JP2011255283A - ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 - Google Patents
ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 Download PDFInfo
- Publication number
- JP2011255283A JP2011255283A JP2010130551A JP2010130551A JP2011255283A JP 2011255283 A JP2011255283 A JP 2011255283A JP 2010130551 A JP2010130551 A JP 2010130551A JP 2010130551 A JP2010130551 A JP 2010130551A JP 2011255283 A JP2011255283 A JP 2011255283A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- electrode
- cathode
- anode
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 125
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 88
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 62
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 66
- 238000003487 electrochemical reaction Methods 0.000 claims abstract description 38
- 239000012528 membrane Substances 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 claims description 147
- 229910052751 metal Inorganic materials 0.000 claims description 97
- 239000002184 metal Substances 0.000 claims description 97
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 74
- 239000001301 oxygen Substances 0.000 claims description 58
- 229910052760 oxygen Inorganic materials 0.000 claims description 58
- 239000002923 metal particle Substances 0.000 claims description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000000919 ceramic Substances 0.000 claims description 15
- 238000007747 plating Methods 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- 239000007769 metal material Substances 0.000 abstract 2
- 229910052709 silver Inorganic materials 0.000 description 37
- 239000004332 silver Substances 0.000 description 37
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 36
- -1 oxygen ion Chemical class 0.000 description 36
- 238000000034 method Methods 0.000 description 28
- 150000002500 ions Chemical class 0.000 description 20
- 239000010410 layer Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 230000003197 catalytic effect Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 10
- 150000001450 anions Chemical class 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 238000010248 power generation Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000012855 volatile organic compound Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 229910021523 barium zirconate Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910002075 lanthanum strontium manganite Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 229910052963 cobaltite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- FVROQKXVYSIMQV-UHFFFAOYSA-N [Sr+2].[La+3].[O-][Mn]([O-])=O Chemical compound [Sr+2].[La+3].[O-][Mn]([O-])=O FVROQKXVYSIMQV-UHFFFAOYSA-N 0.000 description 1
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 1
- UNPDDPPIJHUKSG-UHFFFAOYSA-N [Sr].[Sm] Chemical compound [Sr].[Sm] UNPDDPPIJHUKSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
【解決手段】 このガス分解素子は、内面側のアノード2と、外面側のカソード5と、該アノード、カソードによって挟まれる固体電解質1とで構成される、筒状MEA7と、筒状MEAの内面側に装入され、第1電極に接する多孔質金属体11sと、多孔質金属体11sの導電性軸をなすように挿通された中心導電棒11kとを備えることを特徴とする。
【選択図】 図1
Description
また、半導体製造装置の廃ガスには、アンモニア、水素等が含まれるのが普通であり、アンモニアの異臭を完全に除去するには、ppmオーダーにまで除害する必要がある。この目的のために、半導体製造装置の廃ガス放出の際にスクラバーを通して、薬品を含む水に有害ガスを吸収させる方法が多く用いられてきた。一方、エネルギーや薬品等の投入なしに、安価なランニングコストを得るために、リン酸型燃料電池でアンモニアを分解する、半導体製造装置の排気ガス処理の提案もされている(特許文献8)。
リン酸型燃料電池を、化合物半導体製造の排気中のアンモニアの除害に用いる装置についても、電解質が液体であるため、空気側とアンモニア側との仕切りをコンパクトにできず、装置の小型化が難しいという問題があった。
一方、固体電解質を含む筒状MEAでは、第1電極の集電体の材料の配置経路は、上記の導入口以外にない。上記気体の導入口または導入口周辺部から、外部の配線に接続するしかない。それ以外の筒状MEAの部分で、第1電極の集電体の材料の配置経路を設けることは、電気化学反応の場所を減ずる、ガス漏洩のリスクを高める、などの大きな犠牲を払わなければ、できない。このため、筒状MEAの端部には、上記の気体搬送路の導入と合わせて、集電のための配線が通る。
上記の中心導電棒は、一本のソリッドの棒なので高い剛性を有し、多少の応力に対して容易に変形せず安定した形状を保持し、かつ加工もしやすい。このため、中心導電棒の端の部分に対して、外部の配線に導電接続させるために、溝切りやねじ穴形成などの加工を容易に行うことができる。このため、中心導電棒の端部に接触抵抗の小さい接続端子等を容易に配設することができる。中心導電棒と多孔質金属体との電気抵抗については、(多孔質金属体/中心導電棒)の接触界面が増える。しかし、多孔質金属と中心導電棒の外面との界面は、シート状の多孔質金属体をらせん状に巻き付けることで形成され、巻き付けの緊縛を強固に行えば、導電性に富む金属同士の接触でもあり、界面抵抗は、問題にするレベルの電気抵抗増にはならない。
これに比して、第1電極の集電を多孔質金属のみで行う場合(本発明における中心導電棒を用いない場合)、多孔質金属シートを渦巻き状にした円柱の多孔質金属体などにおいて、(D1)渦巻き状の多孔質金属体の端部は非常にまとめにくい。このため、端部において、上述の厳格な気密性を保って、外部の配線と接続する構造をコンパクトに形成するのは容易ではない。円柱状または渦巻き状に限らず、多孔質金属の端部は、変形しやすく、まとまりをつけにくく、外部との電気的接続のための構造は大きくならざるをえない。かつ、より大きな問題は、(D2)外部配線との導電接続に伴う大きな接触抵抗である。多孔質金属体の上記形態の端と、外部配線との間に、管内(筒状MEA内)接続部材を配設したとしても、端部での電気抵抗の低い導電接続は難しい。
要約すれば、上記の(D1)および(D2)をともに実用上満足させることは困難である。
本発明の構成では、上記のように中心導電棒を用いるので、電気抵抗を抑制した上で、気体搬送路や外部配線が集中する筒状MEAの端部をコンパクトにまとめることができる。すなわち小型化してスッキリした構造にすることができる。この結果、「第1電極/第1電極集電体(多孔質金属体、中心導電棒を含む)/外部配線」における電気抵抗を抑制することができる。この結果、ガス分解の電気化学反応を促進させ、処理能力を増大させることができる。そして、ガス分解素子を含む装置の小型化を推進することができる。
これらの電気化学反応は、通常、高温で実用レベルの反応速度になるので、MEAをヒータ等で600℃〜1000℃の温度域に加熱する必要がある。このための電力コストは、上述の薬品等に比べれば小さいが発生する。しかし、操業に伴う薬品等は不要であり、ランニングコストは小さい。
この高温加熱に関連して、上記の中心導電棒は、さらに次の利点をもたらす。すなわち、上記の加熱温度は一般の樹脂にとっては強度などの耐久性を維持することは難しく、ヒータからの熱流の主流部に近い場合、相当、特殊で高価な樹脂を用いないと十分な安全性を保証できない。しかし、上記の中心導電棒は、熱流の主流部から遠ざかる位置にまで、外部配線との導電接続部を延ばすことが容易である。中心導電棒自身を長くできない場合、先端を延長する部材を接続することは容易である。このため、MEA本体部は上記の温度に加熱しながら、外部配線と接続する部分、およびそれに付随して気体搬送路との接続部分も、上記温度域から相当低温にすることができる。この結果、MEA端部の各種接続部材の耐久性を高め、かつ高価な特殊材料を用いなくて済むので経済性を向上させることができる。
アンモニアを空気中の酸素によって分解する反応に用いる例についていえば、第2電極に供給する気体は空気でよく、また、このアンモニア分解の電気化学反応は、発電を伴うので、発電された電力をヒータに供給することができる。このため、ヒータ加熱に必要な電力の何割かは、当該アンモニア分解反応で生じる電力でまかなうことができる。
なお、上記のアンモニア分解の場合は、第1電極はアノードであり第2電極はカソードである。しかし、本発明が対象とするガス分解素子は、一般的には、第1電極は、アノードでもカソードでもよく、第2電極はそれに対応した対をなす電極である。
ただし、金属粒連鎖体の酸化層については、使用前は焼結処理によって確実に形成されているが、使用中に還元反応によって酸化層がなくなることが多い。酸化層がなくなっても、上記の触媒作用は減ずることはあってもなくなることはない。とくにFeやTiを含有させたNiは、酸化層がなくても触媒作用は高い。
また、(A2)金属粒連鎖体を第2電極(カソード)に入れた場合、カソードにおいて、カソード外部からカソードへと導かれる気体中のガス分子の化学反応を、金属粒連鎖体の酸化層によって促進させ(触媒作用)、かつ外部回路からの電子の導電性を向上させて、当該電子を参加させてカソードでの化学反応を促進させる(電荷による促進作用)。そして、当該分子から効率よく陰イオンを生じて、固体電解質へと送り出すことができる。(A1)と同様に、(A2)の場合、固体電解質中を移動してきた陽イオンと、外部回路を流れてきた電子と、第2の気体との電気化学反応を促進することができる。このため、上記アノードに含ませる場合と同様に、カソードにおける電荷の授受を伴う電気化学反応を、全体的に促進することができる。どのような場合に、金属粒連鎖体をカソードに含ませるかは、分解対象のガスによって変わる。(A3)金属粒連鎖体をアノードおよびカソードに含有させた場合は、上記(A1)および(A2)の効果を得ることができる。
金属粒連鎖体については、このあと本発明の実施の形態において説明する。
