JP2004119402A - Thin layered strip of amorphous metal and its producing process - Google Patents

Thin layered strip of amorphous metal and its producing process Download PDF

Info

Publication number
JP2004119402A
JP2004119402A JP2002276333A JP2002276333A JP2004119402A JP 2004119402 A JP2004119402 A JP 2004119402A JP 2002276333 A JP2002276333 A JP 2002276333A JP 2002276333 A JP2002276333 A JP 2002276333A JP 2004119402 A JP2004119402 A JP 2004119402A
Authority
JP
Japan
Prior art keywords
amorphous metal
metal ribbon
resin
magnetic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002276333A
Other languages
Japanese (ja)
Other versions
JP4357822B2 (en
Inventor
Nobuhiro Maruko
丸子 展弘
Mitsunobu Yoshida
吉田 光伸
Tomoyuki Nakada
中田 智之
Hiroshi Watanabe
渡辺 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002276333A priority Critical patent/JP4357822B2/en
Publication of JP2004119402A publication Critical patent/JP2004119402A/en
Application granted granted Critical
Publication of JP4357822B2 publication Critical patent/JP4357822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic material where thin strips of amorphous metal magnetic material and heat resistant resin are layered, and to provide a core material suitable for various magnetic application products using the thin layered strips. <P>SOLUTION: The thin layered strips of amorphous metal having a core shape of closed magnetic circuit where thin strips of amorphous metal and heat resistant resin layers are layered alternately and reduction of weight after the resin layer has been placed in a nitrogen gas flow at 300°C for two hours is 1 wt% or less is produced through processing at a heat treatment temperature of 300-500°C under a pressure of 1-100 MPa. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁性応用製品、部品に関するもので、コア材が、非晶質金属磁性材料からなる薄帯が積層された磁性材料およびその積層体に関する。
【0002】
【従来の技術】
電子・通信分野の目覚しい発展に伴い,電気・電子機器に用いられる磁気応用製品の需要の拡大、これに伴う製品形態の多様化が急速に進んでおり、特に携帯機器の普及に伴って、薄型化、小型化、高効率化の要求が高まっている。これらの機器に用いられる、電子部品においては、より薄型化、小型化、高効率化が望まれている。
【0003】
非晶質金属薄帯材料は、磁気特性が優れることから、電子部品の磁性体コアに用いることにより、薄型化、小型化、もしくは高性能化を可能とする潜在ポテンシャルをもつ材料である。
【0004】
また、小型電子機器に使用される磁性部品に用いられるコアは図1〜図3に示すように、種々の形態のものがあり、磁束が外部に漏れる形態で使用される開磁路のコアを用いるものも多く、特に、アンテナ、コイル等(図2)殆どの磁束がコアから外部に漏れる形態の開磁路コアにおいては、特開平5−267922(特許文献1)のように390℃〜420℃で薄帯の熱処理を行なった後、エポキシ樹脂等の含浸により積層体を作製する方法、あるいは、特開平7−278763(特許文献2)のように、非晶質金属薄帯のみ、若しくは予めエポキシ樹脂等で非晶質金属薄帯を積層接着した後、300℃以下の熱処理を行なう方法が用いられていた。そして、これらの方法により製造された非晶質金属薄帯の積層体のQ値は不十分であり、さらにQ値向上の課題があった。
【0005】
【特許文献1】特開平5−267922
【0006】
【特許文献2】特開平7−278763
【0007】
【発明が解決しようとする課題】
非晶質金属薄帯を用いた積層体のコアを用いる電子部品において、磁束がコアの外部に漏れる開磁路で用いられるコアにおいて、Q値を向上した特性の優れる磁性部品を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、従来の非晶質金属薄帯積層体の熱処理を行なう手法を鋭意検討した結果、上記理由から一般的に用いられなかった加圧下、特に圧縮応力を印加した熱処理を行ない、さらに温度、加圧力を制御することにより、Q値が向上することを見出し、本発明を完成した。
【0009】
すなわち、本発明は、コア形状が開磁路である非晶質金属薄帯積層体において、加圧熱処理をされたことを特徴とする積層体である。
【0010】
本発明の非晶質金属薄帯の積層体は、非晶質金属薄帯と樹脂層とが交互に積層されたことを特徴とする。
【0011】
また、本発明の積層体に用いられる樹脂層は、樹脂層が窒素気流中で300℃2時間の履歴を経た後の重量減少が1重量%以下であることを特徴とする。
【0012】
本発明の樹脂の積層体は、温度300〜500℃であり、1〜100MPaの加圧下において製造される。
【0013】
また、Q値の向上により、磁気コアとしての性能を向上させることができ、用途例として、前記のようなアンテナでは、受信感度が大幅に向上する効果が期待できる。
【0014】
また、積層接着若しくは、加圧熱処理時に積層体を十分に加圧できるため、積層体表面の凹凸ができ平坦性にも優れる。
【0015】
【発明の実施の形態】
以下,本発明について具体的に説明する。
【0016】
本発明において、非晶質金属薄帯に樹脂を付与した形態を磁性基材と定義する。
【0017】
(非晶質合金薄帯)
本発明の非晶質金属薄帯に用いられる磁性材料としては、Fe系、Co系の非晶質金属薄帯が用いられる。これらの非晶質金属薄帯は、通常溶融金属を急冷ロールを用いて、急冷して得られる。通常は10〜50μmの厚さであり、好ましくは10〜30μmの厚さの薄帯が用いられる。Fe系非晶質金属材料としては、Fe−Si−B系、Fe−B系、Fe−P−C系などのFe−半金属系非晶質金属材料や、Fe−Zr系、Fe−Hf系、Fe−Ti系などのFe−遷移金属系非晶質金属材料を挙げることができる。Co系非晶質金属材料としてはCo−Si−B系、Co−B系などの非晶質金属材料が例示できる。
【0018】
これらの中でも、非晶質金属薄帯の組成が、一般式(Co1−c Fe100−a−b(式中のXは、Si,B,C,Geから選ばれる少なくとも1種類以上の元素を表し、YはZr,,Nb,Ti,Hf,Ta,W,Cr,Mo,V,Ni,P,Al,Pt,Ph,Ru,Sn,Sb,Cu,Mn希土類元素から選ばれる少なくとも1種類以上の元素で表される。c,a,bは、それぞれ、0≦c≦0.2、10<a≦35、0≦b≦30ここでa,bは原子%)で表される組成が好ましい。上記非晶質金属薄帯のCoのFe置換は非晶質合金の飽和磁化の増加に寄与する傾向にある。このため、置換量cは0≦c≦0.2であることが好ましい。さらに、0≦c≦0.1であることが好ましい。
【0019】
X元素は本発明に用いる非晶質金属薄帯を製造する上で、非晶質化のために結晶化速度を低減するために有効な元素である。X元素が10原子%より少ないと、非晶質化が低下して一部結晶質が混在し、また、35原子%を超えると、非晶質構造は得られるものの合金薄帯の機械的強度が低下し、連続的な薄帯が得られなくなる。したがって、X元素の量aは、10<a≦35であることが好ましく、さらに好ましくは、12≦a≦30である。
【0020】
Y元素は、本発明に用いる非晶質金属薄帯の耐食性に効果がある。この中で特に有効な元素は、Zr,Nb,Mn,W,Mo,Cr,V,Ni,P,A,Pt,Ph,Ru元素である。Y元素の添加量は30%以上になると、耐食性の効果はあるが、薄帯の機械的強度が脆弱になるため、0≦b≦30であることが好ましい。さらに好ましい範囲は、0≦b≦20である。
【0021】
また、前記非晶質金属薄帯は、例えば、所望組成の金属を調合したものを高周波溶解炉等を用いて溶融し、均一な溶融体としたものを、不活性ガス等でフローして、急冷ロールに吹き付けて、急冷して得られる。通常は厚さ10〜50μmであり、好ましくは10〜30μmの薄帯が用いられる。
【0022】
本発明に用いられる非晶質金属薄帯は、積層することにより各種の磁気応用製品に用いられる積層体とすることができる。 本発明の磁性基材に使用される非晶質金属薄帯は,液体急冷方法などによりシ−ト状に作製された非晶質金属材料が使用できる。または,粉末状の非晶質金属材料をプレス成形などによりシ−ト状にしたものを使用することができる。また,磁性基材に用いられる非晶質金属薄帯は,単一非晶質金属薄帯を用いても良いし,複数および多種類の非晶質金属薄帯を重ねたものを用いることができる。
【0023】
(樹脂)
本発明に用いられる樹脂は非晶質金属薄帯の磁気特性を向上させる最適熱処理温度で熱処理される温度で、熱分解の少ない材料を選定することが必要になる。非晶質金属薄帯の熱処理温度は、非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、良好な磁気特性を向上させる温度は概ね200〜500℃の範囲にあり、さらに好ましくは300℃〜500℃の範囲である。
【0024】
本発明に用いられる耐熱性樹脂としては、熱可塑性、非熱可塑性、熱硬化性樹脂を挙げることができる。中でも熱可塑性樹脂を用いるのが好ましい。
【0025】
熱可塑性の耐熱性樹脂を用いることで、前記非晶質金属薄帯の少なくとも一部に耐熱性樹脂を付与した後、もしくは耐熱性樹脂の前駆体を付与し該耐熱性樹脂を形成した後、この磁性基材を積層し、磁性基材の積層体を得ることができる。この製造方法により、耐熱性樹脂を樹脂化しているため、室温でタック性がなく、また安定であるため、取り扱いが簡便であり、積層時の作業性がよく工程の歩留まりが向上できるメリットがある。
【0026】
本発明に用いられる耐熱性樹脂は、前処理として120℃で4時間乾燥を施し、その後、窒素雰囲気下、300℃で2時間保持した際の重量減少量を、DTA−TGを用いて測定され、通常1%以下、好ましくは0.3%以下であるものが用いられる。
【0027】
本発明に用いられる樹脂は、上記の耐熱性に加えて下記の特性を兼ね備えている樹脂であることがさらに好ましい。
▲1▼窒素雰囲気下300℃、2時間の熱履歴を経た後の引っ張り強度が30MPa以上である。
▲2▼ガラス転移温度が120℃〜250℃である。
▲3▼溶融粘度が10万Pa・sである温度が、250℃以上400℃以下であり、さらに好ましくは300℃以下、さらに好ましくは250℃以下である。
▲4▼400℃から120℃まで0.5℃/分の一定速度で降温した後、樹脂中の結晶物による融解熱が10J/g以下である。この結晶物による融解熱が10J/g以下であり、好ましくは5J/g以下、さらに好ましくは1J/g以下である。このような範囲にある場合に本発明の接着性に優れる効果を得ることができる。
【0028】
本発明に用いられる耐熱性樹脂としてはポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー,ニトリル系樹脂,チオエ−テル系樹脂,ポリエステル系樹脂,アリレ−ト系樹脂,サルホン系樹脂,イミド系樹脂,アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂,スルホン系樹脂、アミドイミド系樹脂を用いるのが好ましい。
【0029】
本発明において用いられるポリイミド樹脂は、好ましくは以下のような基本繰り返し構造を有するポリイミド系樹脂が例示できる。
【0030】
【化1】

Figure 2004119402
【0031】
Rは、化学式(3)〜(8)から選ばれる4価の結合基で、同一でも異なっていても
良い。
【0032】
【化2】
Figure 2004119402
【0033】
ここで、非晶質金属薄帯にポリイミド樹脂を付与する際の液状樹脂としては、好ましくは、ポリイミドの前駆体であるポリアミド酸を用いて行い、熱的あるいは化学的にイミド化させて、ポリイミド樹脂とする。なお、ポリアミド酸を非晶質金属薄帯に付与する場合は必要に応じて溶媒を用いてもよい。
【0034】
さらに,本発明に使用するポリイミドとしては、以上のような鎖状型ポリイミド樹脂だけでなく、可溶性ポリイミド樹脂も好ましく使用することができる。可溶性ポリイミド樹脂を溶剤に溶かして液状とし、適切な粘度に調整して、非晶質金属薄帯に塗布し、加熱して溶剤を揮発して樹脂を形成することができる。
【0035】
(耐熱性樹脂の付与)
本発明において,耐熱性樹脂は,磁性基材の片面のみ、または、両面の少なくとも一部に付与する。この場合,付与する面において均一にむらなく塗膜されることが好ましい。
【0036】
本発明における非晶質金属薄帯の片面または両面の少なくとも一部に耐熱性樹脂を付着する場合、粉末状樹脂、もしくは溶媒に樹脂を溶解させた溶液または、ペースト状の形態がある。樹脂を溶解させた溶液を用いる場合は、ロ−ルコ−タなどを用いて非晶質金属薄帯に付与して行うことが代表的である。この場合、付与工程で用いる溶液の粘度は、0.005Pa・s以下の粘度では,粘性が低くなり過ぎるため非晶質金属薄帯上から流れてしまい薄板上に十分な塗膜量が得られず、極めて薄い塗膜になってしまう。また、この場合膜厚を厚くするために、付与速度を極めて遅くすると何度も重ね塗りが必要になるため、生産効率の低下が生じ実用的ではない。一方、粘度が,200Pa・s以上になると高粘度のため、非晶質金属薄帯上に薄い塗膜を形成するための膜厚の制御が極めて難しくなる。したがって、樹脂を溶媒により溶解させた溶液による付与の場合、付与時の樹脂の粘度は0.005〜200Pa・sの濃度範囲が好ましい。さらには、0.01〜50Pa・sの濃度範囲が好ましく、より好ましくは0.05〜5Pa・sの範囲にある方が良い。
【0037】
本発明における液状樹脂の付与方法としては、コ−タを用いた方法、例えばロ−ルコ−タ法、エアドクタコ−タ法、ブレ−ドコ−タ法、ナイフコ−タ法、ロッドコ−タ法、キスコ−タ法、ビ−ドコ−タ法、キャストコ−タ法、ロ−タリ−スクリ−ン法や、液状樹脂中に非晶質金属薄帯を浸漬しながらコ−テイングする浸漬コ−テング方法液状樹脂を非晶質金属薄帯にオリフィスから落下させコ−テイングするスロットオリフィスコ−タ法などがあるが、狭い幅の非晶質金属薄帯を有効に使用するためには、薄帯全面に均一に塗膜を形成する必要がある。かつ、厚みを数ミクロンに精度よく制御して付与するには、グラビアコータ法、そのなかでも特にグラビア版の径が10〜50mm程度のグラビアコータ法を用いることが好ましい。
【0038】
(積層一体化)
本発明の非晶質金属薄帯積層体は、非晶質金属薄帯を積み重ね、耐熱性樹脂または耐熱性樹脂の前駆体を含浸させて樹脂化することで積層体を作製する方法があるが、好ましくは、非晶質金属薄帯に予め耐熱性樹脂または耐熱性樹脂の前駆体を付与した磁性基材を用い、この基材を積層接着して積層体を作製する方法が望ましい。
【0039】
次に積層一体化工程ではまず、所望の積層枚数の磁性基材を積み重ね、図4に示すような熱プレス装置により、積層一体化が可能である。
【0040】
この際、例えば以下のように、2枚の平板金型で挟む方法が用いられる。また、この磁性基材を積み重ねたブロックを、前記積層体の形状に合わせたずれ防止用枠型に入れて積層一体化しても良い。また用いる平板金型としては、熱伝導度の高く、機械的強度の高い金属が好ましい。例えばSUS304、SUS430、ハイス鋼、純鉄、アルミニウム、銅などが好ましい。また非晶質金属薄帯に均等に圧力が印加できるよう平板金型の表面粗さは1μm以下であり、平板の上下両面が平行になっていることが好ましい。さらに好ましくは平板金型の表面粗さが0.1μm以下の鏡面であることが好ましい。
【0041】
また、磁性基材を積み重ね、平板金型との間に、積層体の厚み公差以上の厚みを持つ耐熱性弾性シートを挿入することも可能である。このとき、耐熱性弾性シートが平板金型と磁性基材の凹凸を吸収し、磁性基材積層体に均一に圧力を印加することが可能となり、磁性基材に加わる圧力がより均一化し、良好である。
【0042】
耐熱性弾性シートとしては、材質が樹脂の場合は、ガラス転移温度が非晶質金属の熱処理温度以上であることが好ましい。耐熱性弾性シートの材質としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー,ニトリル系樹脂,チオエ−テル系樹脂,ポリエステル系樹脂,アリレ−ト系樹脂,サルホン系樹脂,イミド系樹脂,アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂,スルホン系樹脂、アミドイミド系樹脂を用いるのが好ましい。しかしながら耐熱性弾性シートの材質はこれに限定されるものではない。
【0043】
積層一体化は、熱プレスや熱ロール、高周波溶着などにより加熱、加圧することでできる。加圧時の温度は耐熱樹脂の種類により異なるが,概ね,耐熱樹脂硬化物のガラス転移温度以上で軟化もしくは溶融流動性を有する温度近傍で加圧し積層接着することが好ましい。非晶質金属の層間の樹脂を溶融させた後、冷却することで、非晶質金属薄帯どうしを固着し一体化する。
【0044】
(加圧熱処理)
本工程は、非晶質金属薄帯の磁気特性を向上させるため、非晶質金属の磁気特性発現に必要な300℃から500℃の熱処理を施す。非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、通常、不活性ガス雰囲気下もしくは真空中で行われ、良好な磁気特性を向上させる温度は概ね300〜500℃であり、好ましくは350℃から450℃で行われる。
【0045】
また本発明では300℃〜500℃の温度範囲で加圧下での熱処理により、積層体の磁気特性としてのQ値が大幅に向上することを実験的に見出した。特に、印加する加圧力は1MPa以上500MPa以下であり、好ましくは3MPa以上100MPa以下さらに好ましくは、5MPa以上50MPa以下である。
【0046】
加圧力が小さい場合にはQ値の低下もしくはQ値向上の効果が小さく、200MPa以上ではQ値が低減する。特に、形状効果による実効透磁率が素材の閉磁路の透磁率の1/2上このましくは1/5倍以上さらに好ましくは1/10倍以上の場合には、加圧力を加えることによりQ値が向上する。
また、熱処理温度での処理時間は通常10分から5時間の範囲で、好ましくは30分から2時間の範囲で行なわれる。
【0047】
また、積層一体化の方法と同様に、2枚の平板金型で挟む方法が用いる方法、積層体の形状に合わせたずれ防止用枠型に入れて積層一体化する方法を用いることもできる。さらに、磁性基材を積み重ね、平板金型との間に、積層体の厚み公差以上の厚みを持つ耐熱性弾性シートを挿入することも可能である。
【0048】
また、前記積層接着と、加圧熱処理を一度の工程で行うことも可能であり、工数低減に優れるプロセスを実現できる。
【0049】
(形状加工)
本発明の非晶質金属薄帯積層体の形状加工方法としては、打抜き加工、レーザー切断加工、薄刃回転刃による切断加工、放電ワイヤー切断加工などの方法により、所望の形状に切断する。特に、100枚以下、好ましくは20枚以下の複数枚からなる積層体を金型打ちぬき加工することができる。また数十枚以上の磁性基材からなる直方体形状の積層体においては薄刃回転刃による切断加工、放電ワイヤ加工等により、所望の形状に切断加工することが好適である。さらに放電ワイヤー加工では、積層体端面に導電性の接着剤を塗布し、塗布した導電性接着剤部分を電気的に接地することにより、より安定に放電ワイヤー加工できる。
【0050】
また、形状加工は、積層接着前の磁性基材にエッチング加工、打ち抜き加工等により所望の形状に加工した後、積層接着、加圧熱処理を行なって、本発明の非晶質金属薄帯積層体を得ることもできる。
【0051】
以下、本発明の実施例について示す。
【0052】
【実施例】
以下、本発明の実施例について示す。
(実施例1)
非晶質金属薄帯として,ハネウェル社製、Metglas:2714A、幅約50mm,厚み約15μmであるCo66FeNi(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯の片面全面にE型粘度計で測定し、約0.3Pa・sの粘度のポリアミド酸溶液を付与し,外径50mmのグラビアヘッドを用いて片面全面にワニスを塗布し、140℃で乾燥後、260℃でキュアし、非晶質金属薄帯の片面に約6ミクロンの耐熱樹脂(ポリイミド樹脂)を付与し基材を作製した。
【0053】
ポリアミド酸溶液は、3,3’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物を1:0.98の割合でジメチルアセトアミド溶媒中で室温にて縮重合して得られたものであり、ジメチルアセトアミドで希釈して用いた。この基材を、25枚積み重ねて260℃で熱プレスにより厚み0.7mmの積層体を作製した後、この積層体を図4に示す熱プレス装置で400℃1時間、加圧力10MPaで熱処理した後、ダイシングソーにて0.2mm厚みの切断刃を用いて形状加工し20×2.5mmの積層コアを作製した。このコアに絶縁性の粘着フィルム(日東電工製、型番NO.360VLフィルム厚み25μm)を、長手方向の端面を除いた側面に貼り付け、次にΦ0.1mmの被覆導線を前記コアに800ターン巻いて、60kHzの周波数でQ値とL値を測定した。Q値とL値の測定には、LCRメータ(HP製4284A)を用い、測定電圧1Vとした。Q値は高く、特性に優れるコアである。また、熱処理時の加圧力が高いことで表面の凹凸が小さく平坦性に優れる積層体が実現できた。
(実施例2)
実施例1と同様に積層体を作製して得られたコアを図3に示す熱プレス装置を用いて、温度400℃、加圧力35MPaで1時間熱処理を行った。この非晶質金属薄帯積層体をプレス打ち抜き加工により実施例1と同様の形状に加工し、絶縁テープを貼り付けた後に、巻き線を行い厚さ、Q値、及びL値の測定を行った。測定値を表1に示す。Q値は高く、特性に優れるコアである。また、熱処理時の加圧力が高いことで表面の凹凸が小さく平坦性に優れる積層体が実現できた。(実施例3)
実施例1と同様に積層体を作製して得られたコアを図4に示す熱プレス装置を用いて、温度400℃、加圧力20MPaで1時間熱処理を行った。この非晶質金属薄帯積層体を放電ワイヤ加工により実施例1と同様の形状に加工し、絶縁テープを貼り付けた後に、巻き線を行い厚さ、Q値、及びL値の測定を行った。測定値を表1に示す。Q値は高く、特性に優れるコアである。また、熱処理時の加圧力が高いことで表面の凹凸が小さく平坦性に優れる積層体が実現できた。
【0054】
【表1】
Figure 2004119402
【0055】
(比較例1)
非晶質金属薄帯として,ハネウェル社製、Metglas:2714A、幅約50mm,厚み約15μmであるCo66FeNi(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯を20×2.5mmに切断加工した後、400℃1時間の熱処理を行ない、エポキシ樹脂を含浸して積層コアを作製した。また、このコアに絶縁性の粘着フィルム(日東電工製、型番NO.360VLフィルム厚み25μm)を、長手方向の端面を除いた側面に貼り付け、次にΦ0.1mmの被覆導線を前記コアに800ターン巻いて、60kHzの周波数でQ値とL値を測定した。その結果実施例1〜3の特性に比べQ値が低くなっており、実施例に比較しロスの大きいコアである。
【0056】
また、作製の際、熱処理した薄帯を重ねる際、ハンドリング中に薄帯のワレカケ等により、歩留まりが低下した。また、積層一体化を熱処理後の薄帯が脆い状態で行うため、含浸硬化時に十分な加圧ができないため、表面の凹凸が実施例に比べ大きくなり、形状安定性に劣る。
(比較例2)
非晶質金属薄帯として,ハネウェル社製、Metglas:2714A、幅約50mm,厚み約15μmであるCo66FeNi1(BSi)29(原子%)の組成を持つ非晶質金属薄帯を使用した。この薄帯にエポキシ樹脂を付与した基材を作製し、この基材を、25枚積み重ねて150℃で0.1MPaで積層接着した後、200℃で熱処理した積層体を作製し、0.2mm厚みの切断刃を用いて形状加工し20×2.5mmの積層コアを作製した。実施例1と同様に、巻線を行い、60kHzの周波数でQ値とL値を測定した。その結果実施例1〜3の特性に比べQ値が低くなっており、実施例に比較しロスの大きいコアである。
【0057】
また、積層接着後の熱処理に加圧しないため、熱処理後の表面の凹凸が実施例に比べ大きくなり、形状安定性に劣る。
【図面の簡単な説明】
【図1】本発明のギャップコアの例
【図2】本発明の棒状磁芯の例
【図3】本発明のEI形状磁芯の例
【図4】加圧プレスおよび加圧熱処理の例
【符号の説明】
1   ギャップコア
11  非晶質金属薄帯積層体
12  ギャップ
2   棒状磁芯
21  非晶質金属薄帯積層体
3   EI形状磁芯
31  E型形状非晶質金属薄帯積層体
32  I型形状非晶質金属薄帯積層体
4   熱プレス機
41  非晶質金属薄帯および樹脂付与した非晶質金属薄帯
42  積層された非晶質金属薄帯
33  熱プレス型[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to magnetic application products and parts, and more particularly to a magnetic material in which a core material is formed by laminating ribbons made of an amorphous metal magnetic material, and a laminate thereof.
[0002]
[Prior art]
With the remarkable development of the electronics and communication fields, the demand for magnetic application products used in electric and electronic equipment is expanding, and the diversification of product forms is progressing rapidly. There is an increasing demand for miniaturization, miniaturization and high efficiency. Electronic components used in these devices are required to be thinner, smaller, and more efficient.
[0003]
The amorphous metal ribbon material is a material having a potential potential to be reduced in thickness, size, or performance by being used for a magnetic core of an electronic component because of its excellent magnetic properties.
[0004]
As shown in FIGS. 1 to 3, there are various types of cores used for magnetic components used in small electronic devices, and the core of an open magnetic path used in a form in which magnetic flux leaks to the outside is used. Many of them are used. In particular, in an open magnetic circuit core in which most of the magnetic flux leaks from the core to the outside, such as an antenna and a coil (FIG. 2), 390 ° C. to 420 ° C. as disclosed in JP-A-5-267922 (Patent Document 1). After heat treatment of the ribbon at ℃, a method of producing a laminate by impregnation with an epoxy resin or the like, or as disclosed in JP-A-7-278763 (Patent Document 2), only an amorphous metal ribbon, or A method of performing heat treatment at 300 ° C. or lower after laminating and bonding an amorphous metal ribbon with an epoxy resin or the like has been used. The Q value of the laminate of the amorphous metal ribbon manufactured by these methods is insufficient, and there is a problem of further improving the Q value.
[0005]
[Patent Document 1] JP-A-5-267922
[0006]
[Patent Document 2] JP-A-7-278763
[0007]
[Problems to be solved by the invention]
In an electronic component using a core of a laminated body using an amorphous metal ribbon, in a core used in an open magnetic circuit in which a magnetic flux leaks outside the core, a magnetic component having an improved Q value and excellent characteristics is provided. is there.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method of performing a conventional heat treatment of an amorphous metal thin-film laminate, and performed a heat treatment under pressure, particularly a compressive stress applied, which was not generally used for the above reason, Further, the present inventors have found that the Q value is improved by controlling the temperature and the pressing force, and completed the present invention.
[0009]
That is, the present invention is a laminate characterized by being subjected to a pressure heat treatment in an amorphous metal ribbon laminate whose core shape is an open magnetic path.
[0010]
The laminate of the amorphous metal ribbon of the present invention is characterized in that the amorphous metal ribbon and the resin layer are alternately laminated.
[0011]
Further, the resin layer used in the laminate of the present invention is characterized in that the weight loss of the resin layer after passing through a history of 300 ° C. for 2 hours in a nitrogen stream is 1% by weight or less.
[0012]
The laminate of the resin of the present invention is manufactured at a temperature of 300 to 500 ° C. under a pressure of 1 to 100 MPa.
[0013]
Further, by improving the Q value, the performance as a magnetic core can be improved, and as an application example, with the above-described antenna, an effect of greatly improving the receiving sensitivity can be expected.
[0014]
In addition, since the laminate can be sufficiently pressurized during lamination bonding or pressure heat treatment, the surface of the laminate has irregularities and is excellent in flatness.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
[0016]
In the present invention, a form in which a resin is applied to an amorphous metal ribbon is defined as a magnetic substrate.
[0017]
(Amorphous alloy ribbon)
As the magnetic material used for the amorphous metal ribbon of the present invention, an Fe-based or Co-based amorphous metal ribbon is used. These amorphous metal ribbons are usually obtained by quenching molten metal using a quenching roll. Usually, the thickness is 10 to 50 μm, and preferably, a ribbon having a thickness of 10 to 30 μm is used. Examples of the Fe-based amorphous metal material include Fe-semimetal-based amorphous metal materials such as Fe-Si-B-based, Fe-B-based, and Fe-PC-based materials, Fe-Zr-based, and Fe-Hf-based. And Fe-transition metal based amorphous metal materials such as Fe-Ti-based and Fe-Ti-based. Examples of the Co-based amorphous metal material include Co-Si-B-based and Co-B-based amorphous metal materials.
[0018]
Among these, the composition of the amorphous metal ribbon is represented by the general formula (Co 1-c Fe c ) 100-ab X a Y b (where X is selected from Si, B, C, and Ge). Y represents Zr, Nb, Ti, Hf, Ta, W, Cr, Mo, V, Ni, P, Al, Pt, Ph, Ru, Sn, Sb, Cu, Mn rare earth C, a, and b are each represented by 0 ≦ c ≦ 0.2, 10 <a ≦ 35, and 0 ≦ b ≦ 30, where a and b are atoms. %) Is preferred. Substitution of Fe for Co in the amorphous metal ribbon tends to contribute to an increase in the saturation magnetization of the amorphous alloy. For this reason, the substitution amount c is preferably 0 ≦ c ≦ 0.2. Further, it is preferable that 0 ≦ c ≦ 0.1.
[0019]
Element X is an effective element for producing the amorphous metal ribbon used in the present invention and for reducing the crystallization speed for amorphization. If the element X is less than 10 atomic%, the amorphous state is reduced and some crystalline materials are mixed. If the element X exceeds 35 atomic%, an amorphous structure is obtained but the mechanical strength of the alloy ribbon is obtained. And a continuous ribbon cannot be obtained. Therefore, the amount a of the X element is preferably 10 <a ≦ 35, and more preferably 12 ≦ a ≦ 30.
[0020]
The Y element has an effect on the corrosion resistance of the amorphous metal ribbon used in the present invention. Particularly effective elements among these are the elements Zr, Nb, Mn, W, Mo, Cr, V, Ni, P, A, Pt, Ph, and Ru. When the addition amount of the Y element is 30% or more, the effect of corrosion resistance is obtained, but the mechanical strength of the ribbon becomes weak. Therefore, it is preferable that 0 ≦ b ≦ 30. A more preferred range is 0 ≦ b ≦ 20.
[0021]
In addition, the amorphous metal ribbon is, for example, a mixture of metals having a desired composition is melted using a high-frequency melting furnace or the like, and a uniform melt is flown with an inert gas or the like. It is obtained by spraying on a quenching roll and quenching. Usually, a thickness of 10 to 50 μm, preferably a thin ribbon of 10 to 30 μm is used.
[0022]
The amorphous metal ribbon used in the present invention can be laminated to be used as a laminate for various magnetic products. As the amorphous metal ribbon used for the magnetic substrate of the present invention, an amorphous metal material produced in a sheet shape by a liquid quenching method or the like can be used. Alternatively, a powdery amorphous metal material formed into a sheet by press molding or the like can be used. As the amorphous metal ribbon used for the magnetic substrate, a single amorphous metal ribbon may be used, or a plurality of and multiple types of amorphous metal ribbons may be stacked. it can.
[0023]
(resin)
For the resin used in the present invention, it is necessary to select a material that undergoes heat treatment at an optimum heat treatment temperature for improving the magnetic properties of the amorphous metal ribbon and that has low thermal decomposition. The heat treatment temperature of the amorphous metal ribbon varies depending on the composition of the amorphous metal ribbon and the intended magnetic properties, but the temperature at which good magnetic properties are improved is generally in the range of 200 to 500 ° C. More preferably, it is in the range of 300 ° C to 500 ° C.
[0024]
Examples of the heat-resistant resin used in the present invention include thermoplastic, non-thermoplastic, and thermosetting resins. Among them, it is preferable to use a thermoplastic resin.
[0025]
By using a thermoplastic heat-resistant resin, after applying a heat-resistant resin to at least a part of the amorphous metal ribbon, or after applying a precursor of the heat-resistant resin to form the heat-resistant resin, By laminating the magnetic substrates, a laminate of the magnetic substrates can be obtained. By this manufacturing method, since the heat-resistant resin is made into a resin, there is no tackiness at room temperature, and since it is stable, there is an advantage that handling is simple, workability at the time of lamination is good, and the process yield can be improved. .
[0026]
The heat-resistant resin used in the present invention is subjected to drying at 120 ° C. for 4 hours as a pretreatment, and thereafter, the amount of weight loss when held at 300 ° C. for 2 hours under a nitrogen atmosphere is measured using DTA-TG. And usually 1% or less, preferably 0.3% or less.
[0027]
The resin used in the present invention is more preferably a resin having the following properties in addition to the above heat resistance.
{Circle around (1)} The tensile strength after a heat history of 300 ° C. for 2 hours in a nitrogen atmosphere is 30 MPa or more.
(2) The glass transition temperature is from 120 ° C to 250 ° C.
{Circle around (3)} The temperature at which the melt viscosity is 100,000 Pa · s is from 250 ° C. to 400 ° C., preferably 300 ° C. or less, more preferably 250 ° C. or less.
{Circle around (4)} After the temperature is lowered from 400 ° C. to 120 ° C. at a constant rate of 0.5 ° C./min, the heat of fusion due to the crystals in the resin is 10 J / g or less. The heat of fusion by this crystal is 10 J / g or less, preferably 5 J / g or less, more preferably 1 J / g or less. When it is in such a range, the effect of the present invention having excellent adhesiveness can be obtained.
[0028]
Examples of the heat-resistant resin used in the present invention include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfones. Resins, imide resins and amide imide resins. Among these, it is preferable to use a polyimide resin, a sulfone resin, or an amideimide resin.
[0029]
The polyimide resin used in the present invention can preferably be exemplified by a polyimide resin having the following basic repeating structure.
[0030]
Embedded image
Figure 2004119402
[0031]
R is a tetravalent linking group selected from the chemical formulas (3) to (8), and may be the same or different.
[0032]
Embedded image
Figure 2004119402
[0033]
Here, as the liquid resin at the time of applying the polyimide resin to the amorphous metal ribbon, preferably performed using a polyamic acid which is a precursor of the polyimide, and thermally or chemically imidized, polyimide Resin. In addition, when giving a polyamic acid to an amorphous metal ribbon, you may use a solvent as needed.
[0034]
Further, as the polyimide used in the present invention, not only the above-mentioned chain type polyimide resin but also a soluble polyimide resin can be preferably used. A soluble polyimide resin is dissolved in a solvent to make a liquid, adjusted to an appropriate viscosity, applied to an amorphous metal ribbon, and heated to evaporate the solvent to form a resin.
[0035]
(Application of heat-resistant resin)
In the present invention, the heat-resistant resin is applied to only one surface of the magnetic base material or at least a part of both surfaces. In this case, it is preferable that the surface to be applied is uniformly coated.
[0036]
When the heat-resistant resin is attached to at least a part of one side or both sides of the amorphous metal ribbon in the present invention, there is a powdery resin, a solution in which the resin is dissolved in a solvent, or a paste form. When a solution in which a resin is dissolved is used, it is typically applied by applying the solution to an amorphous metal ribbon using a roll coater or the like. In this case, if the viscosity of the solution used in the applying step is less than 0.005 Pa · s, the viscosity becomes too low and flows from the amorphous metal ribbon, and a sufficient amount of coating film is obtained on the thin plate. , Resulting in an extremely thin coating film. Further, in this case, if the application speed is extremely slowed down in order to increase the film thickness, it is necessary to perform recoating many times, which causes a reduction in production efficiency and is not practical. On the other hand, when the viscosity is 200 Pa · s or more, control of the film thickness for forming a thin coating film on the amorphous metal ribbon becomes extremely difficult because of the high viscosity. Therefore, in the case of applying by a solution in which the resin is dissolved in a solvent, the viscosity of the resin at the time of application is preferably in a concentration range of 0.005 to 200 Pa · s. Further, the concentration is preferably in the range of 0.01 to 50 Pa · s, and more preferably in the range of 0.05 to 5 Pa · s.
[0037]
As a method of applying the liquid resin in the present invention, a method using a coater, for example, a roll coater method, an air doctor coater method, a blade coater method, a knife coater method, a rod coater method, a kisko method. -Coating method, bead coating method, cast coating method, rotary screen method, and immersion coating method of coating an amorphous metal ribbon while immersing it in a liquid resin There is a slot orifice coater method in which a liquid resin is dropped from an orifice onto an amorphous metal ribbon and coated, but in order to use an amorphous metal ribbon having a narrow width effectively, the entire surface of the ribbon is required. It is necessary to form a coating film uniformly. In addition, in order to accurately control the thickness to several microns, it is preferable to use a gravure coater method, in particular, a gravure coater method in which the diameter of a gravure plate is about 10 to 50 mm.
[0038]
(Lamination integration)
The amorphous metal ribbon laminate of the present invention has a method of stacking amorphous metal ribbons, impregnating a heat-resistant resin or a precursor of a heat-resistant resin, and forming the laminate by resinification. Preferably, a method of using a magnetic base material in which a heat-resistant resin or a precursor of a heat-resistant resin is previously applied to an amorphous metal ribbon, and laminating and bonding the base materials to form a laminate is desirable.
[0039]
Next, in the lamination and integration step, first, a desired number of laminated magnetic substrates are stacked, and lamination and integration can be performed by a hot press apparatus as shown in FIG.
[0040]
In this case, for example, a method of sandwiching between two flat molds is used as described below. Further, a block in which the magnetic base materials are stacked may be put in a frame for preventing slippage according to the shape of the stacked body and stacked and integrated. Further, a metal plate having a high thermal conductivity and a high mechanical strength is preferably used as the flat mold. For example, SUS304, SUS430, high-speed steel, pure iron, aluminum, copper and the like are preferable. In addition, it is preferable that the surface roughness of the flat plate mold is 1 μm or less so that pressure can be uniformly applied to the amorphous metal ribbon, and the upper and lower surfaces of the flat plate are parallel. More preferably, the flat mold has a mirror surface with a surface roughness of 0.1 μm or less.
[0041]
It is also possible to stack a magnetic base material and insert a heat-resistant elastic sheet having a thickness equal to or greater than the thickness tolerance of the laminate between the flat mold. At this time, the heat-resistant elastic sheet absorbs the unevenness of the flat mold and the magnetic base material, and can apply the pressure uniformly to the magnetic base material laminated body. It is.
[0042]
When the material of the heat-resistant elastic sheet is a resin, the glass transition temperature is preferably equal to or higher than the heat treatment temperature of the amorphous metal. Materials for the heat-resistant elastic sheet include polyimide resin, silicon-containing resin, ketone resin, polyamide resin, liquid crystal polymer, nitrile resin, thioether resin, polyester resin, arylate resin, sulfone resin. Resins, imide resins and amide imide resins can be mentioned. Among these, it is preferable to use a polyimide resin, a sulfone resin, or an amideimide resin. However, the material of the heat-resistant elastic sheet is not limited to this.
[0043]
The lamination and integration can be performed by heating and pressing by a hot press, a hot roll, high frequency welding, or the like. Although the temperature at the time of pressurization differs depending on the type of heat-resistant resin, it is generally preferable to apply pressure at a temperature close to or higher than the glass transition temperature of the cured product of the heat-resistant resin and have a melt fluidity to perform laminating and bonding. After melting the resin between the layers of the amorphous metal, the amorphous metal ribbons are fixed and integrated by cooling.
[0044]
(Pressure heat treatment)
In this step, in order to improve the magnetic properties of the amorphous metal ribbon, a heat treatment at 300 ° C. to 500 ° C. necessary for expressing the magnetic properties of the amorphous metal is performed. Although it depends on the composition of the amorphous metal ribbon and the intended magnetic properties, it is usually performed in an inert gas atmosphere or in a vacuum, and the temperature at which good magnetic properties are improved is generally 300 to 500 ° C. And preferably at 350 ° C to 450 ° C.
[0045]
Further, in the present invention, it has been experimentally found that the heat treatment under pressure in the temperature range of 300 ° C. to 500 ° C. significantly improves the Q value as the magnetic property of the laminate. In particular, the applied pressure is 1 MPa or more and 500 MPa or less, preferably 3 MPa or more and 100 MPa or less, more preferably 5 MPa or more and 50 MPa or less.
[0046]
When the pressing force is small, the effect of lowering or improving the Q value is small, and when the pressing force is 200 MPa or more, the Q value is reduced. In particular, when the effective magnetic permeability due to the shape effect is 上 of the magnetic permeability of the closed magnetic circuit of the material, preferably 1 / or more, more preferably 1/10 or more, Q The value improves.
The treatment time at the heat treatment temperature is usually in the range of 10 minutes to 5 hours, preferably in the range of 30 minutes to 2 hours.
[0047]
Similarly to the method of lamination and integration, a method of sandwiching between two flat plate dies or a method of lamination and integration by putting in a frame mold for preventing slip according to the shape of the laminate can be used. Furthermore, it is also possible to stack a magnetic base material and insert a heat-resistant elastic sheet having a thickness equal to or more than the thickness tolerance of the laminate between the flat mold.
[0048]
Further, the lamination bonding and the heat treatment under pressure can be performed in a single step, and a process excellent in man-hour reduction can be realized.
[0049]
(Shape processing)
As a method for processing the shape of the amorphous metal ribbon laminate of the present invention, a desired shape is cut by a method such as a punching process, a laser cutting process, a cutting process using a thin blade rotary blade, and a discharge wire cutting process. In particular, a die of 100 or less, preferably 20 or less laminated bodies can be die-cut. Further, in the case of a rectangular parallelepiped laminated body composed of several tens or more magnetic base materials, it is preferable to perform a cutting process into a desired shape by a cutting process using a thin blade rotary blade, a discharge wire process or the like. Further, in the discharge wire machining, a conductive adhesive is applied to the end face of the laminate, and the applied conductive adhesive portion is electrically grounded, so that the discharge wire can be more stably processed.
[0050]
Further, the shape processing is performed by processing the magnetic base material before lamination bonding into a desired shape by etching, punching, or the like, and then performing lamination bonding and pressure heat treatment to obtain the amorphous metal ribbon laminate of the present invention. You can also get
[0051]
Hereinafter, examples of the present invention will be described.
[0052]
【Example】
Hereinafter, examples of the present invention will be described.
(Example 1)
As the amorphous metal ribbon, an amorphous metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%), Metglas: 2714A, width of about 50 mm, and thickness of about 15 μm, manufactured by Honeywell Co., Ltd. used. A polyamic acid solution having a viscosity of about 0.3 Pa · s was applied to the entire surface of one side of the ribbon by using an E-type viscometer, and a varnish was applied to the entire surface using a gravure head having an outer diameter of 50 mm. After curing at 260 ° C., a heat-resistant resin (polyimide resin) of about 6 μm was applied to one surface of the amorphous metal ribbon to prepare a substrate.
[0053]
The polyamic acid solution is obtained by polycondensation of 3,3′-diaminodiphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at a ratio of 1: 0.98 in a dimethylacetamide solvent at room temperature. It was used after dilution with dimethylacetamide. After stacking 25 base materials to produce a 0.7 mm-thick laminate by hot pressing at 260 ° C., this laminate was heat-treated at 400 ° C. for 1 hour and a pressure of 10 MPa using a hot press apparatus shown in FIG. Thereafter, the shape was processed with a dicing saw using a cutting blade having a thickness of 0.2 mm to produce a laminated core of 20 × 2.5 mm. An insulating adhesive film (manufactured by Nitto Denko, model No. 360VL film thickness 25 μm) is attached to the core except for the end face in the longitudinal direction, and then a Φ0.1 mm covered conductor is wound around the core for 800 turns. The Q value and the L value were measured at a frequency of 60 kHz. An LCR meter (HP 4284A) was used to measure the Q value and the L value, and the measurement voltage was 1 V. The core has a high Q value and excellent characteristics. In addition, since the pressure during the heat treatment was high, a laminate having small surface irregularities and excellent flatness was able to be realized.
(Example 2)
A core obtained by producing a laminate in the same manner as in Example 1 was subjected to a heat treatment at a temperature of 400 ° C. and a pressure of 35 MPa for 1 hour using a hot press apparatus shown in FIG. This amorphous metal ribbon laminate was processed into the same shape as in Example 1 by press punching, and after attaching an insulating tape, winding was performed, and the thickness, Q value, and L value were measured. Was. The measured values are shown in Table 1. The core has a high Q value and excellent characteristics. In addition, since the pressure during the heat treatment was high, a laminate having small surface irregularities and excellent flatness was able to be realized. (Example 3)
A core obtained by producing a laminate in the same manner as in Example 1 was subjected to a heat treatment at a temperature of 400 ° C. and a pressure of 20 MPa for 1 hour using a hot press apparatus shown in FIG. This amorphous metal ribbon laminate was processed into the same shape as in Example 1 by discharge wire processing, and after attaching an insulating tape, winding was performed and the thickness, Q value, and L value were measured. Was. The measured values are shown in Table 1. The core has a high Q value and excellent characteristics. In addition, since the pressure during the heat treatment was high, a laminate having small surface irregularities and excellent flatness was able to be realized.
[0054]
[Table 1]
Figure 2004119402
[0055]
(Comparative Example 1)
As the amorphous metal ribbon, an amorphous metal ribbon having a composition of Co 66 Fe 4 Ni 1 (BSi) 29 (atomic%), Metglas: 2714A, width of about 50 mm, and thickness of about 15 μm, manufactured by Honeywell Co., Ltd. used. After cutting this thin strip into 20 × 2.5 mm, it was heat-treated at 400 ° C. for 1 hour, and impregnated with an epoxy resin to produce a laminated core. Further, an insulating adhesive film (manufactured by Nitto Denko, model No. 360VL film thickness 25 μm) was attached to the core except for the end face in the longitudinal direction, and then a coated conductor having a diameter of 0.1 mm was applied to the core. After winding, the Q value and the L value were measured at a frequency of 60 kHz. As a result, the Q value is lower than the characteristics of Examples 1 to 3, and the core has a large loss as compared with the examples.
[0056]
In addition, when the heat-treated ribbons were overlapped during production, the yield was reduced due to cracking of the ribbons during handling. In addition, since the lamination and integration are performed in a state in which the ribbon after the heat treatment is in a brittle state, sufficient pressure cannot be applied during the impregnation and curing, so that the unevenness on the surface becomes larger than that of the embodiment, and the shape stability is poor.
(Comparative Example 2)
As an amorphous metal strip, Honeywell, Metglas: 2714A, using amorphous metal ribbon having a composition of Co 66 Fe 4 Ni1 a width of about 50 mm, a thickness of about 15 [mu] m (BSi) 29 (atomic%) did. A base material having an epoxy resin applied to the ribbon was prepared, and 25 base materials were stacked and bonded at 0.1 ° C. at 150 ° C., and then a laminate heat-treated at 200 ° C. was prepared. The shape was processed using a cutting blade having a thickness to produce a laminated core of 20 × 2.5 mm. Winding was performed in the same manner as in Example 1, and the Q value and the L value were measured at a frequency of 60 kHz. As a result, the Q value is lower than the characteristics of Examples 1 to 3, and the core has a large loss as compared with the example.
[0057]
Further, since no pressure is applied during the heat treatment after the lamination and bonding, the surface irregularities after the heat treatment become larger than those in the examples, and the shape stability is poor.
[Brief description of the drawings]
FIG. 1 is an example of a gap core of the present invention. FIG. 2 is an example of a bar-shaped magnetic core of the present invention. FIG. 3 is an example of an EI-shaped magnetic core of the present invention. Explanation of code]
REFERENCE SIGNS LIST 1 gap core 11 amorphous metal ribbon laminate 12 gap 2 rod-shaped magnetic core 21 amorphous metal ribbon laminate 3 EI-shaped magnetic core 31 E-shaped amorphous metal ribbon laminate 32 I-shaped amorphous Heat-pressing machine 41 Amorphous metal ribbon and amorphous metal ribbon with resin 42 Laminated amorphous metal ribbon 33 Hot press mold

Claims (5)

コア形状が開磁路である非晶質金属薄帯積層体において、加圧熱処理をされたことを特徴とする積層体。An amorphous metal thin-film laminate having a core shape of an open magnetic path, which is heat-treated under pressure. 非晶質金属薄帯と樹脂層とが交互に積層されたことを特徴とするとする請求項1記載の非晶質金属薄帯積層体。The amorphous metal ribbon laminate according to claim 1, wherein the amorphous metal ribbon and the resin layer are alternately laminated. 樹脂層が窒素気流中で300℃2時間の履歴を経た後の重量減少が1重量%以下であることを特徴とする請求項2記載の非晶質金属薄帯積層体。3. The amorphous metal ribbon laminate according to claim 2, wherein a weight loss of the resin layer after passing through a history of 300 ° C. for 2 hours in a nitrogen stream is 1% by weight or less. 熱処理温度が300〜500℃の範囲であり、加圧力が1〜100MPaの範囲であることを特徴とする請求項1〜3の非晶質金属薄帯積層体の製造方法。The method for producing an amorphous metal ribbon laminate according to claim 1, wherein the heat treatment temperature is in a range of 300 to 500 ° C., and the pressure is in a range of 1 to 100 MPa. 電波受信または送信、あるいは送受信に用いられるアンテナの磁性コアに用いられることを特徴とする請求項1〜3記載の非晶質金属薄帯積層体。4. The amorphous metal ribbon laminate according to claim 1, which is used for a magnetic core of an antenna used for radio wave reception or transmission, or transmission and reception.
JP2002276333A 2002-09-20 2002-09-20 Method for producing amorphous metal ribbon laminate Expired - Fee Related JP4357822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276333A JP4357822B2 (en) 2002-09-20 2002-09-20 Method for producing amorphous metal ribbon laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276333A JP4357822B2 (en) 2002-09-20 2002-09-20 Method for producing amorphous metal ribbon laminate

Publications (2)

Publication Number Publication Date
JP2004119402A true JP2004119402A (en) 2004-04-15
JP4357822B2 JP4357822B2 (en) 2009-11-04

Family

ID=32272238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276333A Expired - Fee Related JP4357822B2 (en) 2002-09-20 2002-09-20 Method for producing amorphous metal ribbon laminate

Country Status (1)

Country Link
JP (1) JP4357822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329143A (en) * 2006-06-06 2007-12-20 Mitsui Chemicals Inc Magnetic metallic thin band laminate and antenna employing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329143A (en) * 2006-06-06 2007-12-20 Mitsui Chemicals Inc Magnetic metallic thin band laminate and antenna employing same
JP4603511B2 (en) * 2006-06-06 2010-12-22 中川特殊鋼株式会社 Magnetic metal ribbon laminate and antenna using the same

Also Published As

Publication number Publication date
JP4357822B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4537712B2 (en) Magnetic substrate, laminate of magnetic substrate, and method for producing laminate
US7075402B1 (en) Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip
JP4471037B2 (en) Antenna core, method for manufacturing antenna core, and antenna
US20200279674A1 (en) Coil component
US20200279678A1 (en) Coil component
US11189408B2 (en) Soft magnetic alloy and magnetic device
JP5093572B2 (en) LAMINATED CORE AND MANUFACTURING METHOD THEREOF
JP2004048136A (en) Thin antenna
US11682507B2 (en) Coil component
JP2004356468A (en) Laminated magnetic core and magnetic component
US20070141399A1 (en) Laminate of magnetic substrates and method of manufacturing the same
JP4574155B2 (en) Magnetic core and its use
JP4357822B2 (en) Method for producing amorphous metal ribbon laminate
JP4603511B2 (en) Magnetic metal ribbon laminate and antenna using the same
JP3938338B2 (en) Thin, high efficiency, motor or generator laminate and motor or generator
JP2004048135A (en) Rfid antenna
JP2004119403A (en) Magnetic laminate
JP4313141B2 (en) Method for producing laminated body of magnetic substrate, and laminated body of magnetic substrate obtained thereby
JP2005116887A (en) Magnetic laminate using magnetic casting metal strip of low ratio and its application
JP2005104009A (en) Magnetic base material, laminate thereof and use of them
JP2004106426A (en) Amorphous alloy thin strip laminated product and its manufacturing method
JP2005109210A (en) Magnetic base and position adjustment method thereof
JP2005110061A (en) Small thin antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070528

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140814

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees