JP2011254066A - Fe-BASED NANO CRYSTAL ALLOY THIN BAND LAMINATE, MAGNETIC CORE FOR ANTENNA AND ANTENNA - Google Patents

Fe-BASED NANO CRYSTAL ALLOY THIN BAND LAMINATE, MAGNETIC CORE FOR ANTENNA AND ANTENNA Download PDF

Info

Publication number
JP2011254066A
JP2011254066A JP2011069904A JP2011069904A JP2011254066A JP 2011254066 A JP2011254066 A JP 2011254066A JP 2011069904 A JP2011069904 A JP 2011069904A JP 2011069904 A JP2011069904 A JP 2011069904A JP 2011254066 A JP2011254066 A JP 2011254066A
Authority
JP
Japan
Prior art keywords
laminate
antenna
alloy thin
alloy ribbon
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011069904A
Other languages
Japanese (ja)
Other versions
JP5885118B2 (en
Inventor
Nakao Moritsugu
仲男 森次
Hiroto Ideno
博人 井手野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011069904A priority Critical patent/JP5885118B2/en
Publication of JP2011254066A publication Critical patent/JP2011254066A/en
Application granted granted Critical
Publication of JP5885118B2 publication Critical patent/JP5885118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Fe-based nano crystal alloy thin band laminate capable of being integrally treated due to large adhesive force between alloy thin bands after heat treatment, for solving problems that the alloy thin bands detach from each other and adhesive strength is low after the heat treatment at 500°C or higher of a conventional amorphous alloy thin band laminate for the Fe-based nano crystal alloy thin band laminate treated by application of polyimide resin on its surface and thermocompression thereof.SOLUTION: An Fe-based nano crystal alloy thin band laminate is a laminate in which a plurality of Fe-based nano crystal alloy thin bands are laminated. The neighboring Fe-based nano crystal alloy thin bands are adhered to each other with a polyimide resin having a structure of biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PPD). An average of resin thickness of the polyimide resin is equal to or greater than 2 μm and equal to or less than 16 μm, and three-point flexural strength is equal to or greater than 0.3 Pa.

Description

本発明は、Fe基ナノ結晶合金薄帯が積層された積層体に関し、特に500℃以上での熱処理が可能な積層体に関するものである。   The present invention relates to a laminated body in which Fe-based nanocrystalline alloy ribbons are laminated, and particularly to a laminated body that can be heat-treated at 500 ° C. or higher.

優れた磁性材料としてアモルファス合金薄帯がある。アモルファス合金薄帯は、溶融した合金材料を単ロール法などにより急冷凝固させて作製される。次に、磁心として使用するために、目的とするトロイダル形状や積層体形状にした後、本来の優れた磁気特性を引き出すため、300〜500℃での熱処理が行われる。熱処理後は合金薄帯が脆化するため、前記トロイダル形状や積層体形状への加工は熱処理前に行う必要がある。
アンテナ用磁心として従来からフェライトが使用されていたが、セラミックスであるため薄型化していくと機械的強度が低下し、折れたりクラック発生の問題があるため薄型化には限界がある。そこで、フェライトに比べて機械的強度に優れるCo基アモルファス合金薄帯の積層体が電波腕時計用や自動車のキーレスエントリー用のアンテナ用磁心として使用されている。
An amorphous magnetic ribbon is an excellent magnetic material. The amorphous alloy ribbon is produced by rapidly solidifying a molten alloy material by a single roll method or the like. Next, heat treatment at 300 to 500 ° C. is performed in order to bring out the original excellent magnetic properties after forming the desired toroidal shape or laminate shape for use as a magnetic core. Since the alloy ribbon becomes brittle after the heat treatment, the processing to the toroidal shape or the laminate shape needs to be performed before the heat treatment.
Conventionally, ferrite has been used as a magnetic core for an antenna. However, since it is a ceramic, when it is thinned, the mechanical strength is lowered, and there is a problem of breakage or cracking. Therefore, a laminate of a Co-based amorphous alloy ribbon that is superior in mechanical strength to ferrite is used as a magnetic core for an antenna for a radio wave wristwatch or a keyless entry of an automobile.

アモルファス合金薄帯の積層体の作製方法としては、以下の2つの作製方法がある。
(A)エポキシ樹脂含浸方法
目的とするサイズにスリット、切断した合金薄帯を熱処理した後、目的とする枚数を、分解が容易な積層治具中にセットし、エポキシ樹脂を合金薄帯間に含浸、硬化させた後、治具を分解し、積層体を取り出す方法。
(B)耐熱樹脂塗布合金薄帯の熱圧着方法
アモルファス合金薄帯表面に予めポリイミド樹脂やポリアミドイミド樹脂などの耐熱性樹脂を塗布したのち、目的とするサイズにスリット、切断し、複数枚の合金薄帯を積層後、積層方法に熱圧着することで一体化して積層体を得た後、最後に熱処理を行う方法。
(A)方法は、熱処理後にエポキシ樹脂で薄帯を接着、固定するため、熱処理の温度を考慮する必要が無い。しかし、樹脂含浸、硬化で数時間が必要であり、治具へのセットや取り出しの工数が必要であって、生産性が非常に低いという問題がある。また、合金薄帯間のエポキシ樹脂量の管理が困難であるため、特性ばらつきが大きいという欠点がある。
他方(B)方法は、最終工程で熱処理を行うため、熱処理温度が耐熱性樹脂の耐熱温度以下の制約があるが、樹脂の塗布は連続して行うことが可能で生産性が高い。また熱圧着時間も数分程度で十分である。連続塗布装置による一定した樹脂厚さを得ることが容易であるため積層体での特性ばらつきも小さいという利点を持つ。
There are the following two production methods as a production method of a laminated body of amorphous alloy ribbons.
(A) Epoxy resin impregnation method After heat-treating the slit and cut alloy ribbons to the desired size, set the desired number of pieces in a laminating jig that can be easily disassembled, and put the epoxy resin between the alloy ribbons After impregnation and curing, the jig is disassembled and the laminate is taken out.
(B) Thermocompression bonding method of heat-resistant resin coated alloy ribbon After applying heat-resistant resin such as polyimide resin or polyamide-imide resin to the surface of amorphous alloy ribbon in advance, slitting and cutting to the desired size, multiple alloys After laminating the ribbon, it is integrated by thermocompression bonding to the laminating method to obtain a laminated body, and finally a heat treatment is performed.
In the method (A), since the ribbon is bonded and fixed with an epoxy resin after the heat treatment, it is not necessary to consider the temperature of the heat treatment. However, several hours are required for resin impregnation and curing, and man-hours for setting to and removing from a jig are required, resulting in a problem that productivity is very low. Moreover, since it is difficult to manage the amount of epoxy resin between the alloy ribbons, there is a drawback that the characteristic variation is large.
On the other hand, in the method (B), since the heat treatment is performed in the final step, the heat treatment temperature is restricted to be equal to or lower than the heat resistant temperature of the heat resistant resin, but the resin can be applied continuously and the productivity is high. Also, a few minutes is sufficient for the thermocompression bonding time. Since it is easy to obtain a constant resin thickness by a continuous coating apparatus, there is an advantage that the characteristic variation in the laminate is small.

