JP5126198B2 - Hot water storage water heater, control method for hot water storage water heater - Google Patents

Hot water storage water heater, control method for hot water storage water heater Download PDF

Info

Publication number
JP5126198B2
JP5126198B2 JP2009243502A JP2009243502A JP5126198B2 JP 5126198 B2 JP5126198 B2 JP 5126198B2 JP 2009243502 A JP2009243502 A JP 2009243502A JP 2009243502 A JP2009243502 A JP 2009243502A JP 5126198 B2 JP5126198 B2 JP 5126198B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
temperature
water storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243502A
Other languages
Japanese (ja)
Other versions
JP2011089707A (en
Inventor
史武 畝崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2009243502A priority Critical patent/JP5126198B2/en
Publication of JP2011089707A publication Critical patent/JP2011089707A/en
Application granted granted Critical
Publication of JP5126198B2 publication Critical patent/JP5126198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貯湯式給湯装置とその制御方法に関するものであり、特に太陽熱を熱源にヒートポンプを駆動し給湯を実施する場合の沸上げに関するものである。   The present invention relates to a hot water storage type hot water supply apparatus and a control method therefor, and particularly relates to boiling in the case where hot water is supplied by driving a heat pump using solar heat as a heat source.
従来の貯湯式給湯装置として、給湯タンクの水が循環する給湯タンク循環回路と、圧縮機と膨張弁からなるヒートポンプ回路と、太陽熱を集熱して冷媒が循環する太陽熱循環回路と、太陽熱を集熱した冷媒が熱交換してタンク循環水を加熱する第1熱交換器と、ヒートポンプ回路の冷媒が熱交換してタンク循環水を加熱する第2熱交換器と、ヒートポンプ回路の冷媒と太陽熱循環回路の冷媒が熱交換する第3熱交換器とを備えた貯湯式給湯器であって、夜間時間帯にヒートポンプ回路にて必要な湯量の40%から70%を加温し、昼間に残りの湯量分を太陽熱循環回路とヒートポンプ回路で加温する貯湯式給湯装置が記載されている(例えば、特許文献1)。   As a conventional hot water storage type hot water supply device, a hot water tank circulation circuit for circulating water from a hot water tank, a heat pump circuit comprising a compressor and an expansion valve, a solar heat circulation circuit for collecting solar heat and circulating a refrigerant, and collecting solar heat Heat exchanger exchanges heat to heat tank circulating water, heat pump circuit refrigerant exchanges heat to heat tank circulation water, heat pump circuit refrigerant and solar heat circulation circuit Hot water storage type water heater equipped with a third heat exchanger for exchanging heat with the refrigerant, which heats 40% to 70% of the required amount of water in the heat pump circuit during the night time, and the remaining amount of hot water during the day A hot water storage type hot water supply apparatus that heats the minutes by a solar heat circulation circuit and a heat pump circuit is described (for example, Patent Document 1).
また、太陽電池パネルと、ヒートポンプサイクルと、ヒートポンプサイクルの放熱器により水を加熱する温水回路と、この加熱された水を貯める給湯タンクと、ヒートポンプサイクルの蒸発器と熱交換する蓄熱手段とを備えた太陽光発電システムであって、深夜時間帯にヒートポンプサイクルを使用して沸き上げた湯を給湯タンクに貯湯すると共に蓄熱手段を冷却し、昼間の太陽電池パネル発電時にはヒートポンプサイクルを停止して夜間に冷却した蓄熱材を用いて太陽電池パネルを冷却する貯湯式給湯装置が記載されている(例えば、特許文献2)。   Further, the solar cell panel, a heat pump cycle, a hot water circuit for heating water by a heat pump cycle radiator, a hot water supply tank for storing the heated water, and a heat storage means for exchanging heat with the evaporator of the heat pump cycle are provided. In the solar power generation system, hot water boiled using a heat pump cycle is stored in a hot water tank in the midnight hours and the heat storage means is cooled. Describes a hot water storage type hot water supply apparatus that cools a solar cell panel using a cooled heat storage material (for example, Patent Document 2).
特開2007−170690号公報(0056欄)。JP 2007-170690 A (0056 column). 特開2006−183933号公報(0036欄〜0047欄、図1、図6)。Japanese Patent Laying-Open No. 2006-183933 (columns 0036 to 0047, FIGS. 1 and 6).
しかしながら、特許文献1の貯湯式給湯装置では、夜間に沸き上げる湯を湯量で調整しているので、運転効率が低いという課題があった。   However, in the hot water storage type hot water supply apparatus of Patent Document 1, since the hot water heated at night is adjusted by the amount of hot water, there is a problem that the operation efficiency is low.
また、特許文献2の貯湯式給湯装置では、夜間にのみヒートポンプサイクルを使用して湯を沸き上げており、ヒートポンプサイクルの運転効率が低いという課題があった。   Moreover, in the hot water storage type hot water supply apparatus of Patent Document 2, hot water is boiled only using the heat pump cycle at night, and there is a problem that the operation efficiency of the heat pump cycle is low.
この発明は、上記のような課題を解決するためになされたもので、外気を熱源に温水を加熱する第1の給湯運転モードで温水を加熱した後で、太陽光または太陽熱を熱源にする第2の給湯運転モードにて温水を第1の給湯運転モードで沸き上げた湯の温度よりも高温に加熱することで、運転効率の高い貯湯式給湯装置及びその制御方法を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. After heating hot water in the first hot water supply operation mode in which hot water is heated using outside air as a heat source, solar water or solar heat is used as a heat source. An object of the present invention is to obtain a hot water storage type hot water supply apparatus having high operating efficiency and its control method by heating the hot water to a temperature higher than the temperature of the hot water boiled in the first hot water supply operation mode in the hot water supply operation mode of No. 2. .
本発明に係る貯湯式給湯装置は、冷媒を圧縮する圧縮機、膨張弁、放熱器として作用し冷水を温水に加熱する水冷媒熱交換器、空気を熱源として前記冷媒を蒸発させる第1の蒸発器、太陽光または太陽熱により加熱される熱媒体を熱源として前記冷媒を加熱する第2の蒸発器、を有する冷凍サイクルと、前記水冷媒熱交換器で加熱される前記温水を貯湯する給湯タンクと、夜間に前記第1の蒸発器と前記水冷媒熱交換器に前記冷媒を流して前記温水を第1の沸上げ温度で前記給湯タンクに貯湯する第1の貯湯運転モードと、昼間に前記第2の蒸発器と前記水冷媒熱交換器に前記冷媒を流して前記第1の沸上げ温度よりも高い第2の沸上げ温度で前記給湯タンクに貯湯する第2の貯湯運転モードにて前記冷凍サイクルを制御する制御装置と、を備えたことを特徴とする。 The hot water storage type hot water supply apparatus according to the present invention includes a compressor that compresses refrigerant , an expansion valve, a water refrigerant heat exchanger that acts as a radiator and heats cold water to hot water, and first evaporation that evaporates the refrigerant using air as a heat source. And a refrigeration cycle having a second evaporator that heats the refrigerant using a heat medium heated by sunlight or solar heat as a heat source, and a hot water supply tank that stores the hot water heated by the water refrigerant heat exchanger, A first hot water storage operation mode in which the refrigerant flows through the first evaporator and the water / refrigerant heat exchanger at night to store the hot water in the hot water supply tank at a first boiling temperature; wherein in the second hot-water stocking operation mode of the hot water storage in the hot water tank is higher than the flowing of the refrigerant second evaporator and to the water refrigerant heat exchanger first boiling up temperature second boiling up temperature refrigeration a control device for controlling the cycle, the And said that there were pictures.
本発明に係る貯湯式給湯装置の制御方法は、冷媒を圧縮する圧縮機、膨張弁、放熱器として作用し冷水を温水に加熱する水冷媒熱交換器、空気を熱源として前記冷媒を蒸発させる第1の蒸発器、太陽光または太陽熱により加熱された熱媒体を熱源として前記冷媒を加熱する第2の蒸発器、を有する冷凍サイクルと、前記水冷媒熱交換器で加熱される前記温水を貯湯する給湯タンクと、前記冷凍サイクルを制御する制御装置とを備えた貯湯式給湯装置の制御方法であって、前記制御装置が前記冷凍サイクルを制御して夜間に前記温水を第1の沸上げ温度で貯湯する第1工程と、前記熱媒体の温度を検出する第2工程と、前記第2工程で検出した温度が所定値以上の場合に前記制御装置が前記第2の蒸発器と前記水冷媒熱交換器に前記冷媒を流して昼間に前記温水を前記第1の沸上げ温度よりも高い第2の沸上げ温度で貯湯する第3工程と、を有することを特徴とする。 The method for controlling a hot water storage type hot water supply apparatus according to the present invention includes a compressor for compressing refrigerant , an expansion valve, a water refrigerant heat exchanger that acts as a radiator and heats cold water to hot water, and evaporates the refrigerant using air as a heat source. A refrigeration cycle having one evaporator, a second evaporator that heats the refrigerant using a heat medium heated by sunlight or solar heat as a heat source, and the hot water heated by the water refrigerant heat exchanger is stored. A hot water storage hot water supply device control method comprising a hot water supply tank and a control device for controlling the refrigeration cycle, wherein the control device controls the refrigeration cycle to supply the hot water at a first boiling temperature at night. A first step of storing hot water, a second step of detecting the temperature of the heat medium, and the controller detects the second evaporator and the water refrigerant heat when the temperature detected in the second step is equal to or higher than a predetermined value. Pour the refrigerant into the exchanger A third step of the hot-water at a high second boiling up temperature than the said hot water in the daytime first boiling up temperature, and having a.
本発明は、夜間に沸き上げた湯を昼間に外気より高温の太陽熱を熱源としてさらに沸き上げて湯の沸上げ温度を段階的に高めることで、運転効率を上げることができるという効果を奏する。   The present invention brings about an effect that the operation efficiency can be improved by further boiling the hot water boiled at night using solar heat higher than the outside air in the daytime as a heat source to raise the boiling temperature of the hot water stepwise.
本発明の実施の形態1に係る貯湯式給湯装置の構成図。The block diagram of the hot water storage type hot-water supply apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯湯式給湯装置の制御動作を示すフローチャート。The flowchart which shows the control operation of the hot water storage type hot water supply apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯湯式給湯装置の制御動作のS1を示したフローチャート。The flowchart which showed S1 of control operation of the hot water storage type hot water supply apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯湯式給湯装置の制御動作のS1を示した別のフローチャート。The another flowchart which showed S1 of control operation of the hot water storage type hot water supply apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る貯湯式給湯装置の構成図。The block diagram of the hot water storage type hot water supply apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る貯湯式給湯装置の冷媒の圧力とエンタルピの関係図。The relationship figure of the refrigerant | coolant pressure and enthalpy of the hot water storage type hot-water supply apparatus which concerns on Embodiment 2 of this invention.
実施の形態1.
図1は、本発明の貯湯式給湯装置の冷媒回路、給湯回路、太陽光発電パネル冷却回路の構成を示したものである。図1において、給湯機1内には沸上げ回路20a、冷凍サイクルを構成する冷媒回路20b、パネル冷却器3を介して太陽光発電パネル2を冷却するパネル冷却回路20cが搭載される。沸上げ回路20aは、給湯タンク4、ポンプ9a、水冷媒熱交換器6、給湯タンク4を環状に接続して構成され、給湯タンク4内に保持される水が流れる。冷媒回路20bは、圧縮機5、放熱器である水冷媒熱交換器6、膨張弁7a、7b、蒸発器である空気熱交換器8a、ブライン熱交換器8bを環状に接続し冷凍サイクルを構成し、冷媒として二酸化炭素が用いられる。パネル冷却回路20cは太陽光発電パネル2の背面に取り付けられたパネル冷却器3、ポンプ9b、ブライン熱交換器8bを環状に接続して構成され、熱搬送媒体としてブラインが用いられる。なお、本実施の形態では冷却パネル3を熱源としてパネル冷却器3が集熱してブラインに伝熱しているが、他の構成でもよく太陽熱を集熱できる太陽熱集熱器でもよい。
Embodiment 1 FIG.
FIG. 1 shows a configuration of a refrigerant circuit, a hot water supply circuit, and a photovoltaic power generation panel cooling circuit of a hot water storage type hot water supply apparatus of the present invention. In FIG. 1, a boiling water circuit 20 a, a refrigerant circuit 20 b constituting a refrigeration cycle, and a panel cooling circuit 20 c for cooling the photovoltaic power generation panel 2 via the panel cooler 3 are mounted in the water heater 1. The boiling circuit 20 a is configured by connecting the hot water supply tank 4, the pump 9 a, the water refrigerant heat exchanger 6, and the hot water supply tank 4 in a ring shape, and water held in the hot water supply tank 4 flows. The refrigerant circuit 20b is configured by connecting the compressor 5, the water refrigerant heat exchanger 6 as a radiator, the expansion valves 7a and 7b, the air heat exchanger 8a as an evaporator, and the brine heat exchanger 8b in a ring shape to form a refrigeration cycle. Carbon dioxide is used as the refrigerant. The panel cooling circuit 20c is configured by connecting the panel cooler 3, the pump 9b, and the brine heat exchanger 8b attached to the back surface of the photovoltaic power generation panel 2 in an annular shape, and brine is used as a heat transfer medium. In this embodiment, the panel cooler 3 collects heat and transfers heat to the brine using the cooling panel 3 as a heat source. However, other configurations may be used, and a solar heat collector capable of collecting solar heat may be used.
また給湯機1内には給湯機1の計測、制御を実施する制御装置13が搭載される。圧縮機5はインバータにより回転数が制御され容量制御されるタイプである。水冷媒熱交換器6は、プレート式あるいは二重管式などの熱交換器であり、流入する冷媒と沸上げ回路20aを流れる水が熱交換を行う。膨張弁7a、7bは開度が可変である電子膨張弁であり、空気熱交換器8aは膨張弁7aを介して、ブライン熱交換器8bは膨張弁7bを介して水冷媒熱交換器6と接続されている。空気熱交換器8aはファンで送風される外気と冷媒との間で熱交換を行う。ブライン熱交換器8bはプレート式あるいは二重管式などの熱交換器であり、流入する冷媒とパネル冷却回路20cを流れるブラインが熱交換を行う。   In addition, a control device 13 that performs measurement and control of the water heater 1 is mounted in the water heater 1. The compressor 5 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The water-refrigerant heat exchanger 6 is a plate-type or double-pipe heat exchanger, and heat exchange is performed between the refrigerant flowing in and the water flowing through the boiling circuit 20a. The expansion valves 7a and 7b are electronic expansion valves whose opening degrees are variable, the air heat exchanger 8a is connected to the water refrigerant heat exchanger 6 via the expansion valve 7a, and the brine heat exchanger 8b is connected to the water refrigerant heat exchanger 6 via the expansion valve 7b. It is connected. The air heat exchanger 8a performs heat exchange between the outside air blown by the fan and the refrigerant. The brine heat exchanger 8b is a plate-type or double-tube type heat exchanger, and heat exchange is performed between the refrigerant flowing in and the brine flowing through the panel cooling circuit 20c.
給湯タンク4は温度成層を形成しながら貯湯を行い、上部に高温水、下部に低温水が貯湯される。ポンプ9a、9bはインバータにより回転数が制御され容量制御されるタイプであり、ポンプ9aが沸上げ回路20aの水を循環させ、ポンプ9bがパネル冷却回路20cに流れるブラインを循環させる。また給湯タンク4には出湯端21a、給水端21bが接続される。負荷側の要求に基づき、出湯端21aより出湯される場合は、給湯タンク4からの給湯と給水端21bから供給される市水が三方弁10で混合され、負荷側要求の温度となって出湯される。出湯時の給湯タンク4の湯量減少分は給水端21bから低温の市水が給湯タンク4に供給され、給湯タンク4下部に滞留する。 The hot water supply tank 4 stores hot water while forming temperature stratification, and hot water is stored in the upper part and low temperature water is stored in the lower part. The pumps 9a and 9b are of a type in which the number of revolutions is controlled by an inverter and the capacity is controlled. The pump 9a circulates water in the boiling circuit 20a, and the pump 9b circulates brine flowing in the panel cooling circuit 20c. The hot water supply tank 4 is connected to a hot water outlet end 21a and a water supply end 21b. When the hot water is discharged from the hot water outlet end 21a based on the demand on the load side, the hot water from the hot water supply tank 4 and the city water supplied from the hot water supply end 21b are mixed by the three-way valve 10 and become the temperature required by the load side. Is done. The amount of hot water decrease in the hot water supply tank 4 at the time of hot water is supplied to the hot water supply tank 4 from the cold water supply end 21 b and stays in the lower part of the hot water supply tank 4.
給湯機1内には、温度センサ11が設けられ、それぞれ設置場所の冷媒温度、水温、ブライン温度を計測する。温度センサ11aは圧縮機5の吸入側、温度センサ11bは圧縮機5の吐出側に配置され、それぞれ配置場所の冷媒温度を計測する。温度センサ11cは沸上げ回路20aの給湯タンク4の流入側、温度センサ11jは沸上げ回路20aのポンプ9a下流側に設置され、沸上げ回路20aを流れる水温を計測する。温度センサ11d〜11iは給湯タンク4の内部表面に設置され、給湯タンク4内の設置位置高さの水温を計測する。温度センサ11kは出湯端21aの湯温を計測し、温度センサ11lはパネル冷却回路20cを流れるブラインのブライン熱交換器8b流入温度が計測される。また給湯機1には圧力センサ12が設けられ、圧力センサ12aは圧縮機5の吐出側、圧力センサ12bは圧縮機5の吸入側に配置され、それぞれ配置場所の冷媒圧力を計測する。   A temperature sensor 11 is provided in the water heater 1, and measures the refrigerant temperature, water temperature, and brine temperature at the installation location. The temperature sensor 11a is arranged on the suction side of the compressor 5, and the temperature sensor 11b is arranged on the discharge side of the compressor 5, and measures the refrigerant temperature at the arrangement place. The temperature sensor 11c is installed on the inflow side of the hot water supply tank 4 of the boiling circuit 20a, and the temperature sensor 11j is installed on the downstream side of the pump 9a of the boiling circuit 20a, and measures the temperature of water flowing through the boiling circuit 20a. The temperature sensors 11 d to 11 i are installed on the inner surface of the hot water supply tank 4 and measure the water temperature at the installation position height in the hot water supply tank 4. The temperature sensor 11k measures the hot water temperature at the outlet end 21a, and the temperature sensor 11l measures the inflow temperature of the brine heat exchanger 8b of the brine flowing through the panel cooling circuit 20c. The water heater 1 is provided with a pressure sensor 12, the pressure sensor 12 a is disposed on the discharge side of the compressor 5, and the pressure sensor 12 b is disposed on the suction side of the compressor 5.
給湯機1内の制御装置13は各温度センサ11、圧力センサ12の計測情報や、装置使用者から指示される運転内容に基づいて、圧縮機5の運転方法、膨張弁7a、7bの開度、空気熱交換器8aのファン送風量、ポンプ9a、9bの運転方法、三方弁10の開度などを制御する。また、制御装置13は時刻や時間を測定するタイマー機能を備えている。   The control device 13 in the water heater 1 is based on the measurement information of each temperature sensor 11 and pressure sensor 12 and the operation content instructed by the user of the device, and the operation method of the compressor 5 and the opening degree of the expansion valves 7a and 7b. The fan air flow rate of the air heat exchanger 8a, the operation method of the pumps 9a and 9b, the opening degree of the three-way valve 10 and the like are controlled. The control device 13 has a timer function for measuring time and time.
次にこの貯湯式給湯装置の運転動作について説明する。本装置では、夜間に空気を熱源に給湯タンク4内に高温の湯を貯湯する第1の貯湯運転と、昼間にパネル冷却回路20cを流れるブラインを熱源に給湯タンク4内に高温の湯を貯湯する第2の貯湯運転が実施される。   Next, the operation of the hot water storage type hot water supply apparatus will be described. In this apparatus, hot water is stored in the hot water supply tank 4 using the first hot water storage operation in which hot water is stored in the hot water supply tank 4 at night using air as a heat source, and the brine flowing in the panel cooling circuit 20c in the daytime as a heat source. A second hot water storage operation is performed.
貯湯運転における給湯タンク4の貯湯状況について説明する。貯湯運転での沸上げ温度の目標値は、第1の貯湯運転では55℃、第2の貯湯運転では90℃に設定される。一般に貯湯式給湯装置が適用される家庭では、湯張り、シャワーなどに給湯が用いられる夕刻から夜間にかけての給湯消費量が1日のなかで最も多くなる。そのため深夜の時間では、給湯タンク4に保持される高温湯の量は少なく、多くは市水から供給された低温水となっている。第1の貯湯運転では、この低温水を給湯タンク4内の湯がほぼ沸上げ温度の湯と置き換わるように運転される。   The hot water storage situation of the hot water supply tank 4 in the hot water storage operation will be described. The target value of the boiling temperature in the hot water storage operation is set to 55 ° C. in the first hot water storage operation and 90 ° C. in the second hot water storage operation. In general, in a home where a hot water storage type hot water supply apparatus is applied, the amount of hot water consumption from evening to night when hot water is used for hot water filling, showering, etc. is the largest in the day. For this reason, during the midnight hours, the amount of hot water held in the hot water supply tank 4 is small, and most of it is low temperature water supplied from city water. In the first hot water storage operation, the low-temperature water is operated so that the hot water in the hot water supply tank 4 is replaced with hot water having a substantially boiling temperature.
第2の貯湯運転では、第1の貯湯運転に引き続き、昼間に実施される。家庭での朝から昼間にかけての給湯消費量は一般に少なく、給湯タンク4内には、第1の貯湯運転で貯湯された55℃の湯が多く残っている。第2の貯湯運転では、この湯を90℃まで沸上げ、給湯タンク4内に保持する運転がなされる。第2の貯湯運転は太陽光発電パネル2にて発電がなされる昼間の時間帯に実施される。第2の貯湯運転後は夕刻となり、給湯タンク4内に貯湯された90℃の湯を用いて、夕刻から夜間にかけての給湯負荷に対応することになる。   The second hot water storage operation is performed in the daytime following the first hot water storage operation. The consumption of hot water from morning to daytime at home is generally small, and a large amount of hot water at 55 ° C. stored in the first hot water storage operation remains in the hot water tank 4. In the second hot water storage operation, the hot water is boiled to 90 ° C. and held in the hot water supply tank 4. The second hot water storage operation is performed during the daytime when power is generated by the photovoltaic power generation panel 2. After the second hot water storage operation, it becomes evening, and the hot water stored in the hot water tank 4 is used to cope with the hot water supply load from evening to night.
本装置では、当初市水の温度、一般的には15℃程度である給湯タンク4の水を最終的に90℃まで沸き上げる運転がなされる。第1の貯湯運転と第2の貯湯運転とで2段階に沸き上げるので、片方の貯湯運転に要求される加熱能力が過大とならないように、第1の貯湯運転の沸上げ温度は、沸上げ開始時の初期(市水)の温度と最終的に沸き上げる温度の中間程度に設定することが望ましく、例えば15℃から90℃に沸きあげる場合は、中間の55℃程度とすることが望ましい。これにより、一方の貯湯運転に要求される加熱能力が過大となり、効率低下する状況を回避できるので、装置の運転効率を高くすることができる。尚、初期の温度は温度センサ11iや温度センサ11jの検出値を用いても良いし、給水端21bに別の温度センサを設けて検出してもよい。   In this apparatus, the temperature of the initial city water, generally about 15 ° C., is finally raised to 90 ° C. in the hot water supply tank 4. Since the first hot water storage operation and the second hot water storage operation are boiled in two stages, the boiling temperature of the first hot water storage operation is raised so that the heating capacity required for one hot water storage operation does not become excessive. It is desirable to set the temperature to an intermediate level between the initial (city water) temperature at the start and the final boiling temperature. For example, when boiling from 15 ° C. to 90 ° C., an intermediate temperature of about 55 ° C. is desirable. As a result, the heating capacity required for one hot water storage operation becomes excessive, and a situation in which the efficiency decreases can be avoided, so that the operating efficiency of the apparatus can be increased. The initial temperature may be detected by using a detected value of the temperature sensor 11i or the temperature sensor 11j, or may be detected by providing another temperature sensor at the water supply end 21b.
なお、第1の貯湯運転の沸上げ温度は、運転条件に応じて随時変更してもよい。夏期(例えば4月〜9月)のように日射量が多く、太陽光発電パネル2の発熱量が増加し、ブライン温度が外気温度に対してより高くなる場合は、第2の貯湯運転の運転効率が上昇し、第1の貯湯運転との運転効率の偏差が拡大する。このような場合には、第1の貯湯運転の沸上げ温度を、給湯タンク4の初期の温度と最終的に沸き上げる温度の中間値より低く設定する。これにより、一方の貯湯運転の効率が低くなる状況を回避できるので、装置の運転効率を平均的に高くすることができる。   In addition, you may change the boiling temperature of a 1st hot water storage operation | movement at any time according to an operating condition. When the amount of solar radiation is large and the calorific value of the photovoltaic power generation panel 2 increases and the brine temperature becomes higher than the outside air temperature in summer (for example, April to September), the second hot water storage operation is performed. The efficiency increases, and the deviation of the operation efficiency from the first hot water storage operation increases. In such a case, the boiling temperature of the first hot water storage operation is set lower than the intermediate value between the initial temperature of the hot water supply tank 4 and the final boiling temperature. Thereby, since the situation where the efficiency of one hot water storage operation becomes low can be avoided, the operation efficiency of the apparatus can be increased on average.
逆に、冬期(例えば10月〜3月)、もしくは曇天、雨天時など日射量が少なく、太陽光発電パネル2の発熱量が低下し、ブライン温度と外気温度との差が小さくなる場合は、第2の貯湯運転の運転効率が低下する。このような場合には、第1の貯湯運転の沸上げ温度を、給湯タンク4の初期の温度と最終的に沸き上げる温度の中間値より高く設定し、第2の貯湯運転での必要給湯能力を少なく設定する。これにより、一方の貯湯運転の効率が低くなる状況を回避できるので、装置の運転効率を平均的に高くすることができる。   Conversely, if the amount of solar radiation is small, such as during winter (for example, from October to March), or in cloudy or rainy weather, the calorific value of the photovoltaic power generation panel 2 is reduced, and the difference between the brine temperature and the outside air temperature is small. The operation efficiency of the second hot water storage operation decreases. In such a case, the boiling temperature in the first hot water storage operation is set higher than the intermediate value between the initial temperature of the hot water tank 4 and the final boiling temperature, and the required hot water supply capacity in the second hot water storage operation. Set less. Thereby, since the situation where the efficiency of one hot water storage operation becomes low can be avoided, the operation efficiency of the apparatus can be increased on average.
また、第1の貯湯運転の終了時から第2の貯湯運転の開始時のまでの給湯タンク4に貯められた湯の放熱による温度低下を考慮して、第1の貯湯運転の沸上げ温度を第1の貯湯運転の沸き上げ開始時の初期(市水)の温度と最終的に沸き上げる温度の中間値や予め定めた値よりも所定値分だけ高い値としてもよい。尚、この所定値分は外気温の異なる夏季と冬季で変更してもよく、夏季は小さい値にして冬季は大きい値としてもよい。   Also, considering the temperature drop due to heat dissipation of hot water stored in the hot water tank 4 from the end of the first hot water storage operation to the start of the second hot water storage operation, the boiling temperature of the first hot water storage operation is set. An intermediate value between the initial (city water) temperature at the start of boiling in the first hot water storage operation and the final boiling temperature, or a value higher than a predetermined value by a predetermined value may be used. The predetermined value may be changed in summer and winter when the outside air temperatures are different, and may be a small value in summer and a large value in winter.
なお、第2の貯湯運転におけるブライン温度は、太陽光発電パネル2における発熱量によって左右される。日射量が多い場合は、太陽光発電パネル2の発電量が増加し、それに伴い太陽光発電パネル2での発熱量も増加する。そのため太陽光発電パネル2の温度も上昇し、パネル冷却器3により加熱されるブラインの温度も上昇する。太陽光発電パネル2の温度上昇幅が大きくなると、発電効率が低下するため、温度上昇を適度な値に抑える必要があり、そのためブライン温度を低下させる運転を行わせる。ブライン温度が低下する場合、パネル冷却器3でのブラインと太陽光発電パネル2との温度差が拡大し、熱交換量も増加する。このパネル冷却器3での熱交換量増加に伴い、沸上げ回路20a側の熱交換量も増加させて、ブライン温度低下を実現する。   Note that the brine temperature in the second hot water storage operation depends on the amount of heat generated in the photovoltaic power generation panel 2. When the amount of solar radiation is large, the power generation amount of the solar power generation panel 2 is increased, and accordingly, the heat generation amount of the solar power generation panel 2 is also increased. Therefore, the temperature of the photovoltaic power generation panel 2 also rises, and the temperature of the brine heated by the panel cooler 3 also rises. When the temperature increase width of the photovoltaic power generation panel 2 is increased, the power generation efficiency is decreased. Therefore, it is necessary to suppress the temperature increase to an appropriate value. Therefore, an operation for decreasing the brine temperature is performed. When the brine temperature decreases, the temperature difference between the brine in the panel cooler 3 and the photovoltaic power generation panel 2 increases, and the heat exchange amount also increases. As the heat exchange amount in the panel cooler 3 is increased, the heat exchange amount on the boiling circuit 20a side is also increased, and the brine temperature is reduced.
そこで、太陽光発電パネル2の温度が上昇し、上昇抑制が必要となる場合には、冷凍サイクルでの熱交換量が増加するように、圧縮機5の容量制御目標である冷凍サイクルの高圧目標値を高く変更するとともに、膨張弁7bの開度制御目標である冷凍サイクルの吐出温度も高く変更する。これにより、水冷媒熱交換器6での冷媒温度が高くなり、水との温度差が拡大するので水冷媒熱交換器6での熱交換量が増加する。水冷媒熱交換器6での熱交換量の増加とともに、ブライン熱交換器8bでの熱交換量も増加するため、ブライン熱交換器8bでブラインがより冷却されることになる。これにより、パネル冷却器3に流入するブライン温度が低下し、太陽光発電パネル2の冷却が促進され、温度上昇も抑制される。この制御により、太陽光発電パネル2の発電効率の低下を回避し、より多くの発電量を得ることができる。   Therefore, when the temperature of the photovoltaic power generation panel 2 rises and it is necessary to suppress the rise, the high pressure target of the refrigeration cycle that is the capacity control target of the compressor 5 is increased so that the heat exchange amount in the refrigeration cycle increases. While changing the value higher, the discharge temperature of the refrigeration cycle which is the opening control target of the expansion valve 7b is also changed higher. Thereby, the refrigerant temperature in the water refrigerant heat exchanger 6 increases, and the temperature difference with water increases, so the amount of heat exchange in the water refrigerant heat exchanger 6 increases. As the amount of heat exchange in the water-refrigerant heat exchanger 6 increases, the amount of heat exchange in the brine heat exchanger 8b also increases, so that the brine is further cooled in the brine heat exchanger 8b. Thereby, the brine temperature which flows into the panel cooler 3 falls, cooling of the photovoltaic power generation panel 2 is accelerated | stimulated, and a temperature rise is also suppressed. By this control, it is possible to avoid a decrease in power generation efficiency of the photovoltaic power generation panel 2 and obtain a larger amount of power generation.
また日射量が少ない場合は、太陽光発電パネル2の発電量が低下し、それに伴い太陽光発電パネル2での発熱量も減少する。そのため太陽光発電パネル2の温度も低下し、パネル冷却器3により加熱されるブラインの温度も低下する。ブライン温度の低下幅が大きくなると、冷凍サイクルの動作低圧も低下し、冷凍サイクルの効率が低下するため、ブライン温度の低下を適度な値に抑える必要がある。   Moreover, when there is little solar radiation amount, the electric power generation amount of the solar power generation panel 2 falls, and the heat_generation | fever amount in the solar power generation panel 2 also reduces in connection with it. Therefore, the temperature of the photovoltaic power generation panel 2 also decreases, and the temperature of the brine heated by the panel cooler 3 also decreases. When the decrease range of the brine temperature increases, the operating low pressure of the refrigeration cycle also decreases and the efficiency of the refrigeration cycle decreases. Therefore, it is necessary to suppress the decrease in the brine temperature to an appropriate value.
そこで、ブライン温度の低下抑制が必要となる場合には、冷凍サイクルでの熱交換量が低下するように、圧縮機5の容量制御目標である冷凍サイクルの高圧目標値を低く変更するとともに、膨張弁7bの開度制御目標である冷凍サイクルの吐出温度も低く変更する。これにより、水冷媒熱交換器6での冷媒温度が低くなり、水との温度差が縮小するので水冷媒熱交換器6での熱交換量が減少する。水冷媒熱交換器6での熱交換量の減少とともに、ブライン熱交換器8bでの熱交換量も減少するため、ブライン熱交換器8bでのブライン冷却も抑制される。これにより、過度なブライン温度低下が回避でき、冷凍サイクルの動作低圧も高くなるため、冷凍サイクルの運転効率を高く維持することができる。   Therefore, when it is necessary to suppress the decrease in the brine temperature, the high pressure target value of the refrigeration cycle that is the capacity control target of the compressor 5 is changed to be low and the expansion is performed so that the heat exchange amount in the refrigeration cycle is reduced. The discharge temperature of the refrigeration cycle, which is the opening control target of the valve 7b, is also changed to a low value. Thereby, the refrigerant temperature in the water refrigerant heat exchanger 6 is lowered and the temperature difference with water is reduced, so that the heat exchange amount in the water refrigerant heat exchanger 6 is reduced. As the amount of heat exchange in the water-refrigerant heat exchanger 6 decreases, the amount of heat exchange in the brine heat exchanger 8b also decreases, so that brine cooling in the brine heat exchanger 8b is also suppressed. As a result, an excessive decrease in the brine temperature can be avoided and the operating low pressure of the refrigeration cycle is increased, so that the operating efficiency of the refrigeration cycle can be maintained high.
次に各貯湯運転での制御方法について、図2に基づいて説明する。図2は実施の形態1の制御方法を示すフローチャート図である。運転がスタートすると、まず制御装置13が第1の貯湯運転と第2の貯湯運転のどちらを行うか判別を行う(S1)。S1での判別は図3、図4に示すフローチャート図を用いて説明する。各貯湯運転の運転時間に関して、図3ではS11で深夜料金時間帯か否かを判別する。深夜料金時間帯の場合はS2へ移行し、深夜料金時間帯でない場合はS12aに移行する。第1の貯湯運転は前述したように深夜時間帯に実施され、一般には深夜電力料金が設定され、電気料金が安価となる時間帯、例えば23時から翌朝の7時の間に実施される。次にS12aで昼間の所定時間帯であるか否かを判別する。昼間の所定時間帯である場合はS6へ移行する。2の貯湯運転については日射量が多い正午前後の時間、例えば9時から15時の間と予め規定しておく。
第2の貯湯運転は昼間に実施されるが、太陽光発電パネル2の冷却も兼ねて実施されるので、太陽光発電パネル2の冷却要否に基づいて運転実施する場合について図4を用いて説明する。図3と同様にS11で深夜料金時間帯か否かを判別する。次にS12bで昼の所定時間帯である場合はS13に移行する。S13ではS12bの所定時間、例えば朝の時間の7時となった時点で、給湯機1内のブラインポンプ9bのみ駆動してS14に移行する。S14では温度センサ11lでブライン温度を検知し、ブライン温度が所定温度以上、例えば30℃以上となった段階でS6へ移行して第2の貯湯運転を開始する。一般的にブライン温度の上昇に伴って太陽光発電パネル2の発電効率が下がるが、圧縮機5に吸入される冷媒の吸入温度が上がるので圧縮機5の運転効率が上がる。そこで、S14では所定温度は維持すべき太陽発電パネル2の発電効率に基づいて予め定めて制御装置13に記憶しておいてもよいし、太陽発電パネル2の発電効率と圧縮機5の運転効率の最適値に基づいて予め定めて制御装置13に記憶しておいてもよい。また、所定温度を二酸化炭素の臨界温度以上に設定しておくと、圧縮機5に吸入される冷媒が高圧の超臨界状態となるので、低圧の気相状態から高圧の超臨界状態に昇圧させる分の圧縮機5にかかる負荷をなくすことができる。S14でブライン温度が所定温度以上でない場合はS13に戻り、ポンプ9bを制御しブラインの流量をさげる。このように第1の貯湯運転を行う場合はS2に移行し、第2の貯湯運転を行う場合はS6に移行する。
Next, a control method in each hot water storage operation will be described with reference to FIG. FIG. 2 is a flowchart showing the control method of the first embodiment. When the operation starts, first, the control device 13 determines whether to perform the first hot water storage operation or the second hot water storage operation (S1). The determination in S1 will be described with reference to the flowcharts shown in FIGS. With respect to the operation time of each hot water storage operation, in FIG. If it is the midnight fee time zone, the process proceeds to S2, and if it is not the midnight fee time zone, the process proceeds to S12a. As described above, the first hot water storage operation is performed in the midnight time zone. Generally, the midnight power rate is set, and is performed during a time zone in which the electricity rate is low, for example, from 23:00 to 7:00 the next morning. Next, in S12a, it is determined whether or not it is a predetermined daytime period. If it is the daytime predetermined time zone, the process proceeds to S6. The hot water storage operation No. 2 is defined in advance as a time after noon where the amount of solar radiation is large, for example, between 9:00 and 15:00.
Although the second hot water storage operation is performed in the daytime, it is also performed for cooling the solar power generation panel 2, and therefore, the case where the operation is performed based on the necessity of cooling of the solar power generation panel 2 is described with reference to FIG. explain. In the same manner as in FIG. 3, it is determined in S11 whether or not it is a late night charge time zone. Next, in S12b, when it is a predetermined daytime period, the process proceeds to S13. In S13, when the predetermined time of S12b, for example, 7 o'clock in the morning, is reached, only the brine pump 9b in the water heater 1 is driven, and the process proceeds to S14. In S14, the temperature of the brine is detected by the temperature sensor 11l, and when the brine temperature reaches a predetermined temperature or higher, for example, 30 ° C. or higher, the process proceeds to S6 and the second hot water storage operation is started. Generally, the power generation efficiency of the photovoltaic power generation panel 2 decreases as the brine temperature increases. However, since the suction temperature of the refrigerant sucked into the compressor 5 increases, the operation efficiency of the compressor 5 increases. Therefore, in S14, the predetermined temperature may be determined in advance based on the power generation efficiency of the solar power generation panel 2 to be maintained and stored in the control device 13, or the power generation efficiency of the solar power generation panel 2 and the operation efficiency of the compressor 5 may be stored. Alternatively, it may be determined in advance based on the optimum value and stored in the control device 13. Further, if the predetermined temperature is set to be equal to or higher than the critical temperature of carbon dioxide, the refrigerant sucked into the compressor 5 becomes a high-pressure supercritical state, so that the pressure is increased from the low-pressure gas phase state to the high-pressure supercritical state. It is possible to eliminate the load on the compressor 5 minutes. When the brine temperature is not equal to or higher than the predetermined temperature in S14, the process returns to S13, and the pump 9b is controlled to reduce the flow rate of the brine. As described above, when the first hot water storage operation is performed, the process proceeds to S2, and when the second hot water storage operation is performed, the process proceeds to S6.
次にS2からS5での第1の貯湯運転について説明する。S1からS2に移行すると第1の貯湯運転での沸上げ温度の目標値を設定する(S2)。本実施の形態では沸上げ温度の目標値は前述したとおり、55℃に設定される。   Next, the first hot water storage operation from S2 to S5 will be described. When shifting from S1 to S2, a target value of the boiling temperature in the first hot water storage operation is set (S2). In the present embodiment, the target value of the boiling temperature is set to 55 ° C. as described above.
次に、沸上げ温度の目標値に基づいて各アクチュエータを駆動して(S3)、水冷媒熱交換器6で給湯タンク4から循環してくる水を高温にし、また空気熱交換器8aで熱交換を行う(S4)。   Next, each actuator is driven based on the target value of the boiling temperature (S3), the water circulating from the hot water supply tank 4 is heated to a high temperature by the water / refrigerant heat exchanger 6, and the air is heated by the air heat exchanger 8a. Exchange is performed (S4).
S3とS4を詳細に説明すると、第1の貯湯運転では、圧縮機5、及びポンプ9aを駆動し、ポンプ9aにより搬送される給湯タンク4内の低温水を冷媒回路20bの水冷媒熱交換器6にて加熱する。また空気熱交換器8aのファンが駆動され、外気と熱交換可能とする。ポンプ9bは停止されるとともに、膨張弁7bも閉止され、冷媒とパネル冷却回路20cのブラインは熱交換されない運転となる。   S3 and S4 will be described in detail. In the first hot water storage operation, the compressor 5 and the pump 9a are driven, and the low-temperature water in the hot water supply tank 4 conveyed by the pump 9a is converted into a water / refrigerant heat exchanger of the refrigerant circuit 20b. Heat at 6. The fan of the air heat exchanger 8a is driven to exchange heat with the outside air. The pump 9b is stopped and the expansion valve 7b is also closed, so that the refrigerant and the brine of the panel cooling circuit 20c are not exchanged in heat.
冷媒回路20bでは圧縮機5により昇圧された高温高圧のガス冷媒が水冷媒熱交換器6に流入し、水冷媒熱交換器6に流入する低温水を加熱しながら、放熱冷却され、高圧低温の冷媒となる。その後、冷媒は膨張弁7aで減圧され低圧の二相冷媒となり、空気熱交換器8aにて外気より吸熱して蒸発し、低圧低温のガスとなった後で圧縮機5に吸入される。   In the refrigerant circuit 20b, the high-temperature and high-pressure gas refrigerant boosted by the compressor 5 flows into the water-refrigerant heat exchanger 6 and is cooled by heat radiation while heating the low-temperature water flowing into the water-refrigerant heat exchanger 6, Becomes a refrigerant. Thereafter, the refrigerant is depressurized by the expansion valve 7a to become a low-pressure two-phase refrigerant, absorbs heat from the outside air by the air heat exchanger 8a, evaporates, becomes a low-pressure low-temperature gas, and is sucked into the compressor 5.
給湯タンク4内の下部にある低温水は、ポンプ9aで搬送され、水冷媒熱交換器6で加熱され高温の湯となった後で、給湯タンク4の上部に戻される。給湯タンク4内では上部に高温の湯、下部に低温水が滞留して温度成層が形成され、湯と低温水との間に温度境界層が生成されるが、沸上げ運転が進むにつれて、低温水の割合が減少し、高温の湯の割合
が増加し温度境界層は、給湯タンク4の下部に移動する。
The low temperature water in the lower part of the hot water supply tank 4 is transported by the pump 9a, heated by the water / refrigerant heat exchanger 6 to become hot hot water, and then returned to the upper part of the hot water supply tank 4. In the hot water supply tank 4, hot hot water stays in the upper part and low temperature water stays in the lower part to form a temperature stratification, and a temperature boundary layer is formed between the hot water and the low temperature water. The proportion of water decreases, the proportion of hot water increases, and the temperature boundary layer moves to the lower part of the hot water supply tank 4.
沸上げ温度は、温度センサ11cで検知され、この温度が目標温度となるようにポンプ9aの運転容量が制御される。例えば、沸上げ温度が目標値より高ければ、ポンプ9aの運転容量を増加し、目標値より低ければポンプ9bの運転容量を減少する制御がなされる。   The boiling temperature is detected by the temperature sensor 11c, and the operation capacity of the pump 9a is controlled so that this temperature becomes the target temperature. For example, if the boiling temperature is higher than the target value, the operation capacity of the pump 9a is increased, and if it is lower than the target value, the operation capacity of the pump 9b is decreased.
冷媒回路20bでは、沸上げ温度設定値に応じて圧縮機5の容量、及び膨張弁7の開度制御がなされる。圧縮機5の容量制御では、冷凍サイクルの高圧が沸上げ温度設定値に応じて設定される目標値となるように制御され、例えば沸上げ温度の目標値が55℃である場合には、9.5MPaに設定される。そして圧力センサ12bで計測される冷凍サイクルの高圧が目標値よりも低い場合は圧縮機5の運転容量を高く制御し、圧力センサ12bで計測される冷凍サイクルの高圧が目標値よりも高い場合は圧縮機5の運転容量を低く制御する。膨張弁7aの開度制御は、冷凍サイクルの吐出温度が沸上げ温度設定値に応じて設定される目標値となるように制御され、例えば沸上げ温度の目標値が55℃である場合には70℃に設定される。そして温度センサ11bで計測される冷凍サイクルの吐出温度が目標値よりも低い場合は膨張弁7aの開度を小さく制御し、温度センサ11bで計測される冷凍サイクルの吐出温度が目標値よりも高い場合は膨張弁7aの開度を大きく制御する。   In the refrigerant circuit 20b, the capacity of the compressor 5 and the opening degree of the expansion valve 7 are controlled according to the boiling temperature set value. In the capacity control of the compressor 5, the high pressure of the refrigeration cycle is controlled to be a target value set in accordance with the boiling temperature set value. For example, when the target value of the boiling temperature is 55 ° C., 9 .5 MPa is set. When the high pressure of the refrigeration cycle measured by the pressure sensor 12b is lower than the target value, the operating capacity of the compressor 5 is controlled to be high, and when the high pressure of the refrigeration cycle measured by the pressure sensor 12b is higher than the target value. The operating capacity of the compressor 5 is controlled to be low. The opening degree control of the expansion valve 7a is controlled so that the discharge temperature of the refrigeration cycle becomes a target value set according to the boiling temperature setting value. For example, when the target value of the boiling temperature is 55 ° C. Set to 70 ° C. When the discharge temperature of the refrigeration cycle measured by the temperature sensor 11b is lower than the target value, the opening degree of the expansion valve 7a is controlled to be small, and the discharge temperature of the refrigeration cycle measured by the temperature sensor 11b is higher than the target value. In this case, the opening degree of the expansion valve 7a is largely controlled.
次に、沸上げ温度目標値の湯が給湯タンク4内に滞留したか否かを制御装置13が判定する(S5)。沸上げ温度目標値に到達していなければS3に戻り、沸上げ温度目標値に到達したと判断されるとS1に戻った後にS6で第2の貯湯運転に移行する。S5の判定では、給湯タンク4に設置される温度センサ11d〜11iに基づいて、湯の滞留状況を把握し、給湯タンク4の最下部に設けられている温度センサ11iでの検知温度と沸上げ温度目標値との温度差が所定値以内、例えば10℃以内となった時点で、沸上げ温度目標値の湯が給湯タンク4内に滞留したと判断する。この場合、圧縮機5、ポンプ9aなどの運転を停止し、第1の貯湯運転を終了する。   Next, the control device 13 determines whether or not hot water at the boiling temperature target value has accumulated in the hot water supply tank 4 (S5). If the boiling temperature target value has not been reached, the process returns to S3. If it is determined that the boiling temperature target value has been reached, the process returns to S1 and then proceeds to the second hot water storage operation in S6. In the determination of S5, based on the temperature sensors 11d to 11i installed in the hot water tank 4, the hot water stagnation state is grasped, and the temperature detected by the temperature sensor 11i provided at the lowermost part of the hot water tank 4 and the boiling are detected. When the temperature difference from the temperature target value is within a predetermined value, for example, within 10 ° C., it is determined that hot water at the boiling temperature target value has accumulated in the hot water supply tank 4. In this case, the operation of the compressor 5, the pump 9a, etc. is stopped, and the first hot water storage operation is terminated.
次にS6からS9での第2の貯湯運転について説明する。S1からS6に移行すると第2の貯湯運転での沸上げ温度の目標値を設定する(S6)。本実施の形態では沸上げ温度の目標値は前述したとおり、90℃に設定される。   Next, the second hot water storage operation from S6 to S9 will be described. When shifting from S1 to S6, a target value of the boiling temperature in the second hot water storage operation is set (S6). In the present embodiment, the target value of the boiling temperature is set to 90 ° C. as described above.
次に、沸上げ温度の目標値に基づいて各アクチュエータを駆動して(S7)、水冷媒熱交換器6で給湯タンク4から循環してくる水を高温にし、またブライン熱交換器8bで熱交換を行う(S8)。   Next, each actuator is driven based on the target value of the boiling temperature (S7), the water circulating from the hot water supply tank 4 is heated to a high temperature by the water / refrigerant heat exchanger 6, and the water is heated by the brine heat exchanger 8b. Exchange is performed (S8).
S7とS8を詳細に説明すると、第2の貯湯運転では、圧縮機5、及びポンプ9aを駆動し、ポンプ9aにより搬送される給湯タンク4内の低温水を冷媒回路20bの水冷媒熱交換器6にて加熱する。またポンプ9bは運転され、パネル冷却回路20cを流れるブラインと冷媒が熱交換される状態となる。一方空気熱交換器8aのファンは停止されるとともに、膨張弁7aも閉止され、冷媒と外気は熱交換されない運転となる。   S7 and S8 will be described in detail. In the second hot water storage operation, the compressor 5 and the pump 9a are driven, and the low-temperature water in the hot water supply tank 4 conveyed by the pump 9a is transferred to the water / refrigerant heat exchanger of the refrigerant circuit 20b. Heat at 6. In addition, the pump 9b is operated and heat is exchanged between the brine flowing through the panel cooling circuit 20c and the refrigerant. On the other hand, the fan of the air heat exchanger 8a is stopped, the expansion valve 7a is also closed, and the refrigerant and the outside air are not exchanged in heat.
冷媒回路20bでは圧縮機5により昇圧された高温高圧のガス冷媒が水冷媒熱交換器6に流入し、水冷媒熱交換器6に流入する低温水を加熱しながら、放熱冷却され、高圧低温の冷媒となる。その後、冷媒は膨張弁7bで減圧され低圧の冷媒となり、ブライン熱交換器8bにてパネル冷却回路20cを流れるブラインより吸熱して加熱され昇温した後で圧縮機5に吸入される。ブライン温度は一般的に外気温度より高く、40〜60℃であるため二酸化炭素冷媒の臨界温度の30℃より高くなるため、冷凍サイクルの低圧側も一般的に超臨界状態で駆動される。従って第1の貯湯運転のように、低圧側に二相域が生成され冷媒が蒸発する変化ではなく、加熱されるに従って順次昇温する変化となる。   In the refrigerant circuit 20b, the high-temperature and high-pressure gas refrigerant boosted by the compressor 5 flows into the water-refrigerant heat exchanger 6 and is cooled by heat radiation while heating the low-temperature water flowing into the water-refrigerant heat exchanger 6, Becomes a refrigerant. Thereafter, the refrigerant is depressurized by the expansion valve 7b to become a low-pressure refrigerant, and the brine heat exchanger 8b absorbs heat from the brine flowing through the panel cooling circuit 20c, is heated, heated, and then sucked into the compressor 5. Since the brine temperature is generally higher than the outside air temperature and is 40 to 60 ° C. and thus higher than the critical temperature of the carbon dioxide refrigerant, 30 ° C., the low pressure side of the refrigeration cycle is generally driven in a supercritical state. Therefore, as in the first hot water storage operation, a two-phase region is generated on the low pressure side and the refrigerant evaporates, but the temperature rises sequentially as it is heated.
給湯タンク4内の下部にある低温水は、ポンプ9aで搬送され、水冷媒熱交換器6で加熱され高温の湯となった後で、給湯タンク4の上部に戻される。またパネル冷却回路20cを流れるブラインはポンプ9bにより搬送され、昼間に運転され受光発電する太陽光発電パネル2の温度上昇を抑制するため、パネル冷却器3に流入し、パネル冷却器3内部で、太陽光発電パネル2を冷却しながら自身は昇温する。高温となったブラインはパネル冷却器3を流出後、給湯機1内に流入し、ポンプ9bを通過後ブライン熱交換器8bに流入する。ここでブラインは冷媒に熱を与えながら自身は冷却され低温となって給湯機1を流出する。太陽光発電パネル2は外気雰囲気の中で、太陽光を受けて加熱されるので、一般に外気より高温となる。パネル冷却器3でのブライン温度も、太陽光発電パネル2により加熱されるので、外気より高温となり、40〜60℃程度の高温となる。   The low temperature water in the lower part of the hot water supply tank 4 is transported by the pump 9a, heated by the water / refrigerant heat exchanger 6 to become hot hot water, and then returned to the upper part of the hot water supply tank 4. Further, the brine flowing through the panel cooling circuit 20c is conveyed by the pump 9b and flows into the panel cooler 3 to suppress the temperature rise of the photovoltaic power generation panel 2 that operates during the daytime and receives and generates power, and inside the panel cooler 3, While the solar power generation panel 2 is cooled, the temperature of itself increases. The brine that has reached a high temperature flows out of the panel cooler 3 and then flows into the hot water heater 1 and passes through the pump 9b and then flows into the brine heat exchanger 8b. Here, the brine cools itself while giving heat to the refrigerant, becomes a low temperature, and flows out of the water heater 1. Since the solar power generation panel 2 is heated by receiving sunlight in an outside air atmosphere, it generally has a higher temperature than the outside air. Since the brine temperature in the panel cooler 3 is also heated by the photovoltaic power generation panel 2, the brine temperature is higher than the outside air, and is about 40 to 60 ° C.
第2の貯湯運転では、熱が、太陽光、太陽熱を熱源に太陽光発電パネル2からパネル冷却器3、ブライン熱交換器8b、水冷媒熱交換器6を介して、給湯タンク4から流れる温水に伝えられる運転となる。各熱交換前後での放熱が小さい場合、冷凍サイクルでの熱バランスが維持されるので、パネル冷却器3での熱交換量と、圧縮機5での冷媒圧縮に要した動力分の熱量を加えた熱量が、給湯タンク4から流れる温水に伝えられる。   In the second hot water storage operation, the hot water flows from the hot water supply tank 4 from the photovoltaic power generation panel 2 through the panel cooler 3, the brine heat exchanger 8b, and the water / refrigerant heat exchanger 6 using sunlight and solar heat as heat sources. It will be the driving that is conveyed to. When the heat dissipation before and after each heat exchange is small, the heat balance in the refrigeration cycle is maintained, so the heat exchange amount in the panel cooler 3 and the heat amount for the power required for refrigerant compression in the compressor 5 are added. The amount of heat is transferred to the hot water flowing from the hot water tank 4.
沸上げ温度は、温度センサ11cで検知され、この温度が目標温度となるようにポンプ9aの運転容量が制御される。ポンプ9aの制御方法は第1の貯湯運転と同様になる。   The boiling temperature is detected by the temperature sensor 11c, and the operation capacity of the pump 9a is controlled so that this temperature becomes the target temperature. The control method of the pump 9a is the same as in the first hot water storage operation.
冷媒回路20bでの冷凍サイクルの高圧の目標値は、沸上げ温度上昇に伴い引き上げられ14MPaに設定される。また冷凍サイクルの吐出温度の目標値も、同様に沸上げ温度上昇に伴い引き上げられ100℃に設定される。そして、この目標値を実現するように圧縮機5の運転容量、及び膨張弁7bの開度が制御され、その制御方法は第1の貯湯運転と同様に行われる。   The target value of the high pressure of the refrigeration cycle in the refrigerant circuit 20b is raised as the boiling temperature rises and set to 14 MPa. Similarly, the target value of the discharge temperature of the refrigeration cycle is also raised and set to 100 ° C. as the boiling temperature rises. Then, the operation capacity of the compressor 5 and the opening degree of the expansion valve 7b are controlled so as to realize this target value, and the control method is performed in the same manner as in the first hot water storage operation.
パネル冷却回路20cの運転制御はポンプ9bによってなされ、温度センサ11lで検知されるパネル冷却器3出口のブライン温度が所定値となるように制御され、例えば、ブライン温度の制御目標値は60℃に設定される。そして、温度センサ11lで計測されるブライン温度が目標値よりも高い場合はポンプ9bの運転容量を増加し、温度センサ11lで計測されるブライン温度が目標値よりも低い場合はポンプ9bの運転容量を減少する。   Operation control of the panel cooling circuit 20c is performed by the pump 9b, and the brine temperature at the outlet of the panel cooler 3 detected by the temperature sensor 11l is controlled to be a predetermined value. For example, the control target value of the brine temperature is set to 60 ° C. Is set. When the brine temperature measured by the temperature sensor 11l is higher than the target value, the operating capacity of the pump 9b is increased. When the brine temperature measured by the temperature sensor 11l is lower than the target value, the operating capacity of the pump 9b is increased. Decrease.
また第2の貯湯運転でも、第1の貯湯運転と同様に、沸上げ温度目標値の湯が給湯タンク4内に滞留したか否かを制御装置13が判定する(S9)。沸上げ温度目標値に到達していなければS7に戻り、沸上げ温度目標値に到達したと判断されると貯湯運転を終了する。S9の判定では給湯タンク4の最下部に設けられている温度センサ11iでの検知温度と沸上げ温度目標値との温度差が所定値以内、例えば10℃以内となった時点で、沸上げ温度目標値の湯が給湯タンク4内に滞留したと判断し、圧縮機5、ポンプ9a、9bなどの運転を停止し、第2の貯湯運転を終了する。   In the second hot water storage operation, as in the first hot water storage operation, the control device 13 determines whether hot water at the boiling temperature target value has accumulated in the hot water supply tank 4 (S9). If the boiling temperature target value has not been reached, the process returns to S7, and if it is determined that the boiling temperature target value has been reached, the hot water storage operation is terminated. In the determination of S9, when the temperature difference between the temperature detected by the temperature sensor 11i provided at the lowermost part of the hot water tank 4 and the boiling temperature target value is within a predetermined value, for example, within 10 ° C., the boiling temperature It is determined that the target value of hot water has accumulated in the hot water supply tank 4, the operation of the compressor 5, the pumps 9a, 9b, etc. is stopped, and the second hot water storage operation is terminated.
以上の制御により、第1の貯湯運転、第2の貯湯運転を通じて給湯タンク4に貯留する湯温を高く設定できる。出湯時には、前述したように、給湯タンク4から出湯される高温の湯と市水が三方弁10で混合され、負荷側要求の温度となって出湯される。このとき、給湯タンク4内の湯温が高いと、負荷側要求温度を実現するときに混合される市水の量が多くなるので、より多くの出湯量を供給できる。従って負荷側要求温度で供給する湯量が一定である場合、給湯タンク4内の湯温が高い場合、給湯タンク4内に保持しなければいけない湯量は給湯タンク4内の湯温が低い場合に比べて少なくできる。そのため所定の給湯負荷に対して、給湯タンク4の容積を小さくでき、給湯機1そのものもコンパクトに構成できる。   With the above control, the hot water temperature stored in the hot water supply tank 4 through the first hot water storage operation and the second hot water storage operation can be set high. When the hot water is discharged, as described above, the hot water discharged from the hot water supply tank 4 and the city water are mixed by the three-way valve 10 and discharged at the temperature required by the load. At this time, if the hot water temperature in the hot water supply tank 4 is high, the amount of city water mixed when realizing the load side required temperature increases, so that a larger amount of hot water can be supplied. Therefore, when the amount of hot water supplied at the load-side required temperature is constant, when the hot water temperature in the hot water supply tank 4 is high, the amount of hot water that must be held in the hot water supply tank 4 is smaller than when the hot water temperature in the hot water supply tank 4 is low. Can be less. Therefore, the volume of the hot water supply tank 4 can be reduced with respect to a predetermined hot water supply load, and the hot water heater 1 itself can be configured compactly.
また第1の貯湯運転では冷凍サイクルの熱源を外気とし、第2の貯湯運転では熱源をブラインとしている。一般に冷凍サイクルでは高圧側、低圧側の温度差が拡大するほど効率が低下する。第1の貯湯運転においても、第2の貯湯運転と同レベルの高温を沸上げ温度と設定して冷凍サイクルを駆動することはできるが、この場合、冷凍サイクルの高低圧間の温度差が拡大し、運転効率が低下する。そのため、第2の貯湯運転では外気より高温であるブライン温度を熱源に用いる。これにより、冷凍サイクルの高低圧間の温度差を縮小でき、給湯タンク4に貯留する湯温を高く運転する場合でも、冷凍サイクルの効率を高くでき、装置の運転効率を高くすることができる。   In the first hot water storage operation, the heat source of the refrigeration cycle is outside air, and in the second hot water storage operation, the heat source is brine. In general, in the refrigeration cycle, the efficiency decreases as the temperature difference between the high pressure side and the low pressure side increases. Even in the first hot water storage operation, it is possible to drive the refrigeration cycle by setting the same high temperature as the second hot water storage operation as the boiling temperature, but in this case, the temperature difference between the high and low pressures of the refrigeration cycle is widened. However, the operating efficiency is reduced. Therefore, in the second hot water storage operation, a brine temperature that is higher than the outside air is used as a heat source. Thereby, the temperature difference between the high and low pressures of the refrigeration cycle can be reduced, and even when the hot water temperature stored in the hot water supply tank 4 is operated high, the efficiency of the refrigeration cycle can be increased and the operating efficiency of the apparatus can be increased.
なお、従来の貯湯式給湯装置でも、夜間、昼間にそれぞれ貯湯運転を行う場合があったが、一般に各貯湯運転の沸上げ温度は同一であり、夜間の貯湯運転時には給湯タンク4内の所定量の低温水を沸上げ、昼間の貯湯運転時には、給湯タンク4内の残りの低温水を沸上げる運転がなされる。このような運転で、本実施の形態と同様の給湯タンク4をコンパクトにする効果を得ようとした場合、沸上げ温度を90℃程度に高く設定する必要があるが、このとき夜間の外気を熱源に用いる運転では冷凍サイクルでの高圧側、低圧側の温度差が拡大し、運転効率が著しく低下し、例えば夜間の運転での沸上げ温度を55℃とした場合と比べると、40%程度効率が低下する。仮に昼間に太陽熱を熱源に冷凍サイクルを駆動し、高効率を得ても夜間の運転の効率低下が大きく、装置としての効率が低下する。本実施の形態では、上述したように、沸上げ温度を2段階に設定し、第1、第2の各貯湯運転における冷凍サイクルの高低圧間の温度差を縮小するため、従来の装置のような効率低下を回避し、高効率な装置とすることができる。   In the conventional hot water storage type hot water supply apparatus, there are cases where the hot water storage operation is performed at night and in the daytime. However, the boiling temperature of each hot water storage operation is generally the same, and a predetermined amount in the hot water tank 4 is maintained during the hot water storage operation at night. In the daytime hot water storage operation, the operation of boiling the remaining low temperature water in the hot water supply tank 4 is performed. In such an operation, when trying to obtain the effect of making the hot water tank 4 similar to this embodiment compact, it is necessary to set the boiling temperature as high as about 90 ° C. In the operation used for the heat source, the temperature difference between the high pressure side and the low pressure side in the refrigeration cycle is widened, and the operation efficiency is remarkably lowered. For example, compared with the case where the boiling temperature in the night operation is 55 ° C., about 40%. Efficiency is reduced. Even if the refrigeration cycle is driven using solar heat as a heat source in the daytime and high efficiency is obtained, the efficiency of operation at night is greatly reduced, and the efficiency of the apparatus is reduced. In the present embodiment, as described above, the boiling temperature is set in two stages, and the temperature difference between the high and low pressures of the refrigeration cycle in each of the first and second hot water storage operations is reduced. Therefore, it is possible to avoid a significant decrease in efficiency and to obtain a highly efficient device.
また、従来の貯湯式給湯装置では、一般に第1の貯湯運転のみ実施され、その際給湯タンク4に貯湯される湯の温度は、レジオネラ菌を殺菌できる略60℃以上となるように運転されていた。本装置では、第2の貯湯運転の沸上げ温度をレジオネラ菌を殺菌できる略60℃以上の温度に給湯タンク4内を沸き上げるため、第1の貯湯運転での沸上げ温度については、60℃以下で運転することができる。そのため第1の貯湯運転においても、従来の貯湯式給湯装置より高効率の運転を実施することができる。   Further, in the conventional hot water storage type hot water supply apparatus, only the first hot water storage operation is generally performed, and the temperature of the hot water stored in the hot water supply tank 4 is operated so as to be approximately 60 ° C. or higher at which Legionella bacteria can be sterilized. It was. In this apparatus, since the inside of the hot water supply tank 4 is heated to a temperature of about 60 ° C. or higher that can sterilize Legionella bacteria, the boiling temperature in the first hot water storage operation is about 60 ° C. You can drive with: Therefore, even in the first hot water storage operation, it is possible to perform an operation with higher efficiency than the conventional hot water storage type hot water supply apparatus.
なお、第2の貯湯運転において、圧縮機5、ポンプ9a、9bを駆動する電力として太陽光発電パネル2で発電された電力を用いてもよい。この場合、給湯に必要な消費電力は第1の貯湯運転時に要する電力のみとなるので、さらなる高効率運転を実現できる。   In the second hot water storage operation, the power generated by the photovoltaic power generation panel 2 may be used as power for driving the compressor 5 and the pumps 9a and 9b. In this case, since the power consumption required for hot water supply is only the power required for the first hot water storage operation, further high-efficiency operation can be realized.
実施の形態2.
実施の形態2では第2の貯湯運転において動作する冷凍サイクルに対し、冷媒回路内に内部熱交換器14を設けた構成について説明する。実施の形態1と同一の構成には同一の符号を付し、説明は省略する。図5に示すように、内部熱交換器14は膨張弁7b入口の高圧の冷媒と、ブライン熱交換器8b出口の低圧の冷媒が熱交換を行う。内部熱交換器14を搭載することにより、ブライン熱交換器8bでの冷媒エンタルピは搭載しない場合に比べて低い領域で動作する。第2の貯湯運転では冷凍サイクルの低圧は超臨界で駆動するため、冷媒エンタルピが低下するほど、温度が低下する。従ってより低いブライン温度に対しても熱交換可能となる。
Embodiment 2. FIG.
In the second embodiment, a configuration in which an internal heat exchanger 14 is provided in the refrigerant circuit for the refrigeration cycle that operates in the second hot water storage operation will be described. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 5, in the internal heat exchanger 14, the high-pressure refrigerant at the inlet of the expansion valve 7b and the low-pressure refrigerant at the outlet of the brine heat exchanger 8b exchange heat. By mounting the internal heat exchanger 14, the refrigerant enthalpy in the brine heat exchanger 8b operates in a lower region than when not mounted. In the second hot water storage operation, since the low pressure of the refrigeration cycle is driven in a supercritical state, the temperature decreases as the refrigerant enthalpy decreases. Therefore, heat exchange is possible even at a lower brine temperature.
運転条件によっては太陽の日射量が少なく、ブライン温度が上昇しない条件も発生するが、この条件で内部熱交換器14が設置されない場合は、ブラインと冷媒が熱交換可能となるように冷凍サイクルの低圧を低下させた運転がなされる。そのため冷凍サイクルの高低圧差が拡大し、圧縮機5の所要動力が増大し冷凍サイクルの運転効率を低下させる運転となる。図5のように内部熱交換器14を設けると、同じ低圧であっても冷媒温度をより低い温度とできるため、ブライン温度が低下しても冷凍サイクルの低圧を下げる必要がなく、圧縮機5の所要動力増大も回避できるので、冷凍サイクルの運転効率を高く維持することができ、装置の運転効率を高くすることができる。   Depending on the operating conditions, the amount of solar radiation may be small and the brine temperature will not rise. If the internal heat exchanger 14 is not installed under this condition, the refrigeration cycle of the refrigeration cycle will be able to exchange heat between the brine and the refrigerant. The operation is performed with the low pressure lowered. For this reason, the difference between the high and low pressures of the refrigeration cycle increases, the required power of the compressor 5 increases, and the operation efficiency of the refrigeration cycle decreases. When the internal heat exchanger 14 is provided as shown in FIG. 5, the refrigerant temperature can be lowered even at the same low pressure, so that it is not necessary to lower the low pressure of the refrigeration cycle even if the brine temperature is lowered. The increase in required power can be avoided, so that the operating efficiency of the refrigeration cycle can be maintained high, and the operating efficiency of the apparatus can be increased.
なお、第1の貯湯運転にて動作する冷凍サイクルに対しても、同様に、膨張弁7a入口の高圧の冷媒と、空気熱交換器8a出口の低圧の冷媒が熱交換を行う内部熱交換器14を設けることができるが、第1の貯湯運転にて動作する冷凍サイクルに対しては、内部熱交換器14を設けない方がよい。第1の貯湯運転にて動作する冷凍サイクルでは、一般に外気温度は二酸化炭素冷媒の臨界温度以下となるため、冷凍サイクルの低圧は臨界圧以下となり、二相部で蒸発する動作が行われる。この場合、内部熱交換器14によって冷媒の動作エンタルピを低下させても冷媒温度は変化しないため、前述の熱源(空気)温度が低下した場合の低圧の低下を回避し、運転効率を維持するという効果を得ることができない。   Similarly, for the refrigeration cycle operating in the first hot water storage operation, an internal heat exchanger in which the high-pressure refrigerant at the inlet of the expansion valve 7a and the low-pressure refrigerant at the outlet of the air heat exchanger 8a exchange heat. 14 can be provided, but it is better not to provide the internal heat exchanger 14 for the refrigeration cycle operating in the first hot water storage operation. In the refrigeration cycle that operates in the first hot water storage operation, generally, the outside air temperature is equal to or lower than the critical temperature of the carbon dioxide refrigerant. Therefore, the low pressure of the refrigeration cycle is equal to or lower than the critical pressure, and the operation of evaporating in the two-phase part is performed. In this case, even if the operating enthalpy of the refrigerant is lowered by the internal heat exchanger 14, the refrigerant temperature does not change. Therefore, the lowering of the low pressure when the heat source (air) temperature is lowered is avoided, and the operation efficiency is maintained. The effect cannot be obtained.
内部熱交換器14を用いた場合の第1の貯湯運転と第2の貯湯運転における冷媒の圧力とエンタルピの関係を示した図6を用いて説明する。図6(a)は第1の貯湯運転の場合であり、図6(b)は第2の貯湯運転の場合である。図6(a)と図6(b)のA1点とA2点は圧縮機5の入口での、B1点とB2点は圧縮機5の出口での冷媒の状態を示しており、C1点は水冷媒熱交換器6の出口での、D1点は空気熱交換器8aの入口での冷媒の状態を示しており、C2点は水冷媒熱交換器6の出口での、D2点はブライン熱交換器8bの入口での冷媒の状態を示している。尚、図中の矢印は冷媒の流れを示している。   The relationship between the refrigerant pressure and the enthalpy in the first hot water storage operation and the second hot water storage operation when the internal heat exchanger 14 is used will be described with reference to FIG. FIG. 6A shows the case of the first hot water storage operation, and FIG. 6B shows the case of the second hot water storage operation. 6 (a) and 6 (b), points A1 and A2 indicate the state of the refrigerant at the inlet of the compressor 5, points B1 and B2 indicate the state of the refrigerant at the outlet of the compressor 5, and point C1 is Point D1 at the outlet of the water refrigerant heat exchanger 6 indicates the state of the refrigerant at the inlet of the air heat exchanger 8a, point C2 is at the outlet of the water refrigerant heat exchanger 6, and point D2 is brine heat. The state of the refrigerant at the inlet of the exchanger 8b is shown. In addition, the arrow in a figure has shown the flow of the refrigerant | coolant.
内部熱交換器14を用いると、第1の貯湯運転では図6(a)のA1点とC1点の冷媒が、第2の貯湯運転では図6(b)のA2点とC2点の冷媒が熱交換することになり、A1点とC1点、A2点とC2点の冷媒の温度をそれぞれ比較すると、C1点、C2点の冷媒の方が温度が高いので、A1点、C1点、A2点、C2点の冷媒の状態はそれぞれa1点、c1点、a2点、c2点に移動する。そして、冷媒が内部熱交換器14を通過した後、放熱器である水冷媒熱交換器6や蒸発器である空気熱交換器8aやブライン熱交換器8bで熱交換されると、図6(a)と(b)に示すa1b1c1d1、a2b2c2d2サイクルで運転を行うようになる。つまり、B1点がb1点に、D1点がd1点に、B2点がb2点に、D2点がd2点にそれぞれ移動する。   When the internal heat exchanger 14 is used, the refrigerant at points A1 and C1 in FIG. 6 (a) is used in the first hot water storage operation, and the refrigerant at points A2 and C2 in FIG. 6 (b) is used in the second hot water storage operation. When the temperatures of the refrigerants at points A1 and C1, and points A2 and C2 are compared, the refrigerants at points C1 and C2 have higher temperatures, so points A1, C1, and A2 The state of the refrigerant at point C2 moves to points a1, c1, a2, and c2, respectively. And after a refrigerant | coolant passes the internal heat exchanger 14, when heat exchange is carried out by the water heat exchanger 6a which is a heat radiator, the air heat exchanger 8a which is an evaporator, or the brine heat exchanger 8b, FIG. The operation is performed in the a1b1c1d1 and a2b2c2d2 cycles shown in a) and (b). That is, point B1 is moved to point b1, point D1 is moved to point d1, point B2 is moved to point b2, and point D2 is moved to point d2.
ここで、第1の貯湯運転と第2の貯湯運転での膨張弁の出口での冷媒の状態変化を比較すると、図6(a)に示すd1点は冷媒の2相領域にあり、D1点の冷媒と等温である。対して、図6(b)に示すd2点の冷媒は超臨界状態にあり、D2点の冷媒と比較して温度が低くなっている。従って、ブライン温度が低下しても冷凍サイクルの低圧を下げる必要がなく、圧縮機5の所要動力増大も回避できる。   Here, comparing the state change of the refrigerant at the outlet of the expansion valve in the first hot water storage operation and the second hot water storage operation, the point d1 shown in FIG. 6A is in the two-phase region of the refrigerant, and the point D1 It is isothermal with other refrigerants. On the other hand, the refrigerant at point d2 shown in FIG. 6B is in a supercritical state, and the temperature is lower than that of the refrigerant at point D2. Therefore, even if the brine temperature falls, it is not necessary to lower the low pressure of the refrigeration cycle, and an increase in required power of the compressor 5 can be avoided.
また、内部熱交換器14では、圧縮機5吸入側の冷媒経路の増加による圧力損失が発生し効率低下するというデメリットもある。また圧縮機5吸入側での熱交換により吸入温度が上昇し、圧縮機5の吐出温度も上昇する。第1の貯湯運転では沸上げ温度は従来の給湯装置よりも低く設定されるため、吐出温度が上昇すると、沸上げに必要な温度よりも過度な温度上昇がなされることになる。必要以上の温度上昇がなされると、その分圧縮機5に必要な動力が増加することになり、運転効率が低下する。そのため、本装置のように、沸上げ運転を2段階とし、各沸上げ運転の低圧側熱源温度(空気とブライン)が一方は冷媒の臨界温度以上、一方が冷媒の臨界温度以下となる場合には、熱源温度が冷媒の臨界温度以上となる冷凍サイクルに対してのみ内部熱交換器14を設ける構成とする方が、もっとも運転効率を高める構成となり望ましい。   Further, the internal heat exchanger 14 has a demerit that the pressure loss due to the increase of the refrigerant path on the suction side of the compressor 5 occurs and the efficiency is lowered. Further, the heat exchange at the suction side of the compressor 5 raises the suction temperature, and the discharge temperature of the compressor 5 also rises. In the first hot water storage operation, the boiling temperature is set lower than that of the conventional hot water supply apparatus. Therefore, when the discharge temperature rises, the temperature rises excessively than the temperature required for boiling. When the temperature rises more than necessary, the power required for the compressor 5 increases accordingly, and the operating efficiency decreases. Therefore, as in this device, when the boiling operation is performed in two stages and one of the low pressure side heat source temperatures (air and brine) of each boiling operation is equal to or higher than the critical temperature of the refrigerant and one is equal to or lower than the critical temperature of the refrigerant. It is desirable that the internal heat exchanger 14 be provided only for the refrigeration cycle in which the heat source temperature is equal to or higher than the critical temperature of the refrigerant because the operation efficiency is most enhanced.
なお、本実施の形態では、第2の貯湯運転の熱源として、太陽光発電パネル2を冷却するブラインを用いているが、太陽光、太陽熱を熱源として用いられるものであれば他の構成であっても同様の効果を得ることができる。例えば、太陽熱集熱器を設け、その集熱器により加熱された温水、もしくはブラインを用いてもよい。   In the present embodiment, the brine for cooling the photovoltaic power generation panel 2 is used as the heat source for the second hot water storage operation. However, other configurations may be used as long as sunlight and solar heat are used as the heat source. However, the same effect can be obtained. For example, a solar heat collector may be provided, and hot water heated by the heat collector or brine may be used.
本発明は、太陽熱を熱源にヒートポンプを駆動し給湯を実施する貯湯式給湯装置に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized for the hot water storage type hot-water supply apparatus which drives a heat pump using solar heat as a heat source, and implements hot water supply.
1 給湯機、
2 太陽光発電パネル、
3 パネル冷却器、
4 給湯タンク、
5 圧縮機、
6 水冷媒熱交換器、
7a、7b 膨張弁、
8a 空気熱交換器、
8b ブライン熱交換器、
9a、9b ポンプ、
10 三方弁、
11a、11b、11c、11d、11e、11f、11g、11h、11i、11j、11k、11l 温度センサ、
12a、12b 圧力センサ、
13 制御装置、
14 内部熱交換器、
21a 出湯端、
21b 給水端
1 Water heater,
2 solar panels,
3 Panel cooler,
4 Hot water tank
5 compressors,
6 Water refrigerant heat exchanger,
7a, 7b expansion valve,
8a Air heat exchanger,
8b brine heat exchanger,
9a, 9b pump,
10 Three-way valve,
11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11l temperature sensor,
12a, 12b pressure sensor,
13 control device,
14 Internal heat exchanger,
21a Hot spring end,
21b Water supply end

Claims (10)

  1. 冷媒を圧縮する圧縮機、膨張弁、放熱器として作用し冷水を温水に加熱する水冷媒熱交換器、空気を熱源として前記冷媒を蒸発させる第1の蒸発器、太陽光または太陽熱により加熱される熱媒体を熱源として前記冷媒を加熱する第2の蒸発器、を有する冷凍サイクルと、
    前記水冷媒熱交換器で加熱される前記温水を貯湯する給湯タンクと、
    夜間に前記第1の蒸発器と前記水冷媒熱交換器に前記冷媒を流して前記温水を第1の沸上げ温度で前記給湯タンクに貯湯する第1の貯湯運転モードと、
    昼間に前記第2の蒸発器と前記水冷媒熱交換器に前記冷媒を流して前記第1の沸上げ温度よりも高い第2の沸上げ温度で前記給湯タンクに貯湯する第2の貯湯運転モードにて前記冷凍サイクルを制御する制御装置と、
    を備えたことを特徴とする貯湯式給湯装置。
    A compressor that compresses refrigerant , an expansion valve, a water refrigerant heat exchanger that acts as a radiator and heats cold water to hot water, a first evaporator that evaporates the refrigerant using air as a heat source, and is heated by sunlight or solar heat A refrigeration cycle having a second evaporator that heats the refrigerant using a heat medium as a heat source;
    A hot water supply tank for storing hot water heated by the water refrigerant heat exchanger;
    A first hot water storage operation mode in which the refrigerant flows through the first evaporator and the water / refrigerant heat exchanger at night to store the hot water in the hot water supply tank at a first boiling temperature;
    A second hot water storage operation mode in which the refrigerant flows through the second evaporator and the water / refrigerant heat exchanger in the daytime to store hot water in the hot water supply tank at a second boiling temperature higher than the first boiling temperature. A control device for controlling the refrigeration cycle at
    A hot water storage type hot water supply apparatus characterized by comprising:
  2. 夏期には第1の沸上げ温度を水冷媒熱交換器で沸き上げる冷水の温度と第2の沸上げ温度の中間値より低く設定し、冬期には前記第1の沸上げ温度を水冷媒熱交換器で沸き上げる冷水の温度と第2の沸上げ温度の中間値より高く設定することを特徴とする請求項1に記載の貯湯式給湯装置。 In the summer, the first boiling temperature is set lower than the intermediate value between the temperature of the cold water heated by the water refrigerant heat exchanger and the second boiling temperature, and in the winter, the first boiling temperature is set to the water refrigerant heat. The hot water storage type hot water supply apparatus according to claim 1, wherein the hot water storage apparatus is set to be higher than an intermediate value between the temperature of the cold water heated by the exchanger and the second boiling temperature.
  3. 第1の沸上げ温度は略60度以下であり、第2の沸上げ温度は略60度以上であることを特徴とする請求項1又は2に記載の貯湯式給湯装置。 3. The hot water storage type hot water supply apparatus according to claim 1, wherein the first boiling temperature is approximately 60 degrees or less and the second boiling temperature is approximately 60 degrees or more.
  4. 第1の貯湯運転モードを深夜電力料金となる夜間の所定時間帯に実施し、第2の貯湯運転モードを翌日の昼間の所定時間帯に実施することを特徴とする請求項1乃至3のいずれかに記載の貯湯式給湯装置。 4. The first hot water storage operation mode is performed in a predetermined time zone at night when the late-night electricity rate is set, and the second hot water storage operation mode is performed in a predetermined time zone in the daytime of the next day. The hot water storage type hot water supply device according to crab.
  5. 太陽光発電パネルを熱源とする集熱器で熱媒体を加熱し、
    第2の貯湯運転モードを前記熱媒体が所定温度以上になった場合に実施することを特徴とする請求項1乃至4のいずれかに記載の貯湯式給湯装置。
    Heat the heat medium with a collector that uses a solar power generation panel as a heat source,
    The hot water storage type hot water supply apparatus according to any one of claims 1 to 4, wherein the second hot water storage operation mode is performed when the heat medium becomes a predetermined temperature or higher.
  6. 第2の貯湯運転モードでは、太陽光発電パネルにより発電された電力により圧縮機を駆動することを特徴とする請求項5に記載の貯湯式給湯装置。 The hot water storage type hot water supply apparatus according to claim 5, wherein in the second hot water storage operation mode, the compressor is driven by electric power generated by the solar power generation panel.
  7. 冷媒は二酸化炭素であることを特徴とする請求項1乃至6のいずれかに記載の貯湯式給湯装置。 The hot water storage type hot water supply apparatus according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide.
  8. 水冷媒熱交換器を出て膨張弁に入る前の冷媒と第2の蒸発器を出て圧縮機に入る前の冷媒と熱交換を行う内部熱交換器と、
    を備えたことを特徴とする請求項7に記載の貯湯式給湯装置。
    An internal heat exchanger for exchanging heat with the refrigerant before exiting the water refrigerant heat exchanger and entering the expansion valve and the refrigerant before exiting the second evaporator and before entering the compressor;
    The hot water storage type hot water supply apparatus according to claim 7, comprising:
  9. 膨張弁を出て第2の蒸発器に入る前の冷媒が超臨界状態であることを特徴とする請求項8に記載の貯湯式給湯装置。 The hot water storage type hot water supply apparatus according to claim 8, wherein the refrigerant before exiting the expansion valve and entering the second evaporator is in a supercritical state.
  10. 冷媒を圧縮する圧縮機、膨張弁、放熱器として作用し冷水を温水に加熱する水冷媒熱交換器、空気を熱源として前記冷媒を蒸発させる第1の蒸発器、太陽光または太陽熱により加熱された熱媒体を熱源として前記冷媒を加熱する第2の蒸発器、を有する冷凍サイクルと、
    前記水冷媒熱交換器で加熱される前記温水を貯湯する給湯タンクと、
    前記冷凍サイクルを制御する制御装置とを備えた貯湯式給湯装置の制御方法であって、
    前記制御装置が前記冷凍サイクルを制御して夜間に前記温水を第1の沸上げ温度で貯湯する第1工程と、
    前記熱媒体の温度を検出する第2工程と、
    前記第2工程で検出した温度が所定値以上の場合に前記制御装置が前記第2の蒸発器と前記水冷媒熱交換器に前記冷媒を流して昼間に前記温水を前記第1の沸上げ温度よりも高い第2の沸上げ温度で貯湯する第3工程と、
    を有することを特徴とする貯湯式給湯装置の制御方法。
    A compressor that compresses refrigerant , an expansion valve, a water refrigerant heat exchanger that acts as a radiator and heats cold water to hot water, a first evaporator that evaporates the refrigerant using air as a heat source, heated by sunlight or solar heat A refrigeration cycle having a second evaporator that heats the refrigerant using a heat medium as a heat source;
    A hot water supply tank for storing hot water heated by the water refrigerant heat exchanger;
    A control method for a hot water storage hot water supply device comprising a control device for controlling the refrigeration cycle,
    A first step in which the controller controls the refrigeration cycle to store the hot water at a first boiling temperature at night;
    A second step of detecting the temperature of the heat medium;
    When the temperature detected in the second step is equal to or higher than a predetermined value, the control device causes the refrigerant to flow through the second evaporator and the water-refrigerant heat exchanger, and the hot water is supplied to the first boiling temperature in the daytime. A third step of storing hot water at a higher second boiling temperature,
    A method for controlling a hot water storage type hot water supply apparatus, comprising:
JP2009243502A 2009-10-22 2009-10-22 Hot water storage water heater, control method for hot water storage water heater Active JP5126198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243502A JP5126198B2 (en) 2009-10-22 2009-10-22 Hot water storage water heater, control method for hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243502A JP5126198B2 (en) 2009-10-22 2009-10-22 Hot water storage water heater, control method for hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2011089707A JP2011089707A (en) 2011-05-06
JP5126198B2 true JP5126198B2 (en) 2013-01-23

Family

ID=44108119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243502A Active JP5126198B2 (en) 2009-10-22 2009-10-22 Hot water storage water heater, control method for hot water storage water heater

Country Status (1)

Country Link
JP (1) JP5126198B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187813B2 (en) * 2013-09-13 2017-08-30 三浦工業株式会社 Water heating system
JP2015148429A (en) * 2014-02-10 2015-08-20 株式会社東洋製作所 Operational method of refrigerator
GR20180100266A (en) * 2018-06-14 2020-02-13 GLOBAL SOL ENERGY ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ με δ.τ. "G.S.E. A.E." Improved water-heating system
GR1009827B (en) * 2019-07-10 2020-09-25 GLOBAL SOL ENERGY ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ με δ.τ. "G.S.E. A.E." Solar triple energy forced drought system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531490B2 (en) * 2004-08-26 2010-08-25 パナソニック株式会社 Solar heat combined utilization system, operation control method thereof, program, and recording medium
JP2006153383A (en) * 2004-11-30 2006-06-15 Denso Corp Storage type water heater
JP4036864B2 (en) * 2004-12-27 2008-01-23 三洋電機株式会社 Solar power system
JP4404002B2 (en) * 2005-04-19 2010-01-27 パナソニック株式会社 Hot water storage water heater
JP4502020B2 (en) * 2008-02-01 2010-07-14 ダイキン工業株式会社 Heating and hot water supply equipment

Also Published As

Publication number Publication date
JP2011089707A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US5320166A (en) Heat pump system with refrigerant isolation and heat storage
CN1229596C (en) Heat pump type hot-water supply apparatus
JP4548694B2 (en) Engine exhaust heat recovery device
Byrne et al. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as a working fluid
US4111259A (en) Energy conservation system
CN103827602B (en) Water supply heating system
EP1884648B1 (en) Co-generation unit and control method of the same
Bertsch et al. Two-stage air-source heat pump for residential heating and cooling applications in northern US climates
Minetto Theoretical and experimental analysis of a CO2 heat pump for domestic hot water
JP3918807B2 (en) Hot water storage type electric water heater
AU719697B2 (en) Thermal energy storage air conditioning system
JP5597767B2 (en) Heating device and method for controlling heating device
US8037931B2 (en) Hybrid water heating system
US20140230477A1 (en) Hot water supply air conditioning system
US5226594A (en) Hot water storage tank heat exchanger system
US9377224B2 (en) Heat pump apparatus and control method for heat pump apparatus
JP4159975B2 (en) Energy storage type heat pump water heater
CN101458005B (en) Solar photovoltaic-commercial power mixedly driving cold-storage and thermal storage type heat pump unit
CN100460775C (en) Air source heat pump water heater with flow guide sleeve heat exchanger water storage tank
RU2522262C2 (en) Thermoelectric energy accumulation system, and thermoelectric energy accumulation method
US7905110B2 (en) Thermal energy module
Jung et al. Performance comparison between a single-stage and a cascade multi-functional heat pump for both air heating and hot water supply
KR101343711B1 (en) Air conditioning/hot­water supply system and heat pump unit
CN101842645B (en) Refrigeration cycle device
JP5615381B2 (en) Hot water supply and air conditioning complex equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5126198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250