固体電解質を移動するイオンが陰イオンの場合は、上述のように、カソードでの化学反応によって発生し、供給される。カソードにおいて導入された流体中の分子と電子とが反応して陰イオンが生成する。生成した陰イオンは、固体電解質中をアノードへと移動する。カソードでの反応に参加する電子は、アノードとカソードとを連絡する外部回路(蓄電器、電源、電力消費機器を含む)から入ってくる。固体電解質を移動するイオンが陽イオンの場合は、アノードでの電気化学反応によって発生して固体電解質中をカソードへと移動する。電子はアノードで発生して外部回路をカソードへと流れてカソードでの電気化学反応に参加する。
上記電気化学反応は、燃料電池としての発電反応であってもよいし、または電気分解反応であってもよい。
酸素イオン導電性は、多くの固体電解質が知られており、多くの実績が積まれている。酸素イオン導電性の固体電解質を用いた場合、たとえばカソードで電子と酸素分子とを反応させて酸素イオンを生じて固体電解質を移動させてアノードにて所定の電気化学反応を起こさせることができる。この場合、酸素イオンの固体電解質中の移動速度はプロトンと比べて大きくないので、実用レベルの分解容量を得るには、温度を十分高める、および/または、固体電解質の厚みを十分薄くする、などの対策が必要である。
一方、プロトン導電性の固体電解質は、バリウムジルコネート(BaZrO3)などが知られている。プロトン導電性の固体電解質を用いると、たとえばアノードでアンモニアを分解してプロトン、窒素分子および電子を生じさせて、プロトンを固体電解質を経てカソードへと移動させ、カソードにおいて酸素と反応して水(H2O)を生じさせる。プロトンは酸素イオンと比べて小さいので固体電解質中の移動速度は大きいので、加熱温度を低くして実用レベルの分解容量を得ることができる。
また、たとえば筒状体MEAを用いてアンモニア分解を行うとき、内側をアノードとした場合、酸素イオン導電性の固体電解質では、水を筒状体の内側(アノード)で生成する反応となる。水は、温度が低い出口付近では水滴を形成して圧力損失の原因となる。これに対して、プロトン導電性の固体電解質を用いると、プロトンと酸素分子と電子とが、カソード(外側)で生成する。外側はほぼ開放されているので、水滴となって付着しても圧力損失を生じにくい。
図1(a)は、本発明の実施の形態1における電気化学反応装置であるガス分解素子、とくにアンモニア分解素子10の縦断面図である。また、図1(b)は、図1(a)におけるIB−IB線に沿う断面図である。
このアンモニア分解素子10では、円筒形の固体電解質1の内面を覆うようにアノード(第1電極)2が設けられ、また外面を覆うようにカソード(第2電極)5が設けられて、円筒形MEA7(1,2,5)が形成されている。アノード2は燃料極、またカソード5は空気極と呼ばれることがある。筒状体は、一般には、らせん状やサーペンタイン状などに曲がりくねっていてもよいが、図1の場合は、直円筒形のMEA7である。円筒形MEAの内径は、たとえば20mm程度であるが、適用する装置に応じて、変えるのがよい。本実施の形態のアンモニア分解素子10では、円筒形のMEA7の内筒を埋めるように、アノード集電体11が配置されている。また、カソード5の外面に巻き付くようにカソード集電体12が配置されている。各集電体は次のとおりである。
<アノード集電体11>:Niメッシュシート11a/多孔質金属体11s/中心導電棒11k
Niメッシュシート11aが円筒MEA7の内面側のアノード2に接触して、多孔質金属体11sから中心導電棒11kへと導電する。多孔質金属体11sは、後述するアンモニアを含む気体の圧力損失を低くするために、気孔率を高くできる金属めっき体、たとえばセルメット(登録商標:住友電気工業株式会社)を用いるのがよい。円筒MEAの内面側では、複数の部材で形成される集電体11の全体の電気抵抗を低くしながら、アノード側への気体導入の圧力損失を低くすることが重要なポイントである。
<カソード集電体12>:銀ペースト塗布配線12g+Niメッシュシート12a
Niメッシュシート12aが、円筒MEA7の外面に接触して、外部配線へと導電する。銀ペースト塗布配線12gは、カソード5における酸素ガスを酸素イオンに分解するのを促進する触媒として作用する銀を含み、かつカソード集電体12の電気抵抗を低くすることに寄与する。カソード5に銀を含ませることも可能であるが、カソード集電体12に、所定の性状の銀ペースト塗布配線12gは、酸素分子を通しながら銀粒子がカソード5に接触して、カソード5内に含まれる銀粒子と同等の触媒作用を発現する。しかも、カソード5に含ませるより安価である。
(アノード反応):2NH3+3O2−→N2+3H2O+6e−
より詳しくは、一部のアンモニアが、2NH3→N2+3H2の反応を生じ、この3H2が酸素イオン3O2−と反応して3H2Oを生成する。
カソード5には空気、とくに酸素ガスが、スペースSを通るように導入され、カソード5において酸素分子から分解した酸素イオンをアノード2に向かって固体電解質1へと送り出す。カソード反応はつぎのとおりである。
(カソード反応):O2+4e−→2O2−
上記の電気化学反応の結果、電力が発生し、アノード2とカソード5との間に電位差を生じ、カソード集電体12からアノード集電体11へと電流Iが流れる。カソード集電体12とアノード集電体11との間に負荷、たとえばこのガス分解素子10を加熱するためのヒータ41を接続しておけば、そのための電力を供給することができる。ヒータ41への上記電力の供給は、部分的であってもよく、むしろ大部分の場合において、自家発電の供給量はヒータ全体に要する電力の半分以下であることが多い。
繰り返しになるが、上記のガス分解素子では、円筒MEAの内面側のアノード2においては、アノード集電体11の電気抵抗を低くしながら、ここを通る気体の圧力損失を低くすることが、成否の鍵になる。また、カソード側においては、空気は円筒内を通らないが、空気とカソードとの接触箇所の高密度化と、カソード集電体12の低抵抗化が、やはり成否の鍵になる。
プロトン導電性の固体電解質1を用いると、たとえばアンモニアを分解する場合、アノード2でアンモニアを分解してプロトン、窒素分子および電子を生じさせて、プロトンを固体電解質1を経てカソード5へと移動させ、カソード5において酸素と反応して水(H2O)を生じさせる。プロトンは酸素イオンと比べて小さいので固体電解質中の移動速度は大きい。このため加熱温度を低くしながら実用レベルの分解容量を得ることができる。固体電解質1の厚みも、強度を確保できる厚みとしやすい。
また、たとえば筒状体MEAを用いてアンモニア分解を行うとき、内側をアノードとした場合、酸素イオン導電性の固体電解質では、水を筒状体の内側(アノード)で生成する反応となる。水は、筒状体MEAの出口付近の温度が低い部分では水滴を形成して圧力損失の原因となる場合がある。これに対して、プロトン導電性の固体電解質を用いると、プロトンと酸素分子と電子とが、カソード(外側)で反応して水を生成する。外側はほぼ開放されているので、出口側の温度の低い箇所で水滴となって付着しても圧力損失を生じにくい。
1.中心導電棒11k:
本実施の形態では、MEA7が円筒形であり、かつ、アノード集電体11に中心導電棒11kを用いた点に最大の特徴がある。中心導電棒11kは、少なくとも表層にCrを含まない金属で形成するのがよい。たとえばNi導電棒11kとするのがよい。Crを含むステンレススティールを用いた場合、使用中に、アノード2中のセラミックスGDCなどがCr被毒によって機能不全を生じるからである。中心導電棒11kの直径は、特にこだわらないが、円筒固体電解質1の内径の1/9〜1/3程度とするのがよい。たとえば上記内径18mmのとき、2mm〜6mm程度とするのがよい。太くしすぎると流すことのできるガスの最大流量が減少し、細くし過ぎると電気抵抗が大きくなり発電時の電圧低下につながる。多孔質金属体11sは、シート状のもの(セルメットシート)が、中心導電棒11kにらせん状に緊密に巻き付けられ、らせんの状態が維持される。このため、多孔質金属体11sと中心導電棒11kとの界面の電気抵抗は小さい。中心導電棒11kを用いることの利点は次のとおりである。
(E1)アノード2から外部配線に至る間の全体の電気抵抗を低くすることができる。
(E2)従来の円筒MEAを用いた場合の泣き所は、内面側の集電体の外部端子を簡単な構造で、小型にまとめることができない点にあった。円筒MEAの内面側の集電には多孔質金属体は不可欠であるが、この多孔質金属体は端の部分をまとめにくく、小型化された端子部を形成することができなかった。たとえば、多孔質金属の端を引き伸ばして外部との導電接続をはかる場合、ガス分解素子自体が大掛かりになり、商品価値は大きく低下する。また、圧力損失の点でも多孔質金属体の延長は好ましくない。
さらに、円筒MEA7の内側には、アンモニアを含む気体が導入されるので、気密性の高い、気体搬送路と円筒MEA7との接続、およびアノード集電体11と外部配線との接続が重要となる。円筒MEA7の端には、アノード集電体の外部配線への接続部、および、気体搬送路との接続部が、両方ともに設けられる。
中心導電棒11kは、ねじ切りや溝きり等の加工が容易であり、ソリッド棒なので、多少の外部の応力に変形することはなく、安定にその形状を維持することができる。この結果、アノード集電体12と外部配線との接続部を簡単な構造で、しかも小型で実現することができる。
(E3)ガス分解素子10を能率よく稼働させるには600℃〜1000℃に加熱する必要がある。加熱のためのヒータ41は、空気通路の外側に配置するしかない。熱は円筒MEA7の外側から内側へと伝導するが、円筒MEA7の端部も当然、高温になる。高温の端部に高い気密性で、外部配線および気体搬送路を接続させるには、上記の高温では、特殊な耐熱性の樹脂が必要になる。また、ガスによる腐食等も高温になるほど進行が高くなる傾向があるので、耐食性についても、特殊な材料が必要になるおそれがある。この結果、使用可能な樹脂が、非常に高価になるおそれがある。
しかし、中心導電棒11kを用いれば、ヒータ41側の外側から最も遠い位置にあり、しかも容易に軸方向に延ばすことができる。このため、比較的、温度が低い箇所まで延ばした位置で、気密性を高くしながら、外部配線との導電接続、および気体搬送路との接続、を行うことができる。その結果、非常に特殊な樹脂を用いることなく、通常のレベルの耐熱性かつ耐食性の樹脂を用いることができ、経済性を高め、かつ耐久性を向上させることができる。
管状継ぎ手30の本体部31には、気密性を保ってその本体部31を貫通する導電貫通部37cが設けられ、気密性を保つために封止樹脂38等が塗られている。この導電貫通部37cは、円柱棒で、外部配線11eと確実な導電接続を行うためにナット39を螺合させるねじを切っておくのがよい。導電貫通部37cの管内先端には導電線37bが接合されており、この導電線37bの他端には接続板37aが接合されている。
接続板37aと、中心導電棒11kの先端部35との導電接続は、接続器具たとえばドライバを用いて、そのドライバを管状継ぎ手30の突き出し孔部31aを通して、ねじ34を螺合することで、行う。ドライバによるねじ34の締め付けによって、先端部35と接続板37aとの導電接続における電気抵抗(接触抵抗)をほとんどなくすことができる。
また、カソード集電体12のNiメッシュシート12aの端部の外周に、外部配線12eを周回させることで、外部への引き出しを行うことができる。カソード5は、円筒MEA7の外面側に位置するので、アノード集電体11から外部への引き出しほど困難ではない。
気体搬送路45は、弾性変形可能な樹脂等の管を用いるのがよい。その管45を、突き出し孔部31aの外周に嵌め合わせ、締結具47で締結することで、気密性のよい接続を得ることができる。
図3における、アノード集電体11と外部配線11eとの接続、および管状継ぎ手30と気体搬送路45との接続は、ともに非常に簡単かつ小型の構造で実現されている。また、上記の2種類の接続が、ヒータからの熱硫の主流部から外れた位置へと、中心導電棒11kおよびその付属品である先端部35によって離されている。このため、フッ素樹脂という普通の耐熱性樹脂または耐食性樹脂によって、長期間の繰り返し耐久性を確保することができる。また、確認のために付言するが、中心導電棒11kは、多孔質金属体11sと小さい接触抵抗で導電接続することは、上述したとおりである。
図1(a),(b)に示すアノード集電体11におけるNiメッシュシート11aは、アノード集電体11の電気抵抗を低下させることを通じて、ガス流れの圧力損失を小さくする点で、重要な要素である。上述のように、アノード集電体11は、アノード2/Niメッシュシート11a/多孔質金属体(セルメット)11s/中心導電棒11k、の導電経路をとる。仮に、Niメッシュシート11aを用いない場合は、多孔質金属体11sが、直接、アノード2に接触する。この場合、多孔質金属体11sをセルメット等の金属めっき体で構成しても、次のように接触抵抗は大きなものになる。金属めっき体は、所定厚みを有してシート状であり、ミクロ的には樹枝状の金属が延びて樹枝間で連続している。筒状体MEAの内面側に第1電極集電体として金属めっき体を装入するとき、上記シート状の金属めっき体を渦巻き状に巻いて渦の軸心を筒状体MEAの軸心に沿うようにして装入する。この渦巻き状シートの外周面では、らせんの最も外の縁または所定位置の母線部分については筒内面に沿って接触しやすいが、それより内側の部分については非同心円ではなくらせん状なので、第1電極から離れる傾向がある。中心導電棒11kに強く緊密に巻き付けることができる場合は接触抵抗は低くできるが、渦巻き状の外周側は渦巻き中心のようにはならない。このため、多孔質金属体と第1電極との接触面積を十分大きくとりにくい。また、接触圧についても同様に所定の母線部分は十分な接触圧を保つことができるが、それより内側では不十分である。このため、多孔質金属体を、直接、第1電極に接触させて導通をとる場合、接触抵抗が大きくなり、第1電極集電体の電気抵抗を増大させる。集電体の電気抵抗の増大は、電気化学反応の能力を減少させる。そして、さらに不都合なことに、接触面積を稼ぐために、従来、多孔質金属体11sはアノード2の長さ一杯に連続して配置されていた。このような多孔質金属体11sの長さ一杯の連続配置が、導入される気体の圧力損失を増大させていた。
