JP2011252675A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2011252675A
JP2011252675A JP2010127907A JP2010127907A JP2011252675A JP 2011252675 A JP2011252675 A JP 2011252675A JP 2010127907 A JP2010127907 A JP 2010127907A JP 2010127907 A JP2010127907 A JP 2010127907A JP 2011252675 A JP2011252675 A JP 2011252675A
Authority
JP
Japan
Prior art keywords
hot water
water
temperature
bathtub
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010127907A
Other languages
Japanese (ja)
Inventor
Kensaku Hatanaka
謙作 畑中
So Nomoto
宗 野本
Kunihiro Morishita
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010127907A priority Critical patent/JP2011252675A/en
Publication of JP2011252675A publication Critical patent/JP2011252675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump water heater that can be re-heated with a power consumption less than the case of pouring hot water.SOLUTION: The heat pump water heater 1000 includes: a refrigerant circuit 101 with a high temperature side heat transfer pipe 2H constituting a compressor 1 and condenser 2, an expansion valve 3 and an evaporator 4, which are connected sequentially; a bathtub water circuit 301 with a bathtub 10, a bathtub water pump 11 and a low-temperature side heat transfer pipe 12L constituting a reheating heat exchanger 12, which are connected sequentially; a circulation hot water pump 6 and a low-temperature side heat transfer pipe 2L constituting the condenser 2; a circulation hot water heater circuit (reheating circuit) 202 with a selector valve 7 and a high temperature side heat transfer pipe 12H constituting the reheating heat exchanger 12, which are connected sequentially; a heating capacity controller 400 for controlling a heating capacity in the condenser 2 within a predetermined range, based on a difference between a target temperature of the bathtub water and a measured temperature thereof, when the bathtub water is heated in the reheating heat exchanger 12 by a circulation hot water heated in the condenser 2.

Description

本発明は、ヒートポンプ給湯機、特に、浴槽内の浴槽水を保温可能なヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater, and more particularly, to a heat pump water heater that can keep bathtub water in a bathtub.

従来のヒートポンプ給湯機は、安価な夜間電力によって加熱した高温の給水(以下、「温水」と称す)」を温水タンクに貯え、温水を浴槽に供給し、供給された温水が冷めた時には、追焚きを可能にしていた。
例えば、冷凍サイクルを実現する熱源回路(冷媒が流れる)と、熱源回路に凝縮器によって熱的に連結された加熱回路(温水が流れる)と、該加熱回路に追焚き熱交換器によって熱的に連結された浴槽水回路(浴槽水が流れる)と、を有し、浴槽内の浴槽水の温度が低下し、保温(以下、「追焚き」と称す)を実行するときに、追焚き熱交換器に熱交換の過程において、循環温水(徐々に降温する)と浴槽水(徐々に昇温する)との温度差を小さくすることによって、加熱効率(COP)を高める発明が開示されている(例えば、特許文献1参照)。
Conventional heat pump water heaters store hot water (hereinafter referred to as “hot water”) heated by inexpensive nighttime electricity in a hot water tank, supply the hot water to the bathtub, and when the supplied hot water cools, It was possible to whisper.
For example, a heat source circuit (refrigerant flows) that realizes a refrigeration cycle, a heating circuit (hot water flows) that is thermally connected to the heat source circuit by a condenser, and a heat exchanger that heats the heating circuit A connected bath water circuit (where bath water flows), and when the temperature of the bath water in the bath is lowered and heat retention (hereinafter referred to as “reheating”) is performed, additional heat exchange An invention is disclosed in which the heating efficiency (COP) is increased by reducing the temperature difference between the circulating hot water (gradually lowering temperature) and the bath water (gradually increasing temperature) in the process of heat exchange with the vessel ( For example, see Patent Document 1).

特開2006−234314号公報(第10−11頁、第1図)JP 2006-234314 A (pages 10-11, FIG. 1)

しかしながら、特許文献1に記載された従来のヒートポンプ給湯機は、浴槽水の温度に基づいて、追焚き熱交換器に流入する循環温水(凝縮器によって加熱される水)の温度を制御するが、加熱能力が大きくなると、追焚きを実施するための消費電力量が増大する。このため、温水タンクに貯湯した温水で保温を実施する(以下、「湯注し」と称す)よりも、消費電力量が大きくなるという問題が生じていた。   However, the conventional heat pump water heater described in Patent Document 1 controls the temperature of the circulating hot water (water heated by the condenser) flowing into the reheating heat exchanger based on the temperature of the bath water. As the heating capacity increases, the amount of power consumed for carrying out the chasing increases. For this reason, there has been a problem that the amount of power consumption is larger than that in which heat is stored with hot water stored in a hot water tank (hereinafter referred to as “hot water pouring”).

本発明は上記問題を解決するためになされたもので、追焚きをする場合に必要な加熱量を確保するために必要な消費電力量を、湯注しをする場合に必要な加熱量を確保するために必要な消費電力量よりも低減することができるホートポンプ給湯機を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. The power consumption necessary for securing the heating amount necessary for reheating is ensured, and the heating amount necessary for pouring the hot water is ensured. An object of the present invention is to provide a hot pump water heater capable of reducing the amount of power consumption required for the purpose.

本発明に係るヒートポンプ給湯機は、
圧縮機、凝縮器を構成する高温側伝熱管、膨張弁および蒸発器が冷媒配管によって順次に接続された冷媒回路と、
浴槽、浴槽水ポンプおよび追焚き熱交換器を構成する低温側伝熱管が浴槽水配管によって順次接続された浴槽水回路と、
前記凝縮器を構成する低温側伝熱管、前記追焚き熱交換器を構成する高温側伝熱管および循環温水ポンプが循環温水配管によって順次接続された循環温水加熱回路と、
前記冷媒回路の加熱能力を制御する加熱能力制御手段と、を備え、
前記加熱能力制御手段は、前記凝縮器において加熱された前記循環温水配管を流れる循環温水によって、前記浴槽水配管を流れる浴槽水を前記追焚き熱交換器において加熱する場合に、前記浴槽水の目標温度と測定温度との差に基づいて、前記凝縮器における加熱能力を所定の範囲に制御することを特徴としたものである。
The heat pump water heater according to the present invention is
A refrigerant circuit in which a compressor, a high-temperature side heat transfer tube constituting an condenser, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe;
A bathtub water circuit in which the low temperature side heat transfer pipes constituting the bathtub, the bathtub water pump and the additional heat exchanger are sequentially connected by the bathtub water piping;
A circulating hot water heating circuit in which a low temperature side heat transfer tube constituting the condenser, a high temperature side heat transfer tube constituting the follow-up heat exchanger, and a circulating hot water pump are sequentially connected by circulating hot water piping;
Heating capacity control means for controlling the heating capacity of the refrigerant circuit,
When the heating capacity control means heats the bathtub water flowing through the bathtub water pipe in the reheating heat exchanger with the circulating hot water flowing through the circulating hot water pipe heated in the condenser, Based on the difference between the temperature and the measured temperature, the heating capacity of the condenser is controlled within a predetermined range.

本発明に係るヒートポンプ給湯機によれば、追焚き運転時に、循環温水による保温加熱能力を調節することで、追焚きに必要な加熱量(循環温水を所定温度に沸き上げるために必要な消費電力量)を、湯注ぎに必要な加熱量(温水タンク内に貯湯されたタンク温水を用いた場合、使用するタンク温水を沸き上げるための消費電力量)に比べて低減させることができる。   According to the heat pump water heater according to the present invention, the amount of heating necessary for reheating (power consumption necessary for boiling the recirculated hot water to a predetermined temperature) is adjusted by adjusting the heat-retention heating capacity of the recirculated hot water during reheating operation. Amount) can be reduced compared to the heating amount necessary for pouring (when using the tank warm water stored in the hot water tank, the amount of power consumed for boiling the tank warm water to be used).

本発明の実施の形態に係るヒートポンプ給湯機の構成を示す回路図。The circuit diagram which shows the structure of the heat pump water heater based on Embodiment of this invention. 本発明の実施の形態に係るヒートポンプ給湯機の構成を示す回路図。The circuit diagram which shows the structure of the heat pump water heater based on Embodiment of this invention. 本発明の実施の形態に係るヒートポンプ給湯機の追焚き(保温)運転時の制御フローチャート。The control flowchart at the time of the chasing (heat retention) driving | operation of the heat pump water heater which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートポンプ給湯機の保温加熱能力に対する消費電力量を示す特性図。The characteristic view which shows the power consumption with respect to the heat retention heating capability of the heat pump water heater which concerns on embodiment of this invention.

図1〜図4は本発明の実施の形態に係るヒートポンプ給湯機を説明するものであって、図1および図2は構成を模式的に示す回路図、図3は追焚き(保温)運転時の制御フローを示すフローチャート、図4は効果を説明する特性線図である。
図1および図2において、ヒートポンプ給湯機1000は、ヒートポンプユニット100と、温水タンクユニット200と、浴槽ユニット300と、計測制御装置400とを備えている。以下、それぞれについて個別に説明する。
1 to 4 are diagrams for explaining a heat pump water heater according to an embodiment of the present invention. FIG. 1 and FIG. 2 are circuit diagrams schematically showing the configuration, and FIG. FIG. 4 is a characteristic diagram illustrating the effect.
1 and 2, the heat pump water heater 1000 includes a heat pump unit 100, a hot water tank unit 200, a bathtub unit 300, and a measurement control device 400. Each will be described individually below.

(ヒートポンプユニット)
ヒートポンプユニット100は、圧縮機1、凝縮器(冷媒と水との間の熱交換をする)2、膨張弁3及び蒸発器(冷媒と空気との間の熱交換をする)4を有し、これらが冷媒配管5によって順次接続され、冷媒が循環する回路101が形成され、冷凍サイクルが実行可能になっている(正確には、凝縮器2を構成する高温側伝熱管2Hは、冷媒回路101の一部を構成している)。なお、蒸発器4に対向して外気を送風するファン4fが配置されている。
また、ヒートポンプユニット100の外郭またはその近傍に外気温度センサー13cが設けられ、ヒートポンプユニット100の周囲の外気温度が計測される。
さらに、冷媒回路101において、吐出温度センサー13dが圧縮機1の出口側に、吸入温度センサー13eが圧縮機1の入口側に、それぞれ設けられ、蒸発温度センサー13fが蒸発器4の入口から中間部に設けられており、それぞれ配置場所の冷媒温度を計測する。
(Heat pump unit)
The heat pump unit 100 includes a compressor 1, a condenser (which performs heat exchange between the refrigerant and water) 2, an expansion valve 3 and an evaporator (which performs heat exchange between the refrigerant and air) 4. These are sequentially connected by the refrigerant pipe 5 to form a circuit 101 through which the refrigerant circulates, so that the refrigeration cycle can be executed (more precisely, the high-temperature side heat transfer pipe 2H constituting the condenser 2 is the refrigerant circuit 101). Part of A fan 4 f that blows outside air is disposed opposite to the evaporator 4.
In addition, an outside air temperature sensor 13 c is provided at or near the outer periphery of the heat pump unit 100, and the outside air temperature around the heat pump unit 100 is measured.
Further, in the refrigerant circuit 101, the discharge temperature sensor 13 d is provided on the outlet side of the compressor 1, the suction temperature sensor 13 e is provided on the inlet side of the compressor 1, and the evaporation temperature sensor 13 f is provided at the intermediate portion from the inlet of the evaporator 4. The refrigerant temperature at each of the locations is measured.

なお、圧縮機1から吐出する冷媒の圧力や温度を変化させることができるように、圧縮機駆動装置(図示せず)をインバータ制御のDCブラシレスモータを使用して回転数を可変としたものとするが、複数台の圧縮機を組合せて、この組合せを切換えることによって、全体の能力を可変としても良い。また、圧縮機1の吸入側に冷媒音を低減させるサクションマフラーのような容器や、圧縮機1の吐出側に流出した潤滑油を回収する装置など、他の目的の構造を付加しても良い。
ヒートポンプユニット100の冷媒としては、高温に圧縮することができる冷媒、例えば、二酸化炭素、R410A、プロパン、プロピレンなどの冷媒が適しているが、本発明は、これらに限定するものではない。
The compressor drive device (not shown) uses an inverter-controlled DC brushless motor so that the rotation speed is variable so that the pressure and temperature of the refrigerant discharged from the compressor 1 can be changed. However, the overall capability may be made variable by combining a plurality of compressors and switching the combination. In addition, a structure such as a suction muffler that reduces refrigerant noise on the suction side of the compressor 1 or a device that collects lubricating oil that has flowed out to the discharge side of the compressor 1 may be added. .
As the refrigerant of the heat pump unit 100, a refrigerant that can be compressed to a high temperature, for example, a refrigerant such as carbon dioxide, R410A, propane, or propylene is suitable, but the present invention is not limited to these.

(浴槽ユニット)
浴槽ユニット300は、浴槽10、浴槽水を循環させる浴槽水ポンプ11、追焚き熱交換器(浴槽水と後記循環温水との間で熱交換する)12を、有し、これらが浴槽水配管9h〜9jによって順次接続され、浴槽水回路301が形成される(正確には、追焚き熱交換器12を構成する低温側伝熱管12Lの上流側および下流側に、それぞれ浴槽水配管9hの下流側および浴槽水配管9jの上流側が接続されている)。
また、浴槽10には浴槽水温度センサー13kが設けられ、浴槽内における浴槽水の温度を計測する。浴槽水回路301において、追焚き熱交換器12の入口側および出口側に、それぞれ追焚き熱交換器入水温度センサー13lおよび追焚き熱交換器出湯温度センサー13mが設けられ、それぞれ設置場所における浴槽水の温度が計測される。
(Tub unit)
The bathtub unit 300 includes a bathtub 10, a bathtub water pump 11 that circulates bathtub water, and a reheating heat exchanger (heat exchange between bathtub water and circulating hot water described later) 12, and these are bathtub water pipes 9h. To 9j to form a bathtub water circuit 301 (more precisely, on the upstream side and the downstream side of the low-temperature side heat transfer pipe 12L constituting the reheating heat exchanger 12, respectively, on the downstream side of the bathtub water pipe 9h And the upstream side of the bathtub water pipe 9j is connected).
Moreover, the bathtub water temperature sensor 13k is provided in the bathtub 10, and the temperature of the bathtub water in a bathtub is measured. In the bathtub water circuit 301, the additional heat exchanger incoming water temperature sensor 13l and the additional heat exchanger hot water temperature sensor 13m are provided on the inlet side and the outlet side of the additional heat exchanger 12, respectively. The temperature of is measured.

(温水タンクユニット)
温水タンクユニット200は、水を凝縮器2に送水する循環温水ポンプ6と、凝縮器2で加熱された水(以下、「温水」と称す)を貯留する温水タンク8と、循環水の流路を切り替える切替弁(三方弁)7と、を有している。
すなわち、切替弁7の切換により、循環温水ポンプ6と、凝縮器2(正確には、凝縮器2を構成する低温側伝熱管2L)と、切替弁7と、追焚き熱交換器12(正確には、追焚き熱交換器12を構成する高温側伝熱管12H)と、循環温水ポンプ6とが、循環温水配管9a、9b、9e、9f、9gによって接続され、循環温水加熱回路(追焚き回路)202が構成される。
さらに、凝縮器2(正確には、凝縮器2を構成する低温側伝熱管2L)の入口側および出口側に、それぞれ、入水温度センサー13aおよび出湯温度センサー13bが設けられ、それぞれ設置場所の循環水の温度が計測される。
(Hot water tank unit)
The hot water tank unit 200 includes a circulating hot water pump 6 that supplies water to the condenser 2, a hot water tank 8 that stores water heated by the condenser 2 (hereinafter referred to as “hot water”), and a flow path of the circulating water. And a switching valve (three-way valve) 7 for switching between.
That is, by switching the switching valve 7, the circulating hot water pump 6, the condenser 2 (more precisely, the low temperature side heat transfer pipe 2L constituting the condenser 2), the switching valve 7, and the reheating heat exchanger 12 (accurate) Are connected to the high-temperature side heat transfer pipe 12H constituting the reheating heat exchanger 12 and the circulating hot water pump 6 by circulating hot water pipes 9a, 9b, 9e, 9f, 9g, and a circulating hot water heating circuit (heating) Circuit) 202 is configured.
Furthermore, an inlet water temperature sensor 13a and an outlet water temperature sensor 13b are respectively provided on the inlet side and the outlet side of the condenser 2 (more precisely, the low temperature side heat transfer tube 2L constituting the condenser 2), and each of them circulates at the installation site. The water temperature is measured.

また、切替弁7の切換により、循環温水ポンプ6と、凝縮器2(正確には、凝縮器2を構成する低温側伝熱管2L)と、切替弁7と、温水タンク8と、循環温水ポンプ6とが、循環温水配管9a、9bおよび接続配管9c、9dおよび循環温水配管9gによって接続され温水タンク加熱回路(給湯回路)201が構成される。
また、温水タンク8の表面には温水タンク温度センサー13g〜13jが設けられ、温水タンク8内に貯溜されたタンク温水の温度が計測される。
Further, by switching the switching valve 7, the circulating hot water pump 6, the condenser 2 (more precisely, the low temperature side heat transfer pipe 2L constituting the condenser 2), the switching valve 7, the hot water tank 8, and the circulating hot water pump. 6 are connected by the circulating hot water pipes 9a and 9b, the connecting pipes 9c and 9d, and the circulating hot water pipe 9g to form a hot water tank heating circuit (hot water supply circuit) 201.
Further, hot water tank temperature sensors 13g to 13j are provided on the surface of the hot water tank 8, and the temperature of the tank hot water stored in the hot water tank 8 is measured.

なお、図1には、温水タンク加熱回路201の温水タンク8に貯留された一定温度のタンク温水を、例えば浴槽10や台所(図示しない)等に直接供給する接続配管等や、水源からの水を温水タンク加熱回路201内に受け入れる接続配管等、温水タンク加熱回路201から浴槽10や台所(図示しない)等に水を供給する接続配管等の記載を省略している。   In FIG. 1, for example, a connection pipe that directly supplies hot water of a constant temperature stored in the hot water tank 8 of the hot water tank heating circuit 201 to the bathtub 10, a kitchen (not shown), or the like, or water from a water source. Description of connection piping for supplying water from the hot water tank heating circuit 201 to the bathtub 10, kitchen (not shown), etc. is omitted.

(計測制御装置)
ヒートポンプユニット100内には、制御手段としての計測制御装置400が設けられている。この計測制御装置400は、各温度センサー13a〜13m等によって計測された計測情報や、ヒートポンプ給湯機1000の使用者からリモコン装置(図示しない)等によって指示された運転指令情報の内容に基づいて、圧縮機1の運転方法、膨張弁3の開度、循環温水ポンプ6の運転方法、切替弁7の流路方向、浴槽水ポンプ11の運転方法、沸き上げ運転、追焚き運転などを制御する。
(Measurement control device)
In the heat pump unit 100, a measurement control device 400 is provided as a control means. The measurement control device 400 is based on the measurement information measured by the temperature sensors 13a to 13m or the like and the content of the operation command information instructed by the remote control device (not shown) or the like from the user of the heat pump water heater 1000. The operation method of the compressor 1, the opening degree of the expansion valve 3, the operation method of the circulating hot water pump 6, the flow direction of the switching valve 7, the operation method of the bathtub water pump 11, the boiling operation, the reheating operation, and the like are controlled.

(沸き上げ運転の動作)
図2について、このヒートポンプ給湯機1000における沸き上げ運転の動作について説明する。
沸き上げ運転とは、冷媒回路101と温水タンク加熱回路201とを動作させ(正確には、切替弁7を切り替え、圧縮機1および循環温水ポンプ6を運転する)、温水タンク8の底部の取水口8bから比較的低温のタンク温水を流出させて凝縮器2に送水し、凝縮器2で冷媒と熱交換する(冷媒の有する温熱を、タンク温水に受け渡す)ことによってタンク温水の温度を高め、温水タンク8の上部の貯湯口8aから温水タンク8内に戻す動作である。図中、循環水または浴槽水が流れていない接続配管を破線で示している。
(Operation of boiling operation)
The operation of the boiling operation in the heat pump water heater 1000 will be described with reference to FIG.
In the boiling operation, the refrigerant circuit 101 and the hot water tank heating circuit 201 are operated (to be exact, the switching valve 7 is switched and the compressor 1 and the circulating hot water pump 6 are operated), and water is taken in at the bottom of the hot water tank 8. A relatively low temperature tank warm water flows out from the port 8b, is sent to the condenser 2, and heat exchange with the refrigerant is performed in the condenser 2 (the temperature of the refrigerant is transferred to the tank warm water) to increase the temperature of the tank warm water. In this operation, the hot water tank 8 is returned from the hot water storage port 8a to the hot water tank 8. In the figure, the connection piping in which the circulating water or bathtub water does not flow is indicated by broken lines.

すなわち、ヒートポンプユニット100の冷媒回路101において、圧縮機1から吐出された高温高圧のガス冷媒は凝縮器2において温水タンク加熱回路201側へ放熱(タンク温水を加熱)しながら温度が低下する。このとき、冷媒の圧力が臨界圧以上であれば、冷媒は超臨界状態(気相)の状態を維持し、気液相転移しないで温度低下して温熱を放出する。一方、冷媒の圧力が臨界圧以下であれば、気液相転移するから、液化しながら温熱を放出する。
つまり、冷媒から放熱された温熱を負荷側媒体(ここでは、温水タンク加熱回路201を流れるタンク温水)に与えることで沸き上げ(給湯加熱)を行う。沸き上げをして凝縮器2から流出した温度の下がった高圧の冷媒は、膨張弁3に流入する。
That is, in the refrigerant circuit 101 of the heat pump unit 100, the temperature of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 decreases while radiating heat (heats the tank hot water) to the hot water tank heating circuit 201 side in the condenser 2. At this time, if the pressure of the refrigerant is equal to or higher than the critical pressure, the refrigerant maintains a supercritical state (gas phase), lowers the temperature without causing a gas-liquid phase transition, and releases warm heat. On the other hand, if the pressure of the refrigerant is lower than the critical pressure, the gas-liquid phase transition occurs, so that the heat is released while liquefying.
That is, boiling (hot water supply heating) is performed by giving the heat radiated from the refrigerant to the load-side medium (here, the tank warm water flowing through the warm water tank heating circuit 201). The high-pressure refrigerant that has been boiled up and has flowed out of the condenser 2 and has fallen in temperature flows into the expansion valve 3.

そして、膨張弁3に流入した高圧の冷媒は、ここで低圧気液二相の状態に減圧される。
さらに、膨張弁3から流出した冷媒(減圧され、低温になっている)は、蒸発器4に流入し、そこで外気(周囲の空気)から温熱を吸収し、蒸発ガス化される。蒸発器4を出た低圧の冷媒は圧縮機1に吸入され、冷媒が循環する冷凍サイクルが実行される。
The high-pressure refrigerant that has flowed into the expansion valve 3 is reduced in pressure to a low-pressure gas-liquid two-phase state.
Further, the refrigerant flowing out of the expansion valve 3 (depressurized and having a low temperature) flows into the evaporator 4, where it absorbs heat from the outside air (ambient air) and is vaporized into gas. The low-pressure refrigerant exiting the evaporator 4 is sucked into the compressor 1 and a refrigeration cycle in which the refrigerant circulates is executed.

一方、温水タンクユニット200側では、温水タンク加熱回路201において、温水タンク8内の水が、温水タンク8の底部の取水口8bから接続配管9dおよび循環温水配管9gを経由して循環温水ポンプ6に吸引され、循環温水配管9aを経由して凝縮器2(低温側伝熱管2L)内に搬送される。そして、ここで高温の冷媒と熱交換して加熱(沸き上げ)され、循環温水配管9b、切替弁7、接続配管9cを経由して、温水タンク8の上部の貯湯口8aから温水タンク8内に流入する。これにより、温水タンク8内のタンク温水は、上部が高温で下部が低温の状態になる。   On the other hand, on the warm water tank unit 200 side, in the warm water tank heating circuit 201, the water in the warm water tank 8 passes from the water intake port 8b at the bottom of the warm water tank 8 through the connection pipe 9d and the circulating hot water pipe 9g. And is conveyed into the condenser 2 (low temperature side heat transfer tube 2L) via the circulating hot water pipe 9a. Then, it is heated (boiling) by exchanging heat with a high-temperature refrigerant, and passes through the circulating hot water pipe 9b, the switching valve 7, and the connecting pipe 9c, and enters the hot water tank 8 from the hot water storage port 8a above the hot water tank 8. Flow into. Thereby, the upper part of the hot water in the hot water tank 8 is in a high temperature state and the lower part is in a low temperature state.

(沸き上げ運転の制御動作)
次に、このヒートポンプ給湯機での沸き上げ運転の制御動作について説明する。
まず、回転数等で制御される圧縮機1の運転容量及び循環温水ポンプ6の回転数は、後述の計測制御装置400で算出される加熱能力に基づいて調整される。
つまり、加熱能力及び凝縮器2の低温側伝熱管2Lの出口におけるタンク温水の出湯温度Tb(出湯温度センサー13bによって計測される)が、予め定められた目標値(Tb1)となるように調整制御される。その目標出湯温度Tb1は、使用者からリモコンにて指示される運転指令情報から設定されるか、あるいはリモコン内もしくは計測制御装置400に設けられたマイコンにて過去の給湯使用量から算出される蓄熱エネルギー(貯湯量)を確保できるように設定される。なお、目標出湯温度Tb1は、あらかじめ範囲が決められており、例えば65℃〜90℃の範囲に設定されている。
そして、目標出湯温度Tb1の最大値(例えば、90℃)で所定の加熱能力を確保できれば、目標出湯温度Tb1の範囲内(例えば、65℃〜90℃)で所定の加熱能力を確保できる。
(Control operation of boiling operation)
Next, the control operation of the boiling operation in this heat pump water heater will be described.
First, the operating capacity of the compressor 1 controlled by the number of revolutions and the like and the number of revolutions of the circulating hot water pump 6 are adjusted based on the heating capacity calculated by the measurement control device 400 described later.
That is, adjustment control is performed so that the heating capacity and the hot water temperature Tb (measured by the hot water temperature sensor 13b) of the tank hot water at the outlet of the low temperature side heat transfer tube 2L of the condenser 2 become a predetermined target value (Tb1). Is done. The target hot water temperature Tb1 is set from the operation command information instructed by the user from the remote controller, or is stored from the past hot water supply usage amount in the remote controller or by the microcomputer provided in the measurement control device 400. It is set so that energy (hot water storage amount) can be secured. The target hot water temperature Tb1 has a predetermined range, for example, a range of 65 ° C to 90 ° C.
If the predetermined heating capacity can be secured at the maximum value (for example, 90 ° C.) of the target hot water temperature Tb1, the predetermined heating capacity can be secured within the range of the target hot water temperature Tb1 (for example, 65 ° C. to 90 ° C.).

(圧縮機の制御動作)
したがって、凝縮器2の加熱能力である圧縮機1について、その回転数は、上述したように例えば外気温度Tc(外気温度センサー13cによって計測される)とタンク温水の出湯温度Tb(出湯温度センサー13bによって計測される)とに基づき調整することで、どのような目標出湯温度Tb1においても所定の加熱能力を確保することができる。
言いかえれば圧縮機1の出力は、どのような外部条件に対しても「給湯機」として要求されるタンク温水の出湯温度Tbを何時でも確保できる加熱能力を準備しており、この結果、常に所望の温度のタンク温水(お湯)を「給湯装置」として得ることができる。
また、圧縮機1の回転数は、圧縮機耐久性の観点から上限回転数および下限回転数が設けられ、たとえば、圧縮機1の定格能力の40〜100%の範囲に相当する回転数にすることが好ましい。
(Compressor control operation)
Therefore, as for the compressor 1 which is the heating capability of the condenser 2, the number of rotations thereof is, for example, the outside temperature Tc (measured by the outside temperature sensor 13c) and the tapping temperature Tb (tapping temperature sensor 13b) of the tank warm water as described above. The predetermined heating capacity can be ensured at any target hot water temperature Tb1.
In other words, the output of the compressor 1 is provided with a heating capacity that can ensure the hot water discharge temperature Tb of the tank warm water required as a “hot water supply” at any time under any external conditions. Tank hot water (hot water) having a desired temperature can be obtained as a “hot water supply device”.
Moreover, the rotation speed of the compressor 1 is provided with an upper limit rotation speed and a lower limit rotation speed from the viewpoint of compressor durability. For example, the rotation speed corresponds to a range of 40 to 100% of the rated capacity of the compressor 1. It is preferable.

(膨張弁の制御動作)
膨張弁3の開度は、吐出温度Td(温度センサー13dによって計測される)を所定値(目標吐出温度Td1)になるように制御される。目標吐出温度Td1は、目標出湯温度Tb1を確保できる温度とするため、目標出湯温度Tb1より「α[℃]」だけ高い温度、すなわち「Td1=Tb1+α」に設定されている。
なお、「α」の値は、例えば外気温度Tc(温度センサー13cによって計測される)や目標出湯温度Tb1の関数とする。このように目標出湯温度Tb1に応じた目標吐出温度Td1とすることで、要求された出湯温度Tbを確保することができる。
また、圧縮機1の耐久性や冷凍機油劣化などの観点から、通常、吐出温度Tdには上限温度が設けられている。
(Expansion valve control operation)
The opening degree of the expansion valve 3 is controlled so that the discharge temperature Td (measured by the temperature sensor 13d) becomes a predetermined value (target discharge temperature Td1). The target discharge temperature Td1 is set to a temperature that is higher than the target hot water temperature Tb1 by “α [° C.]”, that is, “Td1 = Tb1 + α” in order to make the target hot water temperature Tb1 secure.
The value of “α” is, for example, a function of the outside air temperature Tc (measured by the temperature sensor 13c) and the target hot water temperature Tb1. Thus, the required hot water temperature Tb can be ensured by setting the target discharge temperature Td1 according to the target hot water temperature Tb1.
Further, from the viewpoint of the durability of the compressor 1 and the deterioration of the refrigerator oil, an upper limit temperature is usually provided for the discharge temperature Td.

(ポンプの制御動作)
循環温水ポンプ6の回転数は、出湯温度Tbが目標出湯温度Tb1となるように制御される。膨張弁3において、吐出温度Tdが「目標出湯温度Tb1+α[℃]」に制御されるため、即ち、冷媒回路101側の加熱能力が一定に維持されているため、確実に出湯温度Tbを確保することができる。
(Pump control operation)
The rotation speed of the circulating hot water pump 6 is controlled so that the tapping temperature Tb becomes the target tapping temperature Tb1. In the expansion valve 3, since the discharge temperature Td is controlled to “target hot water temperature Tb1 + α [° C.]”, that is, the heating capacity on the refrigerant circuit 101 side is maintained constant, the hot water temperature Tb is reliably ensured. be able to.

(追焚き運転の動作)
図1について、ヒートポンプ給湯機1000の運転動作の特徴部分である追焚き(保温)運転の動作について説明する。
追焚き運転では、冷媒回路101と、循環温水加熱回路202と、浴槽水回路301とを同時に動作させる(正確には、切替弁7を切り替え、圧縮機1、循環温水ポンプ6および浴槽水ポンプ11を運転する)。図中、循環水が流れていない接続配管を破線で示している。
すなわち、循環温水加熱回路202(温水タンク8が切り離されている)を形成する循環温水配管9a、9b、9e、9f、9g、凝縮器2の低温側伝熱管2L、および追焚き熱交換器12の高温側伝熱管12H内に停留した水(全タンク温水の内、温水タンク8および接続配管9c、9dに貯溜したタンク温水を除いたものに同じ、以下、「循環温水」と称す)を、循環温水加熱回路202内で循環させるものである。
(Operation of chasing operation)
With reference to FIG. 1, the operation of the chasing (warming) operation that is a characteristic part of the operation operation of the heat pump water heater 1000 will be described.
In the reheating operation, the refrigerant circuit 101, the circulating hot water heating circuit 202, and the bathtub water circuit 301 are simultaneously operated (more precisely, the switching valve 7 is switched, the compressor 1, the circulating hot water pump 6, and the bathtub water pump 11 are switched. Driving). In the figure, the connection piping where the circulating water does not flow is indicated by a broken line.
That is, the circulating hot water pipes 9a, 9b, 9e, 9f, and 9g forming the circulating hot water heating circuit 202 (the hot water tank 8 is separated), the low-temperature heat transfer pipe 2L of the condenser 2, and the reheating heat exchanger 12 The water stopped in the high-temperature side heat transfer pipe 12H (same as all tank hot water, except for the hot water tank 8 and the tank hot water stored in the connecting pipes 9c and 9d, hereinafter referred to as "circulated hot water"), It is circulated in the circulating hot water heating circuit 202.

このとき、冷媒回路101では、循環する冷媒を凝縮器2に流入させて、循環温水加熱回路202を循環する循環温水に温熱を受け渡す(冷媒を冷却する)。
また、循環温水加熱回路202では、循環温水ポンプ6で循環温水を循環させて、凝縮器2において冷媒回路101を循環する冷媒から温熱を受け取り(循環温水を加熱し)、追焚き熱交換器12において浴槽水回路301を循環する浴槽水に温熱を受け渡す(循環温水を冷却する)。
At this time, in the refrigerant circuit 101, the circulating refrigerant flows into the condenser 2, and the heat is transferred to the circulating hot water circulating through the circulating hot water heating circuit 202 (cools the refrigerant).
In the circulating hot water heating circuit 202, the circulating hot water is circulated by the circulating hot water pump 6, the hot water is received from the refrigerant circulating in the refrigerant circuit 101 in the condenser 2 (heating the circulating hot water), and the reheating heat exchanger 12. , The hot water is transferred to the bathtub water circulating in the bathtub water circuit 301 (the circulating hot water is cooled).

さらに、浴槽水回路301では、浴槽水ポンプ11でもって浴槽10内の浴槽水を追焚き熱交換器12に流入させて、追焚き熱交換器12において、循環温水加熱回路202を循環する循環温水から温熱を受け取って、浴槽水を加熱し、浴槽10に戻す動作となる。これにより、浴槽10内の浴槽水の温度は一定に保持される(保温される)状態となる。   Further, in the bathtub water circuit 301, the bathtub water in the bathtub 10 is caused to flow into the reheating heat exchanger 12 by the bathtub water pump 11, and the recirculated hot water circulating in the recirculating hot water heating circuit 202 in the reheating heat exchanger 12. The heat is received from the tub, the bath water is heated and returned to the tub 10. Thereby, it will be in the state by which the temperature of the bathtub water in the bathtub 10 is kept constant (it keeps warm).

(追焚き運転の制御動作)
次に、ヒートポンプ給湯機1000における追焚き(保温)運転の制御動作について説明する。なお、ヒートポンプユニット100の冷媒回路101の運転制御動作については、沸き上げ運転と同様であるため、以下は追焚き運転の特徴部分を説明する。
回転数等で制御される圧縮機1の運転容量は、計測制御装置400で算出され、循環温水の入水温度Ta(入水温度センサー13aによって計測検知される)と、循環温水の出湯温度Tb(出湯温度センサー13bによって計測される)との循環温水出入口温度差ΔTba(=Tb−Ta)が所定の範囲内に収まるように調整制御される(これについては、別途詳細に説明する)。
(Control operation for chasing operation)
Next, the control operation of the chasing (warming) operation in the heat pump water heater 1000 will be described. Since the operation control operation of the refrigerant circuit 101 of the heat pump unit 100 is the same as that in the boiling operation, the following describes the characteristic part of the reheating operation.
The operating capacity of the compressor 1 controlled by the rotational speed or the like is calculated by the measurement control device 400, and the incoming temperature Ta of the circulating hot water (measured and detected by the incoming water temperature sensor 13a) and the hot water temperature Tb of the circulating hot water (the outgoing hot water). The circulating hot water inlet / outlet temperature difference ΔTba (= Tb−Ta) with respect to (measured by the temperature sensor 13b) is adjusted and controlled so as to be within a predetermined range (this will be described in detail separately).

つまり、冷媒回路101を循環する冷媒の加熱能力が所定の範囲内に収まるように、圧縮機1の運転容量が調整制御される。
また、循環温水ポンプ6の回転数は、出湯温度Tbが予め定められた追焚き時目標出湯温度Tb2となるように調整制御される。追焚き時目標出湯温度Tb2は、使用者からリモコンにて指示される運転指令情報から設定される。また、追焚き時目標出湯温度Tb2は、あらかじめ範囲が決められており、例えば50℃〜70℃の範囲に設定される。
That is, the operation capacity of the compressor 1 is adjusted and controlled so that the heating capacity of the refrigerant circulating in the refrigerant circuit 101 is within a predetermined range.
The rotation speed of the circulating hot water pump 6 is adjusted and controlled so that the hot water temperature Tb becomes a predetermined hot water target hot water temperature Tb2. The chasing target hot water temperature Tb2 is set from the operation command information instructed by the user from the remote controller. Further, the range of the hot water target hot water temperature Tb2 is determined in advance, and is set, for example, in the range of 50 ° C to 70 ° C.

浴槽水回路301において、回転数で制御される浴槽水ポンプ11の回転数は、回転数一定で制御されるか、または、追焚き熱交換器12の入口における浴槽水の入水温度Tl(追焚き熱交換器入水温度センサー13lによって計測検知される)と出湯温度Tm(追焚き熱交換器出湯温度センサー13mによって計測検知される)との温度差(Tm−Tl)が予め定めた目標温度差ΔTml内に収まるように制御される。
また、目標温度差ΔTmlはあらかじめ範囲が決められており、例えば、3℃〜10℃の範囲で設定されている。
In the bathtub water circuit 301, the number of revolutions of the bathtub water pump 11 controlled by the number of revolutions is controlled at a constant number of revolutions, or the bath water incoming temperature Tl (additional temperature at the inlet of the reheating heat exchanger 12). The temperature difference (Tm-Tl) between the hot water exchanger incoming water temperature sensor 13l) and the tapping temperature Tm (measured and detected by the hot water exchanger hot water temperature sensor 13m) is a predetermined target temperature difference. It is controlled so as to be within ΔTml.
The target temperature difference ΔTml has a predetermined range, and is set, for example, in the range of 3 ° C. to 10 ° C.

(制御フロー)
図3に示すフローチャートについて、ヒートポンプ給湯機1000における追焚き(保温)運転の制御動作を説明する。なお、ステップjを「Sj」と記載する。
まず、ステップ1(S1)において、計測制御装置400は、リモコンなどでユーザーに指定された浴槽水の目標保温温度Tk1を記録する。
次に、ステップ2(S2)において、計測制御装置400は、浴槽水温度センサー13kによって浴槽水温度Tkを計測し、記録する。
さらに、ステップ3(S3)において、計測制御装置400は、目標保温温度Tk1と浴槽水温度Tkとの温度差ΔTk(=Tk1−Tk)を算出し、所定の温度差ΔT1以下(ΔTk≦ΔT1)であれば、一定時間経過後にステップ2に戻り、所定の温度差ΔTk1より大きければ(ΔTk>ΔT1)、ステップ4(S4)に移る。
(Control flow)
With reference to the flowchart shown in FIG. 3, the control operation of the chasing (warming) operation in the heat pump water heater 1000 will be described. Step j is described as “Sj”.
First, in step 1 (S1), the measurement control device 400 records the target temperature Tk1 for bath water designated by the user with a remote controller or the like.
Next, in step 2 (S2), the measurement control device 400 measures and records the bath water temperature Tk by the bath water temperature sensor 13k.
Further, in step 3 (S3), the measurement control device 400 calculates a temperature difference ΔTk (= Tk1−Tk) between the target heat retention temperature Tk1 and the bath water temperature Tk, and is equal to or less than a predetermined temperature difference ΔT1 (ΔTk ≦ ΔT1). If so, the process returns to step 2 after a lapse of a predetermined time, and if larger than the predetermined temperature difference ΔTk1 (ΔTk> ΔT1), the process proceeds to step 4 (S4).

ステップ4(S4)で、計測制御装置400は、追焚き時のヒートポンプ給湯機1000の目標出湯温度Tb1を設定する。
ステップ5(S5)で、計測制御装置400は、追焚き時のヒートポンプ給湯機の圧縮機1の周波数を設定する。
ステップ6(S6)で、計測制御装置400は、ヒートポンプ給湯機の運転を開始する。
In step 4 (S4), the measurement control device 400 sets a target hot water temperature Tb1 of the heat pump water heater 1000 during reheating.
In step 5 (S5), the measurement control device 400 sets the frequency of the compressor 1 of the heat pump water heater during reheating.
In step 6 (S6), the measurement control device 400 starts operation of the heat pump water heater.

一定時間経過後、ステップ7(S7)において、計測制御装置400は、循環温水の入水温度Ta(入水温度センサー13aによって計測検知される)と、循環温水の出湯温度Tb(温度センサー13bによって計測される)との循環温水出入口温度差ΔTba(=Tb−Ta)を算出する。
循環温水出入口温度差ΔTbaが所定値ΔT2より小さい場合(ΔTba<ΔT2)は、ステップ8(S8)に進み、圧縮機1の周波数を増加させ、一定時間経過後、ステップ7(S7)に戻る。
一方、循環温水出入口温度差ΔTbaが所定値ΔT3より大きい場合(ΔTba>ΔT3)は、ステップ8(S8)に進み、圧縮機1の周波数を減少させ、一定時間経過後ステップ7(S7)に戻る。
In step 7 (S7) after the lapse of a certain time, the measurement control device 400 measures the incoming temperature Ta of the circulating hot water (measured and detected by the incoming water temperature sensor 13a) and the outgoing hot water temperature Tb (measured by the temperature sensor 13b). And the circulating hot water inlet / outlet temperature difference ΔTba (= Tb−Ta).
When the circulating hot water inlet / outlet temperature difference ΔTba is smaller than the predetermined value ΔT2 (ΔTba <ΔT2), the process proceeds to step 8 (S8), the frequency of the compressor 1 is increased, and after a predetermined time has elapsed, the process returns to step 7 (S7).
On the other hand, when the circulating hot water inlet / outlet temperature difference ΔTba is larger than the predetermined value ΔT3 (ΔTba> ΔT3), the process proceeds to step 8 (S8), the frequency of the compressor 1 is decreased, and the process returns to step 7 (S7) after a predetermined time has elapsed. .

ステップ7(S7)において、循環温水出入口温度差ΔTbaが一定の範囲内にあるときは(ΔT2≦ΔTba≦ΔT3)、一定時間経過後、ステップ9(S9)に進み、計測制御装置400は、浴槽水温度センサー13kによって、浴槽水温度Tkを再度検出する。   In step 7 (S7), when the circulating hot water inlet / outlet temperature difference ΔTba is within a certain range (ΔT2 ≦ ΔTba ≦ ΔT3), the process proceeds to step 9 (S9) after a certain period of time. The water temperature sensor 13k detects the bathtub water temperature Tk again.

ステップ10(S10)において、計測制御装置400は、目標保温温度Tk1と浴槽水温度Tkとの温度差ΔTk(=Tk1−Tk)を算出する。温度差ΔTkがあらかじめ定めていた範囲内であれば(ΔT4≦ΔTk≦ΔT5)、ステップ11(S11)でヒートポンプ給湯機1000の運転を停止し、追焚き運転を終了する。
一方、温度差ΔTkがあらかじめ定めていた範囲内になければ(ΔTk<ΔT4、ΔT5<ΔTk)、一定時間経過後、ステップ7(S7)に戻り、追焚き運転を継続する。
In Step 10 (S10), the measurement control device 400 calculates a temperature difference ΔTk (= Tk1−Tk) between the target heat retention temperature Tk1 and the bath water temperature Tk. If the temperature difference ΔTk is within a predetermined range (ΔT4 ≦ ΔTk ≦ ΔT5), the operation of the heat pump water heater 1000 is stopped in step 11 (S11), and the chasing operation is ended.
On the other hand, if the temperature difference ΔTk is not within the predetermined range (ΔTk <ΔT4, ΔT5 <ΔTk), after a predetermined time has elapsed, the process returns to step 7 (S7) to continue the chasing operation.

本発明の実施の形態によれば、浴槽10の浴槽水を循環温水(冷凍サイクルにおける温熱によって加熱される)から受け渡された温熱によって追焚き(保温)する場合に、ヒートポンプ給湯機1000の追焚き能力(保温加熱能力)を制御することで、温水タンク8に貯溜された夜間電力によって加熱されたタンク温水を浴槽10に直接供給する(湯注する)場合と比較して、保温に必要な加熱量を確保するために必要な消費電力量を確実に低減させることができる。   According to the embodiment of the present invention, when the bathtub water of the bathtub 10 is chased by the heat transferred from the circulating hot water (heated by the heat in the refrigeration cycle) (heat-retained), the heat pump water heater 1000 can be added. Compared with the case where the hot water heated by night electricity stored in the hot water tank 8 is directly supplied to the bathtub 10 (pour hot water) by controlling the watering ability (heat insulation heating ability), it is necessary for heat insulation. It is possible to reliably reduce the amount of power consumption required to secure the heating amount.

図4において、浴槽水の保温加熱能力に対する、本発明の循環温水による追焚き運転を用いた保温と、従来の湯注ぎ(温水タンク8に貯溜された夜間電力によって加熱されたタンク温水を浴槽10に直接供給する)による保温との消費電力量が示されている。
したがって、本発明の循環温水の温度(出湯温度Tb)固定で、保温加熱能力をパラメータとした場合、特定の範囲の加熱能力で、本発明の循環温水を用いた保温の消費電力量が、従来の湯注ぎによる消費電力量より小さくなる。
つまり、この範囲内の保温加熱能力(追焚き能力)で浴槽水の保温を実施することで、循環温水を用いた保温の消費電力量が、湯注ぎ(タンク温水を用いた保温)のためにタンク温水を夜間に沸き上げるときの消費電力量より小さくすることができる。
In FIG. 4, heat insulation using the reheating operation with circulating hot water according to the present invention for the heat insulation heating capacity of the bath water and conventional hot water pouring (the tank hot water heated by the night electricity stored in the hot water tank 8 is taken into the bathtub 10. Power supply with heat retention by direct supply).
Therefore, when the temperature of the circulating hot water of the present invention (the hot water temperature Tb) is fixed and the heat retention heating capacity is used as a parameter, the power consumption of heat retention using the circulating hot water of the present invention with a heating capacity within a specific range is conventionally It is smaller than the amount of power consumed by pouring hot water.
In other words, by maintaining the temperature of the bath water with the heat-retaining and heating capacity (replacement capacity) within this range, the amount of power consumed for heat retention using the circulating hot water can be reduced for hot water pouring (heat retention using the tank warm water). It can be made smaller than the amount of power consumed when boiling the hot water in the tank at night.

本発明に係るヒートポンプ給湯機は以上であるから、浴槽の浴槽水保温が必要となる各種ヒートポンプ給湯機として利用することができる。   Since the heat pump water heater according to the present invention is as described above, the heat pump water heater can be used as various heat pump water heaters that require bath water insulation of a bathtub.

1:圧縮機、2:凝縮器、2H:高温側伝熱管、2L:低温側伝熱管、3:膨張弁、4:蒸発器、4f:ファン、5:冷媒配管、6:循環温水ポンプ、7:切替弁、8:温水タンク、8a:貯湯口、8b:取水口、9a:循環温水配管、9b:循環温水配管、9c:接続配管、9d:接続配管、9e:循環温水配管、9f:循環温水配管、9g:循環温水配管、10:浴槽、11:浴槽水ポンプ、12:追焚き熱交換器、12H:高温側伝熱管、12L:低温側伝熱管、13a:入水温度センサー、13b:出湯温度センサー、13c:外気温度センサー、13d:吐出温度センサー、13e:吸入温度センサー、13f:蒸発温度センサー、13g〜13j:温水タンク温度センサー、13k:浴槽水温度センサー、13l:追焚き熱交換器入水温度センサー、13m:追焚き熱交換器出湯温度センサー、100:ヒートポンプユニット、101:冷媒回路、200:温水タンクユニット、201:温水タンク加熱回路、202:循環温水加熱回路、300:浴槽ユニット、301:浴槽水回路、400:計測制御装置、1000:ヒートポンプ給湯機、Ta:入水温度、Tb:出湯温度、Tb1:目標出湯温度、Tb2:目標出湯温度、Tc:外気温度、Td:吐出温度、Td1:目標吐出温度、Tk:浴槽水温度、Tk1:目標保温温度、Tl:入水温度、Tm:出湯温度、ΔT1:温度差、ΔT2:所定値、ΔT3:所定値、ΔTba:循環温水出入口温度差、ΔTk:温度差、ΔTml:目標温度差。   1: compressor, 2: condenser, 2H: high temperature side heat transfer tube, 2L: low temperature side heat transfer tube, 3: expansion valve, 4: evaporator, 4f: fan, 5: refrigerant piping, 6: circulating hot water pump, 7 : Switching valve, 8: hot water tank, 8a: hot water storage port, 8b: intake port, 9a: circulating hot water piping, 9b: circulating hot water piping, 9c: connecting piping, 9d: connecting piping, 9e: circulating hot water piping, 9f: circulating Hot water piping, 9 g: circulating hot water piping, 10: bathtub, 11: bathtub water pump, 12: reheating heat exchanger, 12H: high temperature side heat transfer tube, 12L: low temperature side heat transfer tube, 13a: incoming water temperature sensor, 13b: outgoing hot water Temperature sensor, 13c: Outside air temperature sensor, 13d: Discharge temperature sensor, 13e: Suction temperature sensor, 13f: Evaporation temperature sensor, 13g-13j: Hot water tank temperature sensor, 13k: Bath water temperature sensor, 13l: Reheating heat exchange Incoming water temperature sensor, 13 m: reheating heat exchanger hot water temperature sensor, 100: heat pump unit, 101: refrigerant circuit, 200: hot water tank unit, 201: hot water tank heating circuit, 202: circulating hot water heating circuit, 300: bathtub unit, 301: Bath water circuit, 400: Measurement control device, 1000: Heat pump water heater, Ta: Incoming water temperature, Tb: Outlet temperature, Tb1: Target hot water temperature, Tb2: Target hot water temperature, Tc: Outside air temperature, Td: Discharge temperature Td1: target discharge temperature, Tk: bath water temperature, Tk1: target heat retention temperature, Tl: incoming water temperature, Tm: hot water temperature, ΔT1: temperature difference, ΔT2: predetermined value, ΔT3: predetermined value, ΔTba: circulating hot water inlet / outlet temperature difference , ΔTk: temperature difference, ΔTml: target temperature difference.

Claims (4)

圧縮機、凝縮器を構成する高温側伝熱管、膨張弁および蒸発器が冷媒配管によって順次に接続された冷媒回路と、
浴槽、浴槽水ポンプおよび追焚き熱交換器を構成する低温側伝熱管が浴槽水配管によって順次接続された浴槽水回路と、
前記凝縮器を構成する低温側伝熱管、前記追焚き熱交換器を構成する高温側伝熱管および循環温水ポンプが循環温水配管によって順次接続された循環温水加熱回路と、
前記冷媒回路の加熱能力を制御する加熱能力制御手段と、を備え、
前記加熱能力制御手段は、前記凝縮器において加熱された前記循環温水配管を流れる循環温水によって、前記浴槽水配管を流れる浴槽水を前記追焚き熱交換器において加熱する場合に、前記浴槽水の目標温度と測定温度との差に基づいて、前記凝縮器における加熱能力を所定の範囲に制御することを特徴としたヒートポンプ給湯機。
A refrigerant circuit in which a compressor, a high-temperature side heat transfer tube constituting an condenser, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe;
A bathtub water circuit in which the low temperature side heat transfer pipes constituting the bathtub, the bathtub water pump and the additional heat exchanger are sequentially connected by the bathtub water piping;
A circulating hot water heating circuit in which a low temperature side heat transfer tube constituting the condenser, a high temperature side heat transfer tube constituting the follow-up heat exchanger, and a circulating hot water pump are sequentially connected by circulating hot water piping;
Heating capacity control means for controlling the heating capacity of the refrigerant circuit,
When the heating capacity control means heats the bathtub water flowing through the bathtub water pipe in the reheating heat exchanger with the circulating hot water flowing through the circulating hot water pipe heated in the condenser, A heat pump water heater, wherein the heating capacity of the condenser is controlled within a predetermined range based on a difference between a temperature and a measured temperature.
前記凝縮器における加熱能力を所定の範囲に制御するに際し、前記加熱能力制御手段は、前記循環温水ポンプの回転数を一定にして、前記圧縮機の回転数を制御することを特徴とした請求項1記載のヒートポンプ給湯機。   The heating capacity control means controls the rotation speed of the compressor while keeping the rotation speed of the circulating hot water pump constant when controlling the heating capacity of the condenser to a predetermined range. The heat pump water heater according to 1. 前記凝縮器における制御された加熱能力の所定の範囲が、前記圧縮機の定格能力の40〜100%の範囲に相当することを特徴とする請求項1または2記載のヒートポンプ給湯機。   The heat pump water heater according to claim 1 or 2, wherein the predetermined range of the controlled heating capacity in the condenser corresponds to a range of 40 to 100% of a rated capacity of the compressor. 前記循環温水加熱回路の循環温水配管が、前記追焚き熱交換器の入口側および出口側においてそれぞれ分岐され、該分岐された入口側分岐部と出口側分岐部とに接続配管を介して温水タンクが接続され、前記入口側分岐部または出口側分岐部の少なくとも一方に切替弁が設置されていることを特徴とする請求項1乃至3の何れかに記載のヒートポンプ給湯機。   The circulating hot water piping of the circulating hot water heating circuit is branched at the inlet side and the outlet side of the additional heat exchanger, respectively, and the hot water tank is connected to the branched inlet side branch portion and the outlet side branch portion via the connection piping. The heat pump water heater according to any one of claims 1 to 3, wherein a switching valve is installed in at least one of the inlet-side branch portion or the outlet-side branch portion.
JP2010127907A 2010-06-03 2010-06-03 Heat pump water heater Pending JP2011252675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127907A JP2011252675A (en) 2010-06-03 2010-06-03 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127907A JP2011252675A (en) 2010-06-03 2010-06-03 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2011252675A true JP2011252675A (en) 2011-12-15

Family

ID=45416743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127907A Pending JP2011252675A (en) 2010-06-03 2010-06-03 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2011252675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102607A (en) * 2014-11-28 2016-06-02 株式会社富士通ゼネラル Heat pump type heating hot water heater
WO2017026007A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Heat pump system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234314A (en) * 2005-02-25 2006-09-07 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2009092323A (en) * 2007-10-10 2009-04-30 Panasonic Corp Heat pump water heater
JP2009097799A (en) * 2007-10-17 2009-05-07 Panasonic Corp Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234314A (en) * 2005-02-25 2006-09-07 Hitachi Home & Life Solutions Inc Heat pump water heater
JP2009092323A (en) * 2007-10-10 2009-04-30 Panasonic Corp Heat pump water heater
JP2009097799A (en) * 2007-10-17 2009-05-07 Panasonic Corp Heat pump water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102607A (en) * 2014-11-28 2016-06-02 株式会社富士通ゼネラル Heat pump type heating hot water heater
WO2017026007A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Heat pump system
JPWO2017026007A1 (en) * 2015-08-07 2017-11-09 三菱電機株式会社 Heat pump system

Similar Documents

Publication Publication Date Title
EP2657628B1 (en) Hot-water-supplying, air-conditioning composite device
JP5121747B2 (en) Geothermal heat pump device
JP5071434B2 (en) Heat pump water heater
JP5524571B2 (en) Heat pump equipment
JP5411777B2 (en) Hot water heater
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
EP2522933B1 (en) Heat storing apparatus having cascade cycle and control process of the same
JP2012207882A (en) Hot-water heater
JP2010243111A (en) Heat pump type water heater
JP2012172869A (en) Heat pump device
JP5126198B2 (en) Hot water storage water heater, control method for hot water storage water heater
JP3855695B2 (en) Heat pump water heater
JP2011257098A (en) Heat pump cycle device
JP5176474B2 (en) Heat pump water heater
JP5678098B2 (en) Water heater
JP2009287898A (en) Heat pump type hot water heat utilizing system
JP2012007751A (en) Heat pump cycle device
JP2011252675A (en) Heat pump water heater
CN201047687Y (en) Hot gas bypass back-out concurrent heating defrost constant temperature hot-water system
JP2010054145A (en) Heat pump water heater
JP2016048126A (en) Supply water heating system
JP3854586B2 (en) Heat source system, control method of heat source system, heat source, and control method of heat source
KR100746894B1 (en) Heat pump hot water supply machine
JP2009133540A (en) Heat pump system
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326