In other words, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. ing.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 located on both outermost layers of the power generation element 21 is provided with the positive electrode active material layer 13 on only one side, but the positive electrode active material layer may be provided on both sides. That is, instead of using the current collector exclusively for the outermost layer provided with the positive electrode active material layer only on one side, a current collector having the positive electrode active material layer on both sides may be used as it is as the current collector for the outermost layer.
  • the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 1 so that the negative electrode current collector is positioned on both outermost layers of the power generation element 21, and the negative electrode active material is disposed on one or both surfaces of the outermost negative electrode current collector.
  • a material layer may be arranged.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are respectively attached with a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode).
  • the positive electrode current collecting plate 25 and the negative electrode current collecting plate 27 are led out of the battery outer packaging material 29 so as to be sandwiched between the end portions of the battery outer packaging material 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery described above is characterized by a separator.
  • main components of the battery including the separator will be described.
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 contain an active material, and further contain other additives as necessary.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • a positive electrode active material for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Co—Mn) O 2, and lithium—such as those in which some of these transition metals are substituted with other elements
  • examples thereof include transition metal composite oxides; lithium-transition metal phosphate compounds; lithium-transition metal sulfate compounds.
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • a positive electrode active material other than the above may be used.
  • the negative electrode active material layer 15 includes a negative electrode active material.
  • the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon; lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ); metal materials; lithium alloy negative electrode materials, and the like. Is mentioned.
  • two or more negative electrode active materials may be used in combination.
  • a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Note that negative electrode active materials other than those described above may be used.
  • the average particle diameter of each of the active materials contained in the positive electrode active material layer 13 and the negative electrode active material layer 15 is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of high output. .
  • the positive electrode active material layer 13 and the negative electrode active material layer 15 preferably contain a binder.
  • the binder used for the positive electrode active material layer 13 and the negative electrode active material layer 15 is not particularly limited.
  • the binder include polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene.
  • SBR Rubber
  • isoprene rubber butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and Examples thereof include thermoplastic polymers such as hydrogenated products.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • fluororesins such as ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  • vinylidene fluoride-hexafluoropropylene fluorororubber VDF-HFP fluororubber
  • vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber VDF-HFP-TFE fluororubber
  • Vinylidene fluoride-pentafluoropropylene fluorine rubber VDF-PFP fluorine rubber
  • vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber VDF-PFP-TFE fluorine rubber
  • vinylidene fluoride-perfluoro Methyl vinyl ether-tetrafluoroethylene fluorine rubber VDF-PFMVE-TFE fluorine rubber
  • vinylidene fluoride-chlorotrifluoroethylene fluorine rubber VDF- TFE-based vinylidene fluorine rubber
  • an epoxy resin etc. are mentioned as a binder.
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These binders are preferably used for the active material layer because they are excellent in heat resistance, have a very wide potential window, and are stable at both the positive electrode potential and the negative electrode potential. These binders may be used alone or in combination of two or more.
  • the amount of the binder contained in the active material layer is not particularly limited as long as the amount can bind the active material.
  • the amount of the binder is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass with respect to the active material layer.
  • Examples of other additives contained in the active material layer include a conductive additive, an electrolyte salt, and an ion conductive polymer.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive auxiliary agent include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about the nonaqueous electrolyte secondary battery.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery is referred to as appropriate. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, in the case of a large battery that requires high energy density, a current collector having a large area is used.
  • the lithium ion battery of the present embodiment is preferably a large battery, and the size of the current collector used is, for example, a long side of 100 mm or more, preferably 100 mm ⁇ 100 mm or more, more preferably 200 mm ⁇ It is 200 mm or more.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
  • metal is preferably used. Specific examples include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals is preferably used. Moreover, the foil by which aluminum is coat
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of the separator of the present embodiment.
  • the separator with a heat-resistant insulating layer in the present embodiment includes a resin porous substrate and a heat-resistant insulating layer containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher formed on both surfaces of the resin porous substrate. Further, the separator is characterized in that a parameter X represented by the following mathematical formula (1) is 0.15 or more.
  • a ′ and A ′′ indicate the thickness ( ⁇ m) of each heat-resistant insulating layer formed on both surfaces of the porous resin substrate, where A ′ ⁇ A ′′.
  • C represents the total thickness ( ⁇ m) of the separator with a heat-resistant insulating layer.
  • the separator of the present embodiment it is possible to suppress the warpage of the end portion and the occurrence of curling. Therefore, when the separator of the present embodiment is used, the yield can be improved in the manufacturing process of the flat plate type battery.
  • the value of the parameter X is less than 0.15, curl cannot be ignored, and particularly when a large flat-plate laminated battery is manufactured, the yield is remarkably lowered.
  • the separator is piled up. Then, the turned portion is stepped on, and the curled and turned portion is folded and laminated. In such a case, since the cell is short-circuited, the yield is greatly reduced and the cost is increased.
  • the separator 1 with a heat-resistant insulating layer of the present embodiment has a structure in which the heat-resistant insulating layers 3 are provided on both surfaces of the resin porous substrate 2 as shown in FIG.
  • the cause of the curling of the separator is that the thermal stress remains when the heat-resistant insulating layer is applied to the resin porous substrate and is heated and dried by hot air drying or the like. Specifically, since the resin contained in the resin porous substrate has a large coefficient of linear expansion when heated, the resin porous substrate becomes stretched when heated and dried. On the other hand, since the heat-resistant insulating layer is formed using heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher, the linear expansion coefficient is sufficiently small in the temperature range of heat drying and hardly expands.
  • the resin porous substrate contracts greatly, but the heat-resistant insulating layer hardly contracts.
  • the resin porous substrate wants to shrink, and the heat-resistant insulating layer resists the curling in such a manner that the resin porous substrate is wound inside. Will occur.
  • the heat-resistant insulating layer 3 is applied to both surfaces of the resin porous substrate 2 so that the thicknesses A ′ and A ′′ of the heat-resistant insulating layer 3 are as identical as possible.
  • the balance of shrinkage stress of the heat-resistant insulating layer 3 in the vertical direction can be improved and curling can be suppressed.
  • the thicknesses A ′ and A ′′ of the heat-resistant insulating layer 3 with respect to the total thickness C of the separator are controlled to a specific relationship. ing.
  • the parameter X in the above formula (1) is set to 0.15 or more. Thereby, it becomes difficult to produce a big curl, and the problem of folding and curling during the stacking operation can be solved.
  • the parameter X represented by the mathematical formula (1) is an index as to whether or not a difference in shrinkage stress due to drying of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate becomes obvious. This means that the difference in shrinkage stress of the heat-resistant insulating layer becomes obvious.
  • the influence of the difference in shrinkage stress between the heat-resistant insulating layers on both sides is large with respect to the internal stress of the resin porous substrate, curling is likely to occur.
  • the smaller the thickness A ′, A ′′ of the heat-resistant insulating layer compared to the total thickness C of the separator the smaller the value of the parameter X.
  • the value of the parameter X is 0.15 or more, preferably 0.20 or more.
  • the value of X is less than 0.15, the effect of curl cannot be ignored, and the yield is significantly reduced in the production of large flat-plate laminated batteries.
  • the upper limit of the parameter X represented by the above mathematical formula (1) is not particularly limited as long as curling of the separator can be suppressed, but can be set to 1.0, for example.
  • the parameter Y represented by the following mathematical formula (2) is preferably in the range of 0.3 to 0.7.
  • X is as defined above, and D is the porosity (%) of the heat-resistant insulating layer 3.
  • the thickness (A ′, A ′′) of the heat-resistant insulating layer is increased, the value of X increases, but the ion permeability decreases and the rate characteristics decrease.
  • the porosity of the heat-resistant insulating layer dominates the rate characteristics
  • the two heat-resistant insulating layers are formed on both sides of the porous resin substrate with appropriate pressing force from both sides. If the holding force is too weak or biased, curling is likely to occur, and if the holding force is too strong, the ion permeability decreases and the rate characteristics of the battery decrease. there is a possibility.
  • the parameter Y expressed by the above mathematical formula (2) is an index of how strong and even the two heat-resistant insulating layers hold both sides of the resin porous substrate. For example, if the pressing force is biased on both surfaces of the porous resin substrate due to the difference in the basis weight between the heat-resistant insulating layers on both surfaces, the value of Y is small. Further, the value of Y is small even when the heat-resistant insulating layer is thin or has a large porosity and therefore the pressing force of the heat-resistant insulating layer is weak. Furthermore, the larger the total thickness C of the separator, the smaller the value of Y.
  • the value of the parameter Y is preferably 0.3 to 0.7, and more preferably 0.35 to 0.65. If the value of Y is 0.3 or more, curling is unlikely to occur. If the value of Y is 0.7 or less, high rate characteristics can be obtained.
  • values measured using a micro gauge can be used as the thicknesses A ′ and A ′′ of the heat-resistant insulating layer and the total thickness C of the separator.
  • the porosity D (%) of the layer is the mass Wi (g / cm 2 ) of the component i per unit area, the density di (g / cm 3 ) of the component i, and the heat resistance for each component i constituting the heat-resistant insulating layer.
  • the thickness t (cm) of the insulating layer it can be obtained from the following formula (3): When the porosity of the heat-resistant insulating layers on both sides is different, the average value of these is calculated as the porosity D (% ) Value.
  • the heat-resistant insulating layer 3 is provided on both sides of the resin porous substrate 2 in the stacking direction, that is, the direction in which the positive electrode, the negative electrode, and the electrolyte layer 17 are stacked. Moreover, it is preferable that the heat-resistant insulating layers 3 formed on both surfaces of the resin porous substrate 2 are directly laminated on the opposing surfaces of the heat-resistant insulating layers as shown in FIG. Furthermore, it is preferable that the heat-resistant insulating layer 3 is formed on both surfaces of the resin porous substrate 2. As shown in FIG. 3, the heat-resistant insulating layer 3 may be a single layer or a plurality of layers. Further, when the heat-resistant insulating layer 3 is composed of a plurality of layers, they may be formed of different materials.
  • the resin porous substrate 2 examples include a porous sheet, a woven fabric, or a nonwoven fabric containing an organic resin that absorbs and holds an electrolyte.
  • the organic resin contained in the resin porous substrate it is preferable to use polyolefins such as polyethylene (PE) and polypropylene (PP); polyimides such as polyimide and aramid; and polyesters such as polyethylene terephthalate (PET).
  • the average value of pore diameters (average pore diameter) of pores formed in the resin porous substrate is preferably 10 nm to 1 ⁇ m.
  • the pore diameter formed in the resin porous substrate can be determined by, for example, a nitrogen gas adsorption method.
  • the thickness of the porous resin substrate is preferably 1 ⁇ m to 200 ⁇ m. Further, the porosity of the resin porous substrate is desirably 20 to 90%.
  • a porous sheet that can be used as a resin porous substrate is a microporous membrane composed of a microporous polymer.
  • polymers include polyolefins such as polyethylene (PE) and polypropylene (PP); laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid.
  • PE polyethylene
  • PP polypropylene
  • laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid are examples of such as polyimide
  • aramid aramid
  • a polyolefin-based microporous membrane is preferable because it has a property of being chemically stable with respect to an organic solvent and can reduce the reactivity with an electrolytic solution.
  • the thickness of the porous sheet cannot be uniquely defined because it varies depending on the application. However, in the use of a secondary battery for driving a motor of a vehicle, it is desirable that the thickness is 4 to 60 ⁇ m in a single layer or multiple layers.
  • the fine pore diameter of the porous sheet is usually about 10 nm, but is preferably 1 ⁇ m or less at maximum.
  • the porosity of the porous sheet is preferably 20 to 80%.
  • polyester such as polyethylene terephthalate (PET); polyolefin such as PP or PE; polyimide, aramid, or the like can be used.
  • the bulk density of the woven fabric or the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated electrolytic solution.
  • the porosity of the woven or non-woven fabric is preferably 50 to 90%.
  • the thickness of the woven or non-woven fabric is preferably 5 to 200 ⁇ m, particularly preferably 5 to 100 ⁇ m. If the thickness is 5 ⁇ m or more, the electrolyte retainability is good, and if it is 100 ⁇ m or less, the resistance is difficult to increase excessively.
  • the method for preparing the resin porous substrate is not particularly limited.
  • the resin porous substrate is a polyolefin-based microporous membrane
  • the polyolefin is dissolved in a solvent and then extruded into a sheet, then the solvent is removed, and the resin porous substrate is prepared by a method of performing uniaxial stretching or biaxial stretching. Can do.
  • a solvent paraffin, liquid paraffin, paraffin oil, tetralin, ethylene glycol, glycerin, decalin, etc. can be used as a solvent.
  • Heat-resistant insulating layer (heat-resistant insulating porous layer)
  • a material having a high heat resistance having a melting point or a heat softening point of 150 ° C. or higher, preferably 240 ° C. or higher is used as the material of the heat resistant particles constituting the heat resistant insulating layer.
  • thermal softening point refers to a temperature at which a heated substance softens and begins to deform, and refers to a Vicat softening temperature.
  • grain is not specifically limited, For example, it can be 1500 degrees C or less.
  • the heat-resistant particles have electrical insulation properties, are stable to solvents and electrolytes used in the production of the heat-resistant insulating layer, and are electrochemically stable that are not easily oxidized and reduced in the battery operating voltage range. It is preferable that The heat-resistant particles may be organic particles or inorganic particles, but are preferably inorganic particles from the viewpoint of stability.
  • the heat-resistant particles are preferably fine particles from the viewpoint of dispersibility, and fine particles having an average secondary particle diameter (median diameter, D50) of, for example, 100 nm to 4 ⁇ m, preferably 300 nm to 3 ⁇ m, more preferably 500 nm to 3 ⁇ m. Is used.
  • the average secondary particle diameter (median diameter) can be determined by a dynamic light scattering method.
  • the shape of the heat-resistant particles is not particularly limited, and may be a nearly spherical shape, or may be a plate shape, a rod shape, or a needle shape.
  • the inorganic particles (inorganic powder) having a melting point or thermal softening point of 150 ° C. or higher are not particularly limited.
  • inorganic particles for example, iron oxide (FeO), SiO 2 , Al 2 O 3 , aluminosilicate (aluminosilicate), TiO 2 , BaTiO 2 , ZrO 2 and other inorganic oxides; aluminum nitride, silicon nitride Inorganic nitrides such as: Calcium fluoride, barium fluoride, barium sulfate and other insoluble ion crystals; Silicon, diamond and other covalently bonded crystals; and Montmorillonite clay and other particles.
  • the inorganic oxide may be a mineral resource-derived substance such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof.
  • the inorganic particles may be particles that are made electrically insulating by covering the surface of the conductive material with an electrically insulating material such as the above-described inorganic oxide.
  • the conductive material metal; SnO 2, tin - conductive oxide such as indium oxide (ITO); carbon black, and the like can be exemplified carbonaceous material such as graphite.
  • the inorganic oxide particles can be easily applied as a water-dispersed slurry on the resin porous substrate, and therefore, a separator can be produced by a simple method, which is preferable.
  • alumina Al 2 O 3
  • silica SiO 2
  • aluminosilicate aluminosilicate
  • Organic particles (organic powder) having a melting point or thermal softening point of 150 ° C. or higher include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol Examples thereof include various crosslinked polymer particles such as resin and benzoguanamine-formaldehyde condensate.
  • the organic particles include heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide.
  • the organic resin constituting these organic particles is a mixture of the above-exemplified materials, a modified body, a derivative, a copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer), It may be a crosslinked body (in the case of the above heat-resistant polymer fine particles).
  • a copolymer random copolymer, alternating copolymer, block copolymer, graft copolymer
  • it is desirable to use polymethyl methacrylate and polyaramid particles as organic particles.
  • a separator mainly composed of a resin can be manufactured, and thus a light battery as a whole can be obtained.
  • grains may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the thickness of the heat-resistant insulating layer constituted by using the heat-resistant particles is appropriately determined according to the type of battery, application, etc., and is not particularly limited.
  • the thickness of the heat-resistant insulating layer for example, the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is preferably about 5 to 200 ⁇ m.
  • the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is 5 to 200 ⁇ m, preferably 5 to 20 ⁇ m. More preferably, it is 6 to 10 ⁇ m.
  • the thickness of the heat-resistant insulating layer is in such a range, high output performance can be secured while increasing the mechanical strength in the thickness direction (stacking direction).
  • the thickness ratio A ′ / A ′′ of the heat-resistant insulating layer formed on both surfaces of the resin porous substrate may be set so as to satisfy the formula (1), but is preferably 1.2 or less, More preferably, it is 1.1 or less, that is, the thickness ratio A ′ / A ′′ of the heat-resistant insulating layer is preferably 1.0 to 1.2, more preferably 1.0 to 1.1. More preferred.
  • the thicknesses of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate are preferably the same as much as possible. Thereby, the two heat-resistant insulating layers can evenly hold both surfaces of the resin porous substrate, and curling of the separator can be suppressed.
  • the porosity of the heat-resistant insulating layer composed of the heat-resistant particles is not particularly limited, but is preferably 40% or more, more preferably 50% or more from the viewpoint of ion conductivity. Moreover, if the porosity is 40% or more, the retainability of the electrolyte (electrolytic solution, electrolyte gel) is improved, and a high-power battery can be obtained.
  • the porosity of the heat-resistant insulating layer is preferably 70% or less, more preferably 60% or less. When the porosity of the heat-resistant insulating layer is 70% or less, sufficient mechanical strength is obtained, and the effect of preventing a short circuit due to foreign matter is high.
  • the content of the heat-resistant particles in the heat-resistant insulating layer is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass.
  • the two heat-resistant insulating layers can uniformly hold both surfaces of the porous resin substrate.
  • the manufacturing method of the separator of this embodiment is not particularly limited. However, as a manufacturing method, for example, a slurry-like composition for a heat-resistant insulating layer containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher is applied on both surfaces of a resin porous substrate, and then dried. The method is used.
  • the heat-resistant insulating layer composition is obtained by dispersing heat-resistant particles in a solvent, and may further contain an organic binder or the like as necessary.
  • organic binder for enhancing the shape stability of the heat resistant insulating layer include carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, and the like.
  • the amount of the organic binder used is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to the total mass of the heat-resistant particles and the organic binder.
  • the solvent is not particularly limited as long as it can uniformly disperse the heat-resistant particles.
  • examples of the solvent include water; aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone; N-methylpyrrolidone; dimethylacetamide; dimethylformamide; Examples include ethyl acetate.
  • ethylene glycol, propylene glycol, monomethyl acetate, or the like may be appropriately added to these solvents.
  • a heat-resistant insulating layer can be easily produced by preparing an aqueous dispersion slurry using water as a solvent. Further, the composition for a heat-resistant insulating layer is preferably prepared so that the solid content concentration is 30 to 60% by mass.
  • Basis weight at the time of applying the resin porous substrate in heat insulating layer composition is not particularly limited, preferably 5 ⁇ 20g / m 2, more preferably from 9 ⁇ 13g / m 2.
  • “weight” refers to the weight (g / m 2 ) of the heat-resistant insulating layer composition per unit area of the resin porous substrate. If it is the said range, the heat resistant insulating layer which has a suitable porosity and thickness will be obtained.
  • the coating method is not particularly limited, and examples thereof include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
  • the method of drying the heat-resistant insulating layer composition after coating is not particularly limited, and for example, a method such as warm air drying is used.
  • the drying temperature is, for example, 30 to 80 ° C.
  • the drying time is, for example, 2 seconds to 50 hours.
  • the total thickness of the separator thus obtained is not particularly limited, but it can be generally used if it is about 5 to 30 ⁇ m. In order to obtain a compact battery, it is preferable to make it as thin as possible within a range in which the function as the electrolyte layer can be secured. Therefore, in order to contribute to the improvement of battery output by reducing the thickness, the total thickness of the separator is preferably 20 to 30 ⁇ m, more preferably 20 to 25 ⁇ m.
  • the electrolyte layer is not particularly limited as long as it is formed using the separator of the present embodiment. That is, the electrolyte layer of the present embodiment has the separator, and an electrolyte contained in the separator porous resin substrate and the heat-resistant insulating layer. Moreover, it is preferable that the electrolyte hold
  • the electrolyte layer a separator containing an electrolytic solution having excellent ion conductivity can be used. Further, an electrolyte layer formed by impregnating, applying, spraying, etc. a gel electrolyte or the like into a separator can also be used.
  • the electrolytes include LiClO 4 , LiAsF 6 , LiPF 5 , LiBOB, LiCF 3 SO 3 and Li (CF 3 SO 2 ) 2. At least one of N can be used.
  • the solvent for the electrolyte examples include ethylene carbonate (EC), propylene carbonate, diethyl carbonate (DEC), dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1, At least one kind selected from ethers composed of 3-dioxolane and ⁇ -butyllactone can be used. It is preferable to use an electrolytic solution in which the electrolyte is dissolved in the solvent and the concentration of the electrolyte is adjusted to 0.5 to 2M. However, the present invention is not limited to these.
  • the amount of the electrolytic solution retained in the separator by impregnation or the like may be impregnated or applied to the separator's liquid retention capacity range, but may be impregnated beyond the liquid retention capacity range. This is because, for example, in the case of a bipolar battery, a resin can be injected into the electrolyte seal portion to prevent the electrolyte solution from exuding from the electrolyte layer, so that it can be impregnated as long as it can be retained in the separator of the electrolyte layer. is there.
  • the battery element can be enclosed in the battery exterior material to prevent the electrolyte from leaking out from the inside of the battery exterior material, impregnation is performed as long as the liquid can be retained inside the battery exterior material. Is possible.
  • the electrolytic solution can be impregnated in the separator by a conventionally known method such as completely sealing after injecting by a vacuum injection method or the like.
  • (B) Gel electrolyte layer The gel electrolyte layer of the present invention is obtained by impregnating and applying the gel electrolyte to the separator of the present embodiment.
  • the gel electrolyte has a configuration in which the above liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • copolymers thereof in such a polyalkylene oxide polymer, an electrolyte salt such as a lithium salt can be well dissolved.
  • the ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity.
  • the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.
  • the gel electrolyte matrix polymer can exhibit excellent mechanical strength by forming a crosslinked structure.
  • a polymerization treatment may be performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator.
  • the polymerization treatment include thermal polymerization, ultraviolet polymerization, radiation polymerization, and electron beam polymerization.
  • PEO or PPO can be used as the polymerizable polymer.
  • the thickness of the electrolyte layer is not particularly limited, but is basically about the same as or slightly thicker than the thickness of the separator of this embodiment. If the thickness of the electrolyte layer is usually about 5 to 30 ⁇ m, it can be used.
  • the electrolyte of the electrolyte layer may contain various conventionally known additives as long as the effects of the present invention are not impaired.
  • a current collecting plate may be used for the purpose of extracting the current outside the battery.
  • the current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material can be used as a current collector plate for a lithium ion secondary battery.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable.
  • As a constituent material of the current collector plate aluminum, copper, and the like are particularly preferable from the viewpoint of light weight, corrosion resistance, and high conductivity.
  • the same material may be used for a positive electrode current collecting plate and a negative electrode current collecting plate, and a different material may be used.
  • ⁇ Use positive terminal lead and negative terminal lead as required.
  • a terminal lead used in a known lithium ion secondary battery can be used.
  • battery exterior materials As the battery exterior material 29, a known metal can case can be used. Moreover, as the battery exterior material 29, a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. As the laminate film, for example, a film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
  • FIG. 4 is a perspective view showing the appearance of a flat plate type lithium ion secondary battery.
  • the stacked battery 10 has a rectangular flat shape, and a positive electrode current collector plate 25 and a negative electrode current collector plate 27 for taking out electric power are drawn out from both sides thereof. Yes.
  • the power generation element 21 is wrapped by the battery outer material 29 of the stacked battery 10, and the periphery of the battery outer material 29 is heat-sealed.
  • the power generation element 21 is sealed with the positive electrode current collector plate 25 and the negative electrode current collector plate 27 pulled out to the outside.
  • the power generation element 21 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer 13), an electrolyte layer 17 and a negative electrode (negative electrode active material layer 15) shown in FIG. .
  • the drawing of the positive electrode current collector plate 25 and the negative electrode current collector plate from the battery exterior material 29 shown in FIG. 4 is not particularly limited.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be drawn from the same side.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be divided into a plurality of parts and taken out from each side. That is, the extraction of the positive electrode current collector plate 25 and the negative electrode current collector plate from the battery exterior material 29 is not limited to that shown in FIG.
  • a lithium ion secondary battery is exemplified as the electric device.
  • the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. Moreover, it can be applied not only to batteries but also to capacitors.
  • Example 1 An aqueous dispersion of aluminosilicate fine particles, which is a composition for a heat-resistant insulating layer, was applied to both surfaces of a polyethylene (PE) microporous film, which is a resin porous substrate, using a blade coater.
  • PE polyethylene
  • the polyethylene microporous membrane has a thickness of 18.9 ⁇ m and a porosity of 42%.
  • the aluminosilicate fine particles have an average secondary particle diameter of 1 ⁇ m and a melting point of 1000 ° C. or higher.
  • the solid content concentration of the aqueous dispersion of aluminosilicate fine particles is 40% by mass.
  • This separator with a heat-resistant insulating layer was formed in a roll shape having a width of 200 mm.
  • the heat-resistant insulating layer was coated so that the thickness on one side was 2.8 ⁇ m or more, but finished with a thick side of 3.1 ⁇ m and a thin side of 2.5 ⁇ m.
  • the obtained separator with a heat-resistant insulating layer had a total thickness of 24.5 ⁇ m, and the porosity of the heat-resistant insulating layer was 47%.
  • Examples 2 to 12 Comparative Examples 1 to 4
  • a separator having a porous resin substrate and a heat-resistant insulating layer shown in Table 1 was produced.
  • Examples 2, 3, 6 and 11 and Comparative Example 2 a polypropylene (PP) microporous film (porosity 55%) was used as the resin porous substrate instead of the polyethylene microporous film.
  • PP polypropylene
  • Example 8 a non-woven fabric made of polyethylene terephthalate (PET) was used as the resin porous substrate instead of the polyethylene microporous membrane.
  • the nonwoven fabric made of polyethylene terephthalate has a film thickness of 11.1 ⁇ m and a porosity of 48%.
  • Comparative Examples 1, 4 and 5 a polyethylene (PE) microporous film (porosity 42%) was used as the resin porous substrate.
  • PE polyethylene
  • Examples 2 to 7, Examples 10 and 11, and Comparative Examples 2 and 3 high-purity alumina particles were used as the heat-resistant particles instead of the aluminosilicate of Example 1.
  • the high purity alumina particles have an average secondary particle diameter of 1.5 ⁇ m and a melting point of 1000 ° C. or higher.
  • Example 8 a methyl ethyl ketone dispersion of colloidal silica particles was used in place of the aluminosilicate aqueous dispersion of Example 1.
  • the colloidal silica particles have an average secondary particle diameter of 0.4 ⁇ m and a melting point of 1000 ° C. or higher.
  • the methyl ethyl ketone dispersion has a solid content concentration of 30% by mass.
  • Example 9 instead of the aluminosilicate aqueous dispersion of Example 1, crosslinked polymethyl acrylate particles were used.
  • the crosslinked polymethyl acrylate particles have an average secondary particle diameter of 1 ⁇ m and a heat softening point of about 160 ° C.
  • Example 12 an NMP dispersion of an aromatic polyamide (aramid) resin was used as the heat-resistant insulating layer composition, and ethylene glycol was added to form a porous layer.
  • aromatic polyamide (aramid) resin was used as the heat-resistant insulating layer composition, and ethylene glycol was added to form a porous layer.
  • Example 5 A separator was produced in the same manner as in Example 1 except that the heat-resistant insulating layer was applied to one side of the resin porous substrate.
  • the curl height of the separator produced in each example and comparative example was measured by the following procedure. First, as shown in FIG. 5, the separator was cut out from the separator roll so as to be substantially square, placed on a horizontal plane, and then static electricity was removed by stroking with a static elimination brush twice. Thereafter, the heights of the eight positions A to H in FIG. 5 that were lifted from the horizontal plane in 60 seconds were measured, and the maximum value was taken as the curl height (mm). When it was rolled up, it was unwound and stretched upward, and its height was taken as the measured value.
  • Aluminum foil was prepared as a positive electrode current collector, and copper foil was prepared as a negative electrode current collector.
  • a positive electrode active material slurry was prepared using lithium cobalt nickel manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) as the positive electrode active material.
  • a negative electrode active material slurry was prepared using artificial graphite as the negative electrode active material. The positive electrode active material slurry and the negative electrode active material slurry were applied to an aluminum foil as a positive electrode current collector and a copper foil as a negative electrode current collector, respectively, dried, and then roll pressed to produce a positive electrode and a negative electrode.
  • the separator prepared in each Example and Comparative Example was sandwiched between the positive electrode and the negative electrode prepared above, a non-aqueous electrolyte was injected, and sealed in a laminate sheet to prepare an evaluation battery.
  • the first charge / discharge was performed and the battery capacity was measured.
  • the initial discharge capacity was 20 mAh.
  • the discharge capacity at 4.0 mA and the discharge capacity at 50 mA were measured, and the ratio (discharge capacity at 50 mA / discharge capacity at 4.0 mA) was determined as a rate characteristic (rate ratio) ( %).
  • Table 1 shows the results of rate characteristics of the examples and comparative examples.
  • FIG. 6 shows the relationship between the parameter X and the curl height
  • FIG. 7 shows the relationship between the parameter Y and the curl height and rate characteristics.
  • the separators produced in Examples 1 to 12 had a parameter X value of 0.15 or more.
  • the curl height was 5 mm or less, and there was no problem even when the plates were laminated by a flat plate continuous laminator, and good products were obtained continuously.
  • the processes including cutting with a hot blade, conveyance with a porous adsorption pad, and lamination with a four-point clamp are repeated several tens of times, and the end portions are laminated without being folded. It was confirmed.
  • stacking by a 4-point clamp was performed in about 3 seconds.
  • the parameter Y was 0.3 to 0.7, and a sufficient output exceeding 85% was obtained.
  • the rate characteristics are less than 85%, and the product performance is slightly insufficient.
  • the balance of shrinkage stress of the heat-resistant insulating layers on both sides is improved by controlling the thickness and the total thickness of the heat-resistant insulating layers on both sides. Further, the balance between the internal stress of the resin porous substrate and the shrinkage stress of the heat-resistant insulating layer is improved. For this reason, curling is unlikely to occur during lamination, and a highly reliable electric device can be stably manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Insulating Bodies (AREA)