これに対して、金属のメッシュシート11aとくにNiメッシュシートを用いると、次のようにして接触抵抗を下げることができる。すなわち、Niメッシュシート11aの場合、一枚のシート状なので第1電極の内筒面に沿って全周で接触することは自然である。そして、筒状体内に充満するように加える外力(圧縮性)および充満させるための材料増の調整などによって、金属メッシュシート11aと金属めっき体11sとは相互になじみ合ってアノード2側に張り出してアノード2との接触面積を大きくすることができる。また、金属メッシュシート11aと金属めっき体11sとの接触界面では、樹枝状金属同士が押し合わされ、また相手側の隙間に入り込んで相互に接触するため、接触抵抗は低い状態が維持される。
上記のように、多孔質金属体11sに金属めっき体であるセルメット(登録商標)を用いても、Niメッシュシートを用いない場合、接触抵抗は比較的大きく、ガス分解素子10のカソード集電体12とアノード集電体11との間の電気抵抗は、たとえば4〜7Ω程度あった。これに、上記のNiメッシュシート11aを挿入することによって、1Ω程度以下に下げることができる。すなわち1/4以下程度にすることができる。
(F1)Niメッシュシート11aを配置することで、多孔質金属体11sは、断続的に円筒MEAの内側に配置すればよく、図1(a)に示す構成によって十分に低い電気抵抗とすることができる。すなわち、従来のように、多孔質金属体11sを、円筒MEA7の全長さにわたって切れ目なく配置する必要はない。
(F2)その多孔質金属体11sを、間隔をおいて断続的に配置した結果、アンモニアを含む気体の流れにおける圧損を大きく下げることができる。この結果、たとえば半導体製造装置の排気設備から排出されるアンモニアを含んだ気体を、大きな圧力差をかけずに十分な量吸い出すことができ、上記気体の吸い出しに要する電力代を下げることができる。
また、配管系統やガス分解素子の圧力差に対する部品の仕様を緩いものにでき、経済性を高めながら、高い圧力差等による事故のリスクを低くすることができる。
従来、カソード5には銀粒子を配置して、銀粒子の触媒作用によって酸素分子の分解速度を向上させるのが普通であった。しかし、カソード5に銀粒子を含ませる構造では、カソード5の価格が高くなり、経済性を低下させる。カソード5に銀粒子を含有させる代わりに、カソード5外面において、銀ペースト塗布の形態で銀粒子の配線を形成することができる。
図5は、円筒形のカソード5の外周面に設けられた、銀ペースト塗布配線12gとNiメッシュシート12aとを示す図である。銀ペースト塗布配線12gは、銀ペーストをカソード5の外周面に、たとえば図5に示すように帯状の配線を格子状(母線方向+環状方向)に配置する。
この銀ペーストにおいて重要なのは、乾燥後または焼結後に、気孔率の高い多孔質にすることである。図6は銀ペースト塗布配線12gの表面を示すSEM(Scanning Electron Microscopy)像を示し、(a)は画像データであり、(b)はその説明図である。図6に示すように、塗布し乾燥(焼結)した後に多孔質になる銀ペーストは市販されており、たとえば京都エレックス株式会社製のDD−1240などを用いることができる。銀ペースト塗布配線12gを多孔質にすることの重要性はつぎの理由に基づく。
カソード5には酸素分子O2をできるだけ多く供給するのがよく、しかも銀ペーストに含まれる銀粒子は、カソード5におけるカソード反応を促進する触媒作用を有する(図8参照)。銀ペースト塗布配線12gをカソード5に塗布することで、カソード中の酸素イオンを通すLSMなどの金属酸化物と、銀粒子と、酸素分子O2とが接触する箇所(接触箇所)が高密度で生じる。銀ペースト塗布配線12gを多孔質にすることで、多くの酸素分子O2が、多孔質の気孔中に入って上記の接触箇所に触れ、カソード反応を生じやすくなる。
さらに、銀粒子を含む銀ペースト塗布配線12gは、導電性が高いので、Niメッシュシート12aを補助してカソード集電体12における電気抵抗を低くする。このために、銀ペースト塗布配線12gは、上記のように、格子状(母線方向、環状方向)に連続するように設けるのがよい。外側のNiメッシュシート12aは、この銀ペースト塗布配線12gに接触して導通するように巻き付けられる。
要約すると、多孔質になる銀ペースト塗布配線12gによって、(1)カソード反応を促進して、かつ(2)カソード集電体12の電気抵抗を下げることができる。
銀ペースト塗布配線12gは、図5に示すように帯状に格子状に設けてもよいし、またはカソード5の全外周面に形成してもよい。カソード5の全外周面に銀ペースト塗布した場合には、配線とは呼びにくいが、本説明では、全外周面の領域に抜けた領域なく塗布する場合も、銀ペースト塗布配線と呼ぶこととする。このカソード5の全外周面に塗布する場合は、Niメッシュシート12aを省略することができる。
<アノード2>
−構成と作用−
図7は、固体電解質1が酸素イオン導電性の場合における、アノード2の電気化学反応を説明するための図である。アノード2には、アンモニアを含む気体が導入され、気孔2hを通って流れる。アノード2は、表面酸化されて酸化層を有する金属粒連鎖体21と、酸素イオン導電性のセラミックス22とを主成分とする焼結体である。酸素イオン導電性のセラミックス22としては、SSZ(スカンジウム安定化ジルコニア)、YSZ(イットリウム安定化ジルコニア)、SDC(サマリウム安定化セリア)、LSGM(ランタンガレート)、GDC(ガドリア安定化セリア)などを用いることができる。
金属粒連鎖体21の金属は、ニッケル(Ni)またはNiに鉄(Fe)を含むものとするのがよい。さらに好ましくはTiを2〜10000ppm程度の微量含むものである。(1)Ni自体、アンモニアの分解を促進する触媒作用を有する。また、FeやTiを微量含むことでさらに触媒作用を高めることができる。さらに、このNiを酸化させて形成されたニッケル酸化物は、これら金属単味の促進作用をさらに高めることができる。ただし、アンモニアの分解反応(アノード反応)は還元反応なので、使用前の製品には焼結処理等で生じた酸化層がNi粒連鎖体に形成されていたのが、使用によってアノード中の金属粒連鎖体も還元されて酸化層が消失することになる。しかし、Ni自体の触媒作用は確実にあり、さらに、酸化層がないことをカバーするために、FeやTiをNiに含有させて触媒作用の低下を補うことができる。
上記の触媒作用に加えて、アノードにおいて、酸素イオンを分解反応に参加させている。すなわち、分解を電気化学反応のなかで行う。上記のアノード反応2NH3+3O2−→N2+3H2O+6e−では、酸素イオンの寄与があり、アンモニアの分解速度を大きく向上させる。(3)アノード反応では、自由な電子e−が生じる。電子e−がアノード2に滞留すると、アノード反応の進行は、妨げられる。金属粒連鎖体21は、ひも状に細長く、酸化層21bで被覆された中身21aは良導体の金属(Ni)である。電子e−は、ひも状の金属粒連鎖体の長手方向に、スムースに流れる。このため、電子e−がアノード2に滞留することはなく、金属粒連鎖体21の中身21aを通って、外に流れる。金属粒連鎖体21により、電子e−の通りが、非常に良くなる。要約すると、本発明の実施の形態における特徴は、アノードにおける次の(e1)、(e2)および(e3)にある。
(e1)ニッケル粒連鎖体、Fe含有ニッケル連鎖体、またはFe,Ti含有ニッケル粒連鎖体による分解反応の促進(高い触媒機能)
(e2)酸素イオンによる分解促進(電気化学反応の中での分解促進)
(e3)金属粒連鎖体のひも状良導体による電子の導通性確保(高い電子伝導性)
上記の(e1)、(e2)および(e3)によって、アノード反応は非常に大きく促進される。
温度を上げて、触媒に分解対象ガスを接触させるだけで、その分解対象ガスの分解は進行する。それは先行文献に開示されており、上記したように周知である。しかし、上記のように、燃料電池を構成する素子において、カソード5からイオン導電性の固体電解質1を経て、酸素イオンを反応に関与させ、その結果、生じる電子を外に導通させることで、分解反応速度は飛躍的に向上する。上記の(e1)、(e2)および(e3)の機能、およびその機能をもたらす構成をもつことが、本発明の大きな特徴である。
なお、上記は固体電解質1が酸素イオン導電性の場合の説明であるが、固体電解質1はプロトン(H+)導電性でもよく、その場合、アノード2におけるイオン導電性セラミックス22はプロトン導電性のセラミックス、たとえばバリウムジルコネート等を用いる。
−配合および焼結−
アノード2の酸素イオン導電性の金属酸化物(セラミックス)をSSZとする場合、SSZの原料粉末の平均径は0.5μm〜50μm程度とする。表面酸化された金属粒連鎖体21と、SSZ22との配合比は、mol比で0.1〜10の範囲とする。焼結方法は、たとえば大気雰囲気中で、温度1000℃〜1600℃の範囲に、30分〜180分間保持することで行う。製造方法については、とくに円筒MEA7の製造法に関連づけて、このあと説明する。
−還元析出法−
金属粒連鎖体21は、還元析出法によって製造するのがよい。この金属粒連鎖体21の還元析出法については、特開2004−332047号公報などに詳述されている。ここで紹介されている還元析出法は、還元剤として3価チタン(Ti)イオンを用いる方法であり、析出する金属粒(Ni粒など)は微量のTiを含む。このため、Ti含有量を定量分析することで、3価チタンイオンによる還元析出法で製造されたものと特定することができる。3価チタンイオンとともに存在する金属イオンを変えることで、所望の金属の粒を得ることができる。Niの場合はNiイオンを共存させる。Feイオンを微量加えると、微量Feを含むNi粒連鎖体が形成される。
また、連鎖体を形成するには、金属が強磁性金属であり、かつ所定のサイズ以上であることを要する。NiもFeも強磁性金属なので、金属粒連鎖体を容易に形成することができる。サイズについての要件は、強磁性金属が磁区を形成して、相互に磁力で結合し、その結合状態のまま金属の析出→金属層の成長が生じて、金属体として全体が一体になる過程で、必要である。所定サイズ以上の金属粒が磁力で結合した後も、金属の析出は続き、たとえば結合した金属粒の境界のネックは、金属粒の他の部分とともに、太く成長する。アノード2に含まれる金属粒連鎖体21の平均直径Dは5nm以上、500nm以下の範囲とするのがよい。また、平均長さLは0.5μm以上、1000μm以下の範囲とするのがよい。また、上記平均長さLと平均径Dとの比は3以上とするのがよい。ただし、これら範囲外の寸法を持つものであってもよい。
−酸化層の形成−
表面酸化処理は、アノード2に用いる場合は、還元されるので重要度は少し低下する。表面酸化処理方法はつぎのとおりである。(i)気相法による熱処理酸化、(ii)電解酸化、(iii)化学酸化の3種類が好適な手法である。(i)では大気中で500〜700℃にて1〜30分処理するのがよい。最も簡便な方法であるが、酸化膜厚の制御が難しい。(ii)では標準水素電極基準で3V程度に電位を印加し、陽極酸化することにより表面酸化を行うが、表面積に応じ電気量により酸化膜厚を制御できる特徴がある。しかし、大面積化した場合、均一に酸化膜をつけることは難しい手法である。(iii)では硝酸などの酸化剤を溶解した溶液に1〜5分程度浸漬することで表面酸化する。酸化膜厚は時間と温度、酸化剤の種類でコントロールできるが薬品の洗浄が手間となる。いずれの手法も好適であるが、(i)または(iii)がより好ましい。
望ましい酸化層の厚みは、1nm〜100nmであり、より好ましくは10nm〜50nmの範囲とする。ただし、この範囲外であってもかまわない。酸化皮膜が薄すぎると触媒機能が不十分となる。また、わずかな還元雰囲気でもメタライズされてしまう恐れがある。逆に酸化皮膜が厚すぎると触媒性は充分保たれるが、反面、界面での電子伝導性が損なわれ、発電性能が低下する。
−構成および作用−
図8は、固体電解質1が酸素イオン導電性の場合における、カソード5における電気化学反応を説明するための図である。カソード5には、空気とくに酸素分子が導入される。カソード5は、酸素イオン導電性のセラミックス52とを主成分とする焼結体とする。この場合の酸素イオン導電性のセラミックス52として、LSM(ランタンストロンチウムマンガナイト)、LSC(ランタンストロンチウムコバルタイト)、SSC(サマリウムストロンチウムコバルタイト)などを用いるのがよい。
本実施の形態におけるカソード5では、Ag粒子は銀ペースト塗布配線12gの形態で配置される。この中で、Ag粒子はカソード反応O2+4e−→2O2−を大きく促進させる触媒機能を有する。この結果、カソード反応は非常に大きい速度で進行することができる。Ag粒子の平均径は、10nm〜100nmとするのがよい。
なお、上記は固体電解質1が酸素イオン導電性の場合の説明であるが、固体電解質1はプロトン(H+)導電性でもよく、その場合、カソード5におけるイオン導電性セラミックス52はプロトン導電性のセラミックス、たとえばバリウムジルコネート等を用いる。
−焼結−
SSZの平均径は0.5μm〜50μm程度のものを用いるのがよい。焼結条件は、大気雰囲気で、1000℃〜1600℃に、30分〜180分間程度保持する。
電解質1は、固体酸化物、溶融炭酸塩、リン酸、固体高分子などを用いることができるが、固体酸化物は小型化でき、取り扱いが容易なので好ましい。固体酸化物1としては、酸素イオン導電性の、SSZ、YSZ、SDC、LSGM、GDCなどを用いるのがよい。また、上記のように、プロトン導電性のバリウムジルコネートを用いることもできる。
アノード2の集電材の重要な一要素である多孔質金属体11sは金属めっき体とするのがよい。多孔質金属体11には金属めっき多孔体とくにNiめっき多孔体、すなわち上述のセルメット(登録商標)を用いるのがよい。Niめっき多孔体は、気孔率を大きくとることができ、たとえば0.6以上0.98以下とすることができる。これによって、内面側電極であるアノード2の集電体の一要素として機能しながら、非常に良好な通気性を得ることができる。気孔率が0.6未満では、圧力損失が大きくなり、ポンプ等による強制循環をするとエネルギー効率が低下し、またイオン導電材等に曲げ変形等を生じて好ましくない。圧力損失を低減し、イオン導電材の損傷を防止するために、気孔率は、0.8以上とするのがよく、更に好ましい範囲として0.9以上とする。一方、気孔率が0.98を超えると電気伝導性が低下して集電機能が低下する。
図9により、円筒形MEA7の製造方法の概要について説明する。図9には、アノード2、およびカソード5ごとに、焼成を行う工程を示す。まず、市販されている円筒形固体電解質1を購入して準備する。次いで、カソード5を形成する場合は、所定の流動性を持つようにカソード構成材料を溶媒に溶かした溶液を調整して、円筒形固体電解質の外面に均等になるように塗布する。次いで、カソード5に適切な焼成条件で焼成する。このあとアノード2の形成に移る。図9に示す製造方法の他に、多くのバリエーションがある。焼成回数を1回ですます場合で、図9に示すように、各部分ごとに焼成を行うのではなく、塗布状態のまま、各部分を形成して、最後に、各部分の最大公約数的な条件で焼成を行う。この他、多くのバリエーションがあり、各部分を構成する材料と、目標とする分解効率と、製造経費等を総合的に考えて製造条件を決めることができる。
図10は、ガス分解素子10の配列例を示す図である。図10(a)は、1つの円筒形MEA7を用いた場合のガス除害装置であり、また、図10(b)は、図10(a)に示すものを、複数(12個)、並列に配置した構成のガス除害装置である。1つのMEA7では処理容量が不足する場合に、複数の並列配置は、面倒な加工無しに容量増大をはかることができる。複数のどの円筒形MEA7についても、内面側に、上記のアノード集電体11(11a,11s,11k)を装入し、内面側にアンモニアを含む気体を流す。円筒形MEA7の外面側は、スペースSを設けて高温の空気または高温の酸素に触れさせるようにする。
また、加熱装置であるヒータ41については、複数、並列配置した円筒形MEA7の全体をまとめて結束する態様により、設けることができる。このような全体をまとめて結束する態様をとることで、小型化をはかることができる。
図11(a)は、本発明の実施の形態2におけるガス分解素子10の縦断面図であり、また図11(b)は、(a)におけるXIB−XIB線に沿う断面図である。本実施の形態では、アノード集電体11が、アノード2に接するNiペースト層11g/多孔質金属体11s/中心導電棒11k、によって形成される点に特徴がある。すなわち、図1(a),(b)のガス分解素子10におけるNiメッシュシート11aを、Niペースト層11gによって置き換えた点に特徴がある。
上記のように、多孔質金属体11sに金属めっき体であるセルメット(登録商標)を用いても、接触抵抗は比較的大きく、ガス分解素子10のカソード集電体12とアノード集電体11との間の電気抵抗は、たとえば6Ω程度あった。これに、上記のNiペースト層11gを形成することによって、2Ω程度に下げることができる。すなわち1/3程度にすることができる。この電気抵抗低減効果は、Niメッシュシート11aと同等である。Niペースト層11gにするか、Niメッシュシート11aにするかは、経済性、製造のしやすさ等を考慮して決めるのがよい。
表1は、本発明のガス分解素子を適用できる他のガス分解反応を例示する表である。ガス分解反応R1は、実施の形態1で説明したアンモニア/酸素の分解反応である。その他、ガス分解反応R2〜R8のどの反応に対しても本発明のガス分解素子は用いることができる。すなわち、アンモニア/水、アンモニア/NOx、水素/酸素/、アンモニア/炭酸ガス、VOC(揮発性有機化合物:volatile organic compounds)/酸素、VOC/NOx、水/NOx、などに用いることができる。また、どの反応においても、第1電極はアノードに限定されず、カソードとしてもよい。カソードもそれに応じて対をなすようにする。
上記の電気化学反応はガス除害を目的としたガス分解反応である。しかし、ガス除害を主目的としないガス分解素子もあり、本発明のガス分解素子は、そのような、電気化学反応装置、たとえば燃料電池等にも用いることができる。
Claims (13)
- ガスを分解するために用いる素子であって、
内面側の第1電極と、外面側の第2電極と、該第1電極および第2電極によって挟まれる固体電解質とで構成される、筒状体のMEA(Membrane Electrode Assembly)と、
前記筒状体のMEAの内面側に装入され、前記第1電極に導通する多孔質金属体と、
前記多孔質金属体の導電性軸をなすように挿通された中心導電棒とを備えることを特徴とする、ガス分解素子。 - 前記中心導電棒が、単相または複合相の金属の棒であり、少なくとも表層にCrを含まないことを特徴とする、請求項1に記載のガス分解素子。
- 前記筒状体のMEAにおいて前記固体電解質が両端で突き出し、該筒状固体電解質の両端に嵌め合わされる管状継ぎ手を備え、該管状継ぎ手は、前記第1電極に供給される前記ガスを含む気体の搬送路と接続し、前記中心導電棒に導電接続して当該管状継ぎ手を貫通する導電部材を備えることを特徴とする、請求項1または2に記載のガス分解素子。
- 前記管状継ぎ手が耐熱性および耐食性を有する樹脂で形成されていることを特徴とする、請求項3に記載のガス分解素子。
- 前記第1電極、および/または、第2電極が、ニッケル(Ni)を主成分とする金属粒連鎖体と、イオン導電性セラミックスとを含む焼結体であることを特徴とする、請求項1〜4のいずれか1項に記載のガス分解素子。
- 前記固体電解質が、酸素イオン導電性またはプロトン導電性、を有することを特徴とする、請求項1〜5のいずれか1項に記載のガス分解素子。
- 前記多孔質金属体が金属めっき体であることを特徴とする、請求項1〜6のいずれか1項に記載のガス分解素子。
- 前記第1電極に第1の気体を導入し、前記第2電極に第2の気体を導入して、前記第1電極と前記第2電極とから電力の取り出しをすることを特徴とする、請求項1〜7のいずれか1項に記載のガス分解素子。
- ヒータを備え、該ヒータに前記電力を供給することを特徴とする、請求項8に記載のガス分解素子。
- 請求項1〜9のいずれか1項に記載のガス分解素子を備え、前記第1電極にアンモニアを含む気体を導入し、前記第2電極に酸素分子を含む気体を導入することを特徴とする、アンモニア分解素子。
- 前記第1電極に第3の気体を導入し、前記第2電極に第4の気体を導入して、前記第1電極および前記第2電極から電力を投入することを特徴とする、請求項1〜7のいずれか1項に記載のガス分解素子。
- 請求項8〜10のいずれか1項に記載のガス分解素子を備え、前記電力を他の電気装置に供給するための電力供給部品を備えることを特徴とする、発電装置。
- 流体についての電気化学反応装置であって、請求項1〜12のいずれか1項に記載のガス分解素子を用いたことを特徴とする、電気化学反応装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010130551A JP5621332B2 (ja) | 2010-06-07 | 2010-06-07 | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 |
PCT/JP2011/062886 WO2011155422A1 (ja) | 2010-06-07 | 2011-06-06 | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置およびガス分解素子の製造方法 |
CN201180028247.9A CN102933293B (zh) | 2010-06-07 | 2011-06-06 | 气体分解组件、氨分解组件、发电装置、电化学反应装置、以及气体分解组件的制造方法 |
US13/702,221 US9136552B2 (en) | 2010-06-07 | 2011-06-06 | Gas decomposition component, ammonia decomposition component, power generation apparatus, electrochemical reaction apparatus, and method for producing gas decomposition component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010130551A JP5621332B2 (ja) | 2010-06-07 | 2010-06-07 | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011255283A true JP2011255283A (ja) | 2011-12-22 |
JP5621332B2 JP5621332B2 (ja) | 2014-11-12 |
Family
ID=45472077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010130551A Active JP5621332B2 (ja) | 2010-06-07 | 2010-06-07 | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5621332B2 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57187020A (en) * | 1981-05-13 | 1982-11-17 | Ebara Corp | Method for decomposing nox gas and removing nox |
WO2010035691A1 (ja) * | 2008-09-24 | 2010-04-01 | 住友電気工業株式会社 | 電気化学反応装置、その製造方法、ガス分解素子、アンモニア分解素子および発電装置 |
-
2010
- 2010-06-07 JP JP2010130551A patent/JP5621332B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57187020A (en) * | 1981-05-13 | 1982-11-17 | Ebara Corp | Method for decomposing nox gas and removing nox |
WO2010035691A1 (ja) * | 2008-09-24 | 2010-04-01 | 住友電気工業株式会社 | 電気化学反応装置、その製造方法、ガス分解素子、アンモニア分解素子および発電装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5621332B2 (ja) | 2014-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5648344B2 (ja) | 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法 | |
WO2010035691A1 (ja) | 電気化学反応装置、その製造方法、ガス分解素子、アンモニア分解素子および発電装置 | |
WO2011155423A1 (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 | |
JP5691144B2 (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 | |
US9455464B2 (en) | Power generation apparatus | |
WO2011155422A1 (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置およびガス分解素子の製造方法 | |
JP5569157B2 (ja) | ガス分解素子 | |
JP2012016693A (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 | |
JP5655502B2 (ja) | ガス分解素子、発電装置及びガス分解方法 | |
JP5621332B2 (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 | |
JP5569161B2 (ja) | ガス分解素子およびその製造方法 | |
JP2011255285A (ja) | ガス分解システム | |
JP2011014309A (ja) | 電気化学反応装置およびその製造方法 | |
JP2011255284A (ja) | ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置 | |
JP5742075B2 (ja) | ガス分解素子、発電装置 | |
JP5655508B2 (ja) | ガス分解素子、発電装置及びガス分解方法 | |
JP5787269B2 (ja) | ガス分解素子、発電装置及びガス分解方法 | |
JP5946027B2 (ja) | ガス分解装置及び発電装置 | |
JP5545227B2 (ja) | ガス分解装置及び発電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5621332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |