JP2005059391A - Magnetic metal thin sheet laminate - Google Patents

Magnetic metal thin sheet laminate Download PDF

Info

Publication number
JP2005059391A
JP2005059391A JP2003292452A JP2003292452A JP2005059391A JP 2005059391 A JP2005059391 A JP 2005059391A JP 2003292452 A JP2003292452 A JP 2003292452A JP 2003292452 A JP2003292452 A JP 2003292452A JP 2005059391 A JP2005059391 A JP 2005059391A
Authority
JP
Japan
Prior art keywords
resin
metal thin
thin sheet
laminate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292452A
Other languages
Japanese (ja)
Inventor
Mitsunobu Yoshida
光伸 吉田
Nobuhiro Maruko
展弘 丸子
Hiroshi Watanabe
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003292452A priority Critical patent/JP2005059391A/en
Publication of JP2005059391A publication Critical patent/JP2005059391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal thin sheet base material having excellent dimensional stability not causing expansion, interfacial peeling or the like even if subjected to a periodic cycle of high temperature and low temperature, a laminate thereof and a manufacturing method of them. <P>SOLUTION: This metal thin sheet laminate is a laminate comprising a metal thin sheet and a polymer compound and characterized in that the resin layer applied to the surface of the metal thin sheet has a void volume of 0-5%. It is preferable to use a heater for producing radiant heat due to electromagnetic waves having a wavelength easy to absorb the heat of the metal thin sheet, a coating resin or an organic solvent and the resin layer extremely reduced in void is formed without forming a resin film on a coating surface of resin varnish. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属と高分子化合物の積層体およびその製造方法に関する。   The present invention relates to a laminate of a metal and a polymer compound and a method for producing the same.

従来、磁性金属材料薄板を複数枚積層して用いられてきた。たとえば、磁性金属材料として非晶質金属薄帯を用いるような場合には、その厚さが10〜50μm程度であるため、非晶質金属薄帯の表面に特定の接着剤を均一に塗布し、これを積層することが良く行われている。   Conventionally, a plurality of thin magnetic metal material plates have been used. For example, when an amorphous metal ribbon is used as the magnetic metal material, the thickness is about 10 to 50 μm, so a specific adhesive is uniformly applied to the surface of the amorphous metal ribbon. Laminating this is often performed.

特開昭58−175654(特許文献1)には、高耐熱性高分子化合物を主成分とする接着剤を均一に塗布し、溶剤を蒸発させた後、非晶質金属薄帯を積み重ね、圧下ロールで圧着し、加熱接着することを特徴とする積層体の製造方法について記載されている。   JP-A-58-175654 (Patent Document 1) uniformly applies an adhesive mainly composed of a high heat-resistant polymer compound, evaporates the solvent, and then stacks amorphous metal ribbons to reduce the pressure. It describes a method for producing a laminate, characterized by being pressure-bonded with a roll and heat-bonded.

しかしながら、従来たとえば特許文献1においては、ポリエステルイミド系樹脂を塗布した場合、「300℃で1分間乾燥炉で溶剤を揮散させた」とあり、あるいは、フェノキシ樹脂50%およびポリエステルイミド系樹脂50%を「200℃で1分間加熱して溶剤をとばした」等と記載されているが、これらの方法により作製された積層体を、形状加工し、リフロー炉などで加熱すると、積層体がふくれたり、金属薄板と樹脂層の界面ではく離などが生じるといった問題が生じていた。
特開昭58−175654
However, in the prior art, for example, in Patent Document 1, when a polyesterimide resin is applied, the solvent is volatilized in a drying furnace at 300 ° C. for 1 minute, or 50% phenoxy resin and 50% polyesterimide resin. "The solvent was removed by heating at 200 ° C for 1 minute", etc., but when the laminate produced by these methods was processed into a shape and heated in a reflow furnace, the laminate would swell. There has been a problem that peeling occurs at the interface between the metal thin plate and the resin layer.
JP 58-175654 A

本発明では、高温と低温の周期的なサイクル下(以下「ヒートサイクル下」ということがある。)にさらしても、膨れ、界面はく離等のない、寸法安定性の優れた金属薄板基材、積層体、およびその製造方法を提供する。  In the present invention, a metal thin plate base material having excellent dimensional stability that does not swell or peel off when exposed to a cyclic cycle of high and low temperatures (hereinafter sometimes referred to as “heat cycle”), A laminate and a method for producing the same are provided.

本発明者らは、樹脂層内の気泡率を0%〜5%の範囲にすることにより、ヒートサイクル下でも膨れや、層間の界面はく離などが回避できることを見出して本発明にいたった。  The present inventors have found that by setting the bubble ratio in the resin layer to be in the range of 0% to 5%, it is possible to avoid swelling and delamination between layers even under a heat cycle.

本発明は、金属薄板と高分子化合物との積層体であって、金属薄板表面に付与されている樹脂層内の気泡率が体積比で0%〜5%であることを特徴とする金属薄板積層体を提供する。   The present invention is a laminate of a metal thin plate and a polymer compound, wherein the bubble ratio in the resin layer applied to the surface of the metal thin plate is 0% to 5% by volume ratio. A laminate is provided.

本発明の金属薄板に気泡の少ない樹脂層を付与する方法により、ヒートサイクル下でも膨れ、はく離等のない寸法安定性に優れた基材および積層体を実現することが可能となった。  By the method of applying a resin layer with few bubbles to the metal thin plate of the present invention, it has become possible to realize a substrate and a laminate having excellent dimensional stability without swelling or peeling even under a heat cycle.

(金属磁性材料)
本発明に用いられる金属磁性材料は、公知の金属磁性体であれば用いることができる。具体的には、3%ケイ素鋼板、6.5%ケイ素鋼板、パーマロイ、ナノ結晶金属磁性材料、非晶質金属磁性材料を挙げることができる。さらに、本発明においては、これらの材料は、通常数mm以下の薄板として用いられる。特に発熱が低く、低損失材料である材料が好ましく、ナノ結晶金属磁性材料、非晶質金属材料が好適に用いられる。
(高分子化合物)
本発明に用いられる高分子化合物は、公知のいわゆる樹脂を呼ばれるものが用いられる。特に金属磁性材料の磁気特性向上に200℃以上の熱処理が必要な場合は、熱可塑性、弾性率の低い耐熱樹脂を複合することが、優れた性能を発揮する上で効果的である。
(Metal magnetic material)
The metal magnetic material used in the present invention can be any known metal magnetic material. Specific examples include 3% silicon steel plate, 6.5% silicon steel plate, permalloy, nanocrystalline metal magnetic material, and amorphous metal magnetic material. Furthermore, in the present invention, these materials are usually used as thin plates of several mm or less. In particular, a material that has a low heat generation and is a low-loss material is preferable, and a nanocrystalline metal magnetic material or an amorphous metal material is preferably used.
(Polymer compound)
As the polymer compound used in the present invention, a known so-called resin is used. In particular, when heat treatment at 200 ° C. or higher is required to improve the magnetic properties of the metal magnetic material, it is effective to exhibit excellent performance by combining a heat resistant resin having low thermoplasticity and elastic modulus.

本発明に用いられる耐熱性樹脂は、非晶質金属薄帯やナノ結晶金属磁性薄帯の磁気特性を向上させる最適熱処理温度で熱処理される場合があるので、当該熱処理温度で熱分解の少ない材料を選定することが必要になる。例えば非晶質金属薄帯の熱処理温度は、非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、良好な磁気特性を向上させる温度は概ね200〜700℃の範囲にあり、さらに好ましくは300℃〜600℃の範囲である。   The heat-resistant resin used in the present invention may be heat-treated at an optimum heat treatment temperature that improves the magnetic properties of the amorphous metal ribbon or the nanocrystalline metal magnetic ribbon, so that the material is less thermally decomposed at the heat treatment temperature. Must be selected. For example, the heat treatment temperature of the amorphous metal ribbon varies depending on the composition of the amorphous metal ribbon and the intended magnetic properties, but the temperature for improving the good magnetic properties is generally in the range of 200 to 700 ° C. More preferably, it is the range of 300 degreeC-600 degreeC.

本発明に用いられる耐熱性樹脂としては、熱可塑性、非熱可塑性、熱硬化性樹脂を挙げることができる。中でも熱可塑性樹脂を用いるのが好ましい。また、樹脂のガラス転移温度Tgが420℃以下が良く、更に、望ましくは、ガラス転移温度Tgが50℃以上420℃以下のものが良く、更に望ましくは、ガラス転移温度Tgが60℃以上350℃以下のものが良い。更に望ましくは、ガラス転移温度Tgが100℃以上300℃以下のものが良い。   Examples of the heat resistant resin used in the present invention include thermoplastic, non-thermoplastic, and thermosetting resins. Among these, it is preferable to use a thermoplastic resin. Further, the glass transition temperature Tg of the resin is preferably 420 ° C. or lower, more preferably, the glass transition temperature Tg is 50 ° C. or higher and 420 ° C. or lower, and more preferably the glass transition temperature Tg is 60 ° C. or higher and 350 ° C. The following are good. More preferably, the glass transition temperature Tg is 100 ° C. or higher and 300 ° C. or lower.

本発明に用いられる耐熱性樹脂としては、前処理として120℃で4時間乾燥を施し、その後、窒素雰囲気下、300℃で2時間保持した際の重量減少量を、DTA−TGを用いて測定され、通常1%以下、好ましくは0.3%以下であるものが用いられる。具体的な樹脂としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー,ニトリル系樹脂,チオエ−テル系樹脂,ポリエステル系樹脂,アリレ−ト系樹脂,サルホン系樹脂,イミド系樹脂,アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂,スルホン系樹脂、アミドイミド系樹脂を用いるのが好ましい。   As the heat resistant resin used in the present invention, as a pretreatment, drying is performed at 120 ° C. for 4 hours, and then the weight loss when kept at 300 ° C. for 2 hours in a nitrogen atmosphere is measured using DTA-TG. Usually, 1% or less, preferably 0.3% or less is used. Specific resins include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfone resins, Examples thereof include imide resins and amide imide resins. Of these, it is preferable to use polyimide resins, sulfone resins, and amideimide resins.

また本発明において200℃以上の耐熱性を必要としない場合、これに限定されないが、本発明に用いられる熱可塑性樹脂を具体的に挙げるとすれば、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、ポリエチレンテレフタレート、ナイロン、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリサルホン、ポリアミド、ポリアミドイミド、ポリ乳酸、ポリエチレン、ポリプロピレン等々あるが、この中でも、望ましくは、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトンポリエチレン、ポリプロピレン、エポキシ樹脂、シリコン樹脂、ゴム系樹脂(クロロプレンゴム、シリコンゴム)等を用いることができる。   Further, in the present invention, when heat resistance of 200 ° C. or higher is not required, the present invention is not limited to this, but specific examples of the thermoplastic resin used in the present invention include polyethersulfone, polyetherimide, polyether There are ketone, polyethylene terephthalate, nylon, polybutylene terephthalate, polycarbonate, polyphenylene ether, polyphenylene sulfide, polysulfone, polyamide, polyamideimide, polylactic acid, polyethylene, polypropylene, etc. Among them, polyethersulfone, polyetherimide are desirable. Polyetherketone polyethylene, polypropylene, epoxy resin, silicone resin, rubber-based resin (chloroprene rubber, silicone rubber) and the like can be used.

また本発明の樹脂層の厚みは0.1μm〜1mmの範囲が好ましく、さらに好ましくは1μm〜10μmが良く、さらに好ましくは2μm〜6μmが良い。
(樹脂塗工磁性金属薄板の製造方法)
本発明の磁性金属薄板からなる積層体を作製する場合磁性金属薄板に樹脂層を付与した後に積層接着する方法、磁性金属薄板に樹脂を含浸する方法等がある。
The thickness of the resin layer of the present invention is preferably in the range of 0.1 μm to 1 mm, more preferably 1 μm to 10 μm, and even more preferably 2 μm to 6 μm.
(Production method of resin-coated magnetic metal sheet)
In the case of producing a laminate comprising the magnetic metal thin plate of the present invention, there are a method of laminating and bonding a resin layer to the magnetic metal thin plate, a method of impregnating the magnetic metal thin plate with a resin, and the like.

磁性金属薄板に樹脂層を付与する場合、まず磁性金属薄板の原反にロールコータなどのコーティング装置で、薄板上に有機溶剤に樹脂を溶解させたワニスにより塗膜を作り,これを乾燥させて非晶質金属薄帯に耐熱性樹脂を付与する方法で作製することができる。またコーティングするワニス塗膜厚は0.1μmから1mm程度が好ましいがこれに限定されるものではない。
(気泡率)
気泡率とは下式で表現される。
気泡率(%)=(1−(気泡が混入されている樹脂層の質量)/気泡が混入されていない樹脂層の質量))×100
このとき、樹脂層の厚みは一定とする。
When applying a resin layer to a magnetic metal thin plate, first a coating device such as a roll coater is used to form a coating film on the thin plate with a varnish in which a resin is dissolved in an organic solvent, and then dried. It can be produced by a method of applying a heat resistant resin to an amorphous metal ribbon. Moreover, although the varnish coating film thickness to coat is preferable about 0.1 micrometer to 1 mm, it is not limited to this.
(Bubble rate)
The bubble rate is expressed by the following equation.
Bubble ratio (%) = (1− (mass of resin layer in which bubbles are mixed) / mass of resin layer in which bubbles are not mixed)) × 100
At this time, the thickness of the resin layer is constant.

実際に樹脂の質量のみ測定する方法としては、樹脂を付与した磁性金属薄板を酸性液体、もしくはアルカリ性の液体でエッチングして、除去し、樹脂層のみを取り出すことにより測定できる。   As a method of actually measuring only the mass of the resin, it can be measured by etching and removing the magnetic metal thin plate provided with the resin with an acidic liquid or an alkaline liquid and taking out only the resin layer.

本発明ではこの気泡率が0%〜5%さらに好ましくは0%〜0.5%、さらに好ましくは0%〜0.1%内とすることが、高温環境下で膨れや、はく離等のない良好な積層体を得る上で重要であることが明らかになった。実際にこの気泡をすくなくする方法としては、樹脂の粘度、有機溶剤の選定、有機溶剤の乾燥速度、加熱装置の設定温度、配置などを適宜調整することにより得られる。   In the present invention, the bubble ratio is 0% to 5%, more preferably 0% to 0.5%, and even more preferably 0% to 0.1%, so that there is no swelling or peeling in a high temperature environment. It became clear that it was important in obtaining a good laminate. As a method of actually eliminating the bubbles, it can be obtained by appropriately adjusting the viscosity of the resin, selection of the organic solvent, drying speed of the organic solvent, set temperature of the heating device, arrangement, and the like.

本発明では、特に、乾燥方法が重要であることを見出した。すなわち、通常、塗工した樹脂ワニスから溶剤を蒸発させるとき、熱風を吹き付けて乾燥させると、塗工した樹脂ワニスは表面から乾燥し、樹脂皮膜が形成されることがある。(ここでいう樹脂ワニスとは樹脂と有機溶剤の混合物と樹脂の前駆体と有機溶剤の混合物の両方を指す。)樹脂皮膜形成後さらに加熱すると、気体となった溶剤は、樹脂皮膜により内部に閉じ込められ、気泡が樹脂層内に残存し、これが気泡となる。そこで本発明では、樹脂皮膜を形成せずに溶剤を乾燥する方法として以下の方法が有効であることを見出した。   In the present invention, it has been found that the drying method is particularly important. That is, normally, when the solvent is evaporated from the coated resin varnish, if the hot air is blown and dried, the coated resin varnish may be dried from the surface and a resin film may be formed. (The resin varnish here refers to both a mixture of a resin and an organic solvent and a mixture of a precursor of the resin and an organic solvent.) When heated further after the resin film is formed, the solvent turned into a gas is contained inside by the resin film. It is trapped and bubbles remain in the resin layer, which becomes bubbles. Therefore, the present invention has found that the following method is effective as a method for drying a solvent without forming a resin film.

すなわち、金属薄板、塗工樹脂や有機溶剤等の熱を吸収しやすい波長の電磁波による輻射熱を発するヒータを用いることが好ましく、樹脂ワニスの塗工面に樹脂皮膜をつくらずに、気泡の極めて少ない樹脂層を形成できることを見出した。このような、加熱ヒータの中心波長は、蒸発させる有機溶剤の吸収波長帯域により異なるが、概ね赤外線波長領域の電磁波を発するヒータを用いることが好ましい。特に最大エネルギー波長が2〜4μ程度の赤外線による加熱が有効であるが、これに限定されない。またヒータの形状は面状が好ましく、均一に塗布面を加熱でき、局所的な高温部ができにくいため溶剤の突沸による気泡が生じにくい。また熱風ヒータと赤外線ヒータを混用して用いることも好適である。   That is, it is preferable to use a heater that emits radiant heat due to electromagnetic waves with a wavelength that easily absorbs heat, such as a thin metal plate, coating resin, organic solvent, etc. It has been found that a layer can be formed. Although the center wavelength of such a heater varies depending on the absorption wavelength band of the organic solvent to be evaporated, it is preferable to use a heater that emits electromagnetic waves in the infrared wavelength region. In particular, heating with infrared rays having a maximum energy wavelength of about 2 to 4 μm is effective, but not limited thereto. Further, the heater preferably has a planar shape, and can uniformly heat the coating surface, and it is difficult to form a local high temperature portion, so that bubbles due to bumping of the solvent are less likely to occur. It is also preferable to use a mixture of a hot air heater and an infrared heater.

また、特に塗工厚が40μm以上1mm以下の比較的厚い塗膜の乾燥時に、このような赤外線領域の電磁波による塗膜の加熱乾燥は、気泡率を著しく低くでき好ましい。
(塗工基材積層)
非晶質金属薄帯に耐熱性樹脂を付与した多層構造の磁性基材を作製する場合,例えば熱プレスや熱ロールなどにより積層一体化することができる。加圧時の温度は耐熱樹脂の種類により異なるが,概ね,耐熱樹脂硬化物のガラス転移温度以上で軟化もしくは溶融する温度近傍で積層接着することが好ましい。
(積層体の製造方法)
高分子化合物は、金属薄板上塗布後、乾燥させた後金属薄板を複数枚積層し金属薄板間に樹脂が存在する状態を作り出す。
In particular, when a relatively thick coating film having a coating thickness of 40 μm or more and 1 mm or less is dried, such heating and drying of the coating film by electromagnetic waves in the infrared region is preferable because the bubble ratio can be remarkably lowered.
(Coating substrate lamination)
When a magnetic base material having a multilayer structure in which a heat-resistant resin is applied to an amorphous metal ribbon, it can be laminated and integrated by, for example, hot pressing or hot roll. The temperature at the time of pressurization varies depending on the type of heat-resistant resin, but it is generally preferable to laminate and bond in the vicinity of the temperature at which it softens or melts above the glass transition temperature of the cured heat-resistant resin.
(Laminate manufacturing method)
The polymer compound is coated on a metal thin plate, dried, and then laminated with a plurality of metal thin plates to create a state in which a resin exists between the metal thin plates.

本発明の積層体は金属薄板間において、樹脂が流動する状態で加圧保持して一体化することにより得られる。熱可塑性樹脂であれば、加熱後、冷却過程においても流動状態を保っている間は加圧状態が好ましい。熱硬化性樹脂を使用する場合、所望の熱効果が終了するまでは加圧状態が好ましい。また、ワニス中に溶媒が含まれる場合は、少なくとも溶媒が除去されて高分子化合物が金属薄板間において流動している間は加圧状態とすることが好ましい。   The laminate of the present invention can be obtained by holding and integrating the thin metal plates under pressure while the resin flows. If it is a thermoplastic resin, a pressurized state is preferable while maintaining a fluid state even in the cooling process after heating. When using a thermosetting resin, a pressurized state is preferred until the desired thermal effect is completed. Moreover, when a solvent is contained in a varnish, it is preferable to make it a pressurized state at least while a solvent is removed and the high molecular compound is flowing between metal thin plates.

上記加熱と同時に、磁気特性を向上させるための熱処理を行なっても良い。   Simultaneously with the heating, heat treatment for improving magnetic properties may be performed.

(実施例1)
3,3’−ジアミノジフェニルエーテルと3,3,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合でジメチルアセトアミド溶媒中で室温にて縮重合して、ポリアミド酸ワニス(ポリアミド酸20%、25℃における粘度0.3MPa)を得た。このポリアミド酸を幅約50mm,厚み約15μmの非晶質金属薄体(Co66FeNi(BSi)29(原子%)、ハネウェル社製、Metglas:2714A(商品名)にロールコータで、非晶質金属薄体の片面に均一に塗工した後、遠赤外線ヒータで300℃で1分間で乾燥、キュアし、磁性薄板と約6ミクロンの耐熱樹脂(ポリイミド樹脂)との積層体を得た。本条件で作製した結果、気泡率は0%であった。
(Example 1)
3,3′-Diaminodiphenyl ether and 3,3,4,4′-biphenyltetracarboxylic dianhydride were subjected to polycondensation at a ratio of 1: 0.98 in a dimethylacetamide solvent at room temperature to obtain a polyamic acid varnish ( Polyamic acid 20%, viscosity 0.3 MPa at 25 ° C.) was obtained. An amorphous metal thin body (Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%)) having a width of about 50 mm and a thickness of about 15 μm, this polyamic acid was manufactured by Honeywell, Metglas: 2714A (trade name) with a roll coater, After coating uniformly on one side of an amorphous metal thin body, it is dried and cured at 300 ° C. for 1 minute with a far infrared heater to obtain a laminate of a magnetic thin plate and a heat-resistant resin (polyimide resin) of about 6 microns. As a result of manufacturing under these conditions, the bubble ratio was 0%.

次に、この基材を、40枚積み重ねて熱プレスで大気中260℃30分、5MPaで、厚み1.0mmの積層体を作製した。磁気特性を発現するため、400℃1hr窒素雰囲気中で加圧、加熱した。さらにリフロー炉にて室温から400℃に加熱して、常温に戻した後積層体の膨れ、はく離等の有無を光学顕微鏡により観察した。
(比較例1)
Next, 40 sheets of this base material were stacked, and a laminate having a thickness of 1.0 mm was produced by hot pressing in the atmosphere at 260 ° C. for 30 minutes and 5 MPa. In order to develop the magnetic properties, it was pressurized and heated in a nitrogen atmosphere at 400 ° C. for 1 hr. Furthermore, after heating from room temperature to 400 ° C. in a reflow furnace and returning to room temperature, the laminated body was observed for the presence or absence of swelling, peeling, etc. with an optical microscope.
(Comparative Example 1)

実施例1とは乾燥方法が異なる。熱風ヒータにより樹脂を300℃1分間、熱風乾燥させたのち、300℃分間熱風乾燥した以外は同様な操作を行い、非晶質金属薄体と樹脂との積層体を得た。塗工された樹脂層の気泡率は8%であった。   The drying method is different from Example 1. The resin was hot-air dried at 300 ° C. for 1 minute with a hot air heater, and then the same operation was performed except that it was hot-air dried for 300 ° C. to obtain a laminate of the amorphous metal thin body and the resin. The cell rate of the coated resin layer was 8%.

さらにリフロー炉にて室温から400℃に加熱して常温に戻した後、積層体の膨れ、はく離等の有無を光学顕微鏡により観察した。   Furthermore, after heating from room temperature to 400 ° C. in a reflow furnace and returning to normal temperature, the presence or absence of swelling and peeling of the laminate was observed with an optical microscope.

Figure 2005059391
Figure 2005059391

インダクタンス、チョークコイル、高周波トランス、低周波トランス、リアクトル、パルストランス、昇圧トランス、ノイズフィルター、変圧器用トランス、磁気インピーダンス素子、磁歪振動子、磁気センサ、磁気ヘッド、電磁気シールド、シールドコネクタ、シールドパッケージ、電波吸収体、モータ、発電器用コア、アンテナ用コア、磁気ディスク、磁気応用搬送システム、マグネット、電磁ソレノイド、アクチュエータ用コア、プリント配線基板 磁気コアなどの様々な電子機器や電子部品の機能を支える材料として用いられる。   Inductance, choke coil, high frequency transformer, low frequency transformer, reactor, pulse transformer, step-up transformer, noise filter, transformer for transformer, magneto-impedance element, magnetostrictive vibrator, magnetic sensor, magnetic head, electromagnetic shield, shield connector, shield package, Materials that support the functions of various electronic devices and electronic components such as radio wave absorbers, motors, generator cores, antenna cores, magnetic disks, magnetic application transport systems, magnets, electromagnetic solenoids, actuator cores, and printed circuit boards. Used as

Claims (1)

金属薄板と高分子化合物との積層体であって、金属薄板表面に付与されている樹脂層内の気泡率が体積比で0%〜5%であることを特徴とする金属薄板積層体。 A metal thin plate laminate comprising a metal thin plate and a polymer compound, wherein a bubble ratio in a resin layer applied to the surface of the metal thin plate is 0% to 5% by volume.
JP2003292452A 2003-08-12 2003-08-12 Magnetic metal thin sheet laminate Pending JP2005059391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292452A JP2005059391A (en) 2003-08-12 2003-08-12 Magnetic metal thin sheet laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292452A JP2005059391A (en) 2003-08-12 2003-08-12 Magnetic metal thin sheet laminate

Publications (1)

Publication Number Publication Date
JP2005059391A true JP2005059391A (en) 2005-03-10

Family

ID=34369802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292452A Pending JP2005059391A (en) 2003-08-12 2003-08-12 Magnetic metal thin sheet laminate

Country Status (1)

Country Link
JP (1) JP2005059391A (en)

Similar Documents

Publication Publication Date Title
JP2013212642A (en) Soft magnetic material manufacturing member, soft magnetic material, copper-clad laminated plate, print wiring plate, and inductor
JP7338560B2 (en) resin composition
JP2015230901A (en) Resin laminate and printed wiring board
JP2008263005A (en) Interposer
KR20140104909A (en) Method for manufacturing component-embedded wiring board and semiconductor device
JP2015162635A (en) Method for manufacturing printed wiring board
JP2008016603A (en) Substrate for flexible printed circuit board, and its manufacturing method
JPWO2005031767A1 (en) Laminated body of magnetic substrate and method for producing the same
CN104884245B (en) Layer flexible clad laminate and its manufacture method
WO2012124307A1 (en) Prepreg for build-up
JP2023111955A (en) resin composition
JP2005059391A (en) Magnetic metal thin sheet laminate
JP2006335875A (en) Polyimide film and method for producing the same
JP2005108905A (en) Magnetic substrate and its manufacturing method
JP2005109211A (en) Magnetic base material and laminate
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
JP2002151316A (en) Magnetic substrate
JP2009051035A (en) Laser-welded laminate and its manufacturing method
JP2011020398A (en) Laminate
TWI701272B (en) Resin composition, adhesive, film-like adhesive material, adhesive sheet, multilayer circuit board, copper foil with resin, copper clad laminate, printed circuit board
JP4904019B2 (en) Biaxially oriented polyester film
JP2005081732A (en) Sheet metal and its production method
JP2019016811A (en) Method for manufacturing circuit board
JP7404927B2 (en) magnetic sheet
JP2004119403A (en) Magnetic laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027