Abstract

A separator (1) having heat resistant insulation layers, for electric devices, according to the present invention is provided with: a resin porous substrate (2); and heat resistant insulation layers (3) that are formed on both faces of the resin porous substrate, and that comprise heat resistant particles the melting point or thermal softening point of which is not less than 150°C. A parameter (X) indicated by numerical formula (1) has a value not less than 0.15. In this numerical formula, A' and A'' are thicknesses (μm) of each of the heat resistant insulation layers (3) formed on both faces of the resin porous substrate (2), have a relationship of A' ≥ A'' in this case, and C is the total thickness (μm) of the separator (1) having the heat resistant insulation layers. Numerical formula (1)

Description

耐熱絶縁層付セパレータSeparator with heat-resistant insulation layer
 本発明は、耐熱絶縁層付セパレータに関する。 The present invention relates to a separator with a heat-resistant insulating layer.
 近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。そして、自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっている。そのため、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。 In recent years, a reduction in the amount of carbon dioxide has been strongly desired in order to cope with global warming. In the automobile industry, there is an expectation for reduction of carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). For this reason, electric devices such as secondary batteries for motor driving that hold the key to practical use are being actively developed.
 特に、リチウムイオン二次電池は、そのエネルギー密度の高さや充放電の繰り返しに対する耐久性の高さから電動車両に好適と考えられ、高容量化がさらに進む傾向にある。そのため、リチウムイオン二次電池の安全性の確保がますます重要となってきている。 In particular, lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charge and discharge, and there is a tendency for higher capacity to be further developed. Therefore, ensuring the safety of lithium ion secondary batteries has become increasingly important.
 リチウムイオン二次電池は、一般に、正極活物質等を正極集電体の両面に塗布した正極と、負極活物質等を負極集電体の両面に塗布した負極とを備える。そして、前記正極及び負極が、セパレータに電解液又は電解質ゲルを保持した電解質層を介して接続される。その後、正極、負極及びセパレータが電池ケースに収納される。 A lithium ion secondary battery generally includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of the negative electrode current collector. And the said positive electrode and a negative electrode are connected through the electrolyte layer which hold | maintained electrolyte solution or electrolyte gel to the separator. Thereafter, the positive electrode, the negative electrode, and the separator are accommodated in the battery case.
 セパレータとしては、例えば、厚みが20~30μm程度のポリオレフィン微多孔膜が多く用いられている。しかしながら、このようなポリオレフィン微多孔膜は、電池内の温度上昇による熱収縮、及びこれに伴う短絡が生じる可能性がある。 As the separator, for example, a polyolefin microporous film having a thickness of about 20 to 30 μm is often used. However, such a microporous polyolefin membrane may cause thermal shrinkage due to temperature rise in the battery and a short circuit associated therewith.
 そのため、セパレータの熱収縮を抑制するために、微多孔膜の表面に、耐熱性多孔質層を積層させた耐熱絶縁層付セパレータが開発されている。例えば、特許文献1には、このようなセパレータを巻回型リチウムイオン電池に用い、電池内の温度上昇による熱収縮が抑制されることが記載されている。 Therefore, in order to suppress thermal contraction of the separator, a separator with a heat resistant insulating layer in which a heat resistant porous layer is laminated on the surface of a microporous film has been developed. For example, Patent Document 1 describes that such a separator is used for a wound lithium ion battery, and thermal contraction due to temperature rise in the battery is suppressed.
国際公開第2007/066768号International Publication No. 2007/066768
 しかしながら、特許文献1に記載のセパレータを、平板積層型の非水電解質系二次電池に適用すると、電池の製造の際にセパレータの端部にカールが発生し、カールした部分が折り込まれたまま積層されてしまうという問題が生じる。特に電気自動車に用いられるような大型の電池の場合、一部材の面積が大きいため、僅かなひずみでも操作中に不具合につながることがあり、歩留まりが大幅に低下してしまう。 However, when the separator described in Patent Document 1 is applied to a flat-plate laminated nonaqueous electrolyte secondary battery, curling occurs at the end of the separator during battery manufacture, and the curled portion remains folded. The problem of being stacked arises. In particular, in the case of a large battery used in an electric vehicle, since the area of one member is large, even a slight strain may lead to problems during operation, resulting in a significant decrease in yield.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、カールの発生を抑制し、信頼性の高い電気デバイスを安定して製造することができる耐熱絶縁層付セパレータを提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective is to provide the separator with a heat resistant insulating layer which can suppress the generation | occurrence | production of a curl and can manufacture a highly reliable electrical device stably.
 本発明の態様に係る耐熱絶縁層付セパレータは、樹脂多孔質基体と、樹脂多孔質基体の両面に形成され、融点又は熱軟化点が150℃以上である耐熱粒子を含む耐熱絶縁層とを備える。そして、数式1で表されるパラメータXが、0.15以上であることを特徴とする: A separator with a heat-resistant insulating layer according to an aspect of the present invention includes a resin porous substrate and a heat-resistant insulating layer formed on both surfaces of the resin porous substrate and containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher. . The parameter X represented by Equation 1 is 0.15 or more:
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式中、A’及びA”は樹脂多孔質基体の両面に形成された各耐熱絶縁層の厚み(μm)であり、この際、A’≧A”であり、Cは耐熱絶縁層付セパレータの総厚み(μm)である。 In the formula, A ′ and A ″ are the thicknesses (μm) of the respective heat-resistant insulating layers formed on both surfaces of the porous resin substrate, where A ′ ≧ A ″, and C is the value of the separator with the heat-resistant insulating layer. The total thickness (μm).
図1は、本発明の一実施形態における平板積層型の非双極型リチウムイオン二次電池を模式的に表した断面図である。FIG. 1 is a cross-sectional view schematically showing a flat plate type non-bipolar lithium ion secondary battery according to an embodiment of the present invention. 図2は、本発明の一実施形態における耐熱絶縁層付セパレータの概略を示す模式図である。FIG. 2 is a schematic view showing an outline of a separator with a heat-resistant insulating layer in one embodiment of the present invention. 図3は、本発明の一実施形態における耐熱絶縁層付セパレータの概略を示す断面図である。FIG. 3 is a cross-sectional view schematically showing a separator with a heat-resistant insulating layer in one embodiment of the present invention. 図4は、本発明の一実施形態における平板積層型の非双極型リチウムイオン二次電池の外観を模式的に表した斜視図である。FIG. 4 is a perspective view schematically showing the appearance of a flat plate type non-bipolar lithium ion secondary battery according to an embodiment of the present invention. 図5は、実施例におけるカール高さの測定方法を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a curl height measuring method in the embodiment. 図6は、実施例及び比較例で作製したセパレータにおいて、パラメータXの値とカール高さとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the value of parameter X and the curl height in the separators produced in the examples and comparative examples. 図7は、実施例及び比較例で作製したセパレータにおいて、パラメータYの値とカール高さ及び電池のレート特性との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the value of parameter Y, curl height, and battery rate characteristics in the separators produced in the examples and comparative examples.
 以下、図面を参照しながら、本発明の電気デバイス用の耐熱絶縁層付セパレータ及びこれを用いた電気デバイスを説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, a separator with a heat-resistant insulating layer for an electric device of the present invention and an electric device using the same will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 本発明の一実施形態である電気デバイス用の耐熱絶縁層付セパレータ及びこれを用いた電気デバイスでは、大型の平板積層型の電気デバイスであっても各要素の積層時に不具合を生じにくく、生産性が向上する。そのため、本実施形態の耐熱絶縁層付セパレータを用いた電気デバイス、特に非水電解質系二次電池は、車両の駆動電源用や補助電源用として優れている。 In a separator with a heat-resistant insulating layer for an electric device and an electric device using the same according to an embodiment of the present invention, even when a large flat plate type electric device is used, it is difficult to cause problems when laminating each element, and productivity Will improve. Therefore, an electric device using the separator with a heat-resistant insulating layer of the present embodiment, particularly a nonaqueous electrolyte secondary battery, is excellent as a driving power source or an auxiliary power source for a vehicle.
 すなわち、本実施形態の電気デバイスは、以下に説明する耐熱絶縁層付セパレータを用いるものであれば良く、他の構成要素に関しては、特に制限されない。なお、本実施形態では、電気デバイスとしてリチウムイオン電池を例示して説明する。 That is, the electrical device of the present embodiment is not particularly limited as long as it uses a separator with a heat resistant insulating layer described below. In the present embodiment, a lithium ion battery will be described as an example of the electric device.
 例えば、リチウムイオン電池の使用形態としては、リチウムイオン一次電池及びリチウムイオン二次電池のいずれに用いても良い。好ましくは高サイクル耐久性にも優れることから、リチウムイオン二次電池として車両の駆動電源用等や携帯電話などの携帯機器向け等に利用するのが望ましい。 For example, as a usage form of a lithium ion battery, it may be used for either a lithium ion primary battery or a lithium ion secondary battery. Since it is preferably excellent in high cycle durability, it is desirable to use it as a lithium ion secondary battery for a vehicle driving power source or for portable devices such as a mobile phone.
 上記耐熱絶縁層付セパレータは、平板積層型(扁平型)電池に適用することができる。平板積層型の電池構造を採用することで、簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点で有利である。 The separator with a heat-resistant insulating layer can be applied to a flat plate type (flat type) battery. By adopting a flat plate type battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
 また、リチウムイオン電池内の電気的な接続形態(電極構造)で見た場合、非双極型電池(内部並列接続タイプ)及び双極型電池(内部直列接続タイプ)のいずれにも適用することができる。 Further, when viewed in terms of electrical connection form (electrode structure) in a lithium ion battery, it can be applied to both non-bipolar batteries (internal parallel connection type) and bipolar batteries (internal series connection type). .
 さらに、上記耐熱絶縁層付セパレータは、非水系の電解液等の溶液電解質を用いた溶液電解質型電池に適用することができる。さらに、高分子ゲル電解質を用いたゲル電解質型電池などの電解質層にも適用することができる。 Furthermore, the separator with a heat-resistant insulating layer can be applied to a solution electrolyte type battery using a solution electrolyte such as a non-aqueous electrolyte solution. Furthermore, the present invention can also be applied to an electrolyte layer such as a gel electrolyte type battery using a polymer gel electrolyte.
 したがって、以下の説明では、本実施形態の耐熱絶縁層付セパレータを用いた非双極型リチウムイオン二次電池を、図面を用いて説明する。 Therefore, in the following description, a non-bipolar lithium ion secondary battery using the separator with a heat-resistant insulating layer of the present embodiment will be described with reference to the drawings.
[電池の全体構造]
 図1では、本発明の一実施形態である、平板積層型(扁平型)のリチウムイオン二次電池の全体構造を示す。なお、平板積層型のリチウムイオン二次電池を、単に「積層型電池」ともいう。
[Battery overall structure]
FIG. 1 shows an overall structure of a flat plate type (flat type) lithium ion secondary battery according to an embodiment of the present invention. Note that a flat plate type lithium ion secondary battery is also simply referred to as a “stacked battery”.
 図1に示すように、本実施形態の積層型電池10は、充放電反応が進行する略矩形の発電要素21が、電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、電解質層17と、負極とを積層した構成を有している。正極は、正極集電体11の両面に正極活物質層13が配置された構成となっている。また、電解質層17は、セパレータに電解質(電解液又は電解質ゲル)が保持された構成となっている。さらに、負極は、負極集電体12の両面に負極活物質層15が配置された構成となっている。別の言い方をすれば、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層及び正極がこの順に積層されている。 As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction proceeds is sealed inside a battery exterior material 29. Here, the power generation element 21 has a configuration in which a positive electrode, an electrolyte layer 17, and a negative electrode are stacked. The positive electrode has a configuration in which positive electrode active material layers 13 are disposed on both surfaces of the positive electrode current collector 11. Further, the electrolyte layer 17 has a configuration in which an electrolyte (electrolytic solution or electrolyte gel) is held in a separator. Further, the negative electrode has a configuration in which the negative electrode active material layers 15 are disposed on both surfaces of the negative electrode current collector 12. In other words, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. ing.
 これにより、隣接する正極、電解質層及び負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されている構成を有するともいえる。なお、発電要素21の両最外層に位置する正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に正極活物質層が設けられても良い。すなわち、片面にのみ正極活物質層を設けた最外層専用の集電体とするのではなく、両面に正極活物質層がある集電体をそのまま最外層の集電体として用いても良い。また、図1とは正極及び負極の配置を逆にすることで、発電要素21の両最外層に負極集電体が位置するようにし、最外層の負極集電体の片面又は両面に負極活物質層が配置されているようにしても良い。 Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel. Note that the positive electrode current collector 13 located on both outermost layers of the power generation element 21 is provided with the positive electrode active material layer 13 on only one side, but the positive electrode active material layer may be provided on both sides. That is, instead of using the current collector exclusively for the outermost layer provided with the positive electrode active material layer only on one side, a current collector having the positive electrode active material layer on both sides may be used as it is as the current collector for the outermost layer. In addition, the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 1 so that the negative electrode current collector is positioned on both outermost layers of the power generation element 21, and the negative electrode active material is disposed on one or both surfaces of the outermost negative electrode current collector. A material layer may be arranged.
 正極集電体11及び負極集電体12には、各電極(正極及び負極)と導通される正極集電板25及び負極集電板27がそれぞれ取り付けられている。そして、正極集電板25及び負極集電板27は、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される。正極集電板25及び負極集電板27は、それぞれ必要に応じて正極リード及び負極リード(図示せず)を介して、各電極の正極集電体11及び負極集電体12に超音波溶接や抵抗溶接等により取り付けられていても良い。 The positive electrode current collector 11 and the negative electrode current collector 12 are respectively attached with a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode). The positive electrode current collecting plate 25 and the negative electrode current collecting plate 27 are led out of the battery outer packaging material 29 so as to be sandwiched between the end portions of the battery outer packaging material 29. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
 上記で説明したリチウムイオン二次電池は、セパレータに特徴を有する。以下、当該セパレータを含めた電池の主要な構成部材について説明する。 The lithium ion secondary battery described above is characterized by a separator. Hereinafter, main components of the battery including the separator will be described.
[活物質層]
 正極活物質層13及び負極活物質層15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[Active material layer]
The positive electrode active material layer 13 and the negative electrode active material layer 15 contain an active material, and further contain other additives as necessary.
 正極活物質層13は、正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Co-Mn)O及びこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物;リチウム-遷移金属リン酸化合物;リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、二種以上の正極活物質が併用されても良い。好ましくは、容量及び出力特性の観点から、リチウム-遷移金属複合酸化物が正極活物質として用いられる。なお、上記以外の正極活物質が用いられても良い。 The positive electrode active material layer 13 includes a positive electrode active material. As the positive electrode active material, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Co—Mn) O 2, and lithium—such as those in which some of these transition metals are substituted with other elements Examples thereof include transition metal composite oxides; lithium-transition metal phosphate compounds; lithium-transition metal sulfate compounds. Depending on the case, two or more positive electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a lithium-transition metal composite oxide is used as the positive electrode active material. A positive electrode active material other than the above may be used.
 負極活物質層15は、負極活物質を含む。負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン及びハードカーボン等の炭素材料;リチウム-遷移金属複合酸化物(例えば、LiTi12);金属材料;リチウム合金系負極材料などが挙げられる。場合によっては、二種以上の負極活物質が併用されても良い。好ましくは、容量及び出力特性の観点から、炭素材料又はリチウム-遷移金属複合酸化物が負極活物質として用いられる。なお、上記以外の負極活物質が用いられても良い。 The negative electrode active material layer 15 includes a negative electrode active material. Examples of the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon; lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ); metal materials; lithium alloy negative electrode materials, and the like. Is mentioned. Depending on the case, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Note that negative electrode active materials other than those described above may be used.
 正極活物質層13及び負極活物質層15に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。 The average particle diameter of each of the active materials contained in the positive electrode active material layer 13 and the negative electrode active material layer 15 is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 20 μm from the viewpoint of high output. .
 また、正極活物質層13及び負極活物質層15は、好ましくは、バインダを含む。正極活物質層13及び負極活物質層15に用いられるバインダとしては、特に限定されない。バインダとしては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子が挙げられる。また、バインダとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。さらに、バインダとしては、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムも挙げられる。また、バインダとしては、エポキシ樹脂等も挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらのバインダは、耐熱性に優れ、さらに電位窓が非常に広く、正極電位及び負極電位の双方に安定であることから、活物質層に好ましく使用できる。これらのバインダは、単独で用いても良いし、二種以上を併用しても良い。 The positive electrode active material layer 13 and the negative electrode active material layer 15 preferably contain a binder. The binder used for the positive electrode active material layer 13 and the negative electrode active material layer 15 is not particularly limited. Examples of the binder include polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene. Rubber (SBR), isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and Examples thereof include thermoplastic polymers such as hydrogenated products. As the binder, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), Examples thereof include fluororesins such as ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). Further, as the binder, vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFP-TFE fluororubber), Vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride-perfluoro Methyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine rubber (VDF- TFE-based vinylidene fluorine rubber) or the like fluoride-based fluororubber can be cited. Moreover, an epoxy resin etc. are mentioned as a binder. Among these, polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable. These binders are preferably used for the active material layer because they are excellent in heat resistance, have a very wide potential window, and are stable at both the positive electrode potential and the negative electrode potential. These binders may be used alone or in combination of two or more.
 活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではない。しかし、バインダ量は、好ましくは活物質層に対して0.5~15質量%であり、より好ましくは1~10質量%である。 The amount of the binder contained in the active material layer is not particularly limited as long as the amount can bind the active material. However, the amount of the binder is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass with respect to the active material layer.
 活物質層に含まれるその他の添加剤としては、例えば、導電助剤、電解質塩、イオン伝導性ポリマー等が挙げられる。 Examples of other additives contained in the active material layer include a conductive additive, an electrolyte salt, and an ion conductive polymer.
 導電助剤とは、正極活物質層又は負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与する。 The conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive auxiliary agent include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improvement of the output characteristics of the battery.
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。 Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系及びポリプロピレンオキシド(PPO)系のポリマーが挙げられる。 Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
 正極活物質層及び負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水電解質系二次電池についての公知の知見を適宜参照することにより、調整することができる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照される。一例を挙げると、各活物質層の厚さは、2~100μm程度である。 The compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited. The blending ratio can be adjusted by appropriately referring to known knowledge about the nonaqueous electrolyte secondary battery. The thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery is referred to as appropriate. As an example, the thickness of each active material layer is about 2 to 100 μm.
[集電体]
 正極集電体11及び負極集電体12は、導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池の場合は、面積の大きな集電体が用いられる。本実施形態のリチウムイオン電池は、好ましくは大型の電池であり、用いられる集電体の大きさは、例えば長辺が100mm以上であり、好ましくは100mm×100mm以上であり、より好ましくは200mm×200mm以上である。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
[Current collector]
The positive electrode current collector 11 and the negative electrode current collector 12 are made of a conductive material. The size of the current collector is determined according to the intended use of the battery. For example, in the case of a large battery that requires high energy density, a current collector having a large area is used. The lithium ion battery of the present embodiment is preferably a large battery, and the size of the current collector used is, for example, a long side of 100 mm or more, preferably 100 mm × 100 mm or more, more preferably 200 mm × It is 200 mm or more. There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm. The shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
 集電体を構成する材料に特に制限はないが、好適には金属が採用される。具体的には、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、又はこれらの金属の組み合わせのめっき材などが好ましく用いられる。また、金属表面にアルミニウムが被覆されてなる箔であっても良い。中でも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス及び銅が好ましい。 There are no particular restrictions on the material constituting the current collector, but metal is preferably used. Specific examples include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals is preferably used. Moreover, the foil by which aluminum is coat | covered by the metal surface may be sufficient. Among these, aluminum, stainless steel, and copper are preferable from the viewpoint of electronic conductivity and battery operating potential.
[電解質層]
 電解質層17は、本実施形態のセパレータの面方向中央部に、電解質が保持されている構成を有する。本実施形態のセパレータを用いることで、積層時における端部のカールの発生を抑制することができるため、信頼性の高い電池を安定的に製造することができる。
[Electrolyte layer]
The electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of the separator of the present embodiment. By using the separator of the present embodiment, it is possible to suppress the occurrence of curling at the end during stacking, and thus it is possible to stably manufacture a highly reliable battery.
 (耐熱絶縁層付セパレータ)
 本実施形態における耐熱絶縁層付セパレータは、樹脂多孔質基体と、樹脂多孔質基体の両面に形成された、融点又は熱軟化点が150℃以上である耐熱粒子を含む耐熱絶縁層とを備える。さらに、前記セパレータは、下記数式(1)で表されるパラメータXが0.15以上であることを特徴とする。
(Separator with heat-resistant insulating layer)
The separator with a heat-resistant insulating layer in the present embodiment includes a resin porous substrate and a heat-resistant insulating layer containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher formed on both surfaces of the resin porous substrate. Further, the separator is characterized in that a parameter X represented by the following mathematical formula (1) is 0.15 or more.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式中、A’及びA”は前記樹脂多孔質基体の両面に形成された各耐熱絶縁層の厚み(μm)を示し、この際、A’≧A”である。そして、Cは前記耐熱絶縁層付セパレータの総厚み(μm)を示す。 In the formula, A ′ and A ″ indicate the thickness (μm) of each heat-resistant insulating layer formed on both surfaces of the porous resin substrate, where A ′ ≧ A ″. C represents the total thickness (μm) of the separator with a heat-resistant insulating layer.
 本実施形態のセパレータによれば、端部の反り、カールの発生を抑制することができる。そのため、本実施形態のセパレータを用いると、平板積層型の電池の製造工程において、歩留まりを向上させることができる。上記パラメータXの値が0.15を下回る場合はカールが無視できなくなり、特に大型の平板積層型電池を製造する場合、歩留まりが著しく低下する。 According to the separator of the present embodiment, it is possible to suppress the warpage of the end portion and the occurrence of curling. Therefore, when the separator of the present embodiment is used, the yield can be improved in the manufacturing process of the flat plate type battery. When the value of the parameter X is less than 0.15, curl cannot be ignored, and particularly when a large flat-plate laminated battery is manufactured, the yield is remarkably lowered.
 上述の特許文献1に記載のセパレータは、巻回型電池に適用される場合には、セパレータにカールが生じることによる積層時の不具合は生じにくい。しかしながら、電気自動車用のリチウムイオン二次電池など、大型の平板積層型の電池に適用する場合には、一部材の面積が大きいため、僅かなひずみでも積層操作中に不具合につながる場合がある。例えば、図2(a)に示すように、大型の平板積層型の電池を作製する場合には、負極5、セパレータ1及び正極4を積層ハンドを用いて順に搬送し、高速で積層するのが一般的である。しかしながら、セパレータは比較的柔らかい部材であるため、搬送時に図2(b)のようにセパレータにカールした部分があると、積層体にめくれた状態で積まれてしまう。そして、めくれた部分が踏み付けられ、カールしてめくれた部分を折り込んで積層されてしまう。このような場合、セルが短絡してしまうため、歩留まりが大幅に低下し、コストが上がってしまう。 When the separator described in Patent Document 1 described above is applied to a wound battery, it is difficult to cause problems during stacking due to curling of the separator. However, when applied to a large flat-stacked battery such as a lithium ion secondary battery for an electric vehicle, even a slight strain may lead to problems during the stacking operation because the area of one member is large. For example, as shown in FIG. 2 (a), in the case of producing a large flat plate type battery, the negative electrode 5, the separator 1 and the positive electrode 4 are sequentially conveyed using a lamination hand and laminated at a high speed. It is common. However, since the separator is a relatively soft member, if there is a curled portion on the separator as shown in FIG. 2B during conveyance, the separator is piled up. Then, the turned portion is stepped on, and the curled and turned portion is folded and laminated. In such a case, since the cell is short-circuited, the yield is greatly reduced and the cost is increased.
 そこで、本実施形態の耐熱絶縁層付セパレータ1は、図3のように、樹脂多孔質基体2の両面に耐熱絶縁層3が設けられた構造を有する。 Therefore, the separator 1 with a heat-resistant insulating layer of the present embodiment has a structure in which the heat-resistant insulating layers 3 are provided on both surfaces of the resin porous substrate 2 as shown in FIG.
 ここで、セパレータのカールの原因は、樹脂多孔質基体に耐熱絶縁層を塗工し、温風乾燥などで加熱乾燥する際に、熱応力が残存するためだと考えられる。具体的には、樹脂多孔質基体に含まれる樹脂は加熱時の線膨張係数が大きいため、樹脂多孔質基体は加熱乾燥すると伸ばされた状態となる。一方、耐熱絶縁層は、融点又は熱軟化点が150℃以上である耐熱粒子を用いて形成されるため、加熱乾燥の温度域においては線膨張係数が十分小さく、ほとんど膨張しない。そのため、塗工後の加熱乾燥が終わって室温に戻すと、樹脂多孔質基体は大きく収縮するが、耐熱絶縁層はほとんど収縮しない。その結果、樹脂多孔質基体と耐熱絶縁層とで収縮率の差が発生し、樹脂多孔質基体は縮みたがり、耐熱絶縁層はそれに抗する結果、樹脂多孔質基体を内側に巻く形態でカールが発生してしまう。 Here, it is considered that the cause of the curling of the separator is that the thermal stress remains when the heat-resistant insulating layer is applied to the resin porous substrate and is heated and dried by hot air drying or the like. Specifically, since the resin contained in the resin porous substrate has a large coefficient of linear expansion when heated, the resin porous substrate becomes stretched when heated and dried. On the other hand, since the heat-resistant insulating layer is formed using heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher, the linear expansion coefficient is sufficiently small in the temperature range of heat drying and hardly expands. For this reason, when the heating and drying after coating is completed and the temperature is returned to room temperature, the resin porous substrate contracts greatly, but the heat-resistant insulating layer hardly contracts. As a result, there is a difference in shrinkage between the resin porous substrate and the heat-resistant insulating layer, the resin porous substrate wants to shrink, and the heat-resistant insulating layer resists the curling in such a manner that the resin porous substrate is wound inside. Will occur.
 そこで本実施形態では、樹脂多孔質基体2の両面に耐熱絶縁層3を塗工し、耐熱絶縁層3の厚みA’、A”をできるだけ同一にしている。これにより、樹脂多孔質基体2の上下方向における耐熱絶縁層3の収縮応力のバランスが改善され、カールを抑制することができる。さらに、セパレータの総厚みCに対する耐熱絶縁層3の厚みA’、A”を特定の関係に制御している。これにより、樹脂多孔質基体2の内部応力と耐熱絶縁層3の収縮応力とのバランスが改善され、カールを十分に抑制することができる。そして、上記数式(1)のパラメータXを0.15以上にしている。これにより、大きなカールが生じにくくなり、積層操作中にカールを折り込んで積層される問題を解決することができる。 Therefore, in the present embodiment, the heat-resistant insulating layer 3 is applied to both surfaces of the resin porous substrate 2 so that the thicknesses A ′ and A ″ of the heat-resistant insulating layer 3 are as identical as possible. The balance of shrinkage stress of the heat-resistant insulating layer 3 in the vertical direction can be improved and curling can be suppressed. Further, the thicknesses A ′ and A ″ of the heat-resistant insulating layer 3 with respect to the total thickness C of the separator are controlled to a specific relationship. ing. Thereby, the balance between the internal stress of the resin porous substrate 2 and the shrinkage stress of the heat-resistant insulating layer 3 is improved, and curling can be sufficiently suppressed. The parameter X in the above formula (1) is set to 0.15 or more. Thereby, it becomes difficult to produce a big curl, and the problem of folding and curling during the stacking operation can be solved.
 上記数式(1)で表されるパラメータXは、樹脂多孔質基体の両面に形成された耐熱絶縁層の乾燥による収縮応力の差が顕在化するかどうかの指標であり、Xの値が小さいほど、耐熱絶縁層の収縮応力の差が顕在化することを意味する。樹脂多孔質基体の内部応力に対して、両面の耐熱絶縁層における収縮応力の差の影響が大きい場合、カールが生じやすい。例えば、セパレータの総厚みCに比して耐熱絶縁層の厚みA’、A”が小さいほどパラメータXの値は小さくなる。また、両面の耐熱絶縁層の目付けの差が大きいなどの理由で、両面の耐熱絶縁層の厚みの差が大きい場合、Xの値は小さくなる。本実施形態のセパレータにおいては、上記パラメータXの値は0.15以上であり、好ましくは0.20以上である。Xの値が0.15を下回る場合、カールの影響が無視できなくなり、大型の平板積層型電池の製造において歩留まりが著しく低下する。なお、この場合の「目付け」とは、樹脂多孔質基体の単位面積あたりにおける、耐熱絶縁層の重量(g/m)をいう。 The parameter X represented by the mathematical formula (1) is an index as to whether or not a difference in shrinkage stress due to drying of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate becomes obvious. This means that the difference in shrinkage stress of the heat-resistant insulating layer becomes obvious. When the influence of the difference in shrinkage stress between the heat-resistant insulating layers on both sides is large with respect to the internal stress of the resin porous substrate, curling is likely to occur. For example, the smaller the thickness A ′, A ″ of the heat-resistant insulating layer compared to the total thickness C of the separator, the smaller the value of the parameter X. Also, because the difference in basis weight of the heat-resistant insulating layers on both sides is large, When the difference between the thicknesses of the heat-resistant insulating layers on both sides is large, the value of X is small, In the separator of this embodiment, the value of the parameter X is 0.15 or more, preferably 0.20 or more. When the value of X is less than 0.15, the effect of curl cannot be ignored, and the yield is significantly reduced in the production of large flat-plate laminated batteries. The weight (g / m 2 ) of the heat-resistant insulating layer per unit area.
 なお、上記数式(1)で表されるパラメータXの上限は、セパレータのカールが抑制できれば特に限定されないが、例えば1.0とすることができる。 Note that the upper limit of the parameter X represented by the above mathematical formula (1) is not particularly limited as long as curling of the separator can be suppressed, but can be set to 1.0, for example.
 さらに、本実施形態のセパレータにおいて、好ましくは、下記数式(2)で表されるパラメータYが、0.3~0.7の範囲である。 Furthermore, in the separator of the present embodiment, the parameter Y represented by the following mathematical formula (2) is preferably in the range of 0.3 to 0.7.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式中、Xは上記で定義される通りであり、Dは耐熱絶縁層3の空隙率(%)である。 In the formula, X is as defined above, and D is the porosity (%) of the heat-resistant insulating layer 3.
 上述したように、本実施形態のセパレータにおいては、上記数式(1)で表されるパラメータXの値が大きいほど、端部のカールが生じにくい。しかしながら、耐熱絶縁層の厚み(A’、A”)を厚くすると、Xの値は大きくなるが、イオン透過性が低下し、レート特性が低下してしまう。本発明者らは、カールの発生を抑制しつつ、高いレート特性を保つための条件を検討した結果、耐熱絶縁層の厚みに加えて、耐熱絶縁層の空隙率(数式(2)におけるD)がレート特性を支配している因子の一つであることを見出した。つまり、カールの発生を抑制しつつ、高いレート特性を得るためには、2層の耐熱絶縁層が樹脂多孔質基体の両面から適切な押さえ力で、両面を均等に押さえていることが重要である。押さえ力が弱すぎたり偏りがある場合はカールが生じやすく、押さえ力が強すぎる場合は、イオン透過性が低下し、電池のレート特性が低下する可能性がある。 As described above, in the separator of the present embodiment, the larger the value of the parameter X represented by the above formula (1), the less likely the end curl occurs. However, if the thickness (A ′, A ″) of the heat-resistant insulating layer is increased, the value of X increases, but the ion permeability decreases and the rate characteristics decrease. As a result of studying conditions for maintaining high rate characteristics while suppressing the above-mentioned, in addition to the thickness of the heat-resistant insulating layer, the porosity of the heat-resistant insulating layer (D in Formula (2)) dominates the rate characteristics In other words, in order to obtain high rate characteristics while suppressing the occurrence of curling, the two heat-resistant insulating layers are formed on both sides of the porous resin substrate with appropriate pressing force from both sides. If the holding force is too weak or biased, curling is likely to occur, and if the holding force is too strong, the ion permeability decreases and the rate characteristics of the battery decrease. there is a possibility.
 上記数式(2)で表されるパラメータYは、2層の耐熱絶縁層が樹脂多孔質基体の両面をどのくらい強く、均等に押さえているかの指標である。例えば、両面の耐熱絶縁層の目付けの差が大きすぎるなどの理由で、樹脂多孔質基体の両面で押さえ力に偏りがある場合は、Yの値は小さくなる。また、耐熱絶縁層が薄い、又は空隙率が大きいために耐熱絶縁層の押さえ力が弱い場合にもYの値は小さくなる。さらにセパレータの総厚みCが大きいほど、Yの値は小さくなる。一方、耐熱絶縁層が厚い、又は空隙率が大きいために耐熱絶縁層の押さえ力が強い場合は、Yの値は大きくなる。本実施形態のセパレータにおいては、上記パラメータYの値は、好ましくは0.3~0.7であり、より好ましくは0.35~0.65である。Yの値が0.3以上であれば、カールが発生しにくい。Yの値が0.7以下であれば、高いレート特性を得ることができる。 The parameter Y expressed by the above mathematical formula (2) is an index of how strong and even the two heat-resistant insulating layers hold both sides of the resin porous substrate. For example, if the pressing force is biased on both surfaces of the porous resin substrate due to the difference in the basis weight between the heat-resistant insulating layers on both surfaces, the value of Y is small. Further, the value of Y is small even when the heat-resistant insulating layer is thin or has a large porosity and therefore the pressing force of the heat-resistant insulating layer is weak. Furthermore, the larger the total thickness C of the separator, the smaller the value of Y. On the other hand, when the heat-resistant insulating layer is thick or has a large porosity, the pressing force of the heat-resistant insulating layer is strong. In the separator of the present embodiment, the value of the parameter Y is preferably 0.3 to 0.7, and more preferably 0.35 to 0.65. If the value of Y is 0.3 or more, curling is unlikely to occur. If the value of Y is 0.7 or less, high rate characteristics can be obtained.
 なお、上記数式(1)(2)において、耐熱絶縁層の厚みA’、A”及びセパレータの総厚みCとしては、マイクロゲージを用いて測定された値を用いることができる。また、耐熱絶縁層の空隙率D(%)は、耐熱絶縁層を構成する各成分iについて、単位面積あたりの成分iの質量Wi(g/cm)、成分iの密度di(g/cm)、耐熱絶縁層の厚みt(cm)を用いて、下記数式(3)から求めることができる。なお、両面の耐熱絶縁層の空隙率が相違する場合には、これらの平均値を空隙率D(%)の値とする。 In the above formulas (1) and (2), values measured using a micro gauge can be used as the thicknesses A ′ and A ″ of the heat-resistant insulating layer and the total thickness C of the separator. The porosity D (%) of the layer is the mass Wi (g / cm 2 ) of the component i per unit area, the density di (g / cm 3 ) of the component i, and the heat resistance for each component i constituting the heat-resistant insulating layer. Using the thickness t (cm) of the insulating layer, it can be obtained from the following formula (3): When the porosity of the heat-resistant insulating layers on both sides is different, the average value of these is calculated as the porosity D (% ) Value.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、耐熱絶縁層3は、樹脂多孔質基体2における積層方向、つまり正極、負極及び電解質層17が積層される方向の両面に設けられている。また、樹脂多孔質基体2の両面に形成された耐熱絶縁層3は、図3に示すように、耐熱絶縁層の対向する面にそれぞれ直接積層されていることが好ましい。さらに、耐熱絶縁層3は、樹脂多孔質基体2の両面全体に形成されていることが好ましい。そして、図3に示すように、耐熱絶縁層3は単層からなるものでも良く、また複数層からなるものでも良い。また、耐熱絶縁層3が複数層からなる場合には、それぞれ異なる材料で形成されても良い。 The heat-resistant insulating layer 3 is provided on both sides of the resin porous substrate 2 in the stacking direction, that is, the direction in which the positive electrode, the negative electrode, and the electrolyte layer 17 are stacked. Moreover, it is preferable that the heat-resistant insulating layers 3 formed on both surfaces of the resin porous substrate 2 are directly laminated on the opposing surfaces of the heat-resistant insulating layers as shown in FIG. Furthermore, it is preferable that the heat-resistant insulating layer 3 is formed on both surfaces of the resin porous substrate 2. As shown in FIG. 3, the heat-resistant insulating layer 3 may be a single layer or a plurality of layers. Further, when the heat-resistant insulating layer 3 is composed of a plurality of layers, they may be formed of different materials.
 以下、本実施形態のセパレータについてさらに詳細に説明する。 Hereinafter, the separator according to this embodiment will be described in more detail.
 (樹脂多孔質基体)
 樹脂多孔質基体2としては、例えば、電解質を吸収保持する有機樹脂を含む多孔性シート、織布又は不織布を挙げることができる。樹脂多孔質基体に含まれる有機樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリイミド、アラミド;ポリエチレンテレフタレート(PET)などのポリエステルを用いることが好ましい。また、樹脂多孔質基体に形成されている細孔の孔径の平均値(平均細孔径)は、10nm~1μmであることが好ましい。なお、樹脂多孔質基体に形成されている細孔径は、例えば、窒素ガス吸着法により求めることができる。また、樹脂多孔質基体の厚さは、1μm~200μmであることが好ましい。さらに、樹脂多孔質基体の空隙率は20~90%であることが望ましい。
(Resin porous substrate)
Examples of the resin porous substrate 2 include a porous sheet, a woven fabric, or a nonwoven fabric containing an organic resin that absorbs and holds an electrolyte. As the organic resin contained in the resin porous substrate, it is preferable to use polyolefins such as polyethylene (PE) and polypropylene (PP); polyimides such as polyimide and aramid; and polyesters such as polyethylene terephthalate (PET). Further, the average value of pore diameters (average pore diameter) of pores formed in the resin porous substrate is preferably 10 nm to 1 μm. The pore diameter formed in the resin porous substrate can be determined by, for example, a nitrogen gas adsorption method. The thickness of the porous resin substrate is preferably 1 μm to 200 μm. Further, the porosity of the resin porous substrate is desirably 20 to 90%.
 樹脂多孔質基体について、より詳細に説明する。樹脂多孔質基体として使用できる多孔性シートは微多孔質のポリマーで構成される微多孔質膜である。このようなポリマーとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;PP/PE/PPの3層構造をした積層体、ポリイミド、アラミドなどが挙げられる。特に、ポリオレフィン系微多孔質膜は、有機溶媒に対して化学的に安定であるという性質があり、電解液との反応性を低く抑えることができることから好ましい。 The resin porous substrate will be described in more detail. A porous sheet that can be used as a resin porous substrate is a microporous membrane composed of a microporous polymer. Examples of such polymers include polyolefins such as polyethylene (PE) and polypropylene (PP); laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid. In particular, a polyolefin-based microporous membrane is preferable because it has a property of being chemically stable with respect to an organic solvent and can reduce the reactivity with an electrolytic solution.
 前記多孔性シートの厚みとしては、用途により異なることから一義的に規定することはできない。しかし、車両のモータ駆動用二次電池の用途においては、単層あるいは多層で4~60μmであることが望ましい。前記多孔性シートの微細孔径は、通常、十nm程度の孔径であるが最大で1μm以下であることが好ましい。また、多孔性シートの空隙率は20~80%であることが望ましい。 The thickness of the porous sheet cannot be uniquely defined because it varies depending on the application. However, in the use of a secondary battery for driving a motor of a vehicle, it is desirable that the thickness is 4 to 60 μm in a single layer or multiple layers. The fine pore diameter of the porous sheet is usually about 10 nm, but is preferably 1 μm or less at maximum. The porosity of the porous sheet is preferably 20 to 80%.
 また、樹脂多孔質基体として使用できる織布又は不織布としては、ポリエチレンテレフタレート(PET)などのポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなどを用いることができる。織布又は不織布のかさ密度は、含浸させた電解液により十分な電池特性が得られるものであれば良く、特に制限されない。織布又は不織布の空隙率は50~90%であることが好ましい。さらに、織布又は不織布の厚さは、好ましくは5~200μmであり、特に好ましくは5~100μmである。厚さが5μm以上であれば電解質の保持性が良好であり、100μm以下であれば抵抗が過度に増大しにくい。 As the woven or non-woven fabric that can be used as the resin porous substrate, polyester such as polyethylene terephthalate (PET); polyolefin such as PP or PE; polyimide, aramid, or the like can be used. The bulk density of the woven fabric or the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated electrolytic solution. The porosity of the woven or non-woven fabric is preferably 50 to 90%. Furthermore, the thickness of the woven or non-woven fabric is preferably 5 to 200 μm, particularly preferably 5 to 100 μm. If the thickness is 5 μm or more, the electrolyte retainability is good, and if it is 100 μm or less, the resistance is difficult to increase excessively.
 樹脂多孔質基体の調製方法は特に制限されない。樹脂多孔質基体がポリオレフィン系微多孔質膜の場合、例えば、ポリオレフィンを溶剤に溶解させた後、シート状に押し出し、その後、溶剤を除去し、一軸延伸又は二軸延伸を行う方法によって調製することができる。なお、溶剤としては、パラフィン、流動パラフィン、パラフィン油、テトラリン、エチレングリコール、グリセリン、デカリンなどを使用することができる。 The method for preparing the resin porous substrate is not particularly limited. When the resin porous substrate is a polyolefin-based microporous membrane, for example, the polyolefin is dissolved in a solvent and then extruded into a sheet, then the solvent is removed, and the resin porous substrate is prepared by a method of performing uniaxial stretching or biaxial stretching. Can do. In addition, as a solvent, paraffin, liquid paraffin, paraffin oil, tetralin, ethylene glycol, glycerin, decalin, etc. can be used.
 (耐熱絶縁層(耐熱絶縁多孔層))
 本実施形態では、耐熱絶縁層を構成する耐熱粒子の材質としては、融点又は熱軟化点が150℃以上、好ましくは240℃以上である、耐熱性の高いものを用いる。このような耐熱性の高い材質を用いることで、電池内部温度が200℃前後に達してもセパレータの収縮を有効に防止することができる。その結果、電極間のショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池を得ることができる。なお、本明細書において、「熱軟化点」とは、加熱された物質が軟化し、変形し始める温度をいい、ビカット軟化温度のことをいう。なお、耐熱粒子の融点又は熱軟化点の上限は特に限定されないが、例えば1500℃以下とすることができる。
(Heat-resistant insulating layer (heat-resistant insulating porous layer))
In this embodiment, as the material of the heat resistant particles constituting the heat resistant insulating layer, a material having a high heat resistance having a melting point or a heat softening point of 150 ° C. or higher, preferably 240 ° C. or higher is used. By using such a material having high heat resistance, it is possible to effectively prevent the separator from contracting even when the battery internal temperature reaches around 200 ° C. As a result, it is possible to prevent induction of a short circuit between the electrodes, and thus it is possible to obtain a battery in which performance deterioration due to temperature rise hardly occurs. In the present specification, the “thermal softening point” refers to a temperature at which a heated substance softens and begins to deform, and refers to a Vicat softening temperature. In addition, although the upper limit of melting | fusing point or heat softening point of a heat-resistant particle | grain is not specifically limited, For example, it can be 1500 degrees C or less.
 また、前記耐熱粒子は、電気絶縁性を有し、耐熱絶縁層の製造の際に用いる溶媒や電解液に対して安定であり、さらに電池の作動電圧範囲において酸化還元されにくい電気化学的に安定であることが好ましい。前記耐熱粒子は、有機粒子であっても無機粒子であっても良いが、安定性の観点から無機粒子であることが好ましい。また、前記耐熱粒子は、分散性の観点から微粒子であることが好ましく、平均二次粒子径(メジアン径,D50)が例えば100nm~4μm、好ましくは300nm~3μm、さらに好ましくは500nm~3μmの微粒子が用いられる。なお、平均二次粒子径(メジアン径)は、動的光散乱法により求めることができる。また、前記耐熱粒子の形状も特に制限されず、球状に近い形状であっても良く、板状、棒状、針状の形態であっても良い。 The heat-resistant particles have electrical insulation properties, are stable to solvents and electrolytes used in the production of the heat-resistant insulating layer, and are electrochemically stable that are not easily oxidized and reduced in the battery operating voltage range. It is preferable that The heat-resistant particles may be organic particles or inorganic particles, but are preferably inorganic particles from the viewpoint of stability. The heat-resistant particles are preferably fine particles from the viewpoint of dispersibility, and fine particles having an average secondary particle diameter (median diameter, D50) of, for example, 100 nm to 4 μm, preferably 300 nm to 3 μm, more preferably 500 nm to 3 μm. Is used. The average secondary particle diameter (median diameter) can be determined by a dynamic light scattering method. Further, the shape of the heat-resistant particles is not particularly limited, and may be a nearly spherical shape, or may be a plate shape, a rod shape, or a needle shape.
 融点又は熱軟化点が150℃以上の無機粒子(無機粉末)としては、特に制限されない。ただ、無機粒子としては、例えば、酸化鉄(FeO)、SiO、Al、アルミノシリケート(アルミノケイ酸塩)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土などの粒子が挙げられる。前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質又はこれらの人造物などであっても良い。また、前記無機粒子は、導電性材料の表面を、電気絶縁性を有する材料、例えば、上記の無機酸化物などで被覆することにより電気絶縁性を持たせた粒子であっても良い。導電性材料としては、金属;SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物;カーボンブラック、グラファイトなどの炭素質材料などを例示することができる。中でも、無機酸化物の粒子は水分散スラリーとして容易に樹脂多孔質基体上に塗工することができるため、簡便な方法でセパレータを作製することができ、好適である。無機酸化物の中でも、アルミナ(Al)、シリカ(SiO)及びアルミノシリケート(アルミノケイ酸塩)が特に好ましい。 The inorganic particles (inorganic powder) having a melting point or thermal softening point of 150 ° C. or higher are not particularly limited. However, as inorganic particles, for example, iron oxide (FeO), SiO 2 , Al 2 O 3 , aluminosilicate (aluminosilicate), TiO 2 , BaTiO 2 , ZrO 2 and other inorganic oxides; aluminum nitride, silicon nitride Inorganic nitrides such as: Calcium fluoride, barium fluoride, barium sulfate and other insoluble ion crystals; Silicon, diamond and other covalently bonded crystals; and Montmorillonite clay and other particles. The inorganic oxide may be a mineral resource-derived substance such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof. The inorganic particles may be particles that are made electrically insulating by covering the surface of the conductive material with an electrically insulating material such as the above-described inorganic oxide. As the conductive material, metal; SnO 2, tin - conductive oxide such as indium oxide (ITO); carbon black, and the like can be exemplified carbonaceous material such as graphite. Among these, the inorganic oxide particles can be easily applied as a water-dispersed slurry on the resin porous substrate, and therefore, a separator can be produced by a simple method, which is preferable. Among the inorganic oxides, alumina (Al 2 O 3 ), silica (SiO 2 ), and aluminosilicate (aluminosilicate) are particularly preferable.
 融点又は熱軟化点が150℃以上である有機粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子が例示できる。また、有機粒子としては、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子が例示できる。また、これらの有機粒子を構成する有機樹脂は、上記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(上記の耐熱性高分子微粒子の場合)であっても良い。中でも、工業的生産性、電気化学的安定性から、有機粒子としてポリメタクリル酸メチル、ポリアラミドの粒子を用いることが望ましい。このような有機樹脂の粒子を用いることで、樹脂を主体とするセパレータを作製できるため、全体として軽量な電池が得られる。 Organic particles (organic powder) having a melting point or thermal softening point of 150 ° C. or higher include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol Examples thereof include various crosslinked polymer particles such as resin and benzoguanamine-formaldehyde condensate. Examples of the organic particles include heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide. Moreover, the organic resin constituting these organic particles is a mixture of the above-exemplified materials, a modified body, a derivative, a copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer), It may be a crosslinked body (in the case of the above heat-resistant polymer fine particles). Among these, from the viewpoint of industrial productivity and electrochemical stability, it is desirable to use polymethyl methacrylate and polyaramid particles as organic particles. By using such organic resin particles, a separator mainly composed of a resin can be manufactured, and thus a light battery as a whole can be obtained.
 なお、上述のような耐熱粒子は、1種類を単独で用いても良く、2種類以上を組み合わせて用いても良い。 In addition, the above heat-resistant particle | grains may be used individually by 1 type, and may be used in combination of 2 or more types.
 上記耐熱粒子を用いて構成される耐熱絶縁層の厚みとしては、電池の種類や用途などに応じて適宜決定されるものであり、特に制限されない。ただ、耐熱絶縁層の厚みとしては、例えば、樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みの合計が5~200μm程度であることが好ましい。また、電気自動車やハイブリッド電気自動車などのモータ駆動用二次電池などの用途においては、樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みの合計が、5~200μm、好ましくは5~20μm、より好ましくは6~10μmである。耐熱絶縁層の厚みが、このような範囲にあることで、厚さ方向(積層方向)の機械的強度を高めつつ、高出力性を確保することができる。 The thickness of the heat-resistant insulating layer constituted by using the heat-resistant particles is appropriately determined according to the type of battery, application, etc., and is not particularly limited. However, as the thickness of the heat-resistant insulating layer, for example, the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is preferably about 5 to 200 μm. In applications such as secondary batteries for driving motors such as electric vehicles and hybrid electric vehicles, the total thickness of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate is 5 to 200 μm, preferably 5 to 20 μm. More preferably, it is 6 to 10 μm. When the thickness of the heat-resistant insulating layer is in such a range, high output performance can be secured while increasing the mechanical strength in the thickness direction (stacking direction).
 また、樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みの比A’/A”は、数式(1)を満たすように設定されれば良いが、好ましくは1.2以下であり、より好ましくは1.1以下である。つまり、耐熱絶縁層の厚みの比A’/A”は、1.0~1.2であることが好ましく、1.0~1.1であることがより好ましい。樹脂多孔質基体の両面に形成される耐熱絶縁層の厚みは、できる限り同じであることが好ましい。これにより、2層の耐熱絶縁層が樹脂多孔質基体の両面を均等に押さえることができ、セパレータのカールを抑制することができる。 Further, the thickness ratio A ′ / A ″ of the heat-resistant insulating layer formed on both surfaces of the resin porous substrate may be set so as to satisfy the formula (1), but is preferably 1.2 or less, More preferably, it is 1.1 or less, that is, the thickness ratio A ′ / A ″ of the heat-resistant insulating layer is preferably 1.0 to 1.2, more preferably 1.0 to 1.1. More preferred. The thicknesses of the heat-resistant insulating layers formed on both surfaces of the resin porous substrate are preferably the same as much as possible. Thereby, the two heat-resistant insulating layers can evenly hold both surfaces of the resin porous substrate, and curling of the separator can be suppressed.
 上記耐熱粒子を用いて構成される耐熱絶縁層の空隙率は特に制限されないが、イオン伝導性の観点から、好ましくは40%以上であり、より好ましくは50%以上である。また、空隙率が40%以上であれば、電解質(電解液、電解質ゲル)の保持性が高められ、高出力の電池を得ることができる。また、前記耐熱絶縁層の空隙率は、好ましくは70%以下であり、より好ましくは60%以下である。前記耐熱絶縁層の空隙率が70%以下であれば、十分な機械的強度が得られ、異物による短絡を防止する効果が高い。 The porosity of the heat-resistant insulating layer composed of the heat-resistant particles is not particularly limited, but is preferably 40% or more, more preferably 50% or more from the viewpoint of ion conductivity. Moreover, if the porosity is 40% or more, the retainability of the electrolyte (electrolytic solution, electrolyte gel) is improved, and a high-power battery can be obtained. The porosity of the heat-resistant insulating layer is preferably 70% or less, more preferably 60% or less. When the porosity of the heat-resistant insulating layer is 70% or less, sufficient mechanical strength is obtained, and the effect of preventing a short circuit due to foreign matter is high.
 さらに、耐熱絶縁層における上記耐熱粒子の含有率は、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。これにより、2層の耐熱絶縁層が樹脂多孔質基体の両面を均等に押さえることができる。 Furthermore, the content of the heat-resistant particles in the heat-resistant insulating layer is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass. Thereby, the two heat-resistant insulating layers can uniformly hold both surfaces of the porous resin substrate.
 (セパレータの製造方法)
 本実施形態のセパレータの製造方法は特に制限されない。ただ、製造方法としては、例えば、樹脂多孔質基体の両面に、融点又は熱軟化点が150℃以上である耐熱粒子を含有する、スラリー状の耐熱絶縁層用組成物を塗布した後、乾燥する方法が用いられる。
(Manufacturing method of separator)
The manufacturing method of the separator of this embodiment is not particularly limited. However, as a manufacturing method, for example, a slurry-like composition for a heat-resistant insulating layer containing heat-resistant particles having a melting point or a heat softening point of 150 ° C. or higher is applied on both surfaces of a resin porous substrate, and then dried. The method is used.
 耐熱絶縁層用組成物は、耐熱粒子を溶媒に分散させたものであり、必要に応じてさらに有機バインダなどを含んでも良い。耐熱絶縁層の形状安定性を高めるための有機バインダとしては、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドンなどが挙げられる。有機バインダを含む場合、前記有機バインダの使用量は、前記耐熱粒子と前記有機バインダとの合計質量に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下である。溶媒としては耐熱粒子を均一に分散できるものであれば特に制限されない。ただ、溶媒としては、例えば、水;トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン類;N-メチルピロリドン;ジメチルアセトアミド;ジメチルホルムアミド;ジメチルスルホキシド;酢酸エチルなどが挙げられる。これらの溶媒に、界面張力を制御する目的で、エチレングリコール、プロピレングリコール、モノメチルアセテートなどを適宜添加しても良い。特に前記耐熱粒子として無機酸化物粒子を用いる場合には溶媒として水を用いて水分散スラリーを作製することで、簡便に耐熱絶縁層を作製することができる。また、耐熱絶縁層用組成物は、固形分濃度が30~60質量%になるように調製することが好ましい。 The heat-resistant insulating layer composition is obtained by dispersing heat-resistant particles in a solvent, and may further contain an organic binder or the like as necessary. Examples of the organic binder for enhancing the shape stability of the heat resistant insulating layer include carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, and the like. When an organic binder is included, the amount of the organic binder used is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to the total mass of the heat-resistant particles and the organic binder. The solvent is not particularly limited as long as it can uniformly disperse the heat-resistant particles. However, examples of the solvent include water; aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone; N-methylpyrrolidone; dimethylacetamide; dimethylformamide; Examples include ethyl acetate. In order to control the interfacial tension, ethylene glycol, propylene glycol, monomethyl acetate, or the like may be appropriately added to these solvents. In particular, when inorganic oxide particles are used as the heat-resistant particles, a heat-resistant insulating layer can be easily produced by preparing an aqueous dispersion slurry using water as a solvent. Further, the composition for a heat-resistant insulating layer is preferably prepared so that the solid content concentration is 30 to 60% by mass.
 前記樹脂多孔質基体に耐熱絶縁層用組成物を塗布する際の目付けは特に制限されないが、好ましくは5~20g/mであり、より好ましくは9~13g/mである。なお、この場合の「目付け」とは、樹脂多孔質基体の単位面積あたりにおける、耐熱絶縁層用組成物の重量(g/m)をいう。上記範囲であれば、適当な空隙率及び厚みを有する耐熱絶縁層が得られる。塗工方法も特に制限はなく、例えば、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。 Basis weight at the time of applying the resin porous substrate in heat insulating layer composition is not particularly limited, preferably 5 ~ 20g / m 2, more preferably from 9 ~ 13g / m 2. In this case, “weight” refers to the weight (g / m 2 ) of the heat-resistant insulating layer composition per unit area of the resin porous substrate. If it is the said range, the heat resistant insulating layer which has a suitable porosity and thickness will be obtained. The coating method is not particularly limited, and examples thereof include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
 塗布した後の耐熱絶縁層用組成物を乾燥させる方法も特に制限されないが、例えば、温風乾燥などの方法が用いられる。乾燥温度は、例えば、30~80℃であり、乾燥時間は、例えば、2秒~50時間である。 The method of drying the heat-resistant insulating layer composition after coating is not particularly limited, and for example, a method such as warm air drying is used. The drying temperature is, for example, 30 to 80 ° C., and the drying time is, for example, 2 seconds to 50 hours.
 このようにして得られたセパレータの総厚みとしては、特に制限されないが、通常5~30μm程度であれば使用可能である。コンパクトな電池を得るためには、電解質層としての機能が確保できる範囲で極力薄くすることが好ましい。そのため、薄膜化して電池出力の向上に寄与するためには、セパレータの総厚みは、好ましくは20~30μmであり、より好ましくは20~25μmである。 The total thickness of the separator thus obtained is not particularly limited, but it can be generally used if it is about 5 to 30 μm. In order to obtain a compact battery, it is preferable to make it as thin as possible within a range in which the function as the electrolyte layer can be secured. Therefore, in order to contribute to the improvement of battery output by reducing the thickness, the total thickness of the separator is preferably 20 to 30 μm, more preferably 20 to 25 μm.
 電解質層としては、本実施形態のセパレータを用いて形成されているものであれば、特に制限されない。つまり、本実施形態の電解質層は、上記セパレータと、セパレータの樹脂多孔質基体及び耐熱絶縁層の内部に含有される電解質とを有するものである。また、電解質層に保持される電解質は、リチウムイオンを含有し、リチウムイオン伝導性に優れていることが好ましい。 The electrolyte layer is not particularly limited as long as it is formed using the separator of the present embodiment. That is, the electrolyte layer of the present embodiment has the separator, and an electrolyte contained in the separator porous resin substrate and the heat-resistant insulating layer. Moreover, it is preferable that the electrolyte hold | maintained at an electrolyte layer contains lithium ion and is excellent in lithium ion conductivity.
 具体的には、電解質層としては、イオン伝導性に優れる電解液を含有したセパレータを用いることができる。また、ゲル電解質等をセパレータに含浸、塗布、スプレーなどして形成した電解質層も利用することができる。 Specifically, as the electrolyte layer, a separator containing an electrolytic solution having excellent ion conductivity can be used. Further, an electrolyte layer formed by impregnating, applying, spraying, etc. a gel electrolyte or the like into a separator can also be used.
 (a)電解液含有セパレータ
 本実施形態のセパレータに染み込ませることができる電解液において、電解質としては、LiClO、LiAsF、LiPF、LiBOB、LiCFSO及びLi(CFSONの少なくとも1種類を用いることができる。また、電解液の溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート、ジエチルカーボネート(DEC)、ジメチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキソラン及びγ-ブチルラクトンよりなるエーテル類から少なくとも1種類を用いることができる。そして、前記電解質を前記溶媒に溶解させ、電解質の濃度を0.5~2Mに調整した電解液を使用することが好ましい。ただ、本発明はこれらに制限されない。
(A) Electrolyte-containing separator In the electrolyte solution that can be infiltrated into the separator of this embodiment, the electrolytes include LiClO 4 , LiAsF 6 , LiPF 5 , LiBOB, LiCF 3 SO 3 and Li (CF 3 SO 2 ) 2. At least one of N can be used. Examples of the solvent for the electrolyte include ethylene carbonate (EC), propylene carbonate, diethyl carbonate (DEC), dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1, At least one kind selected from ethers composed of 3-dioxolane and γ-butyllactone can be used. It is preferable to use an electrolytic solution in which the electrolyte is dissolved in the solvent and the concentration of the electrolyte is adjusted to 0.5 to 2M. However, the present invention is not limited to these.
 上記セパレータとしては、既に説明した本実施形態のセパレータを用いるものであるため、ここでの説明は省略する。 Since the separator of the present embodiment described above is used as the separator, the description thereof is omitted here.
 上記セパレータに含浸などにより保持させる電解液量は、セパレータの保液能力範囲まで含浸、塗布などさせれば良いが、当該保液能力範囲を超えて含浸させても良い。これは、例えば、双極型電池の場合、電解質シール部に樹脂を注入して電解質層からの電解液の染み出しを防止できるため、該電解質層のセパレータに保液できる範囲であれば含浸可能である。同様に、非双極型電池の場合、電池要素を電池外装材に封入して電池外装材内部からの電解液の染み出しを防止できるため、該電池外装材内部に保液できる範囲であれば含浸可能である。当該電解液は、真空注液法などにより注液した後、完全にシールするなど、従来公知の方法でセパレータに電解液を含浸させることができる。 The amount of the electrolytic solution retained in the separator by impregnation or the like may be impregnated or applied to the separator's liquid retention capacity range, but may be impregnated beyond the liquid retention capacity range. This is because, for example, in the case of a bipolar battery, a resin can be injected into the electrolyte seal portion to prevent the electrolyte solution from exuding from the electrolyte layer, so that it can be impregnated as long as it can be retained in the separator of the electrolyte layer. is there. Similarly, in the case of a non-bipolar battery, since the battery element can be enclosed in the battery exterior material to prevent the electrolyte from leaking out from the inside of the battery exterior material, impregnation is performed as long as the liquid can be retained inside the battery exterior material. Is possible. The electrolytic solution can be impregnated in the separator by a conventionally known method such as completely sealing after injecting by a vacuum injection method or the like.
 (b)ゲル電解質層
 本発明のゲル電解質層は、本実施形態のセパレータにゲル電解質を含浸、塗布などにより保持させたものである。
(B) Gel electrolyte layer The gel electrolyte layer of the present invention is obtained by impregnating and applying the gel electrolyte to the separator of the present embodiment.
 ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入された構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられる。このようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩をよく溶解させることができる。 The gel electrolyte has a configuration in which the above liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer. Examples of the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such a polyalkylene oxide polymer, an electrolyte salt such as a lithium salt can be well dissolved.
 ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されないが、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について特に効果がある。 The ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity. In the present embodiment, the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現させることができる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマーに対して重合処理を施せば良い。重合処理としては、熱重合、紫外線重合、放射線重合、電子線重合等を挙げることができる。重合性ポリマーとしては、例えば、PEOやPPOを用いることができる。 The gel electrolyte matrix polymer can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, a polymerization treatment may be performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator. Examples of the polymerization treatment include thermal polymerization, ultraviolet polymerization, radiation polymerization, and electron beam polymerization. For example, PEO or PPO can be used as the polymerizable polymer.
 電解質層の厚さは、特に限定するものではないが、基本的には本実施形態のセパレータの厚さと略同等かあるいは若干厚い程度である。電解質層の厚さは、通常5~30μm程度であれば使用可能である。 The thickness of the electrolyte layer is not particularly limited, but is basically about the same as or slightly thicker than the thickness of the separator of this embodiment. If the thickness of the electrolyte layer is usually about 5 to 30 μm, it can be used.
 なお、本発明では、上記電解質層の電解質中には、本発明の作用効果を損なわない範囲内であれば、従来公知の各種添加剤を含有していても良い。 In the present invention, the electrolyte of the electrolyte layer may contain various conventionally known additives as long as the effects of the present invention are not impaired.
[集電板及びリード]
 電池外部に電流を取り出す目的で、集電板を用いても良い。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
[Current collector and lead]
A current collecting plate may be used for the purpose of extracting the current outside the battery. The current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.
 集電板を構成する材料は特に制限されず、リチウムイオン二次電池用の集電板として公知の高導電性材料を用いることができる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。集電板の構成材料としては、軽量、耐食性、高導電性の観点からアルミニウム、銅などが特に好ましい。なお、正極集電板及び負極集電板は、同一の材質が用いられても良いし、異なる材質が用いられても良い。 The material constituting the current collector plate is not particularly limited, and a known highly conductive material can be used as a current collector plate for a lithium ion secondary battery. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. As a constituent material of the current collector plate, aluminum, copper, and the like are particularly preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. In addition, the same material may be used for a positive electrode current collecting plate and a negative electrode current collecting plate, and a different material may be used.
 正極端子リード及び負極端子リードに関しても、必要に応じて使用する。正極端子リード及び負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。これにより、周辺機器や配線などに接触して漏電することにより、製品(例えば、自動車部品、特に電子機器等)に影響を与えることを防止することができる。 ∙ Use positive terminal lead and negative terminal lead as required. As a material for the positive electrode terminal lead and the negative electrode terminal lead, a terminal lead used in a known lithium ion secondary battery can be used. In addition, it is preferable to cover the part taken out from the battery outer packaging material 29 with a heat-shrinkable heat shrinkable tube or the like. Thereby, it can prevent affecting a product (for example, automobile parts, especially electronic equipment etc.) by contacting with peripheral equipment, wiring, etc., and leaking electricity.
[電池外装材]
 電池外装材29としては、公知の金属缶ケースを用いることができる。また、電池外装材29としては、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースを用いることができる。ラミネートフィルムとしては、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のフィルム等を用いることができるが、これらに制限されない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
[Battery exterior materials]
As the battery exterior material 29, a known metal can case can be used. Moreover, as the battery exterior material 29, a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. As the laminate film, for example, a film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
 なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。 In addition, said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
[リチウムイオン二次電池の外観構成]
 図4は、平板積層型リチウムイオン二次電池の外観を表した斜視図である。
[Appearance structure of lithium ion secondary battery]
FIG. 4 is a perspective view showing the appearance of a flat plate type lithium ion secondary battery.
 図4に示すように、積層型電池10は、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板25及び負極集電板27が引き出されている。発電要素21は、積層型電池10の電池外装材29によって包まれ、さらに、電池外装材29の周囲は熱融着されている。なお、発電要素21は、正極集電板25及び負極集電板27を外部に引き出した状態で密封されている。発電要素21は、図1に示す正極(正極活物質層13)、電解質層17及び負極(負極活物質層15)で構成される単電池層(単セル)19が複数積層されたものである。 As shown in FIG. 4, the stacked battery 10 has a rectangular flat shape, and a positive electrode current collector plate 25 and a negative electrode current collector plate 27 for taking out electric power are drawn out from both sides thereof. Yes. The power generation element 21 is wrapped by the battery outer material 29 of the stacked battery 10, and the periphery of the battery outer material 29 is heat-sealed. The power generation element 21 is sealed with the positive electrode current collector plate 25 and the negative electrode current collector plate 27 pulled out to the outside. The power generation element 21 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer 13), an electrolyte layer 17 and a negative electrode (negative electrode active material layer 15) shown in FIG. .
 また、図4に示す、電池外装材29からの正極集電板25及び負極集電板の引き出しに関しても、特に制限されない。正極集電板25と負極集電板27とを同じ辺から引き出すようにしても良い。また、正極集電板25と負極集電板27をそれぞれ複数に分けて、各辺から取り出すようにしても良い。つまり、電池外装材29からの正極集電板25及び負極集電板の引き出しは、図4に示すものに制限されない。 Further, the drawing of the positive electrode current collector plate 25 and the negative electrode current collector plate from the battery exterior material 29 shown in FIG. 4 is not particularly limited. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be drawn from the same side. Further, the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be divided into a plurality of parts and taken out from each side. That is, the extraction of the positive electrode current collector plate 25 and the negative electrode current collector plate from the battery exterior material 29 is not limited to that shown in FIG.
 なお、上記実施形態では、電気デバイスとしてリチウムイオン二次電池を例示した。しかし、これに制限されるわけではなく、他のタイプの二次電池、さらには、一次電池にも適用できる。また、電池だけではなく、キャパシタにも適用できる。 In the above embodiment, a lithium ion secondary battery is exemplified as the electric device. However, the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. Moreover, it can be applied not only to batteries but also to capacitors.
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明の技術的範囲は、これらの実施例のみに限定されない。 Hereinafter, the present invention will be specifically described based on examples. The technical scope of the present invention is not limited only to these examples.
 [実施例1]
 樹脂多孔質基体であるポリエチレン(PE)微多孔膜の両面に、耐熱絶縁層用組成物であるアルミノシリケート微粒子の水分散体を、ブレードコータにより塗布した。ここで、ポリエチレン微多孔膜は、膜厚が18.9μmであり、空隙率が42%である。また、アルミノシリケート微粒子は、平均二次粒子径が1μmであり、融点が1000℃以上である。さらに、アルミノシリケート微粒子の水分散体の固形分濃度は40質量%である。その後、温風乾燥して耐熱絶縁層を形成し、耐熱絶縁層付セパレータを作製した。この耐熱絶縁層付セパレータは、幅200mmで、ロール状に形成した。
[Example 1]
An aqueous dispersion of aluminosilicate fine particles, which is a composition for a heat-resistant insulating layer, was applied to both surfaces of a polyethylene (PE) microporous film, which is a resin porous substrate, using a blade coater. Here, the polyethylene microporous membrane has a thickness of 18.9 μm and a porosity of 42%. The aluminosilicate fine particles have an average secondary particle diameter of 1 μm and a melting point of 1000 ° C. or higher. Furthermore, the solid content concentration of the aqueous dispersion of aluminosilicate fine particles is 40% by mass. Then, it dried with warm air, formed the heat-resistant insulating layer, and produced the separator with a heat-resistant insulating layer. This separator with a heat-resistant insulating layer was formed in a roll shape having a width of 200 mm.
 耐熱絶縁層は、片面厚みが2.8μm以上になるように塗工したが、厚い側が3.1μm、薄い側が2.5μmで仕上がった。得られた耐熱絶縁層付セパレータは、総厚みが24.5μmであり、耐熱絶縁層の空隙率が47%であった。 The heat-resistant insulating layer was coated so that the thickness on one side was 2.8 μm or more, but finished with a thick side of 3.1 μm and a thin side of 2.5 μm. The obtained separator with a heat-resistant insulating layer had a total thickness of 24.5 μm, and the porosity of the heat-resistant insulating layer was 47%.
 [実施例2~12、比較例1~4]
 実施例1と同様に、表1に示す樹脂多孔質基体、耐熱絶縁層を有するセパレータを作製した。
[Examples 2 to 12, Comparative Examples 1 to 4]
In the same manner as in Example 1, a separator having a porous resin substrate and a heat-resistant insulating layer shown in Table 1 was produced.
 ただ、実施例2,3,6及び11、並びに比較例2では、樹脂多孔質基体として、ポリエチレン微多孔膜の代わりにポリプロピレン(PP)微多孔膜(空隙率55%)を用いた。 However, in Examples 2, 3, 6 and 11 and Comparative Example 2, a polypropylene (PP) microporous film (porosity 55%) was used as the resin porous substrate instead of the polyethylene microporous film.
 また、実施例4,5,7,9及び10、並びに比較例3では、樹脂多孔質基体として、ポリエチレン微多孔膜(空隙率42%)の代わりにポリエチレン(PE)微多孔膜(空隙率52%)を用いた。 In Examples 4, 5, 7, 9, and 10, and Comparative Example 3, a polyethylene (PE) microporous membrane (porosity 52) was used as the resin porous substrate instead of the polyethylene microporous membrane (porosity 42%). %) Was used.
 実施例8では、樹脂多孔質基体として、ポリエチレン微多孔膜の代わりにポリエチレンテレフタレート(PET)製の不織布を用いた。なお、ポリエチレンテレフタレート製の不織布は、膜厚が11.1μmであり、空隙率が48%である。 In Example 8, a non-woven fabric made of polyethylene terephthalate (PET) was used as the resin porous substrate instead of the polyethylene microporous membrane. The nonwoven fabric made of polyethylene terephthalate has a film thickness of 11.1 μm and a porosity of 48%.
 比較例1,4及び5では、樹脂多孔質基体として、ポリエチレン(PE)微多孔膜(空隙率42%)を用いた。 In Comparative Examples 1, 4 and 5, a polyethylene (PE) microporous film (porosity 42%) was used as the resin porous substrate.
 実施例2~7、実施例10及び11、並びに比較例2及び3では、耐熱粒子として、実施例1のアルミノシリケートに代えて高純度アルミナ粒子を用いた。なお、高純度アルミナ粒子は、平均二次粒子径が1.5μmであり、融点が1000℃以上である。 In Examples 2 to 7, Examples 10 and 11, and Comparative Examples 2 and 3, high-purity alumina particles were used as the heat-resistant particles instead of the aluminosilicate of Example 1. The high purity alumina particles have an average secondary particle diameter of 1.5 μm and a melting point of 1000 ° C. or higher.
 実施例8では、実施例1のアルミノシリケート水分散体に代えてコロイダルシリカ粒子のメチルエチルケトン分散体を用いた。なお、コロイダルシリカ粒子は、平均二次粒子径が0.4μmであり、融点が1000℃以上である。また、メチルエチルケトン分散体は、固形分濃度が30質量%である。 In Example 8, a methyl ethyl ketone dispersion of colloidal silica particles was used in place of the aluminosilicate aqueous dispersion of Example 1. The colloidal silica particles have an average secondary particle diameter of 0.4 μm and a melting point of 1000 ° C. or higher. The methyl ethyl ketone dispersion has a solid content concentration of 30% by mass.
 実施例9では、実施例1のアルミノシリケート水分散体に代えて、架橋ポリアクリル酸メチル粒子を用いた。なお、架橋ポリアクリル酸メチル粒子は、平均二次粒子径が1μmであり、熱軟化点が約160℃である。 In Example 9, instead of the aluminosilicate aqueous dispersion of Example 1, crosslinked polymethyl acrylate particles were used. The crosslinked polymethyl acrylate particles have an average secondary particle diameter of 1 μm and a heat softening point of about 160 ° C.
 実施例12では、耐熱絶縁層用組成物として、芳香族ポリアミド(アラミド)樹脂のNMP分散体を用い、多孔質層とするためにエチレングリコールを添加した。 In Example 12, an NMP dispersion of an aromatic polyamide (aramid) resin was used as the heat-resistant insulating layer composition, and ethylene glycol was added to form a porous layer.
 [比較例5]
 耐熱絶縁層を樹脂多孔質基体の片面に塗布したことを除いては、実施例1と同様にしてセパレータを作製した。
[Comparative Example 5]
A separator was produced in the same manner as in Example 1 except that the heat-resistant insulating layer was applied to one side of the resin porous substrate.
 得られた実施例1~12及び比較例1~5のセパレータにおける耐熱絶縁層の厚みA’、A”(μm)、総厚みC(μm)、及び耐熱絶縁層の空隙率D(%)を表1にまとめた。 The thicknesses A ′, A ″ (μm), the total thickness C (μm), and the porosity D (%) of the heat-resistant insulating layer in the obtained separators of Examples 1 to 12 and Comparative Examples 1 to 5 are shown. The results are summarized in Table 1.
 [カール高さ]
 各実施例及び比較例で作製したセパレータのカール高さを以下の手順で測定した。まず、図5に示すように、セパレータのロールから、セパレータを略正方形となるように切り出し、水平面に載置した後、除電ブラシにて2度なでて静電気を除去した。その後、図5のA~Hの8箇所について、60秒間で水平面から浮き上がった高さを測定し、その最大値をカール高さ(mm)とした。丸く巻きこんだ場合には、巻いた部分をほどいて上方に伸ばし、その高さを測定値とした。
[Curl height]
The curl height of the separator produced in each example and comparative example was measured by the following procedure. First, as shown in FIG. 5, the separator was cut out from the separator roll so as to be substantially square, placed on a horizontal plane, and then static electricity was removed by stroking with a static elimination brush twice. Thereafter, the heights of the eight positions A to H in FIG. 5 that were lifted from the horizontal plane in 60 seconds were measured, and the maximum value was taken as the curl height (mm). When it was rolled up, it was unwound and stretched upward, and its height was taken as the measured value.
 [電池評価]
 正極集電体としてアルミニウム箔を、負極集電体として銅箔をそれぞれ準備した。正極活物質としてコバルトニッケルマンガン酸リチウム(LiNi0.33Co0.33Mn0.33)を用いて正極活物質スラリーを調製した。一方、負極活物質として人造黒鉛を用いて負極活物質スラリーを調製した。正極活物質スラリー及び負極活物質スラリーを、それぞれ正極集電体であるアルミ箔及び負極集電体である銅箔に塗工し、乾燥させた後ロールプレスして正極及び負極を作製した。上記で作製した正極、負極の間に各実施例、比較例で作製したセパレータを挟み、非水電解液を注入し、ラミネートシート内に封止して評価用電池を作製した。なお、非水電解液としては、エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0ml/Lとなるように溶解させたものを使用した
[Battery evaluation]
Aluminum foil was prepared as a positive electrode current collector, and copper foil was prepared as a negative electrode current collector. A positive electrode active material slurry was prepared using lithium cobalt nickel manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) as the positive electrode active material. On the other hand, a negative electrode active material slurry was prepared using artificial graphite as the negative electrode active material. The positive electrode active material slurry and the negative electrode active material slurry were applied to an aluminum foil as a positive electrode current collector and a copper foil as a negative electrode current collector, respectively, dried, and then roll pressed to produce a positive electrode and a negative electrode. The separator prepared in each Example and Comparative Example was sandwiched between the positive electrode and the negative electrode prepared above, a non-aqueous electrolyte was injected, and sealed in a laminate sheet to prepare an evaluation battery. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 as a solute at a concentration of 1.0 ml / L in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) was used.
 電池作製後、初回充放電を行い、電池容量を測定した。なお、初回放電容量は20mAhであった。そして、本電池において、4.0mAでの放電容量と、50mAでの放電容量とを測定し、その比(50mAでの放電容量/4.0mAでの放電容量)をレート特性(レート比)(%)とした。 After the battery was fabricated, the first charge / discharge was performed and the battery capacity was measured. The initial discharge capacity was 20 mAh. In this battery, the discharge capacity at 4.0 mA and the discharge capacity at 50 mA were measured, and the ratio (discharge capacity at 50 mA / discharge capacity at 4.0 mA) was determined as a rate characteristic (rate ratio) ( %).
 各実施例及び比較例のレート特性の結果を表1に示す。また、パラメータXとカール高さとの関係を図6に、パラメータYとカール高さ及びレート特性との関係を図7に示す。 Table 1 shows the results of rate characteristics of the examples and comparative examples. FIG. 6 shows the relationship between the parameter X and the curl height, and FIG. 7 shows the relationship between the parameter Y and the curl height and rate characteristics.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~12で作製したセパレータは、パラメータXが0.15以上の値であった。そして、実施例1~12のいずれもカール高さが5mm以下であり、平板連続積層機で積層した場合も問題はなく、連続して良品が得られた。ここで、平板連続積層機では、熱刃での切断、多孔吸着パットでの搬送、及び4点クランプでの積層を含む工程を数十回繰り返して、端部が折り込まれることなく積層されることを確認した。なお、熱刃での切断、多孔吸着パットでの搬送、及び4点クランプでの積層を含む工程は、3秒程度で行われた。 The separators produced in Examples 1 to 12 had a parameter X value of 0.15 or more. In each of Examples 1 to 12, the curl height was 5 mm or less, and there was no problem even when the plates were laminated by a flat plate continuous laminator, and good products were obtained continuously. Here, in the flat plate continuous laminator, the processes including cutting with a hot blade, conveyance with a porous adsorption pad, and lamination with a four-point clamp are repeated several tens of times, and the end portions are laminated without being folded. It was confirmed. In addition, the process including the cutting | disconnection with a hot blade, the conveyance by a porous adsorption pad, and the lamination | stacking by a 4-point clamp was performed in about 3 seconds.
 比較例1~4のセパレータでは、平板連続積層機において、電極上へのセパレータ搬送中にセパレータがしばしばめくれた。そのため、積層体にした際にセパレータが踏み付けられた状態で積層されてしまい、使用不可能になってしまった。特に、片面塗工した比較例5においては、カットした時点で直ちにカールし、搬送自体が不可能であった。 In the separators of Comparative Examples 1 to 4, in the flat plate continuous laminator, the separator was frequently turned during the conveyance of the separator onto the electrode. Therefore, when it was made into a laminated body, it was laminated in a state where the separator was stepped on, making it unusable. In particular, in Comparative Example 5 on which single-sided coating was performed, curling immediately occurred at the time of cutting, and conveyance itself was impossible.
 レート特性に関しては、実施例1~9で作製したセパレータでは、パラメータYが0.3~0.7であり、85%を上回る十分な出力が得られた。一方、パラメータYの値が0.7を超える実施例10~12では、レート特性が85%を下回り、製品としての性能がやや不十分であった。 Regarding the rate characteristics, in the separators produced in Examples 1 to 9, the parameter Y was 0.3 to 0.7, and a sufficient output exceeding 85% was obtained. On the other hand, in Examples 10 to 12 in which the value of the parameter Y exceeds 0.7, the rate characteristics are less than 85%, and the product performance is slightly insufficient.
 以上の結果から、セパレータの総厚みに対する耐熱絶縁層の厚みを調節し、両面の耐熱絶縁層の厚みのバランスをとることで、カールの発生が抑制できることがわかった。 From the above results, it was found that curling can be suppressed by adjusting the thickness of the heat-resistant insulating layer relative to the total thickness of the separator and balancing the thickness of the heat-resistant insulating layers on both sides.
 さらに上記の条件に加えて、耐熱絶縁層の厚みや空隙率を調整することで、同時に出力特性の高い電池が得られることがわかった。 Furthermore, in addition to the above conditions, it was found that a battery with high output characteristics can be obtained at the same time by adjusting the thickness and porosity of the heat-resistant insulating layer.
 特願2011-138983号(出願日:2011年6月22日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2011-133893 (filing date: June 22, 2011) are incorporated herein by reference.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As mentioned above, although the content of the present invention has been described according to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible.
 本発明の耐熱絶縁層付セパレータでは、両面の耐熱絶縁層の厚み及び総厚みを制御することによって、両面の耐熱絶縁層の収縮応力のバランスが改善される。また、樹脂多孔質基体の内部応力と耐熱絶縁層の収縮応力とのバランスが改善される。そのため、積層時にカールが発生しにくくなり、信頼性の高い電気デバイスを安定して製造することができる。 In the separator with a heat-resistant insulating layer of the present invention, the balance of shrinkage stress of the heat-resistant insulating layers on both sides is improved by controlling the thickness and the total thickness of the heat-resistant insulating layers on both sides. Further, the balance between the internal stress of the resin porous substrate and the shrinkage stress of the heat-resistant insulating layer is improved. For this reason, curling is unlikely to occur during lamination, and a highly reliable electric device can be stably manufactured.
 1  耐熱絶縁層付セパレータ(セパレータ)
 2  樹脂多孔質基体
 3  耐熱絶縁層
 4  正極
 5  負極
 10  積層型電池(リチウムイオン二次電池)
 11  正極集電体
 12  負極集電体
 13  正極活物質層
 15  負極活物質層
 17  電解質層
 19  単電池層
 21  発電要素
 25  正極集電板
 27  負極集電板
 29  電池外装材(ラミネートフィルム)
1 Separator with heat-resistant insulating layer (separator)
2 Resin porous substrate 3 Heat resistant insulating layer 4 Positive electrode 5 Negative electrode 10 Stacked battery (lithium ion secondary battery)
DESCRIPTION OF SYMBOLS 11 Positive electrode collector 12 Negative electrode collector 13 Positive electrode active material layer 15 Negative electrode active material layer 17 Electrolyte layer 19 Single cell layer 21 Power generation element 25 Positive electrode current collector plate 27 Negative electrode current collector plate 29 Battery exterior material (laminate film)

Claims (9)

  1.  樹脂多孔質基体と、
     前記樹脂多孔質基体の両面に形成され、融点又は熱軟化点が150℃以上である耐熱粒子を含む耐熱絶縁層と、
     を備え、
     数式1で表されるパラメータXが、0.15以上であることを特徴とする電気デバイス用の耐熱絶縁層付セパレータ:
    Figure JPOXMLDOC01-appb-M000001

     式中、A’及びA”は前記樹脂多孔質基体の両面に形成された各耐熱絶縁層の厚み(μm)であり、この際、A’≧A”であり、Cは前記耐熱絶縁層付セパレータの総厚み(μm)である。
    A porous resin substrate;
    A heat-resistant insulating layer comprising heat-resistant particles formed on both surfaces of the resin porous substrate and having a melting point or thermal softening point of 150 ° C. or higher;
    With
    The parameter X represented by Formula 1 is 0.15 or more, and a separator with a heat-resistant insulating layer for an electrical device:
    Figure JPOXMLDOC01-appb-M000001

    In the formula, A ′ and A ″ are the thicknesses (μm) of the respective heat-resistant insulating layers formed on both surfaces of the porous resin substrate, where A ′ ≧ A ″, and C is with the heat-resistant insulating layer. This is the total thickness (μm) of the separator.
  2.  数式2で表されるパラメータYが0.3~0.7の範囲であることを特徴とする請求項1に記載の耐熱絶縁層付セパレータ:
    Figure JPOXMLDOC01-appb-M000002

     式中、Dは耐熱絶縁層の空隙率(%)である。
    2. The separator with a heat-resistant insulating layer according to claim 1, wherein the parameter Y represented by Formula 2 is in the range of 0.3 to 0.7:
    Figure JPOXMLDOC01-appb-M000002

    In the formula, D is the porosity (%) of the heat-resistant insulating layer.
  3.  前記パラメータXが、0.20以上であることを特徴とする請求項1又は2に記載の耐熱絶縁層付セパレータ。 The separator with heat-resistant insulating layer according to claim 1 or 2, wherein the parameter X is 0.20 or more.
  4.  前記耐熱粒子が、無機酸化物の粒子であることを特徴とする請求項1乃至3のいずれか一項に記載の耐熱絶縁層付セパレータ。 The separator with a heat-resistant insulating layer according to any one of claims 1 to 3, wherein the heat-resistant particles are inorganic oxide particles.
  5.  前記耐熱粒子が、有機樹脂の粒子であることを特徴とする請求項1乃至3のいずれか一項に記載の耐熱絶縁層付セパレータ。 4. The separator with a heat resistant insulating layer according to claim 1, wherein the heat resistant particles are organic resin particles. 5.
  6.  前記耐熱絶縁層の空隙率は、40~70%であることを特徴とする請求項1乃至5のいずれか一項に記載の耐熱絶縁層付セパレータ。 The separator with a heat-resistant insulating layer according to any one of claims 1 to 5, wherein a porosity of the heat-resistant insulating layer is 40 to 70%.
  7.  前記耐熱絶縁層の厚みの合計は5~200μmであり、前記耐熱絶縁層の厚みの比(A’/A”)は1.0~1.2であることを特徴とする請求項1乃至6のいずれか一項に記載の耐熱絶縁層付セパレータ。 The total thickness of the heat-resistant insulating layer is 5 to 200 μm, and the thickness ratio (A ′ / A ″) of the heat-resistant insulating layer is 1.0 to 1.2. The separator with a heat-resistant insulating layer according to any one of the above.
  8.  請求項1乃至7のいずれか一項に記載の耐熱絶縁層付セパレータと、
     前記耐熱絶縁層付セパレータの樹脂多孔質基体及び耐熱絶縁層の内部に含有される電解質と、
     を備えることを特徴とする電気デバイス用の電解質層。
    A separator with a heat-resistant insulating layer according to any one of claims 1 to 7,
    An electrolyte contained inside the resin porous substrate and the heat-resistant insulating layer of the separator with the heat-resistant insulating layer;
    An electrolyte layer for an electrical device, comprising:
  9.  請求項1乃至7のいずれか一項に記載の耐熱絶縁層付セパレータを備えることを特徴とする電気デバイス。 An electric device comprising the separator with a heat-resistant insulating layer according to any one of claims 1 to 7.
PCT/JP2012/065100 2011-06-22 2012-06-13 Separator having heat resistant insulation layers WO2012176669A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/127,741 US9312527B2 (en) 2011-06-22 2012-06-13 Separator having heat resistant insulation layers
MX2013014658A MX349899B (en) 2011-06-22 2012-06-13 Separator having heat resistant insulation layers.
EP12802928.7A EP2725636B1 (en) 2011-06-22 2012-06-13 Separator having heat resistant insulation layers
BR112013032308A BR112013032308A2 (en) 2011-06-22 2012-06-13 separator with heat resistant insulation layers
KR1020147001329A KR101639923B1 (en) 2011-06-22 2012-06-13 Separator having heat resistant insulation layers
RU2014101718/07A RU2562970C2 (en) 2011-06-22 2012-06-13 Separator having heat-resistant insulating layers
CN201280028947.2A CN103608948B (en) 2011-06-22 2012-06-13 With the dividing plate of heat-resistant insulating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-138983 2011-06-22
JP2011138983A JP5796367B2 (en) 2011-06-22 2011-06-22 Separator with heat-resistant insulation layer

Publications (1)

Publication Number Publication Date
WO2012176669A1 true WO2012176669A1 (en) 2012-12-27

Family

ID=47422509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065100 WO2012176669A1 (en) 2011-06-22 2012-06-13 Separator having heat resistant insulation layers

Country Status (11)

Country Link
US (1) US9312527B2 (en)
EP (1) EP2725636B1 (en)
JP (1) JP5796367B2 (en)
KR (1) KR101639923B1 (en)
CN (1) CN103608948B (en)
BR (1) BR112013032308A2 (en)
MX (1) MX349899B (en)
MY (1) MY161020A (en)
RU (1) RU2562970C2 (en)
TW (1) TWI466365B (en)
WO (1) WO2012176669A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225749A (en) * 2014-05-27 2015-12-14 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2018041702A (en) * 2016-09-09 2018-03-15 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US10044068B2 (en) * 2013-11-20 2018-08-07 Commissariat A L'energie Atomique Et Aux Energies Copolymer for bipolar battery

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167726B2 (en) * 2013-07-25 2017-07-26 日産自動車株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery including the same
KR20160101895A (en) 2013-12-26 2016-08-26 데이진 가부시키가이샤 Non-aqueous secondary cell separator and non-aqueous secondary cell
JP6435886B2 (en) * 2015-01-30 2018-12-12 Jnc株式会社 Multilayer heat-resistant separator material and method for producing the same
KR102307909B1 (en) * 2015-05-08 2021-10-01 삼성에스디아이 주식회사 lithium battery
JP6652135B2 (en) * 2015-07-15 2020-02-19 三菱ケミカル株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing laminated porous film
JP6566265B2 (en) * 2016-09-09 2019-08-28 トヨタ自動車株式会社 Sealed secondary battery
CN116722311A (en) 2017-10-13 2023-09-08 株式会社Lg新能源 Multilayer nanoporous separators
US10418550B2 (en) * 2018-05-29 2019-09-17 Nanjing University High temperature resistant memristor based on two-dimensional covalent crystal and preparation method thereof
CN109193041A (en) * 2018-09-28 2019-01-11 山东天瀚新能源科技有限公司 A kind of lithium ion battery that high temperature cyclic performance is excellent
JP7277234B2 (en) * 2019-04-16 2023-05-18 住友化学株式会社 Laminated separator for non-aqueous electrolyte secondary battery
CN111987277B (en) * 2019-05-22 2022-11-08 聚和国际股份有限公司 Porous carrier and electrochemical device separation membrane
US20220285790A1 (en) 2019-07-10 2022-09-08 Asahi Kasei Kabushiki Kaisha Multilayer Porous Membrane
EP4102636A4 (en) 2020-11-30 2023-05-31 Contemporary Amperex Technology Co., Limited Separator film, secondary battery containing same, related battery module thereof, battery pack and device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022208A (en) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd Battery pack
WO2007066768A1 (en) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
JP2009517810A (en) * 2005-11-28 2009-04-30 エルジー・ケム・リミテッド Organic-inorganic composite porous separation membrane and electrochemical device using the same
JP2010092718A (en) * 2008-10-08 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010146839A (en) * 2008-12-18 2010-07-01 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011019187A2 (en) * 2009-08-10 2011-02-17 주식회사 엘지화학 Lithium secondary battery
JP2011505663A (en) * 2007-11-29 2011-02-24 エルジー・ケム・リミテッド Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP2011108444A (en) * 2009-11-16 2011-06-02 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275634A (en) * 1997-03-31 1998-10-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
RU2194340C1 (en) * 2001-12-06 2002-12-10 Открытое акционерное общество "Научно-исследовательский институт нетканых материалов" Nonwoven separating material for lead-acid storage batteries
WO2006062153A1 (en) 2004-12-08 2006-06-15 Hitachi Maxell, Ltd. Separator for electrochemical device and electrochemical device
JP2007324073A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Lithium secondary battery, its separator and its manufacturing method
WO2009103082A2 (en) * 2008-02-17 2009-08-20 Porous Power Technologies, Llc Lamination configurations for battery applications using pvdf highly porous film
TWI397551B (en) 2008-07-31 2013-06-01 Asahi Kasei E Materials Corp Microporous film and method for manufacturing the same
US8815435B2 (en) * 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
JP4801705B2 (en) * 2008-09-03 2011-10-26 三菱樹脂株式会社 Laminated porous film for separator and method for producing the same
JP2010097756A (en) * 2008-10-15 2010-04-30 Sony Corp Secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022208A (en) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd Battery pack
JP2009517810A (en) * 2005-11-28 2009-04-30 エルジー・ケム・リミテッド Organic-inorganic composite porous separation membrane and electrochemical device using the same
WO2007066768A1 (en) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
JP2011505663A (en) * 2007-11-29 2011-02-24 エルジー・ケム・リミテッド Separator on which porous coating layer is formed, method for producing the same, and electrochemical device including the same
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP2010092718A (en) * 2008-10-08 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010146839A (en) * 2008-12-18 2010-07-01 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011019187A2 (en) * 2009-08-10 2011-02-17 주식회사 엘지화학 Lithium secondary battery
JP2011108444A (en) * 2009-11-16 2011-06-02 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725636A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044068B2 (en) * 2013-11-20 2018-08-07 Commissariat A L'energie Atomique Et Aux Energies Copolymer for bipolar battery
JP2015225749A (en) * 2014-05-27 2015-12-14 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2018041702A (en) * 2016-09-09 2018-03-15 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
RU2562970C2 (en) 2015-09-10
KR101639923B1 (en) 2016-07-14
EP2725636A4 (en) 2014-12-31
US20140113176A1 (en) 2014-04-24
CN103608948B (en) 2016-04-13
RU2014101718A (en) 2015-08-10
EP2725636B1 (en) 2017-08-09
TW201301635A (en) 2013-01-01
MY161020A (en) 2017-03-31
MX349899B (en) 2017-08-18
JP2013008481A (en) 2013-01-10
JP5796367B2 (en) 2015-10-21
EP2725636A1 (en) 2014-04-30
TWI466365B (en) 2014-12-21
US9312527B2 (en) 2016-04-12
BR112013032308A2 (en) 2016-12-20
MX2013014658A (en) 2014-03-27
KR20140039305A (en) 2014-04-01
CN103608948A (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5796367B2 (en) Separator with heat-resistant insulation layer
JP5910164B2 (en) Nonaqueous electrolyte secondary battery
JP5966285B2 (en) Separator with heat-resistant insulation layer
KR101689496B1 (en) Non-aqueous electrolyte secondary battery
JP6003041B2 (en) Separator with heat-resistant insulation layer
JP5387672B2 (en) Bipolar battery current collector and bipolar battery
US20160064715A1 (en) Non-aqueous electrolyte secondary battery
JP6336703B2 (en) Separator with heat-resistant insulation layer
WO2013051416A1 (en) Electrical device
WO2013051468A1 (en) Separator with heat resistant insulating layer
JP6740011B2 (en) Non-aqueous electrolyte secondary battery
WO2014157418A1 (en) Nonaqueous electrolyte secondary battery
KR20190005216A (en) Non-aqueous electrolyte secondary battery
KR102036065B1 (en) Nonaqueous electrolyte secondary battery
KR102036038B1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802928

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012802928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014658

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14127741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032308

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20147001329

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014101718

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112013032308

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131216