JP2011242221A - 回転対称非球面形状測定装置 - Google Patents

回転対称非球面形状測定装置 Download PDF

Info

Publication number
JP2011242221A
JP2011242221A JP2010113580A JP2010113580A JP2011242221A JP 2011242221 A JP2011242221 A JP 2011242221A JP 2010113580 A JP2010113580 A JP 2010113580A JP 2010113580 A JP2010113580 A JP 2010113580A JP 2011242221 A JP2011242221 A JP 2011242221A
Authority
JP
Japan
Prior art keywords
light
wavelength
measurement
distance
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113580A
Other languages
English (en)
Other versions
JP5394317B2 (ja
Inventor
Nobuaki Ueki
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010113580A priority Critical patent/JP5394317B2/ja
Priority to US13/108,475 priority patent/US8526009B2/en
Publication of JP2011242221A publication Critical patent/JP2011242221A/ja
Application granted granted Critical
Publication of JP5394317B2 publication Critical patent/JP5394317B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02035Shaping the focal point, e.g. elongated focus
    • G01B9/02036Shaping the focal point, e.g. elongated focus by using chromatic effects, e.g. a wavelength dependent focal point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02064Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry
    • G01B9/02065Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry using a second interferometer before or after measuring interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

【課題】回転対称な非球面からなる被検面の形状を、干渉計と被検面との相対位置を変えることなく測定可能な回転対称非球面形状測定装置を得る。
【解決手段】白色光源11からの低可干渉光からなる測定光を、回折光学素子32を有する光偏向素子30を介して被検面71に照射する。また、被検面71から再帰反射された被検光と参照光の光路長差が低干渉光の可干渉距離以下となるように迂回路部13における迂回距離の調整がなされる。被検光と参照光との干渉光は、回折格子板の傾斜角度と干渉光の波長とが所定の関係を満たす場合のみ撮像カメラ28内に入射し、撮像素子29上に干渉縞画像が形成される。干渉光の波長別に撮像された各干渉縞画像および該各干渉縞画像の撮像時点における、参照基準面31aから被検面71までの測定光の光路上における光学距離に基づき、被検面71の形状が測定解析される。
【選択図】図1

Description

本発明は、回転対称な非球面の形状を測定する回転対称非球面形状測定装置に関する。
従来、非球面レンズなどの回転対称な非球面の形状を測定する手法としては、光触針を用いた三次元形状測定が知られているが、1回の測定に数時間を要するなど測定時間の長さが問題となっている。
一方、回転対称な非球面からなる被検面に対し球面波を照射して被検面からの戻り光と参照光との干渉により形成される干渉縞に基づき、被検面の形状を特定する手法も知られているが、干渉計と被検面との相対位置を固定した状態では、被検面内の非常に限られた領域に対応した干渉縞しか得ることができない。
そこで、干渉計と被検面との相対位置を測定光軸方向に順次変化させることにより、被検面の径方向の部分領域毎に対応した干渉縞が順次生じるようにし、その各干渉縞を解析して被検面の径方向の各部分領域の形状を求め、それらを繋ぎ合わせる手法が知られている(下記特許文献1参照)。
また、干渉計と被検面との相対位置を測定光軸と垂直な面内において順次変化させ、相対位置を変える毎に被検面の各部分領域に対応した干渉縞を縞解析可能な程度に拡大して撮像し、その各干渉縞を解析して被検面の各部分領域の形状を求め、それらを繋ぎ合わせる手法も知られている(下記特許文献2参照)。
特開昭62−126305号公報 USP6,956,657
上記特許文献1,2に記載の手法は、光触針を用いた三次元形状測定に比べて短時間で被検面の形状測定を行うことができるが、干渉計と被検面との相対位置を順次変えるための機構が必要となるため、装置構成が複雑となるとともに装置が大型化するという問題がある。
本発明は、このような事情に鑑みなされたものであり、回転対称な非球面からなる被検面の形状を、干渉計と被検面との相対位置を変えることなく測定可能な回転対称非球面形状測定装置を提供することを目的とする。
上記目的を達成するため本発明に係る回転対称非球面形状測定装置は、以下の特徴を備えている。
すなわち、本発明に係る回転対称非球面形状測定装置は、回転対称な非球面からなる被検面を測定する装置であって、
波長可変レーザ光源または白色光源からの出力光を参照基準面において測定光と参照光とに分岐し該測定光を出射する干渉計と、
同心に形成された複数の輪帯状の回折格子を有し、前記干渉計と前記被検面との間の前記測定光の光路上に配置され、該干渉計から出射された該測定光を該測定光の波長に応じた所定の角度だけ偏向して前記被検面に向けて出射するとともに、該被検面から反射された被検光を偏向して前記干渉計に向けて出射する光偏向素子と、
前記光偏向素子からの前記被検光と参照光とが合波されてなる干渉光により形成される干渉縞画像を撮像する撮像手段と、
前記参照基準面から前記被検面までの前記測定光の光路上における光学距離を測定する光学距離測定手段と、
前記干渉光の波長別に撮像された各干渉縞画像および該各干渉縞画像の撮像時点における前記光学距離に基づき、前記被検面の形状を解析する解析手段と、を備えてなることを特徴とする。
本発明において、前記測定光が前記白色光源からの出力光によるものであり、
前記光学距離測定手段は、前記白色光源からの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調整する迂回距離調整部と、前記干渉光の波長を解析する波長解析部と、前記迂回距離および前記干渉光の波長に基づき、前記光学距離を算出する光学距離算出部と、を有してなるとすることができる。
一方、前記測定光が前記波長可変レーザ光源からの出力光によるものであり、
前記光学距離測定手段は、前記波長可変レーザ光源からの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調整する迂回距離調整部と、
前記波長可変レーザ光源からの出力光の波長を前記撮像手段の1撮像期間よりも短い時間内において変調し、該出力光が低可干渉光と等価の可干渉距離を有するように調整する波長変調部と、前記波長可変レーザ光源からの出力光の中心波長を所定範囲内で走査する中心波長走査部と、前記迂回距離および前記出力光の中心波長に基づき、前記光学距離を算出する光学距離算出部と、を有してなるとすることができる。
また、前記測定光が前記波長可変レーザ光源からの出力光によるものであり、
前記光学距離測定手段は、前記波長可変レーザ光源からの出力光の波長を所定範囲内で走査する波長走査部と、該波長走査部により該出力光の波長を走査しながら前記撮像手段により順次撮像された干渉縞画像の所定の画素における干渉縞変化の回数に基づき、前記光学距離を算出する光学距離算出部と、を有してなるとすることもできる。
上記白色光源とは、一般には、スペクトル分布が可視域の全域に広がって肉眼で白色に見える白色光を出力する光源を指すが、本発明では、スペクトル分布が数百nm(例えば300nm、好ましくは400nm)以上の波長帯域に亘って広がる光を出力する光源を意味し、その波長帯域が可視域以外に及ぶものを含むものとする。
本発明に係る回転対称非球面形状測定装置は、上述の特徴を備えていることにより、以下のような作用効果を奏する。
すなわち、本発明の回転対称非球面形状測定装置においては、干渉計と被検面との間の測定光の光路上に配置された回折光学素子により、測定光がその波長に応じた所定の角度だけ回折、偏向されて被検面に照射されるとともに、該被検面から反射され回折光学素子を経由して干渉計に戻る被検光と、参照光との光干渉により干渉縞画像が形成される。
このとき、参照基準面から被検面までの測定光の光路上における光学距離を測定する光学距離測定手段と、干渉光の波長別に撮像された各干渉縞画像とそれらの撮像時点における光学距離とに基づき被検面の形状を解析する解析手段とを備えていることにより、干渉計と被検面との相対位置を変化させることなく、被検面の各領域に対応した形状データを得ることができるので、これらの形状データを繋ぎ合せることによって被検面の形状を求めることが可能となる。
第1実施形態に係る回転対称非球面形状測定装置の概略構成図である。 第1実施形態における解析制御装置の構成を示すブロック図である。 第2実施形態に係る回転対称非球面形状測定装置の概略構成図である。 第2実施形態における解析制御装置の構成を示すブロック図である。 第3実施形態に係る回転対称非球面形状測定装置の概略構成図である。 第3実施形態における解析制御装置の構成を示すブロック図である。 第4実施形態に係る回転対称非球面形状測定装置の概略構成図である。
以下、本発明の実施形態について、上述の図面を参照しながら詳細に説明する。なお、実施形態の説明に使用する各図は概略的な説明図であり、詳細な形状や構造を示すものではなく、各部材の大きさや部材間の距離等については適宜変更して示してある。
〈第1実施形態〉
第1実施形態に係る回転対称非球面形状測定装置は、図1に示すように、干渉計10、光偏向素子30および解析制御部40を備え、被検レンズ70が有する被検面71(光軸C70に対し回転対称な非球面で構成されている)の形状を測定するように構成されている。
上記干渉計10は、低可干渉光を出力する白色光源11と、コリメータレンズ12と、該コリメータレンズ12を介して上記白色光源11からの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部13と、ビーム径変換用レンズ19と、該ビーム径変換用レンズ19を介して上記迂回路部13から出力された光束を、光束分岐面20aにおいて図中下方に向けて反射するビームスプリッタ20と、該ビームスプリッタ20からの光束を平行光からなる測定光に変換し、測定光軸C10に沿って出射するコリメータレンズ21と、を備えている。また、干渉光の波長を解析するための色分解光学系22と、結像レンズ27および撮像カメラ28(本実施形態における撮像手段を構成するものであり、CCDやCMOS等からなる撮像素子29を有する)を備えてなる。
上記迂回路部13は、上記コリメータレンズ12から入射した低可干渉光を、光束分岐面14aにおいて図中右方に向かう第1光束と図中上方に向かう第2光束とに分岐するビームスプリッタ14と、該ビームスプリッタ14からの第1光束の光路上に配された可動ミラー15と、該ビームスプリッタ14からの第2光束の光路上に配された固定ミラー16と、上記可動ミラー15を図中左右方向に移動せしめる可動ミラー位置調節部17(PZT素子18を有してなる)とを備え、第1光束を第2光束に対して所定距離(ビームスプリッタ14の光束分岐面14aから可動ミラー15および固定ミラー16までの各光学距離の差の2倍分)だけ迂回させた後に、ビームスプリッタ14の光束分岐面14aにおいて1光束に再合波して、ビーム径変換用レンズ19に向けて出力するように構成されている。
上記光偏向素子30は、参照基準板31と回折光学素子32とから構成されている。参照基準板31は、光軸C30に対し垂直な参照基準面31aを備え、上記干渉計10からの測定光を参照基準面31aにおいて2つに分岐し、一方を参照光として干渉計10に向けて反射するとともに、他方を回折光学素子32に向けて出射するように構成されている。一方、回折光学素子32は、光軸C30を中心として複数の輪帯状の回折格子が同心に形成された透過型のものであり、参照基準板31からの測定光を回折することにより偏向して(測定光が種々の波長成分を含むため、波長毎に偏向角度が異なる)、上記被検面71の各部に照射するように構成されている。また、被検面71から再帰反射された被検光を偏向して参照基準面31aに入射させ、該参照基準面31aにおいて上記参照光と合波して干渉光を得、該干渉光を上記干渉計10に向けて出射するように構成されている。
なお、被検面71の各部に照射する測定光としては、通常、回折光学素子32からの+1次回折光または−1次回折光(本明細書では、光軸C30に近づくように出射される回折光を正の回折光、光軸から遠ざかるように出射される回折光を負の回折光とする)が用いられるが、±2次回折光や±3次回折光などの高次の回折光を測定光とすることも可能である。
上記色分解光学系22は、上記光偏向素子30側から、上記コリメータレンズ21および上記ビームスプリッタ20を介して該色分解光学系22に入射した干渉光をコリメートするコリメータレンズ23と、該コリメータレンズ23からの干渉光を、その波長に応じて所定の角度だけ回折、偏向する反射型の回折格子板24(紙面と垂直な方向に延びる複数の回折格子を有している)と、該回折格子板24からの干渉光を集束させる収束レンズ25と、該収束レンズ25の光軸C25上の焦点位置に配されたピンホール26aを有するピンホール板26と、を備えてなる。上記回折格子板24は、上記コリメータレンズ23からの干渉光の軸に対する傾斜角度を変更する、図示せぬ傾斜角度調整機構により保持されており、該傾斜角度と干渉光の波長とが所定の関係を満たす場合のみ、上記収束レンズ25の光軸C25の方向に干渉光が出射されるように構成されている。この、光軸C25の方向に出射された干渉光のみが上記ピンホール26aを通過し、上記結像レンズ27により、上記撮像素子29上に干渉縞画像が形成されるようになっている。
上記解析制御部40は、コンピュータ等からなる解析制御装置41(本実施形態における解析手段を構成する)と、干渉縞画像等を表示するモニタ装置42と、解析制御装置41に対する各種入力を行うための入力装置43とを備えており、この解析制御装置41は、図2に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される迂回距離調整制御部44、傾斜角度調整制御部45、干渉光波長算出部46、光学距離算出部47、干渉縞画像生成部48および形状解析部49を備えてなる。
上記迂回距離調整制御部44は、上記可動ミラー位置調節部17(図1参照)の駆動を制御することにより、上述の第1光束の第2光束に対する迂回距離を調整するように構成されている。
上記傾斜角度調整制御部45は、上記回折格子板24(図1参照)を保持する図示せぬ傾斜角度調整機構の駆動を制御することにより、該回折格子板24の傾斜角度を調整するように構成されている。
上記干渉光波長算出部46は、上述の回折格子板24の傾斜角度に基づき、干渉光の波長を算出するように構成されている。
上記光学距離算出部47は、上記迂回距離および上記干渉光の波長に基づき、参照基準面31aから被検面71までの測定光の光路上における光学距離を算出するように構成されている。
上記干渉縞画像生成部48は、上記撮像カメラ28(図1参照)により撮像された画像信号に基づき、被検面の形状解析を行うための干渉縞画像(以下「解析用干渉縞画像」と称する)を生成するように構成されている。
上記形状解析部49は、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面71の形状解析を行うように構成されている。
なお、本実施形態では、上述の迂回距離調整制御部44および可動ミラー位置調整部17により迂回距離調整部が構成されており、上述の干渉光波長算出部46および色分解光学系22により波長解析部が構成されている。また、迂回距離調整制御部44および可動ミラー位置調整部17と、干渉光波長算出部46および色分解光学系22と、上述の迂回路部13および光学距離差算出部47とにより光学距離測定手段が構成されている。
以下、第1実施形態に係る回転対称非球面形状測定装置の作用について説明する。なお、測定光の波長に対する回折光学素子32の回折角は既知とする。また、測定に先立って、光偏向素子30および被検レンズ70のアライメント調整が行われるが、そのアライメント調整の手順については後述することとし、ここではアライメント調整完了後の作用について説明する。
(回転対称非球面形状測定装置の作用)
〈1〉図1に示す白色光源11から低可干渉光が出射されると、この低可干渉光は、コリメータレンズ12により平行光に変換された後、迂回路部13に入射する。
〈2〉迂回路部13に入射した低可干渉光は、ビームスプリッタ14の光束分岐面14aにおいて、可動ミラー15に向かう第1光束と固定ミラー16に向かう第2光束とに分岐された後、可動ミラー15および固定ミラー16によりそれぞれ再帰反射され、光束分岐面14aにおいて再合波される。本実施形態では、分岐されてから再合波されるまでの各々の光路長が、第1光束の方が第2光束よりも長くなるように設定されている。
〈3〉再合波されてビームスプリッタ14から出射された光束は、ビーム径変換用レンズ19を介してビームスプリッタ20に入射し、光束分岐面20aにおいて反射されてコリメータレンズ21に入射する。コリメータレンズ21に入射した光束は、平行光に変換されて光偏向素子30に向けて出射される。
〈4〉光偏向素子30に入射した光束は、参照基準板31の参照基準面31aにおいて、再帰反射される光束と透過する光束とに分岐される。本実施形態では、参照基準面31aで再帰反射される光束のうち、上記第1光束の経路を辿った光束成分(以下「第1光束成分」と称する)が参照光とされ、参照基準面31aを透過する光束が測定光とされる。
〈5〉参照基準面31aを透過した測定光は、回折光学素子32に入射し、該回折光学素子32において回折、偏向される。本実施形態では、回折光学素子32において回折された測定光のうち、0次回折光(被検面71において光軸C70に対し垂直となる頂点部分および尾根状の領域の測定に用いられる)と±1次回折光が被検面71に照射される測定光として利用される。
なお、上記白色光源11からの出力光の波長帯域を400〜800nmとし、λ=800nmの波長成分に対する回折光学素子32の±2次回折光の回折角度θを75度に設定する場合、回折光学素子32の格子ピッチdは、2dsinθ=2λの関係より、d=828nmとなる。また、このとき、400nmの波長成分の±2次回折光の回折角度θは、θ=sin-1(400/828)より、θ=28.9度となる。一方、±1次回折光の回折角度θは、2dsinθ=λの関係より、λ=400nmの場合はθ=14度、λ=800nmの場合はθ=28.9度となる。すなわち、±1次回折光および±2次回折光を測定光として用いた場合、14度から75度の角度範囲に亘って測定光を照射することが可能となる。
〈6〉被検面71の各部に照射された測定光のうち、該被検面71に対し垂直に入射した測定光は再帰反射されて回折光学素子32に戻り、該回折光学素子32において回折、偏向されて参照基準板31の参照基準面31aに戻る。本実施形態では、参照基準面31aを再び透過する測定光のうち、上記第2光束の経路を辿った光束成分(以下「第2光束成分」と称する)が被検光とされる。
〈7〉上記被検光は、参照基準面31aにおいて上記参照光と合波されて干渉光が得られる。この干渉光は、コリメータレンズ21およびビームスプリッタ20を経由して色分解光学系22のコリメータレンズ23に入射し、該コリメータレンズ23においてコリメートされて回折格子板24に入射する。
〈8〉回折格子板24に入射した干渉光は、その波長別に所定の角度で回折、偏向されて収束レンズ25に入射し(本実施形態では、回折格子板24で回折される回折光のうち、例えば+1次回折光が利用される)、収束レンズ25により集束されながらピンホール板26に向けて出射される。
〈9〉ピンホール板26に向けて出射された干渉光のうち、収束レンズ25の光軸C25の方向に出射された所定波長の干渉光のみがピンホール26aを通過して結像レンズ27に入射し、該結像レンズ27により撮像カメラ28の撮像素子29上に結像される。なお、回折格子板24の傾斜角度は、上記傾斜角度調整制御部45により予め所定の角度に設定されている。
〈10〉撮像カメラ28に干渉光が入射しても、撮像素子29上に干渉縞画像が形成されるとは限らない。すなわち、該干渉光を構成する参照光と被検光との光路長差(図1に示す番号の順番で、11→12→14a→15→14a→19→20a→21→31aまでの光路長と、11→12→14a→16→14a→19→20a→21→31a→32→71→32→31aまでの光路長との差)が、白色光源11からの低可干渉光の可干渉距離以下となっていない場合には、参照光と被検光とによる光干渉は起きず、干渉縞画像は形成されない。
一方、上述の参照光と被検光との光路長差が低可干渉光の可干渉距離以下となるように、迂回路部13における上記第1光束の第2光束に対する迂回距離が調整された場合には、参照光と被検光とによる光干渉が起き、干渉縞画像が形成される。形成される干渉縞画像は、被検面71内において、該干渉縞画像を構成する被検光が再帰反射された領域(測定光が垂直に入射した領域)に対応するものであり、幅の狭いリング状のものとなる。この干渉縞画像が撮像カメラ28により撮像され、その画像信号が上記干渉縞画像生成部48に出力される。なお、迂回距離の調整は、上記迂回距離調整制御部44が上記可動ミラー位置調節部17の駆動を制御して、可動ミラー15の位置を調整することにより行われる。
〈11〉干渉縞画像生成部48に入力された画像信号により、該干渉縞画像生成部48において解析用干渉縞画像が生成され、その画像データ(解析用画像データ)が、上述の形状解析部49に入力される。
〈12〉一方、上記干渉縞画像が撮像された時点での回折格子板24の傾斜角度のデータが上記傾斜角度調整制御部45から上記干渉光波長算出部46に入力され、該干渉光波長算出部46において干渉光の波長が算出され、その波長データ(干渉光波長データ)が上記光学距離算出部47および上記形状解析部49に入力される。
〈13〉また、上記干渉縞画像が撮像された時点での上記迂回距離のデータが上記迂回距離調整制御部44から上記光学距離算出部47に入力される。この迂回距離のデータおよび上述の干渉光波長データに基づき、該光学距離算出部47において参照基準面31aから被検面71(厳密には、干渉縞画像を形成する被検光が再帰反射される領域)までの測定光の光路上における光学距離が算出される。具体的には、被検光となる測定光の、参照基準面31aから回折光学素子32、被検面71および回折光学素子32を順に経由して参照基準面31aに戻ってくるまでの光路長は、上記迂回路部13における第2光束に対する第1光束の迂回距離に一致するので、この迂回距離のデータにより、参照基準面31aから被検面71までの測定光の光路上における光学距離を算出することができる。算出された光学距離のデータは上記形状解析部49に入力される。
〈14〉上記形状解析部49に入力された解析用画像データ、干渉光波長データおよび光学距離データに基づき、該形状解析部49において解析が行われ、被検面71の形状データが求められる。
次に、光偏向素子30および被検レンズ70のアライメント調整方法について説明する。なお、下記の手順〈2〉、〈3〉の段階では、回折光学素子32からの0次回折光をアライメント調整に用いるので測定光の波長設定は特に必要ないが、±1次回折光を用いる手順〈4〉からは測定光の波長設定が必要となるので、以下では、手順〈1〉でこの波長設定を行うとして説明する。勿論、手順〈4〉の段階で、波長設定を行うようにしてもよい。また、このアライメント調整は、光偏向素子30および被検レンズ70をそれぞれ保持する各アライメント機構(図示略)を用いて行われる。
(アライメント調整)
〈1〉アライメント調整に使用する測定光の波長を所定波長(例えば、632.8nm)に設定する。本実施形態では、回折格子板24の傾斜角度を上記所定波長に適合した角度(該所定波長の干渉光が回折格子板24により回折、偏向されて収束レンズ25の光軸C25の方向に出射される角度)に設定することにより、この使用波長の設定がなされる。
〈2〉被検レンズ70が光路上に設置されていない状態で、参照基準面31aが測定光軸C10に対し垂直となるように光偏向素子30の傾きを調整する。この傾きの調整は、光偏向素子30の図中下側の光路上にコーナーキューブ(図示略)を配置して光偏向素子30に測定光を照射し、参照基準面31aからの反射光と、回折光学素子32からコーナーキューブに向けて出射される0次回折光の、該コーナーキューブからの戻り光とにより形成される干渉縞画像が、ヌル縞に最も近い状態となるように行われる。なお、干渉縞画像が形成されるようにするためには、参照基準面31aからの反射光とコーナーキューブからの戻り光との光路長差が、測定光(白色光源11からの低可干渉光)の可干渉距離以下となっている必要がある。そのために迂回路部13において、上述の第2光束に対する第1光束の迂回距離の調整が行われる。
〈3〉コーナーキューブを取り除いた後、被検レンズ70を光路上に設置し、該被検レンズ70の光軸C70が測定光軸C10に対し平行となるように、被検レンズ70の傾きを調整する。この傾きの調整は、光偏向素子30を介して該被検レンズ70に測定光を照射し、参照基準面31aからの反射光と、回折光学素子32から被検レンズ70に向けて出射される0次回折光の、該被検レンズ70からの反射光(より詳細には、被検レンズ70の全領域のうち、その光軸C70に対し垂直に形成された領域〈例えば、被検レンズ70のレンズ面の外周に鍔状に形成された平面領域や、レンズ面上の頂点や尾根状に形成された領域〉からの反射光)とにより形成される干渉縞画像が、ヌル縞に最も近い状態となるように行われる。なお、上記アライメント手順〈2〉と同様に、干渉縞画像が形成されるようにするために、迂回路部13における迂回距離の調整が行われる。
〈4〉上記所定波長の測定光を光偏向素子30に照射したときに回折光学素子32から出射される±1次回折光の回折角度(以下「基準回折角度」と称する)に基づき、被検面71上において該基準回折角度の測定光が垂直に入射し得る領域(光軸C70を中心とするリング状の領域、以下「基準領域」と称する)と、該基準領域に対し基準回折角度の測定光が垂直に入射する場合の参照基準面31aから被検面71までの、基準回折角度の測定光の光路上における光学距離(以下「基準光学距離」と称する)を、被検レンズ70の設計値から予め求めておき、上記迂回路部13における第2光束に対する第1光束の迂回距離を、この基準光学距離の2倍の距離となるように調整する。
〈5〉光偏向素子30に対する被検レンズ70の、測定光軸C10に対し垂直および平行な各方向の位置調整を行う。この位置調整は、光偏向素子30を介して被検面71に、上記基準回折角度の測定光を照射し、参照基準面31aからの反射光と被検面71の上記基準領域からの反射光とによってリング状の干渉縞画像(以下「基準干渉縞画像」と称する)が形成され、しかも該基準干渉縞画像の縞コントラスト(モジュレーションでも可)が最大となり、かつ該基準干渉縞画像がヌル縞に最も近い状態となるように行われる。
以上のアライメント手順により、光偏向素子30および被検レンズ70のアライメント調整が完了する。以下、本実施形態に係る回転対称非球面形状測定装置による測定手順について説明する。
(測定手順)
〈1〉測定に使用する測定光の波長を上記所定波長とは異なる波長に設定する。本実施形態では、回折格子板24の傾斜角度を設定後の測定光波長に適合した角度(設定後の波長の干渉光が回折格子板24により回折、偏向されて収束レンズ25の光軸C25の方向に出射される角度)に設定することにより、この測定光の波長設定がなされる。
〈2〉波長設定後の測定光を光偏向素子30に照射したときに回折光学素子32から出射される±1次回折光の回折角度に基づき、被検面71上において該測定光が垂直に入射し得る領域(光軸C70を中心とするリング状の領域、以下「被測定領域」と称する)と、該被測定領域までの参照基準面31aからの測定光の光路上における光学距離(以下「測定時光学距離」と称する)の理想値を、被検レンズ70の設計値から予め求めておき、上記迂回路部13における第2光束に対する第1光束の迂回距離を、この理想値の2倍の値となるように設定する。
〈3〉迂回距離の設定後に形成される干渉縞画像(上記被測定領域に対応したリング状の干渉縞画像)の縞コントラストが最大となるように該迂回距離の微調整を行い、微調整後に形成される干渉縞画像を撮像カメラ28により撮像する。
〈4〉回折格子板24の傾斜角度のデータに基づき、干渉光波長算出部46において干渉光の波長(測定光の波長)を算出し、その波長のデータと、上記微調整後の迂回距離のデータとに基づき、上記測定時光学距離の実際の値(以下「実際値」と称する)を算出する。
〈5〉撮像カメラ28により撮像された干渉縞画像の画像信号に基づき、干渉縞画像生成部48において解析用干渉縞画像を生成し、それを形状解析部49において解析して被検面71の形状データを求める。具体的には、光学距離算出部47において算出された上記測定時光学距離の実際値の上記理想値との差に基づき、上記被測定領域における被検面71の設計値からの大きさの誤差を求める。また、解析用干渉縞画像における縞の本数および形状から被測定領域における被検面71の形状誤差(位相差)を求める。
このときに求められた形状データは、被検面71上において、上記干渉縞画像を形成する被検光が再帰反射される所定の領域に対応したものとなる。そこで、測定光の設定波長を順次変更しながら、その都度、上述の手順を繰り返すことにより、被検面71の各部に対応した形状データを求め、これらの各形状データを繋げることにより、被検面71の形状(被検面71上において、波長別の測定光がそれぞれ再帰反射され得る領域の形状)を求めることができる。
〈第2実施形態〉
第2実施形態に係る回転対称非球面形状測定装置は、図3に示すように、干渉計10A、光偏向素子30Aおよび解析制御部40Aを備え、被検レンズ70Aが有する被検面71A(光軸C70Aに対し回転対称な非球面で構成されている)の形状を測定するように構成されている。
上記干渉計10Aは、出力光の波長を変更し得るように構成された波長可変レーザ光源11Aと、コリメータレンズ12Aと、該コリメータレンズ12Aを介して上記波長可変レーザ光源11Aからの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部13Aと、ビーム径変換用レンズ19Aと、該ビーム径変換用レンズ19Aを介して上記迂回路部13Aから出力された光束を、光束分岐面20Aaにおいて図中下方に向けて反射するビームスプリッタ20Aと、該ビームスプリッタ20Aからの光束を平行光からなる測定光に変換し、測定光軸C10Aに沿って出射するコリメータレンズ21Aと、を備えている。また、干渉縞画像を得るための結像レンズ27Aおよび撮像カメラ28A(本実施形態における撮像手段を構成するものであり、CCDやCMOS等からなる撮像素子29Aを有する)を備えてなる。
上記迂回路部13Aは、上記コリメータレンズ12Aから入射したレーザ光を、光束分岐面14Aaにおいて図中右方に向かう第1光束と図中上方に向かう第2光束とに分岐するビームスプリッタ14Aと、該ビームスプリッタ14Aからの第1光束の光路上に配された可動ミラー15Aと、該ビームスプリッタ14Aからの第2光束の光路上に配された固定ミラー16Aと、上記可動ミラー15Aを図中左右方向に移動せしめる可動ミラー位置調節部17A(PZT素子18Aを有してなる)とを備え、第1光束を第2光束に対して所定距離(ビームスプリッタ14Aの光束分岐面14Aaから可動ミラー15Aおよび固定ミラー16Aまでの各光学距離の差の2倍分)だけ迂回させた後に、ビームスプリッタ14Aの光束分岐面14Aaにおいて1光束に再合波して、ビーム径変換用レンズ19Aに向けて出力するように構成されている。
上記光偏向素子30Aは、参照基準板31Aと回折光学素子32Aとから構成されている。参照基準板31Aは、光軸C30Aに対し垂直な参照基準面31Aaを備え、上記干渉計10Aからの測定光を参照基準面31Aaにおいて2つに分岐し、一方を参照光として干渉計10Aに向けて反射するとともに、他方を回折光学素子32Aに向けて出射するように構成されている。一方、回折光学素子32Aは、光軸C30Aを中心として複数の輪帯状の回折格子が同心に形成された透過型のものであり、参照基準板31Aからの測定光を回折することにより偏向して(測定光の波長が変わるので、その波長毎に偏向角度が異なる)、上記被検面71Aに照射するように構成されている。また、被検面71Aから再帰反射された被検光を偏向して参照基準面31Aaに入射させ、該参照基準面31Aaにおいて上記参照光と合波して干渉光を得、該干渉光を上記干渉計10Aに向けて出射するように構成されている。
なお、被検面71Aに照射する測定光としては、通常、回折光学素子32Aからの+1次回折光または−1次回折光(本明細書では、光軸C30Aに近づくように出射される回折光を正の回折光、光軸から遠ざかるように出射される回折光を負の回折光とする)が用いられるが、±2次回折光や±3次回折光などの高次の回折光を測定光とすることも可能である。
上記解析制御部40Aは、コンピュータ等からなる解析制御装置41A(本実施形態における解析手段を構成する)と、干渉縞画像等を表示するモニタ装置42Aと、解析制御装置41Aに対する各種入力を行うための入力装置43Aとを備えており、この解析制御装置41Aは、図4に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される迂回距離調整制御部44A、波長変調部50、中心波長走査部51、光学距離算出部47A、干渉縞画像生成部48Aおよび形状解析部49Aを備えてなる。
上記波長変調部50は、上記波長可変レーザ光源11Aから出力されるレーザ光の波長を、上記撮像カメラ28A(図3参照)の1撮像期間(上記撮像素子29Aの1光蓄積時間)よりも短い時間内において変調し、該レーザ光が低可干渉光と等価の可干渉距離を有するように調整するように構成されている。
上記中心波長走査部51は、上記波長可変レーザ光源11Aから出力されるレーザ光の中心波長を所定の範囲(例えば、200〜400nm)で走査するように構成されている。
上記光学距離算出部47Aは、上記迂回距離および上記レーザ光の中心波長に基づき、参照基準面31Aaから被検面71Aまでの測定光の光路上における光学距離を算出するように構成されている。
上記干渉縞画像生成部48Aは、上記撮像カメラ28Aにより撮像された画像信号に基づき、被検面の形状解析を行うための干渉縞画像(以下「解析用干渉縞画像」と称する)を生成するように構成されている。
上記形状解析部49Aは、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面71Aの形状解析を行うように構成されている。
なお、本実施形態では、上述の迂回距離調整制御部44Aおよび可動ミラー位置調整部17Aにより迂回距離調整部が構成されており、これら迂回距離調整制御部44Aおよび可動ミラー位置調整部17Aと、上述の迂回路部13Aおよび光学距離差算出部47Aとにより光学距離測定手段が構成されている。
以下、第2実施形態に係る回転対称非球面形状測定装置の作用について説明する。なお、測定光の波長に対する回折光学素子32Aの回折角は既知とする。
また、測定に先立って、測定光軸C10Aに対する光偏向素子30Aおよび被検レンズ70Aのアライメント調整が行われる。このアライメント調整は、光偏向素子30Aおよび被検レンズ70Aをそれぞれ保持する各アライメント機構(図示略)を用いて行われる。このアライメント調整の手順は、上記第1実施形態と同様であるので説明は省略する。ただし、上記第1実施形態では、回折格子板24の傾斜角度を変更することにより測定光の波長設定を行っているのに対し、本実施形態では、波長可変レーザ光源11Aから出力されるレーザ光の中心波長を直接変更することにより、測定光の波長設定が行われる点が異なっている。以下、アライメント調整完了後の測定時の作用について説明する。
(測定時の作用)
〈1〉図3に示す波長可変レーザ光源11Aからレーザ光が出射される。このとき、上記波長変調部50の制御により、該レーザ光の波長が、撮像カメラ28Aの1撮像期間内(上記撮像素子29Aの1光蓄積時間)よりも短い時間内において変調され、該レーザ光が低可干渉光と等価の可干渉距離を有するように調整される。この種の技術としては、例えば、1995年5月光波センシング予稿集75〜82頁にコヒーレンス関数を合成する手法が示されている。また、その手法を改良した技術も特許されている(特許第3621693号公報参照)。
〈2〉また、上記中心波長走査部51の制御により、出力されるレーザ光の中心波長が、所定の値(例えば、波長可変範囲の上限値)に設定される。
〈3〉出力されたレーザ光は、コリメータレンズ12Aにより平行光に変換された後、迂回路部13Aに入射する。
〈4〉迂回路部13Aに入射したレーザ光は、ビームスプリッタ14Aの光束分岐面14Aaにおいて、可動ミラー15Aに向かう第1光束と固定ミラー16Aに向かう第2光束とに分岐された後、可動ミラー15Aおよび固定ミラー16Aによりそれぞれ再帰反射され、光束分岐面14Aaにおいて再合波される。本実施形態では、分岐されてから再合波されるまでの各々の光路長が、第1光束の方が第2光束よりも長くなるように設定されている。
〈5〉再合波されてビームスプリッタ14Aから出射された光束は、ビーム径変換用レンズ19Aを介してビームスプリッタ20Aに入射し、光束分岐面20Aaにおいて反射されてコリメータレンズ21Aに入射する。コリメータレンズ21Aに入射した光束は、平行光に変換されて光偏向素子30Aに向けて出射される。
〈6〉光偏向素子30Aに入射した光束は、参照基準板31Aの参照基準面31Aaにおいて、再帰反射される光束と透過する光束とに分岐される。本実施形態では、参照基準面31Aaで再帰反射される光束のうち、上記第1光束の経路を辿った光束成分(以下「第1光束成分」と称する)が参照光とされ、参照基準面31Aaを透過する光束が測定光とされる。
〈7〉参照基準面31Aaを透過した測定光は、回折光学素子32Aに入射し、該回折光学素子32Aにおいて回折、偏向される。本実施形態では、回折光学素子32Aにおいて回折された測定光のうち、0次回折光(被検面71Aにおいて光軸C70Aに対し垂直となる頂点部分および尾根状の領域の測定に用いられる)と±1次回折光が被検面71Aに照射される測定光として利用される。
なお、上記波長可変レーザ光源11Aからの出力光の波長可変帯域を400〜800nmとし、λ=800nmの波長成分に対する回折光学素子32Aの±2次回折光の回折角度θを75度に設定する場合、回折光学素子32Aの格子ピッチはdは、2dsinθ=2λの関係より、d=828nmとなる。また、このとき、400nmの波長成分の±2次回折光の回折角度θは、θ=sin-1(400/828)より、θ=28.9度となる。一方、±1次回折光の回折角度θは、2dsinθ=λの関係より、λ=400nmの場合はθ=14度、λ=800nmの場合はθ=28.9度となる。すなわち、±1次回折光および±2次回折光を測定光として用いた場合、14度から75度の角度範囲に亘って測定光を照射することが可能となる。
〈8〉被検面71Aの各部に照射された測定光のうち、該被検面71Aに対し垂直に入射した測定光は再帰反射されて回折光学素子32Aに戻り、該回折光学素子32Aにおいて回折、偏向されて参照基準板31Aの参照基準面31Aaに戻る。本実施形態では、参照基準面31Aaを再び透過する測定光のうち、上記第2光束の経路を辿った光束成分(以下「第2光束成分」と称する)が被検光とされる。
〈9〉上記被検光は、参照基準面31Aaにおいて上記参照光と合波されて干渉光が得られる。この干渉光は、コリメータレンズ21Aおよびビームスプリッタ20Aを経由して結像レンズ27Aに入射し、該結像レンズ27Aにより撮像カメラ28Aの撮像素子29A上に結像される。
〈10〉撮像カメラ28Aに干渉光が入射しても、撮像素子29A上に干渉縞画像が形成されるとは限らない。すなわち、該干渉光を構成する参照光および被検光は、低可干渉光と等価の可干渉距離しか有していないため、それらの光路長差(図3に示す番号の順番で、11A→12A→14Aa→15A→14Aa→19A→20Aa→21A→31Aaまでの光路長と、11A→12A→14Aa→16A→14Aa→19A→20Aa→21A→31Aa→32A→71A→32A→31Aaまでの光路長との差)が、該可干渉距離以下となっていない場合には、参照光と被検光とによる光干渉は起きず、干渉縞画像は形成されない。
一方、上述の参照光と被検光との光路長差が低可干渉光の可干渉距離以下となるように、迂回路部13Aにおける上記第1光束の第2光束に対する迂回距離が調整された場合には、参照光と被検光とによる光干渉が起き、干渉縞画像が形成される。形成される干渉縞画像は、被検面71A内において、該干渉縞画像を構成する被検光が再帰反射された領域(測定光が垂直に入射した領域)に対応するものであり、幅の狭いリング状のものとなる。この干渉縞画像が撮像カメラ28Aにより撮像され、その画像信号が上記干渉縞画像生成部48Aに出力される。なお、迂回距離の調整は、上記迂回距離調整制御部44Aが上記可動ミラー位置調節部17Aの駆動を制御して、可動ミラー15Aの位置を調整することにより行われる。
〈11〉干渉縞画像生成部48Aに入力された画像信号により、該干渉縞画像生成部48Aにおいて解析用干渉縞画像が生成され、その画像データ(解析用画像データ)が、上述の形状解析部49Aに入力される。
〈12〉また、上記干渉縞画像が撮像された時点での上記レーザ光の中心波長データが上記中心波長走査部51から上記光学距離算出部47Aおよび上記形状解析部49Aに入力され、上記干渉縞画像が撮像された時点での上記迂回距離のデータのデータが上記迂回距離調整制御部44Aから上記光学距離算出部47Aに入力される。この迂回距離のデータおよび上記中心波長データに基づき、該光学距離算出部47Aにおいて参照基準面31Aaから被検面71A(厳密には、干渉縞画像を形成する被検光が再帰反射される領域)までの測定光の光路上における光学距離が算出される。具体的には、被検光となる測定光の、参照基準面31Aaから回折光学素子32A、被検面71Aおよび回折光学素子32Aを順に経由して参照基準面31Aaに戻ってくるまでの光路長は、上記迂回路部13Aにおける第2光束に対する第1光束の迂回距離に一致するので、この迂回距離のデータにより、参照基準面32Aaから被検面71Aまでの測定光の光路上における光学距離を算出することができる。算出された光学距離のデータは上記形状解析部49Aに入力される。
〈13〉上記形状解析部49Aに入力された解析用画像データ、中心波長データおよび光学距離データに基づき、該形状解析部49Aにおいて解析が行われ、被検面71Aの形状データが求められる。このときの形状データは、被検面71A上において、上記干渉縞画像を形成する被検光が再帰反射される所定の領域に対応したものとなる。そこで、上記中心波長走査部51の制御により、波長可変レーザ光源11Aから出力されるレーザ光の中心波長を走査しながら、その都度、上述の手順を繰り返すことにより、被検面71Aの各部に対応した形状データを求め、これらの各形状データを繋げることにより、被検面71Aの形状(被検面71A上において、中心波長別の測定光がそれぞれ再帰反射され得る領域の形状)を求めることができる。なお、被検面71Aの形状データの具体的な求め方は、上記第1実施形態と同様であるので、説明は省略する。
〈第3実施形態〉
第3実施形態に係る回転対称非球面形状測定装置は、図5に示すように、干渉計10B、光偏向素子30Bおよび解析制御部40Bを備え、被検レンズ70Bが有する被検面71B(光軸C70Bに対し回転対称な非球面で構成されている)の形状を測定するように構成されている。
上記干渉計10Bは、出力光の波長を変更し得るように構成された波長可変レーザ光源11Bと、ビーム径変換用レンズ19Bと、該ビーム径変換用レンズ19Bを介して上記波長可変レーザ光源11Bから出力された光束を、光束分岐面20Baにおいて図中下方に向けて反射するビームスプリッタ20Bと、該ビームスプリッタ20Bからの光束を平行光からなる測定光に変換し、測定光軸C10Bに沿って出射するコリメータレンズ21Bと、を備えている。また、干渉縞画像を得るための結像レンズ27Bおよび撮像カメラ28B(本実施形態における撮像手段を構成するものであり、CCDやCMOS等からなる撮像素子29Bを有する)を備えてなる。
上記光偏向素子30Bは、参照基準板31Bと回折光学素子32Bとから構成されている。参照基準板31Bは、光軸C30Bに対し垂直な参照基準面31Baを備え、上記干渉計10Bからの測定光を参照基準面31Baにおいて2つに分岐し、一方を参照光として干渉計10Bに向けて反射するとともに、他方を回折光学素子32Bに向けて出射するように構成されている。一方、回折光学素子32Bは、光軸C30Bを中心として複数の輪帯状の回折格子が同心に形成された透過型のものであり、参照基準板31Bからの測定光を回折することにより偏向して(測定光の波長が変わるので、その波長毎に偏向角度が異なる)、上記被検面71Bに照射するように構成されている。また、被検面71Bから再帰反射された被検光を偏向して参照基準面31Baに入射させ、該参照基準面31Baにおいて上記参照光と合波して干渉光を得、該干渉光を上記干渉計10Bに向けて出射するように構成されている。
なお、被検面71Bに照射する測定光としては、通常、回折光学素子32Bからの+1次回折光または−1次回折光(本明細書では、光軸C30Bに近づくように出射される回折光を正の回折光、光軸から遠ざかるように出射される回折光を負の回折光とする)が用いられるが、±2次回折光や±3次回折光などの高次の回折光を測定光とすることも可能である。
上記解析制御部40Bは、コンピュータ等からなる解析制御装置41B(本実施形態における解析手段を構成する)と、干渉縞画像等を表示するモニタ装置42Bと、解析制御装置41Bに対する各種入力を行うための入力装置43Bとを備えており、この解析制御装置41Bは、図6に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される波長走査部52、干渉縞画像生成部48B、光学距離算出部47Bおよび形状解析部49Bを備えてなる。
上記波長走査部52は、上記波長可変レーザ光源11Bから出力されるレーザ光の波長を所定の範囲(例えば、200〜400nm)で走査するように構成されている。
上記干渉縞画像生成部48Bは、上記波長走査部52により上記波長可変レーザ光源11Bからのレーザ光の波長が走査されている期間において、上記撮像カメラ28Bにより順次得られた各画像信号に基づき、光偏向素子30Bから被検面71Bまでの測定光の光路上における光学距離を算出するための干渉縞画像(以下「測距用干渉縞画像」と称する)を順次生成するとともに、被検面71Bの形状解析を行うための干渉縞画像(以下「解析用干渉縞画像」と称する)を生成するように構成されている。
上記光学距離差算出部47Bは、上記干渉縞画像生成部48Bにより順次生成された測距用干渉縞画像の所定の画素における干渉縞変化の回数に基づき、参照基準面31Baから被検面71Bまでの測定光の光路上における光学距離を算出するように構成されている。
上記形状解析部49Bは、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面71Aの形状解析を行うように構成されている。
なお、本実施形態では、上述の波長走査部52と光学距離差算出部47Bとにより光学距離測定手段が構成されている。
以下、第3実施形態に係る回転対称非球面形状測定装置の作用について説明する。なお、測定光の波長に対する回折光学素子32Bの回折角は既知とする。
また、測定に先立って、測定光軸C10Bに対する光偏向素子30Bおよび被検レンズ70Bのアライメント調整が行われる。このアライメント調整は、光偏向素子30Bおよび被検レンズ70Aをそれぞれ保持する各アライメント機構(図示略)を用いて行われる。このアライメント調整の手順は、上記第2実施形態と同様であるので説明は省略する。ただし、上記第2実施形態では、迂回路部13Aにおける迂回距離の調整が必要になるのに対し、本実施形態では、この迂回距離の調整が不要になる点が異なっている。以下、アライメント調整完了後の測定時の作用について説明する。
(測定時の作用)
〈1〉図5に示す波長可変レーザ光源11Bからレーザ光が出射される。このレーザ光は、ビーム径変換用レンズ19Bおよびビームスプリッタ20Bを介して(光束分岐面20Baで図中下方に反射されて)コリメータレンズ21Bに入射し、該コリメータレンズ21Bにおいて平行光に変換され光偏向素子30Bに向けて出射される。
〈2〉光偏向素子30Bに入射した平行光は、参照基準面板31Bの参照基準面31Baにおいて2つに分岐され、一方は参照光としてコリメータレンズ21Bに向けて再帰反射され、他方は測定光軸C10Bに平行な測定光として回折光学素子32Bに入射し、該回折光学素子32Bにおいて回折、偏向される。本実施形態では、回折光学素子32Bにおいて回折された測定光のうち、0次回折光(被検面71Bにおいて光軸C70Bに対し垂直となる頂点部分および尾根状の領域の測定に用いられる)と±1次回折光が被検面71Bに照射される測定光として利用される。
なお、上記波長可変レーザ光源11Bからの出力光の波長可変帯域を400〜800nmとし、λ=800nmの波長成分に対する回折光学素子32Bの±2次回折光の回折角度θを75度に設定する場合、回折光学素子32Bの格子ピッチはdは、2dsinθ=2λの関係より、d=828nmとなる。また、このとき、400nmの波長成分の±2次回折光の回折角度θは、θ=sin-1(400/828)より、θ=28.9度となる。一方、±1次回折光の回折角度θは、2dsinθ=λの関係より、λ=400nmの場合はθ=14度、λ=800nmの場合はθ=28.9度となる。すなわち、±1次回折光および±2次回折光を測定光として用いた場合、14度から75度の角度範囲に亘って測定光を照射することが可能となる。
〈3〉被検面71Bの各部に照射された測定光のうち、該被検面71Bに対し垂直に入射した測定光は被検光として再帰反射されて回折光学素子32Bに戻り、該回折光学素子32において回折、偏向されて参照基準板31Bの参照基準面31Baに戻る。
〈4〉上記被検光は、参照基準面31Baにおいて上記参照光と合波されて干渉光が得られる。この干渉光は、コリメータレンズ21Bおよびビームスプリッタ20Bを経由して結像レンズ27Bに入射し、該結像レンズ27Bにより撮像カメラ28Bの撮像素子29B上において干渉縞画像を形成する。
〈5〉この干渉縞画像が形成される際、参照基準面31Baから被検面71Bまでの光学距離を算出するために、上記波長走査部52の制御により、上記波長可変レーザ光源11Bから出力されるレーザ光の波長が所定の範囲で走査される。
〈6〉レーザ光の波長が走査される期間、所定のタイミングで上記撮像カメラ28Bにより干渉縞画像が順次撮像される。それらの各画像信号はビデオ信号として出力され、上記干渉縞画像生成部48Bにより各測距用干渉縞画像が生成され、それら画像データ(測距用画像データ)が上記光学距離差算出部47Bに出力される。
〈7〉上記光学距離差算出部47Bにおいて、各測距用干渉縞画像の所定の画素における干渉縞変化の回数が求められ、この回数に基づき、参照基準面31Baから被検面71Bまでの測定光の光路上における光学距離が、干渉光(レーザ光)の波長別に算出される。この光学距離の算出は、具体的には以下の手順で行われる。
すなわち、波長可変レーザ11Bから出力されるレーザ光の波長走査により、波数をkからkに走査し、Δk毎に干渉縞画像を撮像した場合、干渉縞強度変化I(x、y、k)は、下式(1)で表される。
Figure 2011242221
ここで、L(x、y、k)は被検光と参照光との光路長差、I(x、y)は強度分布、γは干渉縞モジュレーションをそれぞれ示す。このときの所定の画素における干渉縞変化がn回であったとすると、下式(2)で表される。
Figure 2011242221
ここで、k=2π/λであるから、下式(3)が求められる。
Figure 2011242221
すなわち、波長を走査した際の周波数n(所定の画素における干渉縞変化の回数)を求めることにより、被検光と参照光との光路長差を算出することが可能となる。なお、このような手法の詳細は、特許第4100663号公報に記載されている。
算出された被検光と参照光との光路長差は、本実施形態の場合、光偏向素子30Bの参照基準面31Baから回折光学素子32Bを経由して被検面71Bに至るまでの測定光の光路上における光学距離の2倍に相当するので、参照基準面31Baと被検面71Bとの測定光の光路上における光学距離を算出することができる。
〈8〉一方、上記干渉縞画像生成部48Bにより、被検面71Bの形状解析を行うための解析用干渉縞画像が、干渉光(レーザ光)の波長別に生成され、それらの画像データが(解析用画像データ)が上記形状解析部49Bに出力される。
〈9〉上記形状解析部49Bに入力された波長別の各解析用画像データおよび光学距離データに基づき、該形状解析部49Bにおいて解析が行われ、被検面71Bの各形状データが求められる。このときの各形状データは、被検面71B上において、上記解析用干渉縞画像を形成する、波長別の各測定光が再帰反射される所定の領域にそれおそれ対応したものとなる。そこで、これらの各形状データを繋げることにより、被検面71Bの形状(被検面71B上において、波長別の各測定光がそれぞれ再帰反射され得る領域の形状)を求めることができる。なお、被検面71Bの形状データの具体的な求め方は、上記第1実施形態と同様であるので、説明は省略する。
〈第4実施形態〉
第4実施形態に係る回転対称非球面形状測定装置は、図7に示すように、干渉計10C(測定光軸C10C)、透過型の参照基準板60(光軸C60)および光偏向素子30C(光軸C30C)を備え、被検レンズ70Cが有する被検面71C(光軸C70Cに対し回転対称な非球面で構成されている)の形状を測定するように構成されている。
上記干渉計10Cは、上述の第1実施形態の干渉計10や第2実施形態の干渉計10Aまたは第3実施形態の干渉計10Bと同様の構成とすることができる。また、図示していないが、第1実施形態の解析制御部40や第2実施形態の解析制御部40Aまたは第3実施形態の解析制御部40Bと同様の解析制御部を備えている。
上記参照基準板60は、光軸C60に対し垂直な参照基準面60aを有しており、上記干渉計10Cからの測定光の一部を該参照基準面60aにおいて参照光として再帰反射するとともに、その他の測定光を光偏向素子30Cに向けて出射するように構成されている。
上記光偏向素子30Cは、その光軸C30Cを中心として複数の輪帯状の反射型回折格子33が同心に形成された反射型の回折光学素子からなり、入射した測定光を回折、偏向して、被検面71Cに照射するように構成されている。また、被検面71Cから再帰反射された被検光を回折、偏向し、参照基準板60に向けて出射するように構成されている。
なお、本実施形態の作用は、上述の第1実施形態乃至第3実施形態と同様であるので、説明は省略する。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に態様が限定されるものではなく、種々の態様のものを実施形態とすることができる。
例えば、上述の光偏向素子30において、参照基準板31と回折光学素子32とを別体分離の構成とすることも可能である(光偏向素子30A,30Bにおける参照基準板31A,31Bおよび回折光学素子32A,32Bについて同じ)。
また、コーンレンズ等の屈折素子を回折光学素子と組み合わせたものを、光偏向素子として用いることも可能である。
10,10A,10B,10C 干渉計
11 低可干渉光源
11A,11B 波長可変レーザ光源
12,12A,21,21A,21B,23 コリメータレンズ
13,13A 迂回路部
14,14A,20,20A,20B ビームスプリッタ
14a,14Aa,20a,20Aa,20Ba 光束分岐面
15,15A 可動ミラー
16,16A 固定ミラー
17,17A 可動ミラー位置調節部
18,18A PZT素子
19,19A,19B ビーム径変換用レンズ
22 色分解光学系
24 回折格子板
25 収束レンズ
26 ピンホール板
26a ピンホール
27,27A,27B 結像レンズ
28,28A,28B 撮像カメラ
29,29A,29B 撮像素子
30,30A,30B,30C 光偏向素子
31,31A,31B,60 参照基準板
31a,31Aa,31Ba,60a 参照基準面
32,32A,32B 回折光学素子
33 反射型回折格子
40,40A,40B 解析制御部
41,41A,41B 解析制御装置
42,42A,42B モニタ装置
43,43A,43B 入力装置
44,44A 迂回距離調整制御部
45 傾斜角度調整制御部
46 干渉光波長算出部
47,47A,47B 光学距離算出部
48,48A,48B 干渉縞画像生成部
49,49A,49B 形状解析部
50 波長変調部
51 中心波長走査部
52 波長走査部
70,70A,70B,70C 被検レンズ
71,71A,71B,71C 被検面
10,C10A,C10B,C10C 測定光軸
30,C30A,C30B,C30C,C60,C70,C70A,C70B,C70C 光軸

Claims (4)

  1. 回転対称な非球面からなる被検面を測定する回転対称非球面形状測定装置であって、
    波長可変レーザ光源または白色光源からの出力光を参照基準面において測定光と参照光とに分岐し該測定光を出射する干渉計と、
    同心に形成された複数の輪帯状の回折格子を有し、前記干渉計と前記被検面との間の前記測定光の光路上に配置され、該干渉計から出射された該測定光を該測定光の波長に応じた所定の角度だけ偏向して前記被検面に向けて出射するとともに、該被検面から反射された被検光を偏向して前記干渉計に向けて出射する光偏向素子と、
    前記光偏向素子からの前記被検光と参照光とが合波されてなる干渉光により形成される干渉縞画像を撮像する撮像手段と、
    前記参照基準面から前記被検面までの前記測定光の光路上における光学距離を測定する光学距離測定手段と、
    前記干渉光の波長別に撮像された各干渉縞画像および該各干渉縞画像の撮像時点における前記光学距離に基づき、前記被検面の形状を解析する解析手段と、を備えてなることを特徴とする回転対称非球面形状測定装置。
  2. 前記測定光が前記白色光源からの出力光によるものであり、
    前記光学距離測定手段は、前記白色光源からの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調整する迂回距離調整部と、前記干渉光の波長を解析する波長解析部と、前記迂回距離および前記干渉光の波長に基づき、前記光学距離を算出する光学距離算出部と、を有してなることを特徴とする請求項1記載の回転対称非球面形状測定装置。
  3. 前記測定光が前記波長可変レーザ光源からの出力光によるものであり、
    前記光学距離測定手段は、前記波長可変レーザ光源からの出力光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調整する迂回距離調整部と、
    前記波長可変レーザ光源からの出力光の波長を前記撮像手段の1撮像期間よりも短い時間内において変調し、該出力光が低可干渉光と等価の可干渉距離を有するように調整する波長変調部と、前記波長可変レーザ光源からの出力光の中心波長を所定範囲内で走査する中心波長走査部と、前記迂回距離および前記出力光の中心波長に基づき、前記光学距離を算出する光学距離算出部と、を有してなることを特徴とする請求項1記載の回転対称非球面形状測定装置。
  4. 前記測定光が前記波長可変レーザ光源からの出力光によるものであり、
    前記光学距離測定手段は、前記波長可変レーザ光源からの出力光の波長を所定範囲内で走査する波長走査部と、該波長走査部により該出力光の波長を走査しながら前記撮像手段により順次撮像された干渉縞画像の所定の画素における干渉縞変化の回数に基づき、前記光学距離を算出する光学距離算出部とを有してなることを特徴とする請求項1記載の回転対称非球面形状測定装置。
JP2010113580A 2010-05-17 2010-05-17 回転対称非球面形状測定装置 Expired - Fee Related JP5394317B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010113580A JP5394317B2 (ja) 2010-05-17 2010-05-17 回転対称非球面形状測定装置
US13/108,475 US8526009B2 (en) 2010-05-17 2011-05-16 Apparatus for measuring rotationally symmetric aspheric surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113580A JP5394317B2 (ja) 2010-05-17 2010-05-17 回転対称非球面形状測定装置

Publications (2)

Publication Number Publication Date
JP2011242221A true JP2011242221A (ja) 2011-12-01
JP5394317B2 JP5394317B2 (ja) 2014-01-22

Family

ID=44911533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113580A Expired - Fee Related JP5394317B2 (ja) 2010-05-17 2010-05-17 回転対称非球面形状測定装置

Country Status (2)

Country Link
US (1) US8526009B2 (ja)
JP (1) JP5394317B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048055B2 (en) * 2012-01-09 2018-08-14 Samsung Electronics Co., Ltd. Optical probe and optical coherence tomography apparatus including the same
JP6000577B2 (ja) 2012-03-09 2016-09-28 キヤノン株式会社 非球面計測方法、非球面計測装置、光学素子加工装置および光学素子の製造方法
JP6000578B2 (ja) * 2012-03-09 2016-09-28 キヤノン株式会社 非球面計測方法、非球面計測装置、光学素子加工装置および光学素子の製造方法
WO2014162646A1 (ja) * 2013-04-04 2014-10-09 株式会社キーレックス 燃料給油管の組立方法及び給油管組立装置
CN103411538B (zh) * 2013-07-20 2016-03-02 中国科学技术大学 一种数字式波长编码光学绝对位移传感器
WO2015099211A1 (ko) * 2013-12-24 2015-07-02 엘지전자 주식회사 3차원 카메라모듈
EP3186588B1 (en) * 2014-08-28 2018-10-24 Johnson & Johnson Vision Care Inc. In-line inspection of ophthalmic device with auto-alignment system and interferometer
CZ201633A3 (cs) * 2016-01-26 2017-02-01 Ăšstav fyziky plazmatu AV ÄŚR, v.v.i. Interferometrické zařízení pro měření odchylek tvaru optických prvků
US10330460B2 (en) * 2017-06-13 2019-06-25 Raytheon Company Calibration method and system for a fast steering mirror
EP3502695A1 (en) * 2017-12-22 2019-06-26 IMEC vzw A method and a system for analysis of cardiomyocyte function
CN111238779B (zh) * 2020-01-20 2021-07-13 西安工业大学 Dfdi仪器多普勒干涉条纹对比度分析方法
DE102020205523B3 (de) * 2020-04-30 2021-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikroskopanordnung und Verfahren zum Messen einer Oberflächenstruktur einer Probe
CN111623962B (zh) * 2020-06-28 2024-09-24 东莞埃科思科技有限公司 一种衍射光学元件检测系统及其检测方法
EP4279861A1 (en) * 2022-05-19 2023-11-22 Unity Semiconductor A method and a system for characterising structures etched in a substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821712A (ja) * 1994-07-07 1996-01-23 Olympus Optical Co Ltd 非球面形状の干渉測定用ヌル原器
JPH09159420A (ja) * 1995-12-04 1997-06-20 Olympus Optical Co Ltd 非球面形状測定用干渉計
JP2003098034A (ja) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd レンズ面間隔測定装置および測定方法
JP2008089356A (ja) * 2006-09-29 2008-04-17 Fujinon Corp 非球面測定用素子、該非球面測定用素子を用いた光波干渉測定装置と方法、非球面の形状補正方法、およびシステム誤差補正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126305A (ja) 1985-11-27 1987-06-08 Kyocera Corp 表面形状測定方法および装置
US6956657B2 (en) 2001-12-18 2005-10-18 Qed Technologies, Inc. Method for self-calibrated sub-aperture stitching for surface figure measurement
JP4216805B2 (ja) * 2002-07-01 2009-01-28 ライトゲイジ インコーポレイテッド 非鏡面基準表面をもつ周波数走査型干渉計
EP1649241A1 (de) * 2002-11-21 2006-04-26 Carl Zeiss SMT AG Verfahren zum kalibrieren eines interferometers, verfahren zum qualifizieren eines objekts und verfahren zum herstellen eines objekts
US7522292B2 (en) * 2005-03-11 2009-04-21 Carl Zeiss Smt Ag System and method for determining a shape of a surface of an object and method of manufacturing an object having a surface of a predetermined shape
JP5149486B2 (ja) * 2005-05-18 2013-02-20 株式会社ミツトヨ 干渉計、形状測定方法
US7605926B1 (en) * 2005-09-21 2009-10-20 Carl Zeiss Smt Ag Optical system, method of manufacturing an optical system and method of manufacturing an optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821712A (ja) * 1994-07-07 1996-01-23 Olympus Optical Co Ltd 非球面形状の干渉測定用ヌル原器
JPH09159420A (ja) * 1995-12-04 1997-06-20 Olympus Optical Co Ltd 非球面形状測定用干渉計
JP2003098034A (ja) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd レンズ面間隔測定装置および測定方法
JP2008089356A (ja) * 2006-09-29 2008-04-17 Fujinon Corp 非球面測定用素子、該非球面測定用素子を用いた光波干渉測定装置と方法、非球面の形状補正方法、およびシステム誤差補正方法

Also Published As

Publication number Publication date
US20110279823A1 (en) 2011-11-17
US8526009B2 (en) 2013-09-03
JP5394317B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5394317B2 (ja) 回転対称非球面形状測定装置
JP5139832B2 (ja) 観察装置
JP5336890B2 (ja) 計測装置、露光装置及びデバイス製造方法
JP2009162539A (ja) 光波干渉測定装置
TW201800720A (zh) 光學系統及使用該系統之物體表面或內部光反射介面三維形貌偵測方法
JP5849231B2 (ja) 表面形状測定装置及び方法
JP2012181060A (ja) 分光特性測定装置及びその校正方法
US20110235048A1 (en) Apparatus for low coherence optical imaging
JP2011252774A (ja) 被検面測定装置
JP6014449B2 (ja) レーザー走査顕微鏡装置
JP4667965B2 (ja) 光ビーム測定装置
JP6385779B2 (ja) 光学的距離計測装置
KR20170023363A (ko) 디지털 홀로그래피 마이크로스코프를 이용한 고단차 측정 방법
JP2007093288A (ja) 光計測装置及び光計測方法
JP2007298281A (ja) 被検体の面形状の測定方法及び測定装置
JP6076618B2 (ja) 光学的分解能向上装置
JP5473743B2 (ja) 軸外透過波面測定装置
JP4739806B2 (ja) 光ビーム測定装置および方法
JP2009244227A (ja) 光波干渉測定装置
JP2010025864A (ja) 干渉測定装置
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
KR101547459B1 (ko) 위상 축소 이미징 시스템 및 이를 이용한 이미징 방법
KR102036067B1 (ko) 3d 형상 및 굴절률 측정이 가능한 광학 측정 장치
JP2004271365A (ja) 収差測定装置、収差測定方法、光ヘッド組立調整装置および光ヘッド組立調整方法
JP2009145068A (ja) 表面形状の測定方法および干渉計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees