JP4145223B2 - Thin metal plate and manufacturing method thereof - Google Patents

Thin metal plate and manufacturing method thereof Download PDF

Info

Publication number
JP4145223B2
JP4145223B2 JP2003317029A JP2003317029A JP4145223B2 JP 4145223 B2 JP4145223 B2 JP 4145223B2 JP 2003317029 A JP2003317029 A JP 2003317029A JP 2003317029 A JP2003317029 A JP 2003317029A JP 4145223 B2 JP4145223 B2 JP 4145223B2
Authority
JP
Japan
Prior art keywords
polymer compound
resin
compound layer
thin plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003317029A
Other languages
Japanese (ja)
Other versions
JP2005081732A (en
Inventor
光伸 吉田
展弘 丸子
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003317029A priority Critical patent/JP4145223B2/en
Publication of JP2005081732A publication Critical patent/JP2005081732A/en
Application granted granted Critical
Publication of JP4145223B2 publication Critical patent/JP4145223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、高分子化合物層を付与した磁性金属薄板およびその製造方法に関する。   The present invention relates to a magnetic metal sheet provided with a polymer compound layer and a method for producing the same.

従来、磁性金属材料を薄板として使用する場合は、単板の薄板を複数枚積層して用いられてきた。たとえば、磁性金属材料として非晶質金属薄帯を用いるような場合には、その厚さが10〜50μm程度の厚さであるため、非晶質金属薄帯の表面に特定の接着剤を均一に塗布し、これを積層することが行われている。特開昭58−175654号公報(特許文献1)には、高耐熱性高分子化合物を主成分とする接着剤を塗布した非晶質金属薄帯を積み重ね、圧下ロールで圧着し、加熱接着することを特徴とする積層体の製造方法について記載されている。
非晶質金属薄帯を複数枚重ねて積層する場合、積層体に積層ずれが生じる場合があった。このような積層ずれが生じると、寸法安定性が悪く好ましくないので、磁気コアやモータコアなどの磁気応用製品に適用することが困難な場合がある。また、非晶質金属薄帯を矩形に切断するため、シャーリング切断を使用する際、金属薄帯を押さえつけ時に金属薄帯がずれ、切断した形状の寸法安定性が悪くなる等の問題が生じる場合があった。これらの問題は、種々の磁気応用製品に応用する上で障害となっていた。
これらの問題は、金属と金属を積層するために高分子化合物などの接着剤を用いると、金属と高分子化合物の膨張係数の違いなどから熱収縮率が異なり、金属が反ってしまうということが原因と考えられる。特開昭64−80534号公報(特許文献2)には、重合体と金属箔からなる長尺状のフレキシブル金属薄薄積層板のカール矯正および寸法安定性改良法について、幅方向に対して0〜80度の角度で設けられた第1のバーの曲面上に、金属箔を内側にして緊張状態で長手方向に滑られせる工程を用いたカール矯正および寸法安定性改良法が提案されているが、非晶質金属材料などの素材を用いる場合には、非晶質金属の表面には凹凸があり摩擦が大きく、非晶質金属薄帯にエッジ部があると薄帯が破損しやすいという点から好ましくない。
特開昭58−175654号公報 特開昭64−80534号公報
Conventionally, when a magnetic metal material is used as a thin plate, a plurality of single-plate thin plates have been stacked. For example, when an amorphous metal ribbon is used as the magnetic metal material, the thickness is about 10 to 50 μm, so a specific adhesive is uniformly applied to the surface of the amorphous metal ribbon. It is applied to and laminated. In Japanese Patent Application Laid-Open No. 58-175654 (Patent Document 1), amorphous metal ribbons coated with an adhesive mainly composed of a high heat-resistant polymer compound are stacked, pressure-bonded by a rolling roll, and heat-bonded. It describes about the manufacturing method of the laminated body characterized by this.
When a plurality of amorphous metal ribbons are stacked and stacked, there may be a case where stacking deviation occurs in the stacked body. When such a laminating deviation occurs, the dimensional stability is poor and is not preferable, so that it may be difficult to apply to magnetic application products such as a magnetic core and a motor core. In addition, when using shearing cutting to cut an amorphous metal ribbon into a rectangle, when the metal ribbon is pressed down, the metal ribbon will be displaced and the dimensional stability of the cut shape will deteriorate. was there. These problems have been obstacles to application to various magnetic application products.
These problems are that when an adhesive such as a polymer compound is used to laminate the metal and metal, the metal shrinks due to the difference in thermal shrinkage due to the difference in expansion coefficient between the metal and the polymer compound. Possible cause. Japanese Patent Application Laid-Open No. 64-80534 (Patent Document 2) discloses a curl correction and dimensional stability improvement method for a long flexible thin metal laminate made of a polymer and a metal foil. On the curved surface of the first bar provided at an angle of ˜80 degrees, a curl correction and a dimensional stability improvement method using a process in which a metal foil is slid in the longitudinal direction in a tension state have been proposed. However, when a material such as an amorphous metal material is used, the surface of the amorphous metal has irregularities and friction is large, and if the amorphous metal ribbon has an edge, the ribbon is easily damaged. It is not preferable from the point.
JP 58-175654 A Japanese Unexamined Patent Publication No. 64-80534

そこで、本発明では、積層体の積層ずれや、シャーリング切断時の押さえつけ時の寸法安定性の低下を解決することを課題とする。また、積層ずれ防止に重要な因子となる最大そり率を脆弱な金属であっても抑える方法を提供することを課題とする。   Therefore, an object of the present invention is to solve the stacking misalignment of the laminated body and the decrease in dimensional stability during pressing during shearing cutting. It is another object of the present invention to provide a method for suppressing the maximum warpage rate, which is an important factor for preventing stacking deviation, even for a fragile metal.