Fe基ナノ結晶合金薄帯は、熱処理によってFe基ナノ結晶組織になるような、Fe基ナノ結晶合金用のアモルファス合金薄帯を作製し、トロイダル形状や積層体形状にした後、窒素雰囲気中で500℃以上の熱処理によって得られる。
最も耐熱性に優れるポリイミド樹脂であっても、500℃以上での熱処理に耐えることは困難であるため前記(B)方法の適用は困難であり、前記(A)方法が採用されている。
The Fe-based nanocrystalline alloy ribbon is made of an amorphous alloy ribbon for an Fe-based nanocrystalline alloy that becomes a Fe-based nanocrystalline structure by heat treatment. Obtained by heat treatment at 500 ° C. or higher.
Even the polyimide resin having the most excellent heat resistance is difficult to withstand heat treatment at 500 ° C. or higher, so that it is difficult to apply the method (B), and the method (A) is adopted.

特許文献1には、アモルファス合金薄帯やFe基ナノ結晶合金薄帯上にポリイミド樹脂やポリアミドイミド樹脂などの耐熱性樹脂を塗布し、積層した積層磁気コアが記載されている。
特許文献2には、組成Fe73.5CuNbSi14.56.5(原子%)のFe基ナノ結晶合金薄帯の、薄帯表面にエポキシ樹脂を塗布し積層し、積層体を用いたアンテナが記載されている。
特許文献3、4には、Fe基ナノ結晶合金薄帯上にポリイミド樹脂を塗布し、積層、熱処理した積層体が記載されている。
Patent Document 1 describes a laminated magnetic core in which a heat resistant resin such as a polyimide resin or a polyamideimide resin is applied to an amorphous alloy ribbon or an Fe-based nanocrystalline alloy ribbon and laminated.
In Patent Document 2, an Fe-based nanocrystalline alloy ribbon with the composition Fe 73.5 Cu 1 Nb 3 Si 14.5 B 6.5 (atomic%) is coated with an epoxy resin on the surface of the ribbon and laminated. An antenna using a body is described.
Patent Documents 3 and 4 describe a laminate in which a polyimide resin is applied on a Fe-based nanocrystalline alloy ribbon, laminated, and heat-treated.

特開2002−164224号公報JP 2002-164224 A 特開平07−278763号公報JP 07-278763 A 国際公開2005/031767号公報International Publication No. 2005/031767 特開2005−81732号公報JP-A-2005-81732

Fe基ナノ結晶合金薄帯の熱処理温度は500℃以上と高温であるため、最も耐熱温度が高いポリイミド系樹脂であっても前記(B)方法を適用することは非常に困難と述べたが、特許文献1、3、4には、Fe基ナノ結晶合金薄帯上にポリイミド樹脂を塗布し、積層、熱処理した積層体が記載されている。そこで、特許文献3の段落(0045)および特許文献4の段落(0042)から(0045)に記載されている内容に基づいて、3,3’−ジアミノジフェニルエーテル(別名:3,3’−オキシジアニリン(MODA))と3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物(BPDA)からなるポリイミド樹脂を用いて積層体を作製し、550℃で熱処理を行った。その結果、合金薄帯間の接着力はほとんど無く、各合金薄帯が容易に剥離してしまう問題があった。熱処理温度を500℃に低下させて試みたが同様に合金薄帯間の接着力はほとんど無く、各合金薄帯が容易に剥離してしまう問題があった。   Although the heat treatment temperature of the Fe-based nanocrystalline alloy ribbon is as high as 500 ° C. or higher, it is very difficult to apply the method (B) even with the polyimide resin having the highest heat resistance temperature. Patent Documents 1, 3, and 4 describe a laminate in which a polyimide resin is applied on a Fe-based nanocrystalline alloy ribbon, laminated, and heat-treated. Therefore, based on the contents described in paragraph (0045) of Patent Document 3 and paragraphs (0042) to (0045) of Patent Document 4, 3,3′-diaminodiphenyl ether (also known as 3,3′-oxydi) is used. A laminate was prepared using a polyimide resin composed of aniline (MODA)) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), and heat-treated at 550 ° C. As a result, there was almost no adhesive force between the alloy ribbons, and there was a problem that each alloy ribbon was easily peeled off. Although an attempt was made to lower the heat treatment temperature to 500 ° C., there was almost no adhesion between the alloy ribbons, and there was a problem that each alloy ribbon was easily peeled off.

そこで、発明者は、前記問題点を鑑み、ポリイミド樹脂を表面に塗布し、熱圧着したFe基ナノ結晶合金薄帯用アモルファス合金薄帯を、500℃以上での熱処理をしても、合金薄帯間の接着力が大きく、一体的に取り扱いが可能なFe基ナノ結晶合金薄帯積層体を提供することを目的とする。   Therefore, in view of the above problems, the inventor applied an amorphous alloy ribbon for Fe-based nanocrystalline alloy ribbon coated with polyimide resin on the surface and heat-treated at 500 ° C. or higher even if the alloy thin film was heat-treated. An object of the present invention is to provide a Fe-based nanocrystalline alloy ribbon laminate having a large adhesive force between the strips and capable of being handled integrally.

発明者は、ポリイミド構造を構成するジアミン及び酸無水物の組み合わせを検討し、Fe基ナノ結晶合金薄帯用アモルファス合金薄帯に塗布後、前記合金薄帯複数枚を熱圧着して得られた積層体を500℃以上での熱処理したFe基ナノ結晶合金薄帯積層体においても、合金薄帯間の接着力が大きいポリイミド樹脂を見出したものである。   The inventor examined the combination of a diamine and an acid anhydride constituting a polyimide structure, and was applied to an amorphous alloy ribbon for an Fe-based nanocrystalline alloy ribbon, and then obtained by thermocompression bonding of the alloy ribbons. In the Fe-based nanocrystalline alloy ribbon laminate in which the laminate is heat-treated at 500 ° C. or higher, a polyimide resin having a large adhesive force between the alloy ribbons has been found.

つまり、本発明は、複数枚のFe基ナノ結晶合金薄帯が積層された積層体であって、隣接するFe基ナノ結晶合金薄帯がビフェニルテトラカルボン酸二無水物(BPDA)とp−フェニレンジアミン(PPD)の構造をもつポリイミド樹脂により接着されていて、前記ポリイミド樹脂の樹脂厚さの平均値が2μm以上16μm以下であり、3点曲げ強度が0.3Pa以上であることを特徴とするFe基ナノ結晶合金薄帯積層体である。
また、本発明は、前記Fe基ナノ結晶合金薄帯積層体からなるアンテナ用磁心である。
また、本発明は、前記アンテナ用磁心を用いたアンテナである。
That is, the present invention is a laminate in which a plurality of Fe-based nanocrystalline alloy ribbons are laminated, and the adjacent Fe-based nanocrystalline alloy ribbons are biphenyltetracarboxylic dianhydride (BPDA) and p-phenylene. It is bonded by a polyimide resin having a diamine (PPD) structure, the average resin thickness of the polyimide resin is 2 μm or more and 16 μm or less, and the three-point bending strength is 0.3 Pa or more. It is a Fe-based nanocrystalline alloy ribbon laminate.
The present invention also provides an antenna magnetic core comprising the Fe-based nanocrystalline alloy ribbon laminate.
In addition, the present invention is an antenna using the antenna magnetic core.

本発明によれば、従来非常に困難であった、Fe基ナノ結晶合金薄帯用アモルファス合金薄帯表面に予めポリイミド樹脂を塗布したのち、目的とするサイズにスリット、切断し、複数枚の合金薄帯を積層後、積層方向に熱圧着することで積層体を得た後、更に500℃以上での熱処理を行った積層体であっても合金薄帯間の接着力が大きいため、一体的に取り扱いが可能となる。また、前記工程によって、磁気特性や機械的強度のばらつきが小さい安定した品質の積層体が得られるようになる。
Fe基ナノ結晶合金薄帯積層体をアンテナに適用することにより、Co基アモルファス合金薄帯積層体に比べて高い飽和磁束密度と、Fe基アモルファス合金薄帯積層体に比べて高透磁率・低損失を備えたアンテナ用磁心が得られ、特に送信用として優れたアンテナ用磁心、更にはアンテナを得られる。
According to the present invention, a polyimide resin is previously applied to the surface of an amorphous alloy ribbon for an Fe-based nanocrystalline alloy ribbon, which has been very difficult in the past, and then slit and cut to a desired size to obtain a plurality of alloys. After laminating the ribbon, after obtaining the laminate by thermocompression bonding in the laminating direction, even the laminate subjected to heat treatment at 500 ° C. or more has high adhesive strength between the alloy ribbons, Can be handled. In addition, a stable quality laminate having small variations in magnetic properties and mechanical strength can be obtained by the above-described steps.
By applying the Fe-based nanocrystalline alloy ribbon laminate to the antenna, the saturation flux density is higher than that of the Co-based amorphous alloy ribbon laminate, and the magnetic permeability and the lower are lower than those of the Fe-based amorphous alloy ribbon laminate. An antenna magnetic core having a loss can be obtained, and an antenna magnetic core excellent for transmission, and further an antenna can be obtained.

本発明の一実施例の積層体断面概略図Laminate cross-sectional schematic of one embodiment of the present invention 本発明の一実施例の積層体の斜視図The perspective view of the laminated body of one Example of this invention 本発明の一実施例のアンテナの斜視図The perspective view of the antenna of one Example of this invention 本発明の実施例1に記載のポリイミド樹脂の構造式Structural formula of polyimide resin described in Example 1 of the present invention

本発明者は、ポリイミド樹脂(ポリアミド酸樹脂)が塗布されたFe基ナノ結晶合金薄帯用アモルファス合金薄帯の積層体を500℃以上で熱処理することにより得られるFe基ナノ結晶合金薄帯の積層体において、十分な機械的強度が得られるポリイミド樹脂を構成する酸無水物とジアミンの組み合わせを検討したものである。
ポリイミド樹脂は、分子を構成する原子の結合エネルギーを高くし、かつ、芳香族間との共鳴エネルギーを高くすることにより分解温度を高め、熱安定性・耐熱性を向上させるという設計思想で開発された高分子樹脂である。ポリイミド樹脂は、前記分子構造から、元来剛直な高分子であるが、構成される酸無水物とジアミンの組み合わせにより多様なポリイミド樹脂を作製することができる。
ポリイミド樹脂の前駆体であるポリアミド酸溶液を塗布乾燥後、200℃以上の熱処理により、脱水縮合反応(イミド化反応)が起こりポリイミド樹脂となる。
The inventor of the present invention has obtained a Fe-based nanocrystalline alloy ribbon obtained by heat-treating a laminate of an amorphous alloy ribbon for Fe-based nanocrystalline alloy ribbon coated with a polyimide resin (polyamic acid resin) at 500 ° C. or higher. In the laminate, a combination of an acid anhydride and a diamine constituting a polyimide resin capable of obtaining sufficient mechanical strength is examined.
Polyimide resin has been developed with a design philosophy that raises the decomposition temperature and improves thermal stability and heat resistance by increasing the binding energy of atoms constituting the molecule and increasing the resonance energy between aromatics. Polymer resin. Polyimide resins are inherently rigid polymers due to their molecular structure, but various polyimide resins can be prepared by combining acid anhydrides and diamines.
After applying and drying the polyamic acid solution which is a precursor of the polyimide resin, a dehydration condensation reaction (imidization reaction) occurs by heat treatment at 200 ° C. or higher to become a polyimide resin.

酸無水物、ジアミン、いずれもフェニル基が一つで構成され、かつフェニル基のパラ位で結合さているもの、例えば酸無水物を無水ピロメリト酸(PMDA)とp−フェニレンジアミン(PPD)(比較例1)のものは、分子内で回転できる部位が少なく、分子が非常に直線的で剛直なため、耐熱性が高いが、高温においても柔軟性をほとんど示さない特徴を持つ。
他方、酸無水物、ジアミン、いずれもフェニル基が2つで、フェニル基の間に酸素をもつ構造をもち、酸無水物の2つのフェニル基がメタ位で結合さているもの、例えばベンゾフェノンテトラカルボン酸二無水物(BTDA)と4,4’−オキシジアニリン(ODA)(比較例10)のものは、分子内で回転が容易であるため、高温において柔軟性が十分であって樹脂膜同士を熱圧着しやすい。しかし、耐熱性は前記無水ピロメリト酸(PMDA)とp−フェニレンジアミン(PPD)の組み合わせに比べて劣る。
Acid anhydrides and diamines, both of which are composed of a single phenyl group and bonded at the para position of the phenyl group, such as acid anhydrides pyromellitic anhydride (PMDA) and p-phenylenediamine (PPD) (comparison) In Example 1), there are few sites that can rotate in the molecule, and the molecule is very linear and rigid, so that it has high heat resistance, but has a characteristic that it hardly shows flexibility even at high temperatures.
On the other hand, acid anhydrides and diamines both have two phenyl groups and have a structure with oxygen between the phenyl groups, and the two phenyl groups of the acid anhydride are bonded at the meta position, for example, benzophenone tetracarboxylic Since acid dianhydride (BTDA) and 4,4′-oxydianiline (ODA) (Comparative Example 10) are easy to rotate within the molecule, they are sufficiently flexible at high temperatures, and the resin films Easy to thermocompression. However, the heat resistance is inferior to the combination of pyromellitic anhydride (PMDA) and p-phenylenediamine (PPD).

Fe基ナノ結晶合金薄帯の組成は、一般式:(Fe1−a100−x−y−z−αSiM’α(原子%)で表され、式中MはCo,Niから選ばれた少なくとも1種の元素、AはCu,Auから選ばれた少なくとも1種の元素、M’はNb,W,Ta,Zr,Hf,Ti,VおよびMoから選ばれた少なくとも1種の元素を示し、a,x,y,z,およびαはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0.1≦α≦30である。500℃以上の熱処理後によって平均結晶粒径100nm以下の微結晶組織が形成される。
熱処理の温度は、合金薄帯の組成や所望とする磁気特性によって設定されるものであるが、好ましい熱処理温度は、500℃以上560℃以下である。
The composition of the Fe-based nanocrystalline alloy ribbon is represented by the general formula: (Fe 1-a M a ) 100-xyz-α A x Si y B z M ′ α (atomic%), M is at least one element selected from Co and Ni, A is at least one element selected from Cu and Au, and M ′ is selected from Nb, W, Ta, Zr, Hf, Ti, V and Mo A, x, y, z, and α are 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, respectively. 5 ≦ y + z ≦ 30 and 0.1 ≦ α ≦ 30. After the heat treatment at 500 ° C. or higher, a microcrystalline structure having an average crystal grain size of 100 nm or less is formed.
The heat treatment temperature is set according to the composition of the alloy ribbon and the desired magnetic properties, but the preferred heat treatment temperature is 500 ° C. or higher and 560 ° C. or lower.

前記Fe基ナノ結晶合金薄帯は、溶融したFe基合金材料を単ロール法などにより急冷凝固させて作製されたFe基アモルファス合金薄帯を、前記500℃以上の熱処理で得られるが、急冷凝固後、アモルファス状態を安定に得るためには、薄帯厚さとしては50μm以下が好ましい。他方、薄帯をハンドリングする場合の強度を確保するために薄帯厚さとして10μm以上が好ましい。
積層体の層数は、所望とする磁気特性により決定されるものであるが、積層体としての磁気特性を期待できるのは5層以上が好ましく、より好ましいのは10層以上である。また、後述のように積層体は熱圧着により作製されるが、各層への圧力印加の均一性や安定性を確保するには100層以下が好ましく、より好ましいのは60層以下である。
The Fe-based nanocrystalline alloy ribbon is obtained by heat-treating the Fe-based amorphous alloy ribbon produced by rapidly solidifying a molten Fe-based alloy material by a single roll method or the like by the heat treatment at 500 ° C. or more. Later, in order to stably obtain an amorphous state, the thickness of the ribbon is preferably 50 μm or less. On the other hand, the thickness of the ribbon is preferably 10 μm or more in order to ensure the strength when handling the ribbon.
The number of layers of the laminate is determined by the desired magnetic properties, but it is preferable that the number of layers that can be expected as the laminate is 5 or more, more preferably 10 or more. As will be described later, the laminate is produced by thermocompression bonding, but 100 layers or less are preferable, and 60 layers or less are more preferable in order to ensure the uniformity and stability of pressure application to each layer.

溶剤としては、N−メチルピロリドン(NMP)単独でも良いし、他にN、N−ジメチルアセトアミド(DMAc)を用いても良い。NMPやDMAcは、合金薄帯表面との濡れ性が良好であり、密着性が良く、欠陥も無い塗膜を形成することが可能である。
ポリアミド酸溶液の塗布装置としては、複数枚のアモルファス合金薄帯に同時に塗布することが可能で、かつ塗布厚さを比較的大きくできるバーコーターによる方式が好ましい。
As the solvent, N-methylpyrrolidone (NMP) alone may be used, or N, N-dimethylacetamide (DMAc) may be used. NMP and DMAc have good wettability with the alloy ribbon surface, can form a coating film with good adhesion, and no defects.
As the apparatus for applying the polyamic acid solution, a system using a bar coater that can simultaneously apply to a plurality of amorphous alloy ribbons and can relatively increase the coating thickness is preferable.

塗布乾燥後の樹脂の厚さは、樹脂と前記溶剤との混合比を調整すること、つまり、樹脂の固形分比率を調整することで目的の樹脂の厚さを得ることができる。また、バーコーターで使用するバーの番数を選択することにより、樹脂溶液のかきとり量を変更することにより厚さを変更できる。
また、塗布乾燥後の樹脂の厚さは、合金薄帯同士を安定に熱圧着できる厚さ以上であることが好ましい。塗布乾燥後の樹脂の厚さ1μm(隣接する合金薄帯間で2μm)以上あれば薄帯表面に凹凸があっても樹脂表面の平滑性を得ることができ、合金薄帯同士の接着力を接着面全面において安定に確保することができる。より安定に接着力を確保するためには塗布乾燥後の樹脂の厚さ2μm(隣接する合金薄帯間で4μm)以上がより好ましい。
他方、合金薄帯と樹脂の熱膨張係数の違いによる界面剥離を抑制するために、厚さ8μm(隣接する合金薄帯間で16μm)以下が好ましい。
積層体のポリイミド樹脂厚さの平均値とは、積層体の積層方向の厚さTmをマイクロメータで測定し、その測定値から合金薄帯の厚さTaの合計(合金薄帯の厚さTa×積層数m)を差し引いた値を、(合金薄帯の積層数m−1)で除した値である。つまり、積層体のポリイミド樹脂厚さの平均値は、(Tm−Ta×m)/(m−1)で表される値である。
3点曲げ強度の評価方法は、Fe基ナノ結晶合金薄帯用アモルファス合金薄帯の両面に所望とする厚さのポリイミド樹脂(ポリアミド酸樹脂)を塗布後、積層し、熱圧着後、窒素中550℃で熱処理した積層体を、8mmスパンの支持棒に載せて、中央部に負荷をかけて、積層体が破壊される負荷測定し、積層体単位断面積での強度計算したものである。
The thickness of the resin after coating and drying can be obtained by adjusting the mixing ratio of the resin and the solvent, that is, by adjusting the solid content ratio of the resin. Further, by selecting the number of bars used in the bar coater, the thickness can be changed by changing the scraping amount of the resin solution.
Moreover, it is preferable that the thickness of the resin after coating and drying is equal to or greater than the thickness at which the alloy ribbons can be stably thermocompression bonded. If the resin thickness after coating and drying is 1 μm (2 μm between adjacent alloy ribbons) or more, even if the ribbon surface is uneven, the resin surface can be smooth, and the adhesive strength between the alloy ribbons can be increased. It can be secured stably over the entire adhesive surface. In order to secure the adhesive force more stably, the thickness of the resin after coating and drying is preferably 2 μm (4 μm between adjacent alloy ribbons) or more.
On the other hand, in order to suppress interfacial peeling due to the difference in thermal expansion coefficient between the alloy ribbon and the resin, the thickness is preferably 8 μm (16 μm between adjacent alloy ribbons) or less.
The average value of the polyimide resin thickness of the laminated body is the thickness Tm in the lamination direction of the laminated body measured with a micrometer, and the total thickness Ta of the alloy ribbon (the thickness Ta of the alloy ribbon) is determined from the measured value. X is the value obtained by dividing the value obtained by subtracting the number of laminations m) by the number of laminations of alloy ribbons m-1. That is, the average value of the polyimide resin thickness of the laminate is a value represented by (Tm−Ta × m) / (m−1).
Three-point bending strength is evaluated by applying a polyimide resin (polyamic acid resin) with a desired thickness on both sides of an amorphous alloy ribbon for Fe-based nanocrystalline alloy ribbon, laminating, thermocompression bonding, and in nitrogen The laminated body heat-treated at 550 ° C. is placed on a support rod having an 8 mm span, a load is applied to the center portion, the load at which the laminated body is broken is measured, and the strength in the laminated body unit cross-sectional area is calculated.

熱圧着温度は、合金薄帯に塗布したポリイミド樹脂表面同士が十分接着させるためにはより高温が好ましいが、作業性より通常大気雰囲気で行われるため、ポリイミド樹脂の酸化分解反応を抑制するために450℃以下が好ましい。更に加熱・冷却の作業性より430℃以下が好ましい。
また、熱圧着時に、前述したようにポリアミド酸からポリイミド樹脂へのイミド化反応が起こる。イミド化反応が十分起こるためには300℃以上の温度が好ましい。
熱圧着の圧力は、合金薄帯の全面が十分密着するためには、50MPa以上が好ましい。更に、多数の積層体間のばらつきを抑えるためには100MPa以上がより好ましい。熱圧着は、通常、積層体の位置ずれを抑制するため、治具中に多数枚の合金薄帯を位置合わせした状態で行われる。このため、プレス装置のプレス部材は、前記治具に接触する部分にのみ、圧力がかかるため、プレス部材の耐圧にもよるが、接触部分のみが凹みなど変形する恐れがあるため、圧力の上限として、300MPa以下が好ましく、更には200MPa以下がより好ましい。
また、後述する実施例では積層体を1ヶずつ熱圧着しているが、両面に樹脂が塗布された(積層体の最表面では片面)合金薄帯を連続的に加熱ロールで圧着して、その後切断して、個々の積層体を得る工程であっても良い。
The thermocompression bonding temperature is preferably higher in order for the polyimide resin surfaces applied to the alloy ribbon to be sufficiently bonded to each other, but since it is usually performed in an air atmosphere from the workability, in order to suppress the oxidative decomposition reaction of the polyimide resin 450 degrees C or less is preferable. Furthermore, 430 degrees C or less is preferable from workability | operativity of heating / cooling.
Moreover, at the time of thermocompression bonding, as described above, an imidization reaction from polyamic acid to a polyimide resin occurs. In order for the imidization reaction to occur sufficiently, a temperature of 300 ° C. or higher is preferable.
The pressure for thermocompression bonding is preferably 50 MPa or more so that the entire surface of the alloy ribbon is sufficiently adhered. Furthermore, 100 MPa or more is more preferable in order to suppress variations among a large number of laminates. The thermocompression bonding is usually performed in a state in which a large number of alloy ribbons are aligned in a jig in order to suppress misalignment of the laminated body. For this reason, the press member of the press device is pressured only on the portion that contacts the jig, and therefore, depending on the pressure resistance of the press member, there is a risk that only the contact portion may be deformed. Is preferably 300 MPa or less, more preferably 200 MPa or less.
Moreover, in the Example mentioned later, although the laminated body is thermocompression-bonded one by one, the resin thin film by which resin was apply | coated to both surfaces (one side in the outermost surface of a laminated body) is continuously crimped | bonded with a heating roll, Then, it may be a step of cutting to obtain individual laminates.

熱処理雰囲気は、ポリイミド樹脂の酸化反応を抑えるために窒素雰囲気が好ましく、雰囲気中の酸素濃度は500ppm以下が好ましい。より好ましくは350ppm以下である。また、生産性を考慮すると、酸素濃度は10ppm以上が好ましい。   The heat treatment atmosphere is preferably a nitrogen atmosphere in order to suppress the oxidation reaction of the polyimide resin, and the oxygen concentration in the atmosphere is preferably 500 ppm or less. More preferably, it is 350 ppm or less. In consideration of productivity, the oxygen concentration is preferably 10 ppm or more.

本発明は、複数枚のFe基ナノ結晶合金薄帯を積層した積層体であって、隣接するFe基ナノ結晶合金薄帯がビフェニルテトラカルボン酸二無水物(BPDA)とp−フェニレンジアミン(PPD)の構造をもつポリイミド樹脂により接着されていて、前記ポリイミド樹脂の樹脂厚さの平均値が2μm以上16μm以下であり、3点曲げ強度が0.3Pa以上であることを特徴とするFe基ナノ結晶合金薄帯積層体である。
また、本発明は、前記Fe基ナノ結晶合金薄帯積層体からなるアンテナ用磁心である。
また、本発明は、前記アンテナ用磁心を用いたアンテナである。
The present invention is a laminate in which a plurality of Fe-based nanocrystalline alloy ribbons are laminated, and the adjacent Fe-based nanocrystalline alloy ribbons are biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PPD). ), Which is bonded by a polyimide resin having a structure of (2), the average value of the resin thickness of the polyimide resin is 2 μm or more and 16 μm or less, and the three-point bending strength is 0.3 Pa or more. It is a crystalline alloy ribbon laminate.
The present invention also provides an antenna magnetic core comprising the Fe-based nanocrystalline alloy ribbon laminate.
In addition, the present invention is an antenna using the antenna magnetic core.

以下、本発明を実施例に基づいて詳細に述べる。
樹脂膜同士の420℃における熱圧着性と550℃での熱処理後の積層体の強度、いずれも満足する酸無水物とジアミンの組み合わせを検討するにあたり、酸無水物及びジアミン共にフェニル基1ヶまたは2ヶで構成され、ジアミンはパラ位とメタ位の組み合わせ、具体的には、酸無水物として、無水ピロメリト酸(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、ベンゾフェノンテトラカルボン酸二無水物(BTDA)の3種類、ジアミンとして、p−フェニレンジアミン(PPD)、m−フェニレンジアミン(MPD)、4,4’−オキシジアニリン(ODA)、3,3’−オキシジアニリン(MODA)の4種類を組み合わせた、表1に記載の12種類を検討し、この中に樹脂膜同士の420℃での熱圧着性と550℃での熱処理後の積層体の3点曲げ試験による強度に注目して評価した。
Hereinafter, the present invention will be described in detail based on examples.
In examining the combination of acid anhydride and diamine satisfying both the thermocompression bonding property between resin films at 420 ° C. and the strength of the laminate after heat treatment at 550 ° C. The diamine is a combination of para and meta positions, specifically, pyromellitic anhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), benzophenonetetracarboxylic dianhydride as acid anhydrides. Three types of products (BTDA), p-phenylenediamine (PPD), m-phenylenediamine (MPD), 4,4′-oxydianiline (ODA), 3,3′-oxydianiline (MODA) as diamines The 12 types listed in Table 1 were combined, and the thermocompression bonding property between the resin films at 420 ° C. and 550 ° C. Focusing on strength by 3 point bending test of the laminate after the heat treatment was evaluated.

Figure 2011254066
Figure 2011254066

前記12種類のポリアミド酸のNMP溶液を作製し、Fe基ナノ結晶合金薄帯用アモルファス合金薄帯表面の両面に塗布、乾燥させた後、目的とするサイズに切断し、合金薄帯20枚を420℃で熱圧着した。
後述の実施例に記載のように、先ず、熱圧着した積層体が十分な接着力で接着されているかを評価した。熱圧着後の積層体に曲げ応力をかけても、層間が接着している場合を「○」、層間での剥離が観察されるものを「×」として評価した。
熱圧着した積層体を窒素雰囲気中550℃、1時間で熱処理して合金薄帯間の接着力を評価した。前記と同様に、熱圧着後の積層体に曲げ応力をかけても、層間が接着している場合を「○」、層間での剥離が観察されるものを「×」として評価した。
The 12 types of polyamic acid NMP solutions were prepared, applied to both sides of the surface of the amorphous alloy ribbon for the Fe-based nanocrystalline alloy ribbon, dried, then cut to the desired size, and 20 alloy ribbons were obtained. Thermocompression bonding was performed at 420 ° C.
As described in Examples described later, first, it was evaluated whether the thermocompression-bonded laminate was bonded with sufficient adhesive force. Even when bending stress was applied to the laminate after thermocompression bonding, the case where the layers were adhered was evaluated as “◯”, and the case where peeling between the layers was observed was evaluated as “x”.
The thermocompression-bonded laminate was heat treated in a nitrogen atmosphere at 550 ° C. for 1 hour to evaluate the adhesive strength between the alloy ribbons. Similarly to the above, even when bending stress was applied to the laminate after thermocompression bonding, the case where the layers were adhered was evaluated as “◯”, and the case where peeling between the layers was observed was evaluated as “x”.

(実施例1)
Fe基ナノ結晶合金薄帯用アモルファス合金薄帯として組成Fe74CuNbSi15.56.5(原子%)の幅20mm、厚さ18μm、長さ300mmの短冊形状を使用した。
ポリアミド酸溶液として、表1に示す組み合わせの内、酸無水物をビフェニルテトラカルボン酸二無水物(BPDA)、ジアミンをp−フェニレンジアミン(PPD)としたポリアミド酸が18質量%であるNMP溶液を作製した。
次に、株式会社松尾産業製のバーコーター塗布装置により、番数No.3のバーを用いて、前記短冊状のアモルファス合金薄帯に、前記ポリアミド酸溶液を塗布した。塗布速度は約30mm/sで行った。その後、温度150℃のホットプレート上にて乾燥した。次に、前記塗布面と反対面にも前記ポリアミド酸溶液を塗布、乾燥した。
こうして多数枚のポリアミド酸溶液を塗布・乾燥したFe基ナノ結晶合金薄帯用アモルファス合金薄帯を得た。マイクロメータで乾燥後のポリアミド酸の厚さを確認したところ、両面合計した平均の塗布厚さは7μmであり、塗布厚さばらつきは1μm以内であった。
このポリアミド酸溶液が塗布・乾燥された幅20mmの合金薄帯を、6mm毎に切断し、20mm×6mmの矩形状に切断し、厚さ3mmのステンレス製の積層治具に20枚積み重ねた。積層した合金薄帯の最上下層にはポリアミド酸を片面にしか塗布していないアモルファス合金薄帯を予め用意しておき、塗布面を隣接するアモルファス合金薄帯側に、塗布していない面を外側になるように積み重ねた。
アモルファス合金薄帯の20枚を1段として、積層治具に5段積み重ねた。
前記積層体5段をセットした積層治具を、温度420℃に設定したポットプレスにセットし、セット後、積層治具の熱容量により温度が低下するが、上下プレスの温度が再度420℃の表示となった後、100MPaの圧力で10分保持した。その後、積層治具を取り出し、室温まで冷却した。積層治具から、熱圧着された積層体5ケが得られた。熱圧着によってもポリアミド酸の塗布厚さの変化は認められなかった。
前記積層体を、曲率半径100mm屈曲させても剥離部分は観察されなかった。
前記熱圧着した積層体を窒素雰囲気のバッチ炉で550℃、1時間熱処理を行った。このときの酸素濃度は300ppmであった。
熱処理後の積層体5ヶを、曲率半径100mm屈曲させても剥離部分は観察されなかった。更に3点曲げ試験を行ったところ、3点曲げ強度は0.3〜0.6Paの範囲であった。 図1に積層体の短手方向断面の概略図を示す。1がFe基ナノ結晶合金薄帯であり、2がポリイミド樹脂である。図2に積層体3の斜視図を示す。
図4に本実施例でのポリイミド樹脂の構造式を示す。
Example 1
As the amorphous alloy ribbon for the Fe-based nanocrystalline alloy ribbon, a strip shape having a composition of Fe 74 Cu 1 Nb 3 Si 15.5 B 6.5 (atomic%) having a width of 20 mm, a thickness of 18 μm, and a length of 300 mm was used.
As the polyamic acid solution, among the combinations shown in Table 1, an NMP solution containing 18% by mass of polyamic acid in which the acid anhydride is biphenyltetracarboxylic dianhydride (BPDA) and the diamine is p-phenylenediamine (PPD) is used. Produced.
Next, using a bar coater coating device manufactured by Matsuo Sangyo Co., Ltd. The polyamic acid solution was applied to the strip-shaped amorphous alloy ribbon using 3 bars. The coating speed was about 30 mm / s. Then, it dried on the hotplate with a temperature of 150 degreeC. Next, the polyamic acid solution was applied to the surface opposite to the coated surface and dried.
Thus, an amorphous alloy ribbon for an Fe-based nanocrystalline alloy ribbon obtained by applying and drying a plurality of polyamic acid solutions was obtained. When the thickness of the polyamic acid after drying was confirmed with a micrometer, the average coating thickness of both surfaces was 7 μm, and the coating thickness variation was within 1 μm.
The alloy ribbon having a width of 20 mm to which the polyamic acid solution was applied and dried was cut every 6 mm, cut into a 20 mm × 6 mm rectangular shape, and 20 sheets were stacked on a 3 mm-thick stainless steel stacking jig. Prepare an amorphous alloy ribbon with polyamic acid applied to only one side in advance on the top layer of the laminated alloy ribbon, and apply the coated surface to the adjacent amorphous alloy ribbon side. Stacked to the outside.
Twenty sheets of amorphous alloy ribbons were taken as one level, and 5 levels were stacked on the stacking jig.
The stacking jig in which the five layers of the laminate are set is set in a pot press set at a temperature of 420 ° C. After setting, the temperature decreases due to the heat capacity of the stacking jig, but the temperature of the upper and lower presses is again displayed at 420 ° C. Then, the pressure was maintained at 100 MPa for 10 minutes. Thereafter, the stacking jig was taken out and cooled to room temperature. From the lamination jig, 5 thermocompression-bonded laminates were obtained. No change in the coating thickness of the polyamic acid was observed even by thermocompression bonding.
Even when the laminate was bent with a radius of curvature of 100 mm, no peeled portion was observed.
The thermocompression-bonded laminate was heat-treated at 550 ° C. for 1 hour in a nitrogen atmosphere batch furnace. The oxygen concentration at this time was 300 ppm.
Even when the five heat-treated laminates were bent with a radius of curvature of 100 mm, no peeled portion was observed. Further, a three-point bending test was performed, and the three-point bending strength was in the range of 0.3 to 0.6 Pa. FIG. 1 shows a schematic diagram of a cross section in the short-side direction of the laminate. 1 is an Fe-based nanocrystalline alloy ribbon, and 2 is a polyimide resin. FIG. 2 shows a perspective view of the laminate 3.
FIG. 4 shows the structural formula of the polyimide resin in this example.

(比較例1)
ポリアミド酸溶液として、表1に示す組み合わせの内、酸無水物を無水ピロメリト酸(PMDA)、ジアミンをp−フェニレンジアミン(PPD)としたポリアミド酸が18質量%であるNMP溶液を作製した。
他の条件は実施例1と同様に作製し、積層体の熱圧着を温度420℃、圧力100MPaで10分保持により試みたが、全ての積層体で各合金薄帯同士は接着していなかった。
(Comparative Example 1)
As a polyamic acid solution, among the combinations shown in Table 1, an NMP solution containing 18% by mass of polyamic acid in which acid anhydride was pyromellitic acid (PMDA) and diamine was p-phenylenediamine (PPD) was prepared.
Other conditions were produced in the same manner as in Example 1, and thermocompression bonding of the laminate was attempted by holding at a temperature of 420 ° C. and a pressure of 100 MPa for 10 minutes, but the alloy ribbons were not bonded to each other in all laminates. .

(比較例2)
ポリアミド酸溶液として、表1に示す組み合わせの内、酸無水物を無水ピロメリト酸(PMDA)、ジアミンをm−フェニレンジアミン(MPD)としたポリアミド酸が18質量%であるNMP溶液を作製した。
他の条件は実施例1と同様に作製し、積層体の熱圧着を温度420℃、圧力100MPaで10分保持により試みたが、全ての積層体で各合金薄帯同士は接着していなかった。
(Comparative Example 2)
As a polyamic acid solution, among the combinations shown in Table 1, an NMP solution containing 18% by mass of a polyamic acid having an acid anhydride of pyromellitic acid (PMDA) and a diamine of m-phenylenediamine (MPD) was prepared.
Other conditions were produced in the same manner as in Example 1, and thermocompression bonding of the laminate was attempted by holding at a temperature of 420 ° C. and a pressure of 100 MPa for 10 minutes, but the alloy ribbons were not bonded to each other in all laminates. .

(比較例3、4、6、7、8、9、10、11)
ポリアミド酸溶液として、酸無水物を無水ピロメリト酸(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、ベンゾフェノンテトラカルボン酸二無水物(BTDA)、ジアミンをp−フェニレンジアミン(PPD)、m−フェニレンジアミン(MPD)、4,4’−オキシジアニリン(ODA)、3,3’−オキシジアニリン(MODA)を用いた、ポリアミド酸が18質量%である表1に示す組み合わせのNMP溶液8種類を作製した。
それぞれのポリアミド酸溶液を用いて、他の条件は実施例1と同様に作製し、積層体の熱圧着を温度420℃、圧力100MPa、10分保持で行った結果、積層体を曲率半径100mm屈曲させても剥離部分は観察されなかった。
しかし、前記積層体を550℃、1時間熱処理を行ったところ、全ての積層体で、ポリイミド樹脂と合金薄帯の界面で剥離部分し、3〜5片に分離していた。
(Comparative Examples 3, 4, 6, 7, 8, 9, 10, 11)
As the polyamic acid solution, acid anhydride is pyromellitic anhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), benzophenonetetracarboxylic dianhydride (BTDA), diamine is p-phenylenediamine (PPD), m- NMP solution 8 of the combination shown in Table 1 using phenylenediamine (MPD), 4,4′-oxydianiline (ODA), 3,3′-oxydianiline (MODA) and having a polyamic acid of 18% by mass Kinds were made.
Using the respective polyamic acid solutions, other conditions were prepared in the same manner as in Example 1. As a result of thermocompression bonding of the laminate at a temperature of 420 ° C. and a pressure of 100 MPa for 10 minutes, the laminate was bent at a radius of curvature of 100 mm. Even if it was made to peel, the peeling part was not observed.
However, when the laminate was heat-treated at 550 ° C. for 1 hour, all the laminates were separated at the interface between the polyimide resin and the alloy ribbon and separated into 3 to 5 pieces.

(比較例5)
ポリアミド酸溶液として、表1に示す組み合わせの内、酸無水物をビフェニルテトラカルボン酸二無水物(BPDA)、ジアミンをM−フェニレンジアミン(MPD)、としたポリアミド酸が18質量%であるNMP溶液を作製した。
それぞれのポリアミド酸溶液を用いて、他の条件は実施例1と同様に作製し、積層体の熱圧着を温度420℃、圧力100MPa、10分保持で行った結果、積層体を曲率半径100mm屈曲させても剥離部分は観察されなかった。
前記積層体を550℃、1時間熱処理を行ったところ、全ての積層体で、曲率半径100mm屈曲させても剥離部分は観察されなかった。
次に3点曲げ試験を行ったところ、3点曲げ強度は0.1〜0.2Paの範囲であった。
(Comparative Example 5)
As the polyamic acid solution, among the combinations shown in Table 1, an NMP solution containing 18% by mass of polyamic acid in which acid anhydride is biphenyltetracarboxylic dianhydride (BPDA) and diamine is M-phenylenediamine (MPD). Was made.
Using the respective polyamic acid solutions, other conditions were prepared in the same manner as in Example 1. As a result of thermocompression bonding of the laminate at a temperature of 420 ° C. and a pressure of 100 MPa for 10 minutes, the laminate was bent at a radius of curvature of 100 mm. Even if it was made to peel, the peeling part was not observed.
When the laminated body was heat-treated at 550 ° C. for 1 hour, no peeled portion was observed in all the laminated bodies even when the curvature radius was bent 100 mm.
Next, when a three-point bending test was performed, the three-point bending strength was in the range of 0.1 to 0.2 Pa.

(実施例2)
実施例1において、ポリアミド酸を塗布・乾燥後、両面合計した平均の塗布厚さを2μmに変更し、熱圧着した積層体を作製した。
前記積層体を、曲率半径100mm屈曲させても剥離部分は観察されなかった。
前記熱圧着した積層体を実施例1と同様の熱処理を行い、熱処理後の積層体を、曲率半径100mm屈曲させても、全ての積層体で、剥離部分は観察されなかった。更に3点曲げ試験を行ったところ、3点曲げ強度は0.3〜0.6Paの範囲であった。
(Example 2)
In Example 1, after applying and drying the polyamic acid, the average coating thickness of both surfaces was changed to 2 μm, and a thermocompression-bonded laminate was produced.
Even when the laminate was bent with a radius of curvature of 100 mm, no peeled portion was observed.
Even when the heat-pressed laminate was subjected to the same heat treatment as in Example 1 and the heat-treated laminate was bent with a radius of curvature of 100 mm, no peeled portion was observed in all the laminates. Further, a three-point bending test was performed, and the three-point bending strength was in the range of 0.3 to 0.6 Pa.

(比較例12)
実施例1において、ポリアミド酸を塗布・乾燥後、両面合計した平均の塗布厚さを1.6μmに変更し、他の条件は実施例1と同様に作製し、積層体の熱圧着を温度420℃、圧力100MPaで10分保持により試みたが、全ての積層体で、各合金薄帯同士は接着されていなかった。
(Comparative Example 12)
In Example 1, after the polyamic acid was applied and dried, the average coating thickness of both surfaces was changed to 1.6 μm, and other conditions were prepared in the same manner as in Example 1, and the thermocompression bonding of the laminate was performed at a temperature of 420. Attempts were made by holding at 10 ° C. and a pressure of 100 MPa for 10 minutes, but the alloy ribbons were not adhered to each other in all laminates.

(実施例3)、
実施例1において、ポリアミド酸を塗布・乾燥後、両面合計した平均の塗布厚さを16μmに変更し、熱圧着した積層体を作製した。
前記積層体を、曲率半径100mm屈曲させても剥離部分は観察されなかった。
前記熱圧着した積層体を実施例1と同様の熱処理を行い、熱処理後の積層体を、曲率半径100mm屈曲させたが、全ての積層体で、剥離部分は観察されなかった。更に3点曲げ試験を行ったところ、3点曲げ強度は0.4〜0.5Paの範囲であった。
(Example 3),
In Example 1, after applying and drying the polyamic acid, the average coating thickness of both surfaces was changed to 16 μm, and a thermocompression-bonded laminate was produced.
Even when the laminate was bent with a radius of curvature of 100 mm, no peeled portion was observed.
The heat-pressed laminate was subjected to the same heat treatment as in Example 1, and the heat-treated laminate was bent at a radius of curvature of 100 mm, but no peeled portion was observed in all the laminates. Further, when a three-point bending test was performed, the three-point bending strength was in the range of 0.4 to 0.5 Pa.

(比較例13)
実施例1において、ポリアミド酸を塗布・乾燥後、両面合計した平均の塗布厚さを17μmに変更し、熱圧着した積層体を作製した。
前記積層体を、曲率半径100mm屈曲させても剥離部分は観察されなかった。
しかし、前記熱圧着した積層体を実施例1と同様の熱処理を行い、熱処理後の積層体を、曲率半径100mm屈曲させた結果、全ての積層体で、ポリイミド樹脂と合金薄帯の界面で剥離部分が観察された。
(Comparative Example 13)
In Example 1, after the polyamic acid was applied and dried, the average coating thickness of both surfaces was changed to 17 μm, and a thermocompression-bonded laminate was produced.
Even when the laminate was bent with a radius of curvature of 100 mm, no peeled portion was observed.
However, the thermocompression-bonded laminate was subjected to the same heat treatment as in Example 1, and the laminate after the heat treatment was bent at a radius of curvature of 100 mm. As a result, the laminate was peeled off at the interface between the polyimide resin and the alloy ribbon. A portion was observed.

(実施例4)
図3に示すように、実施例1に記載のポリアミド酸溶液を塗布・乾燥させた幅20mmの合金薄帯から、幅8mmにスリットし、更に長さが50mmになるように切断し、50mm×8mmの矩形状の合金薄帯を、サイズ及び積層数が異なることを除いて実施例1に記載の方法で、40層積層した積層体を得た。厚さは約0.8mmであった。
前記積層体に導線として直径0.23mmのUEW線を用いて、80ターン巻回しコイルを形成した。得られたコイルの直流抵抗は0.8Ωであり、インダクタンスは周波数134.2kHzで約200μHであった。
前記導線(コイル)の片端に、マッチング用のコンデンサを直列に接続して、共振周波数を134.2kHzに調整し送信アンテナとした。 このアンテナに134.2kHz 0.5Appの交流電流を印加入力し 前記送信アンテナから3m離れた位置でLFプローブにより電界強度を測定したところ93.9〜97.0dBμV/mであり、送信アンテナとしての機能を十分満足していることを確認した。
Example 4
As shown in FIG. 3, a 20 mm wide alloy ribbon obtained by applying and drying the polyamic acid solution described in Example 1 was slit to a width of 8 mm, and further cut to a length of 50 mm. A laminated body was obtained by laminating 40 layers of 8 mm rectangular alloy ribbons by the method described in Example 1 except that the size and the number of laminated layers were different. The thickness was about 0.8 mm.
A coil was formed by winding 80 turns using a UEW wire having a diameter of 0.23 mm as a conducting wire in the laminate. The DC resistance of the obtained coil was 0.8Ω, and the inductance was about 200 μH at a frequency of 134.2 kHz.
A matching capacitor was connected in series to one end of the conducting wire (coil), and the resonance frequency was adjusted to 134.2 kHz to obtain a transmitting antenna. When an alternating current of 134.2 kHz 0.5 App was applied to this antenna and the electric field strength was measured with an LF probe at a position 3 m away from the transmitting antenna, it was 93.9 to 97.0 dBμV / m. It was confirmed that the function was sufficiently satisfied.

1 アモルファス合金薄帯
2 ポリイミド樹脂
3 積層体
4 導線
5 アンテナ
1 Amorphous alloy ribbon 2 Polyimide resin 3 Laminate 4 Conductor 5 Antenna

Claims (3)

複数枚のFe基ナノ結晶合金薄帯が積層された積層体であって、隣接するFe基ナノ結晶合金薄帯がビフェニルテトラカルボン酸二無水物(BPDA)とp−フェニレンジアミン(PPD)の構造をもつポリイミド樹脂により接着されていて、前記ポリイミド樹脂の樹脂厚さの平均値が2μm以上16μm以下であり、3点曲げ強度が0.3Pa以上であることを特徴とするFe基ナノ結晶合金薄帯積層体。 A laminated body in which a plurality of Fe-based nanocrystalline alloy ribbons are laminated, and the adjacent Fe-based nanocrystalline alloy ribbons have a structure of biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PPD). Fe-based nanocrystalline alloy thin film characterized in that the average value of the resin thickness of the polyimide resin is 2 μm or more and 16 μm or less, and the three-point bending strength is 0.3 Pa or more. Band laminate. 請求項1に記載のFe基ナノ結晶合金薄帯積層体からなるアンテナ用磁心。 An antenna magnetic core comprising the Fe-based nanocrystalline alloy ribbon laminate according to claim 1. 請求項2に記載のFe基ナノ結晶合金薄帯積層体からなるアンテナ用磁心を用いたアンテナ。 An antenna using an antenna magnetic core comprising the Fe-based nanocrystalline alloy ribbon laminate according to claim 2.
JP2011069904A 2010-05-06 2011-03-28 Method for producing Fe-based nanocrystalline alloy ribbon laminate Active JP5885118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069904A JP5885118B2 (en) 2010-05-06 2011-03-28 Method for producing Fe-based nanocrystalline alloy ribbon laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010106445 2010-05-06
JP2010106445 2010-05-06
JP2011069904A JP5885118B2 (en) 2010-05-06 2011-03-28 Method for producing Fe-based nanocrystalline alloy ribbon laminate

Publications (2)

Publication Number Publication Date
JP2011254066A true JP2011254066A (en) 2011-12-15
JP5885118B2 JP5885118B2 (en) 2016-03-15

Family

ID=45417727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069904A Active JP5885118B2 (en) 2010-05-06 2011-03-28 Method for producing Fe-based nanocrystalline alloy ribbon laminate

Country Status (1)

Country Link
JP (1) JP5885118B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189252A (en) * 1987-01-31 1988-08-04 Toshiba Corp Thermal head
JPH0851150A (en) * 1994-08-08 1996-02-20 Toray Ind Inc Multilayer interconnection structure
JP2002164224A (en) * 2000-08-30 2002-06-07 Mitsui Chemicals Inc Magnetic substrate and method of manufacturing the same
WO2003060175A1 (en) * 2002-01-16 2003-07-24 Mitsui Chemicals, Inc. Magnetic base material, laminate from magnetic base material and method for production thereof
JP2008262944A (en) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Laminate core and manufacturing method thereof
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189252A (en) * 1987-01-31 1988-08-04 Toshiba Corp Thermal head
JPH0851150A (en) * 1994-08-08 1996-02-20 Toray Ind Inc Multilayer interconnection structure
JP2002164224A (en) * 2000-08-30 2002-06-07 Mitsui Chemicals Inc Magnetic substrate and method of manufacturing the same
WO2003060175A1 (en) * 2002-01-16 2003-07-24 Mitsui Chemicals, Inc. Magnetic base material, laminate from magnetic base material and method for production thereof
JP2008262944A (en) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Laminate core and manufacturing method thereof
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition

Also Published As

Publication number Publication date
JP5885118B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
EP1473377B1 (en) Magnetic base material, laminate from magnetic base material and method for production thereof
JP5163490B2 (en) Soft magnetic metal ribbon laminate and method for producing the same
JP2002164224A (en) Magnetic substrate and method of manufacturing the same
JP2006060432A (en) Radio wave transmitting and receiving antenna
JP2004048136A (en) Thin antenna
JP5885118B2 (en) Method for producing Fe-based nanocrystalline alloy ribbon laminate
JP2004356468A (en) Laminated magnetic core and magnetic component
JP5177641B2 (en) Laminated body and antenna
JP2011124243A (en) Wound magnetic core and process for production thereof
JP4574153B2 (en) Method for producing magnetic substrate
JP2009253104A (en) Laminated body, and antenna
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
JP2002151316A (en) Magnetic substrate
JP2008098323A (en) Magnetic appliance
JP2005116887A (en) Magnetic laminate using magnetic casting metal strip of low ratio and its application
JP2004048135A (en) Rfid antenna
JP4183463B2 (en) Amorphous alloy ribbon laminate and method for producing the same
JP2008073851A (en) Soft magnetic metal thin strip laminate
JP4145223B2 (en) Thin metal plate and manufacturing method thereof
JP2005110061A (en) Small thin antenna
JP2001250727A (en) Magnetic core
JP2004119402A (en) Thin layered strip of amorphous metal and its producing process
JP2005104008A (en) Magnetic base material, laminate thereof and use of them
JPH02280305A (en) Amorphous wound magnetic core
WO2001013386A1 (en) Magnetic core and method of manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5885118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160131

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350