本発明者らは、鋭意研究の結果、積層体を磁気コア等の用途で用いる場合、積層ずれや、シャーリング加工時の切断ずれに対して、樹脂層を付与した金属薄板のJIS C 6481で規定される最大反り率が重要な相関因子であることを見出した。   As a result of diligent research, the present inventors have specified in JIS C 6481 of a thin metal sheet provided with a resin layer against stacking deviation or cutting deviation during shearing when the laminate is used for applications such as a magnetic core. We found that the maximum warpage rate is an important correlation factor.

すなわち、本発明は、 高分子化合物層を設けた金属薄板であって、JIS C 6481に基づいて測定される最大反り部分の試料片の長さに対する最大反り量の比で表される最大反り率が10%以下であることを特徴とする金属薄板を提供する。   That is, the present invention is a metal thin plate provided with a polymer compound layer, and a maximum warpage rate represented by a ratio of a maximum warpage amount to a length of a sample piece of a maximum warpage portion measured based on JIS C 6481. Is a metal thin plate characterized by being 10% or less.

本発明は、かかる金属薄板を用いた積層体を提供する。   The present invention provides a laminate using such a metal thin plate.

本発明の金属薄板としては、非晶質金属を用いることが好ましく、上記最大反り率が金属薄板の10%以下である非晶質金属の金属薄板を用いた積層体は、積層ずれがなく、また切断時のずれがないので、非晶質金属積層体の磁気コアを提供する。   As the metal thin plate of the present invention, it is preferable to use an amorphous metal, and the laminate using the amorphous metal thin plate having a maximum warpage rate of 10% or less of the metal thin plate has no stacking deviation, Moreover, since there is no shift at the time of cutting, an amorphous metal laminate magnetic core is provided.

上記金属薄板は、金属薄板に液状の高分子化合物を塗工し、塗工面を湾曲して外側面としながら溶剤を除去することにより製造できる。   The metal thin plate can be produced by applying a liquid polymer compound to the metal thin plate, and removing the solvent while curving the coated surface as an outer surface.

上記製造方法の好ましい態様として、上記高分子として反応すると硬化する樹脂を用い、塗工面を湾曲して外側面とて溶剤を除去しながら、または除去した後に硬化反応を起こさせる方法を挙げることが出来る。上記高分子として熱可塑性樹脂を用いることが好ましい。また、反応すると硬化する樹脂としてポリアミドのワニスを挙げる事が出来る。ポリアミドのワニスは、溶剤を除去してさらにイミド化樹脂を用いることができる。   As a preferred embodiment of the above production method, there is a method in which a curing reaction is caused by using a resin that cures when reacted as the polymer, while curving the coating surface and removing the solvent as an outer surface, or after removing the solvent. I can do it. It is preferable to use a thermoplastic resin as the polymer. Also, polyamide varnish can be mentioned as a resin that hardens upon reaction. The polyamide varnish can be used with an imidized resin after removing the solvent.

本発明の方法により、JIS C 6481で規定される最大反り率を10%以下とすることで、積層ずれや、シャーリング加工時の切断ずれに著しい改善効果を見出し、本発明に至った。   By the method of the present invention, the maximum warpage rate specified by JIS C 6481 was set to 10% or less, and a remarkable improvement effect was found in stacking shift and cutting shift during shearing, and the present invention was achieved.

(磁性金属薄板)
本発明に用いられる金属磁性材料は、公知の金属磁性体であれば用いることができる。具体的には、ケイ素の含有量が3%から6.5%の実用化されているケイ素鋼板、パーマロイ、ナノ結晶金属磁性材料、非晶質金属磁性材料を挙げることができる。特に板厚が10μm〜50μm程度の極めて薄い、非晶質金属磁性材料、ナノ結晶金属磁性材料は、外力に対して変形しやすく、樹脂付与時に、樹脂の硬化収縮等で反り易く、積層時に積層ずれやシャーリング加工時の切断ずれが生じやすかった。本発明の反り率とすることで、好適に用いられる。
(Magnetic metal sheet)
The metal magnetic material used in the present invention can be any known metal magnetic material. Specific examples include silicon steel plates, permalloy, nanocrystalline metal magnetic materials, and amorphous metal magnetic materials that have been put into practical use with a silicon content of 3% to 6.5%. In particular, extremely thin, amorphous metal magnetic materials and nanocrystalline metal magnetic materials with a plate thickness of about 10 μm to 50 μm are easily deformed by external force, and are easily warped due to curing shrinkage of the resin when applied to the resin. Misalignment and cutting misalignment during shearing were likely to occur. It is used suitably by setting it as the curvature rate of this invention.

(高分子化合物)
本発明に用いられる高分子化合物は、公知のいわゆる樹脂と呼ばれるものが用いられる。特に金属磁性材料の磁気特性向上のために200℃以上の熱処理が必要な場合には、弾性率の低い耐熱樹脂を複合することが、優れた性能を発揮する上で効果的である。また非晶質金属磁性材料やナノ結晶金属磁性材料に比べて損失が大きく、発熱温度が高くなるケイ素鋼板などの材料では、モータやトランス等のパワーエレクトロニクス用途において、耐熱樹脂を適用することで、定格温度を向上でき、定格出力の向上、機器の小型化につながる。本発明に用いられる耐熱性樹脂は、非晶質金属薄帯やナノ結晶金属磁性薄帯の磁気特性を向上させる最適熱処理温度で熱処理される場合があるので、当該熱処理温度で熱分解の少ない材料を選定することが必要になる。例えば非晶質金属薄帯の熱処理温度は、非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、良好な磁気特性を向上させる温度は概ね200〜700℃の範囲にあり、さらに好ましくは300℃〜600℃の範囲である。
(Polymer compound)
As the polymer compound used in the present invention, a known so-called resin is used. In particular, when heat treatment at 200 ° C. or higher is required to improve the magnetic properties of the metal magnetic material, it is effective to combine a heat-resistant resin having a low elastic modulus to exhibit excellent performance. In addition, in materials such as silicon steel plates that have a large loss and a high heat generation temperature compared to amorphous metal magnetic materials and nanocrystalline metal magnetic materials, heat-resistant resins can be used in power electronics applications such as motors and transformers. The rated temperature can be improved, leading to improved rated output and downsizing of the equipment. The heat-resistant resin used in the present invention may be heat-treated at an optimum heat treatment temperature that improves the magnetic properties of the amorphous metal ribbon or the nanocrystalline metal magnetic ribbon, so that the material is less thermally decomposed at the heat treatment temperature. Must be selected. For example, the heat treatment temperature of the amorphous metal ribbon varies depending on the composition of the amorphous metal ribbon and the intended magnetic properties, but the temperature for improving the good magnetic properties is generally in the range of 200 to 700 ° C. More preferably, it is the range of 300 degreeC-600 degreeC.

本発明に用いられる耐熱性樹脂としては、熱可塑性、非熱可塑性、熱硬化性樹脂を挙げることができる。中でも熱可塑性樹脂を用いることにより、硬化収縮が少なく金属薄帯の反りが少ないため好ましい。   Examples of the heat resistant resin used in the present invention include thermoplastic, non-thermoplastic, and thermosetting resins. Among these, the use of a thermoplastic resin is preferable because it causes less curing shrinkage and less warpage of the metal ribbon.

本発明に用いられる耐熱性樹脂としては、前処理として120℃で4時間乾燥を施し、その後、窒素雰囲気下、300℃で2時間保持した際のDTA−TGを用いて測定した重量減少量が、通常1%以下、好ましくは0.3%以下であるものが用いられる。具体的な樹脂としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー,ニトリル系樹脂,チオエ−テル系樹脂,ポリエステル系樹脂,アリレ−ト系樹脂,サルホン系樹脂,イミド系樹脂,アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂,スルホン系樹脂、アミドイミド系樹脂を用いるのが好ましい。   The heat-resistant resin used in the present invention has a weight loss measured using DTA-TG when dried at 120 ° C. for 4 hours as a pretreatment and then kept at 300 ° C. for 2 hours in a nitrogen atmosphere. Usually, 1% or less, preferably 0.3% or less is used. Specific resins include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfone resins, Examples thereof include imide resins and amide imide resins. Of these, it is preferable to use polyimide resins, sulfone resins, and amideimide resins.

また本発明において200℃以上の耐熱性を必要としない場合、これに限定されないが、本発明に用いられる熱可塑性樹脂を具体的に挙げるとすれば、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、ポリエチレンテレフタレート、ナイロン、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリサルホン、ポリアミド、ポリアミドイミド、ポリ乳酸、ポリエチレン、ポリプロピレン等々あるが、この中でも、望ましくは、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトンポリエチレン、ポリプロピレン、エポキシ樹脂、シリコン樹脂、ゴム系樹脂(クロロプレンゴム、シリコンゴム)等を用いることができる。   Further, in the present invention, when heat resistance of 200 ° C. or higher is not required, the present invention is not limited to this, but specific examples of the thermoplastic resin used in the present invention include polyethersulfone, polyetherimide, polyether There are ketone, polyethylene terephthalate, nylon, polybutylene terephthalate, polycarbonate, polyphenylene ether, polyphenylene sulfide, polysulfone, polyamide, polyamideimide, polylactic acid, polyethylene, polypropylene, etc. Among them, polyethersulfone, polyetherimide are desirable. Polyetherketone polyethylene, polypropylene, epoxy resin, silicone resin, rubber-based resin (chloroprene rubber, silicone rubber) and the like can be used.

(反り量)
本発明で規定する最大反り率W1(%)はJIS C 6481に準拠した方法により測定され、式W1=(D1/L1)×100(ここにD1:最大反り量(mm)、L1:最大反り部分の試料片長さ(mm))により計算することができる。
(Warpage amount)
The maximum warpage rate W1 (%) defined in the present invention is measured by a method according to JIS C 6481, and the formula W1 = (D1 / L1) × 100 (where D1: maximum warpage amount (mm), L1: maximum warpage) It can be calculated from the sample piece length (mm) of the portion.

本発明では評価試験片サイズは100mm×30mmの矩形とし、金属薄板の長手方向と評価試験片の長辺100mmが平行になるように切断した。
実験の結果、JIS C 6481で規定される最大反り量が、10%以下であるときに、積層ずれや、シャーリング切断時に寸法安定性の低下が抑制できることが明らかになった。
In the present invention, the evaluation test piece size was a rectangle of 100 mm × 30 mm, and was cut so that the longitudinal direction of the metal thin plate was parallel to the long side 100 mm of the evaluation test piece.
As a result of experiments, it has been clarified that when the maximum amount of warp defined by JIS C 6481 is 10% or less, stacking deviation and reduction in dimensional stability during shearing cutting can be suppressed.

さらに好ましくは最大反り量が5%以下であることが望ましい。   More preferably, the maximum warpage amount is 5% or less.

さらに好ましくは最大反り率が1%以下であることが望ましい。   More preferably, the maximum warpage rate is 1% or less.

(塗工方法)
本発明で規定する最大反り量を実現するための製造方法の一例を以下に記すが、この製造方法に限定されるものではない。本発明の磁性金属薄板「積層体」は、まず磁性金属薄板の原反にロールコータなどのコーティング装置により、薄板上に有機溶剤に樹脂を溶解させた樹脂ワニスの塗膜を作り,これを乾燥させて非晶質金属薄帯に高分子化合物を付与する方法で作製できる。ここでいう樹脂ワニスとは樹脂もしくは樹脂の前駆体が有機溶剤に分散または溶解した状態の液体を指す。塗布量は、使用する金属薄板と高分子化合物の種類によって異なるが、樹脂が乾燥時、硬化時等で収縮する際に金属薄板と樹脂間に発生する応力が平衡で反りが起こらないようにすることが重要である。コーティングするワニス塗膜厚は、通常0.1μmから1mm程度に塗布することが好ましい。
(Coating method)
Although an example of the manufacturing method for implement | achieving the maximum curvature amount prescribed | regulated by this invention is described below, it is not limited to this manufacturing method. The magnetic metal thin plate “laminate” of the present invention is prepared by first forming a coating film of a resin varnish in which a resin is dissolved in an organic solvent on a thin plate by a coating device such as a roll coater on the magnetic metal thin plate. And can be prepared by a method of applying a polymer compound to the amorphous metal ribbon. The resin varnish as used herein refers to a liquid in which a resin or a resin precursor is dispersed or dissolved in an organic solvent. The amount of coating varies depending on the type of metal sheet and polymer compound used, but when the resin shrinks during drying or curing, the stress generated between the sheet metal and the resin is balanced and does not warp. This is very important. The coating thickness of the varnish coating to be coated is usually preferably about 0.1 μm to 1 mm.

このとき通常、樹脂が乾燥時、硬化時等で収縮する際に金属薄と樹脂間に応力が発生し、反りが生じる。本発明ではこの反り量を抑える方法として、以下の方法が有効であることを見出した。すなわち、
(イ)コーティングするワニス塗膜厚を0.1μm〜1mm程度に薄く塗布することである。
At this time, when the resin shrinks during drying or curing, stress is generated between the thin metal and the resin, and warpage occurs. In the present invention, it has been found that the following method is effective as a method for suppressing the warpage. That is,
(A) The varnish coating film to be coated is thinly applied to about 0.1 μm to 1 mm.

(ロ)樹脂層の乾燥、硬化時に、金属薄が反る方向と逆方向に力を引加し、乾燥終了後、室温でこの力を開放し、金属と樹脂の応力が釣り合い平面になるようにすることである。   (B) When the resin layer is dried and cured, a force is applied in the direction opposite to the direction in which the metal thin warps, and after the drying is completed, this force is released at room temperature so that the stress between the metal and the resin becomes a balanced plane. Is to do.

(ニ)樹脂層の乾燥、硬化後に反りが発生した後であっても、反りと逆方向に反らせ、反りを緩和する等により、本発明の最大そり率の範囲に収めることができる。   (D) Even after the resin layer is dried and cured, the warp can be kept within the range of the maximum warpage rate of the present invention by warping in the opposite direction to the warp and reducing the warp.

そして、これらの方法は、おのおの単独で用いても良いし、2つ以上組み合わせて用いても良い。   These methods may be used alone or in combination of two or more.

また樹脂ワニスの粘度は、樹脂層の厚みが均一になるように、0.005〜200Pa・sの濃度範囲が好ましい。さらには,0.01〜50Pa・sの濃度範囲が好ましく,より好ましくは,0.05〜5Pa・sの範囲にある方が良い。そして、本発明の樹脂層の厚みは、通常、0.1μm〜1mmの範囲であり、好ましくは0.5μm〜10μm、さらに好ましくは1μm〜6μmが良い。そのためには、ワニス塗膜厚を0.1〜1mm程度とすることになる。   The viscosity of the resin varnish is preferably in a concentration range of 0.005 to 200 Pa · s so that the thickness of the resin layer is uniform. Furthermore, a concentration range of 0.01 to 50 Pa · s is preferable, and a range of 0.05 to 5 Pa · s is more preferable. And the thickness of the resin layer of this invention is the range of 0.1 micrometer-1 mm normally, Preferably it is 0.5 micrometer-10 micrometers, More preferably, 1 micrometer-6 micrometers are good. For this purpose, the thickness of the varnish coating film is set to about 0.1 to 1 mm.

さらに具体的には、次のように製造することができる。すなわち、磁性金属薄板を送り出したロール部2と巻取りロール部6との間において、コーティング部の下流側に反り矯正ロールを設置する。反り矯正ロールは、楕円球構造を持っているので、磁性金属薄板を沿わせることによりコーティング面を外側になるように湾曲させる。使用する高分子化合物の性質に応じ、例えば、反応により硬化するような樹脂を用いて、反りロールを加熱、冷却することにより、溶剤を除去したり、必要であれば熱硬化等の反応やポリアミドのイミド化反応を行わせたりすることに用いることができる。 More specifically, it can be produced as follows. That is, a warp correction roll is installed on the downstream side of the coating portion between the roll portion 2 that has fed out the magnetic metal thin plate and the winding roll portion 6. Warp correcting roll, because it has an elliptical sphere structure, bending the Riko computing surface by the bringing along the magnetic metal thin plate such that the outside. Depending on the nature of the polymer compound used, for example, by using a resin such as cured by reaction, heating the warp rolls, by cooling, or to remove the solvent, Ya reaction of the thermosetting or the like if necessary It can be used for imidization reaction of polyamide.

次に実施例を用いて説明する。   Next, an example will be described.

(実施例1)
金属薄板として、ハネウェル社製、Metglas:2605TCA(商品名)、幅約142mm,厚み約25μmであるFe7813Si(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。このとき、140℃および260℃の乾燥加熱する際、樹脂がコートされた金属薄板を幅方向に樹脂面と反対側に丸め、室温に戻すまでその状態を保持した。その結果、最大反り率は1%とした。
(Example 1)
As the metal thin plate, an amorphous metal ribbon having a composition of Fe 78 B 13 Si 9 (atomic%) having a width of about 142 mm and a thickness of about 25 μm, manufactured by Honeywell, Metglas: 2605TCA (trade name) was used. When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid. At this time, when drying and heating at 140 ° C. and 260 ° C., the thin metal plate coated with the resin was rolled in the width direction to the side opposite to the resin surface, and the state was maintained until the temperature was returned to room temperature. As a result, the maximum warpage rate was 1%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄板の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon provided with a heat-resistant resin is sheared and cut to 100 mm in the longitudinal direction of a 30 mm thin plate in the width direction, and the maximum warpage defined in JIS C 6481 and the maximum angle among the four corners of the rectangle are set. Measurement was made and the difference from 90 degrees was regarded as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、370℃、1MPaで2hr熱処理した。その後、評価のため、積層体の最上面と最下面のずれ量をノギスで測定し、積層ずれ量として評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed in a nitrogen atmosphere at 270 ° C. and 10 MPa for 30 minutes, and then laminated and integrated, followed by heat treatment at 370 ° C. and 1 MPa for 2 hours. Thereafter, for evaluation, the amount of deviation between the uppermost surface and the lowermost surface of the laminate was measured with a caliper and evaluated as the amount of deviation in the lamination.

(実施例2)
金属薄板として、ハネウェル社製、Metglas:2605TCA(商品名)、幅約142mm,厚み約25μmであるFe7813Si(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。その後、樹脂がコートされた金属薄板の反りを矯正するため、反りと反対に丸めて、最大反り率を5%とした。
(Example 2)
As the metal sheet, Honeywell, Metglas: 2605TCA (trade name), was used an amorphous metal strip having a width of about 142 mm, the composition having a thickness of about 25μm Fe 78 B 13 Si 9 (atomic%). When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid. Then, in order to correct the warp of the thin metal plate coated with the resin, the maximum warp rate was set to 5%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄板の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4 角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon to which the heat-resistant resin is applied is sheared and cut to 100 mm in the longitudinal direction of the 30 mm thin plate in the width direction, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle are set. Measurement was made and the difference from 90 degrees was regarded as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、370℃、1MPaで2hr熱処理した。その後、評価のため、積層体の最上面と最下面のずれ量をノギスで測定し、積層ずれ量として評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed in a nitrogen atmosphere at 270 ° C. and 10 MPa for 30 minutes, and then laminated and integrated, followed by heat treatment at 370 ° C. and 1 MPa for 2 hours. Thereafter, for evaluation, the amount of deviation between the uppermost surface and the lowermost surface of the laminate was measured with a caliper and evaluated as the amount of deviation in the lamination.

(実施例3)
金属薄板として、ハネウェル社製、Metglas:2714A(商品名)、幅約50mm,厚み約15μmであるCo66FeNi(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。
(Example 3)
As a metal thin plate, an amorphous metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%) having a width of about 50 mm and a thickness of about 15 μm, manufactured by Honeywell, Metglas: 2714A (trade name) used. When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid.

このとき、140℃および260℃の乾燥加熱する際、樹脂がコートされた金属薄板を幅方向に樹脂面と反対側に丸め、室温に戻すまでその状態を保持した。その結果、最大反り率は1%にした。   At this time, when drying and heating at 140 ° C. and 260 ° C., the thin metal plate coated with the resin was rolled in the width direction to the side opposite to the resin surface, and the state was maintained until the temperature was returned to room temperature. As a result, the maximum warpage rate was 1%.

その後、樹脂がコートされた金属薄板の反りを矯正するため、反りと反対に丸めて、最大反り率を2%とした。   Then, in order to correct the warp of the thin metal plate coated with the resin, the maximum warp rate was set to 2%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warpage defined by JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃、10MPaで30分加圧し積層一体化した後、400℃、1MPaで2hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, and then pressurized for 30 minutes at 270 ° C. and 10 MPa in a nitrogen atmosphere, and then heat-treated at 400 ° C. and 1 MPa for 2 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(実施例4)
金属薄板として、ハネウェル社製、Metglas:2714A(商品名)、幅約50mm,厚み約15μmであるCo66FeNi(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。その後、樹脂がコートされた金属薄板の反りを矯正するため、反りと反対に丸めて、最大反り率を8%にした。
Example 4
As a metal thin plate, an amorphous metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%) having a width of about 50 mm and a thickness of about 15 μm, manufactured by Honeywell, Metglas: 2714A (trade name) used. When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid. Then, in order to correct the warp of the thin metal plate coated with the resin, the maximum warp rate was set to 8% by rounding the metal sheet opposite to the warp.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃、10MPaで30分加圧し積層一体化した後、400℃、1MPaで2hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, and then pressurized for 30 minutes at 270 ° C. and 10 MPa in a nitrogen atmosphere, and then heat-treated at 400 ° C. and 1 MPa for 2 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(実施例5)
金属薄板として、日立金属(株)製、ファインメット(商品名)、FT−3幅約35mm,厚み約18μmであるFe、Cu、Nb、Si、Bの元素組成を持つナノ結晶磁性金属薄帯を使用した。実施例1と同様の樹脂をコートした。
(Example 5)
As a metal thin plate, Hitachi Metals, Finemet (trade name), FT-3 width of about 35 mm, thickness of about 18 μm, nanocrystalline magnetic metal ribbon with elemental composition of Fe, Cu, Nb, Si, B It was used. The same resin as in Example 1 was coated.

このとき、140℃および260℃の乾燥加熱する際、樹脂がコートされた金属薄板を幅方向に樹脂面と反対側に丸め、室温に戻すまでその状態を保持した。その結果、最大反り率は3%にした。   At this time, when drying and heating at 140 ° C. and 260 ° C., the thin metal plate coated with the resin was rolled in the width direction to the side opposite to the resin surface, and the state was maintained until the temperature was returned to room temperature. As a result, the maximum warpage rate was 3%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warpage defined by JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、550℃1MPaで1.5hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed in a nitrogen atmosphere at 270 ° C. and 10 MPa for 30 minutes, laminated and integrated, and then heat-treated at 550 ° C. and 1 MPa for 1.5 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(実施例6)
金属薄板として、日立金属(株)製、ファインメット(商品名)、FT−3幅約35mm,厚み約18μmであるFe、Cu、Nb、Si、Bの元素組成を持つナノ結晶磁性金属薄帯を使用した。実施例1と同様の樹脂をコートした。その後、樹脂がコートされた金属薄板の反りを矯正するため、反りと反対に丸めて、最大反り率を9%にした。次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。
(Example 6)
As a metal thin plate, Hitachi Metals, Finemet (trade name), FT-3 width of about 35 mm, thickness of about 18 μm, nanocrystalline magnetic metal ribbon with elemental composition of Fe, Cu, Nb, Si, B It was used. The same resin as in Example 1 was coated. Then, in order to correct the warp of the thin metal plate coated with the resin, the maximum warp rate was set to 9% by rounding the metal sheet opposite to the warp. Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、550℃1MPaで1.5hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed in a nitrogen atmosphere at 270 ° C. and 10 MPa for 30 minutes, laminated and integrated, and then heat-treated at 550 ° C. and 1 MPa for 1.5 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(実施例7)
金属薄板として、新日本製鉄、薄手ハイライトコア(商品名)、20HTH1500幅約150mm,厚み約200μmである珪素鋼板を使用した。実施例1と同様に樹脂をコートした。このとき、140℃および260℃の乾燥加熱する際、樹脂がコートされた金属薄板を幅方向に樹脂面と反対側に丸め、室温に戻すまでその状態を保持した。その結果、最大反り率は2%にした。
(Example 7)
As a metal thin plate, Nippon Steel Corporation, a thin highlight core (trade name), a silicon steel plate having a 20HTH 1500 width of about 150 mm and a thickness of about 200 μm was used. The resin was coated in the same manner as in Example 1. At this time, when drying and heating at 140 ° C. and 260 ° C., the thin metal plate coated with the resin was rolled in the width direction to the side opposite to the resin surface, and the state was maintained until the temperature was returned to room temperature. As a result, the maximum warpage rate was 2%.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、評価のため、積層ずれ量を評価した。   Further, after stacking 50 test pieces of 30 mm × 100 mm, pressurizing at 270 ° C. and 10 MPa for 30 minutes in a nitrogen atmosphere and integrating the stacks, the stacking deviation amount was evaluated for evaluation.

(実施例8)
金属薄板として、新日本製鉄、薄手ハイライトコア(商品名)、20HTH1500幅約150mm,厚み約200μmである珪素鋼板を使用した。実施例1と同様に樹脂をコートした。その後、樹脂がコートされた金属薄板の反りを矯正するため、反りと反対に丸めて、最大反り率を3%にした。
(Example 8)
As a metal thin plate, Nippon Steel Corporation, a thin highlight core (trade name), a silicon steel plate having a 20HTH 1500 width of about 150 mm and a thickness of about 200 μm was used. The resin was coated in the same manner as in Example 1. Then, in order to correct the warp of the thin metal plate coated with the resin, the maximum warp rate was set to 3% by rounding the metal sheet opposite to the warp.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、評価のため、積層ずれ量を評価した。   Further, after stacking 50 test pieces of 30 mm × 100 mm, pressurizing at 270 ° C. and 10 MPa for 30 minutes in a nitrogen atmosphere and integrating the stacks, the stacking deviation amount was evaluated for evaluation.

(比較例1)
金属薄板として、ハネウェル社製、Metglas:2605TCA(商品名)、幅約142mm,厚み約25μmであるFe7813Si(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。
(Comparative Example 1)
As the metal thin plate, an amorphous metal ribbon having a composition of Fe 78 B 13 Si 9 (atomic%) having a width of about 142 mm and a thickness of about 25 μm, manufactured by Honeywell, Metglas: 2605TCA (trade name) was used. When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid.

最大反り率を測定したろころ、18%であった。   When the maximum warpage rate was measured, it was 18%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、切断ずれとした。   Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured and regarded as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃、10MPaで30分加圧し積層一体化した後、370℃、1MPaで2hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed at 270 ° C. and 10 MPa for 30 minutes in a nitrogen atmosphere, laminated and integrated, and then heat treated at 370 ° C. and 1 MPa for 2 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(比較例2)
金属薄板として、ハネウェル社製、Metglas:2714A(商品名)、幅約50mm,厚み約15μmであるCo66FeNi(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定したときに、25℃で、約0.3Pa・sの粘度のポリアミド酸溶液をロールコータで塗工し,140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約4ミクロンの耐熱樹脂(ポリイミド樹脂)を付与した。ポリイミド樹脂は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合で混合し、ジメチルアセトアミド溶媒中で室温にて縮重合して得られたものである。通常は、ポリアミド酸としてジアセチルアミド溶液として用いた。
(Comparative Example 2)
As a metal thin plate, an amorphous metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%) having a width of about 50 mm and a thickness of about 15 μm, manufactured by Honeywell, Metglas: 2714A (trade name) used. When measured with an E-type viscometer on one entire surface of the ribbon, a polyamic acid solution having a viscosity of about 0.3 Pa · s was applied at 25 ° C. with a roll coater, dried at 140 ° C., and then at 260 ° C. After curing, a heat resistant resin (polyimide resin) of about 4 microns was applied to one surface of the amorphous metal ribbon. Polyimide resin is prepared by mixing 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 and condensing in a dimethylacetamide solvent at room temperature. It was obtained by polymerization. Usually, it was used as a diacetylamide solution as a polyamic acid.

最大反り率を測定したろころ、15%であった。   When the maximum warpage rate was measured, it was 15%.

次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。   Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.

さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃、10MPaで30分加圧し積層一体化した後、400℃、1MPaで2hr熱処理した。その後、評価のため、積層ずれ量を評価した。   Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, and then pressurized for 30 minutes at 270 ° C. and 10 MPa in a nitrogen atmosphere, and then heat-treated at 400 ° C. and 1 MPa for 2 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

(比較例3)
金属薄板として、日立金属(株)製、ファインメット(商品名)、FT−3幅約35mm,厚み約18μmであるFe、Cu、Nb、Si、Bの元素組成を持つナノ結晶磁性金属薄帯を使用した。実施例1と同様の樹脂をコートした。
(Comparative Example 3)
As a metal thin plate, Hitachi Metals, Finemet (trade name), FT-3 width of about 35 mm, thickness of about 18 μm, nanocrystalline magnetic metal ribbon with elemental composition of Fe, Cu, Nb, Si, B It was used. The same resin as in Example 1 was coated.

最大反り率を測定したろころ、21%であった。
次に耐熱樹脂を付与した非晶質金属薄帯を幅方向に30mm薄帯の長手方向に100mmにシャーリング切断し、JIS C 6481で規定される最大反り量と、矩形の4角のうち最大角度を測定し、90度との差を切断ずれとした。
さらに30mm×100mmの試験片を50枚積層した後、窒素雰囲気中で270℃10MPaで30分加圧し積層一体化した後、550℃1MPaで1.5hr熱処理した。その後、評価のため、積層ずれ量を評価した。
It was 21% when the maximum warpage was measured.
Next, the amorphous metal ribbon provided with heat-resistant resin is sheared and cut to 30 mm in the longitudinal direction and 100 mm in the longitudinal direction of the ribbon, and the maximum warp amount defined in JIS C 6481 and the maximum angle among the four corners of the rectangle Was measured, and the difference from 90 degrees was defined as a cutting deviation.
Further, 50 test pieces each having a size of 30 mm × 100 mm were laminated, pressed in a nitrogen atmosphere at 270 ° C. and 10 MPa for 30 minutes, laminated and integrated, and then heat-treated at 550 ° C. and 1 MPa for 1.5 hours. Thereafter, the amount of misalignment was evaluated for evaluation.

Figure 0004145223
Figure 0004145223

表より、本発明の磁性金属積層体は、本発明の反り量とすることにより、積層ずれが少なく、またシャーリング時の寸法安定性が高いことが明らかになった。 From the table, it was clarified that the magnetic metal laminate of the present invention has little stacking deviation and high dimensional stability during shearing by using the warp amount of the present invention.

本発明は、軟磁性材料が用いられる多くの用途に磁気コアとして適用することが可能である。例えば、インダクタンス、チョークコイル、高周波トランス、低周波トランス、リアクトル、パルストランス、昇圧トランス、ノイズフィルター、変圧器用トランス、磁気インピーダンス素子、磁歪振動子、磁気センサ、磁気ヘッド、電磁気シールド、シールドコネクタ、シールドパッケージ、電波吸収体、モータ、発電器用コア、アンテナ用コア、磁気ディスク、磁気応用搬送システム、マグネット、電磁ソレノイド、アクチュエータ用コア、プリント配線基板磁気コアなどの様々な電子機器や電子部品の機能を支える材料として用いられる。   The present invention can be applied as a magnetic core in many applications where soft magnetic materials are used. For example, inductance, choke coil, high frequency transformer, low frequency transformer, reactor, pulse transformer, step-up transformer, noise filter, transformer for transformer, magneto-impedance element, magnetostrictive vibrator, magnetic sensor, magnetic head, electromagnetic shield, shield connector, shield Functions of various electronic devices and electronic components such as packages, electromagnetic wave absorbers, motors, generator cores, antenna cores, magnetic disks, magnetic application transport systems, magnets, electromagnetic solenoids, actuator cores, and printed circuit board magnetic cores Used as a supporting material.

本発明の金属磁性薄板の製造方法を示す図である。It is a figure which shows the manufacturing method of the metal magnetic thin plate of this invention.

符号の説明Explanation of symbols

1 磁性金属薄板
2 送り出しロール部
3 コーティング部
4 樹脂面
5 反り矯正ロール
6 巻取りロール部
DESCRIPTION OF SYMBOLS 1 Magnetic metal thin plate 2 Sending roll part 3 Coating part 4 Resin surface 5 Warpage correction roll 6 Winding roll part

Claims (5)

高分子化合物層を設けた磁性金属薄板であって、前記高分子化合物が、前処理として120℃で4時間乾燥を施した後、窒素雰囲気下、300℃で2時間保持した際の、DTA−TGを用いて測定した重量減少が1%以下である耐熱性樹脂であり、該対熱性樹脂からなる高分子化合物層を設けるため粘度が0.005〜200Pa・sの濃度範囲の樹脂ワニスを塗工厚が0.1μm〜1mmとなる様塗工した後に硬化させ、JIS C 6481に基づいて測定される最大反り部分の試料片の長さに対する最大反り量の比で表される最大反り率が10%以下であることを特徴とする、高分子化合物層を設けた厚さが10〜50μmのナノ結晶磁性金属薄板。 A magnetic sheet metal in which a polymer compound layer, the polymer compound, was subjected to 4 hours drying at 120 ° C. as a pretreatment, under a nitrogen atmosphere, when held for 2 hours at 300 ℃, DTA- A heat-resistant resin having a weight loss of 1% or less measured using TG, and a resin varnish having a viscosity range of 0.005 to 200 Pa · s is applied to provide a polymer compound layer made of the heat-resistant resin. The maximum warpage rate represented by the ratio of the maximum warpage amount to the length of the sample piece of the maximum warpage portion measured based on JIS C 6481 is cured after coating so that the thickness is 0.1 μm to 1 mm. A nanocrystalline magnetic metal thin plate having a thickness of 10 to 50 μm provided with a polymer compound layer, characterized by being 10% or less. 高分子化合物層を設けた磁性金属薄板であって、前記高分子化合物が、前処理として120℃で4時間乾燥を施した後、窒素雰囲気下、300℃で2時間保持した際の、DTA−TGを用いて測定した重量減少が1%以下である耐熱性樹脂であり、該対熱性樹脂からなる高分子化合物層を設けるため粘度が0.005〜200Pa・sの濃度範囲の樹脂ワニスを塗工厚が0.1μm〜1mmとなる様塗工した後に硬化させ、JIS C 6481に基づいて測定される最大反り部分の試料片の長さに対する最大反り量の比で表される最大反り率が10%以下であることを特徴とする、高分子化合物層を設けた厚さが10〜50μmの非晶質磁性金属薄板。  A magnetic metal thin plate provided with a polymer compound layer, wherein the polymer compound was dried at 120 ° C. for 4 hours as a pretreatment, and then held at 300 ° C. for 2 hours in a nitrogen atmosphere. A heat-resistant resin having a weight loss of 1% or less measured using TG, and a resin varnish having a viscosity range of 0.005 to 200 Pa · s is applied to provide a polymer compound layer made of the heat-resistant resin. The maximum warpage rate represented by the ratio of the maximum warpage amount to the length of the sample piece of the maximum warpage portion measured based on JIS C 6481 is cured after coating so that the thickness is 0.1 μm to 1 mm. An amorphous magnetic metal thin plate having a thickness of 10 to 50 μm provided with a polymer compound layer, characterized by being 10% or less. 高分子化合物層を設けた磁性金属薄板であって、前記高分子化合物が、前処理として120℃で4時間乾燥を施した後、窒素雰囲気下、300℃で2時間保持した際の、DTA−TGを用いて測定した重量減少が1%以下である耐熱性樹脂であり、該対熱性樹脂からなる高分子化合物層を設けるため粘度が0.005〜200Pa・sの濃度範囲の樹脂ワニスを塗工厚が0.1μm〜1mmとなる様塗工した後に硬化させ、JIS C 6481に基づいて測定される最大反り部分の試料片の長さに対する最大反り量の比で表される最大反り率が10%以下であることを特徴とする、高分子化合物層を設けた厚さが100〜400μmの珪素鋼板である磁性金属薄板。  A magnetic metal thin plate provided with a polymer compound layer, wherein the polymer compound was dried at 120 ° C. for 4 hours as a pretreatment, and then held at 300 ° C. for 2 hours in a nitrogen atmosphere. A heat-resistant resin having a weight loss of 1% or less measured using TG, and a resin varnish having a viscosity range of 0.005 to 200 Pa · s is applied to provide a polymer compound layer made of the heat-resistant resin. The maximum warpage rate represented by the ratio of the maximum warpage amount to the length of the sample piece of the maximum warpage portion measured based on JIS C 6481 is cured after coating so that the thickness is 0.1 μm to 1 mm. A magnetic metal thin plate, which is a silicon steel plate having a thickness of 100 to 400 μm and provided with a polymer compound layer, characterized by being 10% or less. 磁性金属薄板に、粘度が0.005〜200Pa・sの濃度範囲の樹脂ワニスを塗工厚が0.1μm〜1mmとなる様塗工し、塗工面を湾曲して外側面としながら溶剤を除去することを特徴とする、請求項1乃至のいずれかに記載した高分子化合物層を設けた磁性金属薄板の、製造方法。 Apply a resin varnish with a viscosity in the range of 0.005 to 200 Pa · s to a magnetic metal sheet so that the coating thickness is 0.1 μm to 1 mm, and remove the solvent while curving the coating surface to make it the outer surface. A manufacturing method of a magnetic metal thin plate provided with the polymer compound layer according to any one of claims 1 to 3 . 請求項に記載の高分子化合物層を設けた磁性金属薄板の製造方法であって、上記高分子化合物として、反応すると硬化する樹脂ワニスを用い、塗工面を湾曲して外側面として溶剤を除去しながら、または除去した後に硬化反応を起こさせることを特徴とする、高分子化合物層を設けた磁性金属薄板の、製造方法。 5. A method for producing a magnetic metal thin plate provided with a polymer compound layer according to claim 4 , wherein a resin varnish that hardens upon reaction is used as the polymer compound, and the coating surface is curved to remove the solvent as the outer surface. A method for producing a thin magnetic metal plate provided with a polymer compound layer, wherein a curing reaction is caused after or after removal.
JP2003317029A 2003-09-09 2003-09-09 Thin metal plate and manufacturing method thereof Expired - Fee Related JP4145223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317029A JP4145223B2 (en) 2003-09-09 2003-09-09 Thin metal plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317029A JP4145223B2 (en) 2003-09-09 2003-09-09 Thin metal plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005081732A JP2005081732A (en) 2005-03-31
JP4145223B2 true JP4145223B2 (en) 2008-09-03

Family

ID=34416745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317029A Expired - Fee Related JP4145223B2 (en) 2003-09-09 2003-09-09 Thin metal plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4145223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035087A (en) * 2004-07-27 2006-02-09 Fuji Electric Holdings Co Ltd Method and apparatus for forming organic material thin film

Also Published As

Publication number Publication date
JP2005081732A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1764424B1 (en) Magnetic substrate, laminate of magnetic substrate and method for producing thereof
WO2007116937A1 (en) Soft magnetic metal strip laminate and process for production thereof
US7976961B2 (en) Laminate of magnetic substrates and method of manufacturing the same
WO1986005314A1 (en) Laminate of thinamorphous alloy strip, core made of thin amorphous alloy strip, and process for their production
JP4145223B2 (en) Thin metal plate and manufacturing method thereof
JP2006060432A (en) Radio wave transmitting and receiving antenna
JP2009200428A (en) Layered product, and its manufacturing method
JP4574153B2 (en) Method for producing magnetic substrate
JP2006335875A (en) Polyimide film and method for producing the same
JP2735295B2 (en) Planar inductor
JP2009253104A (en) Laminated body, and antenna
JP2009194724A (en) Laminate, and antenna
JP2005108905A (en) Magnetic substrate and its manufacturing method
JP2002151316A (en) Magnetic substrate
JP2004119403A (en) Magnetic laminate
WO2011052557A1 (en) Method of manufacturing double-sided copper-clad laminate, and pair of copper or copper alloy foil sheets used thereupon
WO2023120730A1 (en) Laminated magnetic material, transformer core, and method for producing laminated magnetic material
JP2005104008A (en) Magnetic base material, laminate thereof and use of them
JP2004048135A (en) Rfid antenna
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
JP2005059391A (en) Magnetic metal thin sheet laminate
JP4313141B2 (en) Method for producing laminated body of magnetic substrate, and laminated body of magnetic substrate obtained thereby
JP2005104009A (en) Magnetic base material, laminate thereof and use of them
JP5885118B2 (en) Method for producing Fe-based nanocrystalline alloy ribbon laminate
JP2005109210A (en) Magnetic base and position adjustment method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees