JP2011236313A - Apparatus and method for treating waste - Google Patents

Apparatus and method for treating waste Download PDF

Info

Publication number
JP2011236313A
JP2011236313A JP2010108257A JP2010108257A JP2011236313A JP 2011236313 A JP2011236313 A JP 2011236313A JP 2010108257 A JP2010108257 A JP 2010108257A JP 2010108257 A JP2010108257 A JP 2010108257A JP 2011236313 A JP2011236313 A JP 2011236313A
Authority
JP
Japan
Prior art keywords
furnace body
waste
carbide
carbonization
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010108257A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Yamamoto
竜彦 山本
Niichi Toyama
弐一 外山
Takashi Nakagawaji
孝 中川路
Ichiro Ishibashi
一郎 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010108257A priority Critical patent/JP2011236313A/en
Publication of JP2011236313A publication Critical patent/JP2011236313A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide technology for treating wastes that prevents deterioration of carbides and smoothly conveys the carbides.SOLUTION: An exhaust pipe 80 is provided between the longitudinal midpoint 88 of a furnace body 31 and an upstream inner wall surface 76 of a heating medium jacket 35. Dry distillation gas and water vapor generated during carbonization of the wastes are promptly discharged out of the furnace body 31 from the exhaust pipe 80 compared to the case where the exhaust pipe is provided at the longitudinal end point of the furnace body 31. The possibility of malodor release from the carbides removed from the furnace body 31 is decreased because a malodor component of the dry distillation gas cannot easily deposit onto the carbides when the dry distillation gas is promptly discharged. Also, moisture cannot be easily generated downstream of a drawing pipe 33 because the dry distillation gas and water vapor are promptly discharged. Therefore, the carbides are smoothly conveyed because the fixing of the carbides in the piping etc. downstream of the drawing pipe 33 due to the moisture cannot easily occur.

Description

本発明は、有機物が含まれる廃棄物を蒸し焼きして炭化させることで、炭化物を得る廃棄物の処理技術に関する。   The present invention relates to a waste treatment technique for obtaining a carbide by steaming and carbonizing a waste containing an organic substance.

自動車の車体塗装工場では、塗料を車体に塗布するときにスプレー塗装が用いられる。スプレー塗装では、塗料の全てが車体に塗布されることはなく、一部が空中に浮遊した後に落下する。車体に塗布されずに捨てられる塗料は、塗料滓と呼ばれる。塗料滓は通常高圧水を用いて収集され、ピットに溜められるため、有機物を含む廃棄物として取り扱われる。有機物を含む廃棄物の処理技術の一つに焼却処理がある。焼却処理は廃棄物を直接燃焼させるため、二酸化炭素やダイオキシン等が排出される。したがって、環境負荷が大きくなる。環境保護の観点から、有機物を含む廃棄物は、再資源化させることが好ましい。   In car body painting factories, spray painting is used when applying paint to the car body. In spray painting, not all of the paint is applied to the car body, and some of it falls after floating in the air. The paint that is thrown away without being applied to the vehicle body is called a paint bottle. Since the paint cake is usually collected using high-pressure water and stored in the pit, it is handled as waste containing organic matter. Incineration is one of the treatment technologies for waste containing organic matter. Since incineration directly burns waste, carbon dioxide and dioxins are emitted. Therefore, the environmental load increases. From the viewpoint of environmental protection, it is preferable to recycle waste containing organic matter.

従来、有機物が含まれる廃棄物を再資源化させる技術として各種の廃棄物処理技術が提案されている(例えば、特許文献1(図1)参照。)。   Conventionally, various waste treatment techniques have been proposed as techniques for recycling waste containing organic substances (see, for example, Patent Document 1 (FIG. 1)).

特許文献1を次図に基づいて説明する。
図5は従来の技術の基本構成を説明する図であり、廃棄物処理装置200は、装置上流側に配置され有機物が含まれる廃棄物を溜めている廃棄物貯留槽201と、この廃棄物貯留槽201から投入された廃棄物を搬送する廃棄物搬送機202と、この廃棄物搬送機202の下流側に配置され廃棄物を炭化させて炭化物を得る炭化炉203とを有する。
Patent document 1 is demonstrated based on the following figure.
FIG. 5 is a diagram for explaining a basic configuration of a conventional technique. A waste treatment apparatus 200 includes a waste storage tank 201 that is disposed upstream of the apparatus and stores waste containing organic substances, and the waste storage apparatus. There is a waste transporter 202 that transports the waste introduced from the tank 201 and a carbonization furnace 203 that is disposed downstream of the waste transporter 202 and carbonizes the waste to obtain a carbide.

炭化炉203は、廃棄物搬送機202の端部開口204から供給される廃棄物を内部に導入すると共に回転側部材である炉体205と、この炉体205を囲むように設けられ静止側部材である加熱部206とからなる。炉体205の内周面に、炉体205を回転させたときに廃棄物を下流側へ送る複数の送り羽根207が設けられ、炉体205の側壁に、炉体205内で発生するガスを排出する複数の排気穴208が設けられている。また、炉体205の下流側に、炉体205内から炭化物を取出す炭化物取出し管209が設けられ、炭化物取出し管209の下方にバルブ211が配置されている。加えて、加熱部206に複数のバーナ212が設けられている。また、加熱部206の下流側上部にガス排出管213が設けられ、ガス排出管213に燃焼脱臭装置214が接続されている。   The carbonization furnace 203 introduces the waste supplied from the end opening 204 of the waste transporter 202 into the interior, and a furnace body 205 which is a rotating side member, and a stationary side member provided so as to surround the furnace body 205. And a heating unit 206. A plurality of feed blades 207 are provided on the inner peripheral surface of the furnace body 205 to send waste to the downstream side when the furnace body 205 is rotated, and the gas generated in the furnace body 205 is supplied to the side wall of the furnace body 205. A plurality of exhaust holes 208 for discharging are provided. Further, a carbide take-out pipe 209 for taking out carbide from the furnace body 205 is provided on the downstream side of the furnace body 205, and a valve 211 is disposed below the carbide take-out pipe 209. In addition, the heating unit 206 is provided with a plurality of burners 212. In addition, a gas exhaust pipe 213 is provided in the upper part on the downstream side of the heating unit 206, and a combustion deodorization device 214 is connected to the gas exhaust pipe 213.

炉体205を回転させ、バーナ212を着火させた状態で、廃棄物を炉体205内へ導入すると、廃棄物は、送り羽根207によって装置下流側へ送られる。廃棄物が装置下流側へ送られると同時に、バーナ212の炎で発生する熱が炉体205を介して廃棄物に伝わるので、廃棄物は、空気との接触を断った状態で600℃で加熱される。加熱後、炉体205内に炭化物や乾留ガスが生成される。また、有機物を含む廃棄物は、前述の塗料滓のように水分を含んでいるので、炉体205内に水蒸気が発生する。   When waste is introduced into the furnace body 205 in a state where the furnace body 205 is rotated and the burner 212 is ignited, the waste is sent to the apparatus downstream side by the feed blade 207. At the same time as the waste is sent to the downstream side of the apparatus, the heat generated by the flame of the burner 212 is transferred to the waste through the furnace body 205, so that the waste is heated at 600 ° C in a state where contact with air is cut off. Is done. After heating, carbide and dry distillation gas are generated in the furnace body 205. In addition, since the waste containing organic matter contains moisture like the above-described paint bottle, water vapor is generated in the furnace body 205.

炭化物は、炭化物取出し管209及びバルブ211を通じて、炭化物貯留槽215に投入される。乾留ガスは、排気ファン216の運転により、炉体205の排気穴208及びガス排出管213を通じて、燃焼脱臭装置214に流入する。乾留ガスは、燃焼脱臭装置214で無害化され、排気ファン216を通じて排気される。廃棄物処理装置200で得られた炭化物は、防振材の材料に用いられるので、有機物が含まれる廃棄物を再資源化できたことになる。   The carbide is introduced into the carbide storage tank 215 through the carbide take-out pipe 209 and the valve 211. The dry distillation gas flows into the combustion deodorization device 214 through the exhaust hole 208 and the gas exhaust pipe 213 of the furnace body 205 by the operation of the exhaust fan 216. The dry distillation gas is rendered harmless by the combustion deodorizer 214 and exhausted through the exhaust fan 216. Since the carbide obtained by the waste treatment apparatus 200 is used as a material for the vibration damping material, the waste containing the organic matter can be recycled.

ところで、廃棄物処理装置200では、ガス排出管213が装置下流側に設けられているので、炉体205内で発生する乾留ガスや水蒸気が炭化物取出し管209近傍へ流れることがある。乾留ガスや水蒸気が炭化物取出し管209近傍に存在しているとき、炉体205内から炭化物を取り出すと、炭化物に乾留ガスや水蒸気が付着し易くなる。このような炭化物を、炭化物貯留槽215に貯留させると、乾留ガスに含まれる悪臭成分が炭化物に付着するため、炭化物の品質低下を招く。また、炭化物に付着する乾留ガスや水蒸気は、600℃の炉体205内から常温の炭化物貯留槽215内へ移動するので、炉体205内と炭化物貯留槽215内の温度差によって結露して水分となる。この水分は炭化物貯留槽215内で炭化物を固着させる原因になるため、炭化物の搬送に支障が生じる。   By the way, in the waste treatment apparatus 200, since the gas discharge pipe 213 is provided on the downstream side of the apparatus, dry distillation gas and water vapor generated in the furnace body 205 may flow to the vicinity of the carbide take-out pipe 209. When the carbonized gas or water vapor is present in the vicinity of the carbide take-out pipe 209, if the carbide is taken out from the furnace body 205, the carbonized gas or water vapor easily adheres to the carbide. When such a carbide is stored in the carbide storage tank 215, the malodorous component contained in the dry distillation gas adheres to the carbide, resulting in a decrease in the quality of the carbide. Further, the carbonized gas and water vapor adhering to the carbide move from the furnace body 205 at 600 ° C. to the carbide storage tank 215 at room temperature, so that dew condensation occurs due to the temperature difference between the furnace body 205 and the carbide storage tank 215 and moisture. It becomes. Since this moisture causes the carbide to be fixed in the carbide storage tank 215, the transportation of the carbide is hindered.

そこで、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物の処理技術が求められる。   Accordingly, there is a need for a waste treatment technique that prevents the quality of carbides from being deteriorated and that can smoothly convey carbides.

特開平9−047795号公報Japanese Patent Laid-Open No. 9-047795

本発明は、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物の処理技術を提供することを課題とする。   It is an object of the present invention to provide a waste treatment technique that can prevent the quality of carbides from being deteriorated and that can smoothly convey the carbides.

請求項1に係る発明は、水平又は斜めに延びて有機物が含まれる廃棄物を貯留する炉体と、この炉体の一端に設けられ前記炉体内へ前記廃棄物を投入する廃棄物投入口と、前記炉体に設けられ前記廃棄物を前記炉体の一端から他端へ搬送する搬送機構と、前記炉体に設けられ前記搬送機構で搬送される廃棄物を蒸し焼きして炭化させる加熱手段と、前記炉体の他端に設けられ前記炉体内から炭化物を取出す炭化物取出し口と、前記廃棄物投入口と前記炭化物取出し口との間に前記炉体の外周面を覆うようにして設けられ前記炉体の周壁を熱するために熱媒を導入する熱媒ジャケットとからなる廃棄物の処理装置において、前記炉体内で発生するガスを炉外へ排出するガス排出口が前記炉体に設けられており、前記ガス排出口は、前記炉体の長手方向中間点と前記熱媒ジャケットの廃棄物投入口側内壁面との間に設けられていることを特徴とする。   The invention according to claim 1 is a furnace body for storing waste containing organic matter by extending horizontally or obliquely, and a waste inlet for introducing the waste into the furnace body provided at one end of the furnace body. A transport mechanism provided in the furnace body for transporting the waste from one end of the furnace body to the other end, and a heating means provided in the furnace body for steaming and carbonizing the waste transported by the transport mechanism. And provided at the other end of the furnace body so as to cover an outer peripheral surface of the furnace body between a carbide outlet for taking out carbide from the furnace body, and between the waste inlet and the carbide outlet. In a waste treatment apparatus comprising a heating medium jacket for introducing a heating medium to heat a peripheral wall of the furnace body, a gas discharge port for discharging the gas generated in the furnace body to the outside of the furnace is provided in the furnace body. The gas outlet is the length of the furnace body. Characterized in that provided between the waste inlet side inner wall surface of the heating medium jacket direction midpoint.

請求項2に係る発明は、有機物が含まれる廃棄物を、炉体の一端に設けられた廃棄物投入口に投入し、前記廃棄物を、前記炉体に設けられた搬送機構で炉体の他端に向けて搬送し、搬送されている廃棄物を、前記炉体に設けられた加熱手段で蒸し焼きして炭化させ、炭化により得られた炭化物を、前記炉体の他端に設けられた炭化物取出し口から取出し、前記炉体の周壁を、炉体の外周面を覆うように設けられた熱媒ジャケット内の熱媒で熱してなる廃棄物の処理方法において、前記炉体内で発生するガスを、前記炉体の長手方向中間点と前記熱媒ジャケットの廃棄物投入口側内壁面との間に設けられているガス排出口から排出するようにしたことを特徴とする。   According to a second aspect of the present invention, waste containing organic matter is introduced into a waste inlet provided at one end of the furnace body, and the waste is transferred to the furnace body by a transport mechanism provided in the furnace body. Carried to the other end, the waste being conveyed was steamed and carbonized by heating means provided in the furnace body, and the carbide obtained by carbonization was provided at the other end of the furnace body. Gas generated in the furnace body in the method of treating waste, which is taken out from the carbide outlet and heated by a heat medium in a heat medium jacket provided so as to cover the outer peripheral surface of the furnace body on the peripheral wall of the furnace body Is discharged from a gas outlet provided between the longitudinal intermediate point of the furnace body and the waste inlet side inner wall surface of the heating medium jacket.

請求項1に係る発明では、ガス排出口は、炉体内で発生するガスを炉外へ排出すると共に、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けられている。ガス排出口を、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面の間に設けたので、ガス排出口が炉体の長手方向終点に設けられる場合に比べて、廃棄物を炭化させたときに発生する乾留ガスや水蒸気を速やかに炉外に排出することができる。乾留ガスが速やかに排出されると、炭化物に乾留ガスの悪臭成分が付着し難くなるので、炉体から取出される炭化物が悪臭を放つ可能性が低減される。したがって、炭化物の品質低下を防止できる。   In the invention according to claim 1, the gas discharge port discharges the gas generated in the furnace body to the outside of the furnace, and between the longitudinal middle point of the furnace body and the waste inlet side inner wall surface of the heating medium jacket. Is provided. Since the gas discharge port is provided between the longitudinal intermediate point of the furnace body and the inner wall surface on the waste medium inlet side of the heating medium jacket, it is discarded compared to the case where the gas discharge port is provided at the longitudinal end point of the furnace body. The dry distillation gas and water vapor generated when the product is carbonized can be quickly discharged out of the furnace. When the dry distillation gas is quickly discharged, the malodorous component of the dry distillation gas is less likely to adhere to the carbide, so that the possibility that the carbide taken out from the furnace emits a bad smell is reduced. Accordingly, it is possible to prevent the quality of the carbide from being lowered.

加えて、ガス排出口を、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けたことで、廃棄物を炭化させたときに発生する乾留ガスや水蒸気が、炭化物取出し口側へ流れることが少なくなる。仮に乾留ガスや水蒸気が炭化物取出し口側へ流れると、炉体内から炭化物を取り出したときに、炭化物に乾留ガスや水蒸気が付着する。この乾留ガスや水蒸気が付着した炭化物が、高温の炉体内から低温の炭化物取出し口の下流側近傍へ流れ込むと、炉体内と炭化物取出し口の下流側近傍の温度差により、炭化物取出し口の下流側近傍の配管内で乾留ガスや水蒸気が結露する。同様に、乾留ガスや水蒸気が付着した炭化物が、炭化物取出し口の下流側に配置される炭化物貯留槽へ流れると、炉体内と炭化物貯留槽内の温度差により、炭化物貯留槽内で乾留ガスや水蒸気が結露する。このような結露が生じれば、配管内や炭化物貯留槽内に水分が発生するため、配管内や炭化物貯留槽内に炭化物が固着し易くなる。   In addition, by providing a gas discharge port between the longitudinal middle point of the furnace body and the inner wall surface of the heat medium jacket on the waste input side, dry distillation gas and water vapor generated when carbonizing the waste However, it is less likely to flow toward the carbide outlet. If dry distillation gas and water vapor flow toward the carbide outlet, the carbonized gas and water vapor adhere to the carbide when the carbide is taken out from the furnace. When the carbonized carbon adhering to the dry distillation gas or water vapor flows from the high temperature furnace to the downstream side of the low temperature carbide outlet, the temperature difference between the furnace body and the downstream side of the carbide outlet leads to the downstream side of the carbide outlet. Condensation of dry distillation gas and water vapor occurs in nearby piping. Similarly, when carbonized carbon or carbonized carbide flows to the carbide storage tank located downstream of the carbide outlet, the carbonization gas and the carbonization gas in the carbide storage tank due to the temperature difference between the furnace body and the carbide storage tank. Water vapor condenses. If such dew condensation occurs, moisture is generated in the pipe and the carbide storage tank, so that the carbide is easily fixed in the pipe and the carbide storage tank.

その点、本発明では、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けたガス排出口から、乾留ガスや水蒸気を速やかに排出できるので、配管内や炭化物貯留槽内に水分が発生することがない。したがって、配管内や炭化物貯留槽内に炭化物が固着し難くなり、炭化物を円滑に搬送できる。本発明によれば、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物の処理装置を提供することができる。   In that respect, in the present invention, since the carbonization gas and water vapor can be quickly discharged from the gas discharge port provided between the longitudinal intermediate point of the furnace body and the waste inlet side inner wall surface of the heating medium jacket, And no moisture is generated in the carbide storage tank. Therefore, it becomes difficult for the carbide to adhere to the pipe or the carbide storage tank, and the carbide can be smoothly conveyed. ADVANTAGE OF THE INVENTION According to this invention, the waste processing apparatus which can prevent the quality fall of a carbide | carbonized_material and can convey a carbide | carbonized_material smoothly can be provided.

請求項2に係る発明では、炉体内で発生するガスを、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けられているガス排出口から排出するようにした。炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けたガス排出口から、炉体内で発生するガスを排出するので、炉体の長手方向終点に設けたガス排出口からガスを排出する場合に比べて、廃棄物を炭化させたときに発生する乾留ガスや水蒸気を速やかに炉外に排出することができる。乾留ガスが速やかに排出されると、炭化物に乾留ガスの悪臭成分が付着し難くなるので、炉体から取出される炭化物が悪臭を放つ可能性が低減される。したがって、炭化物の品質低下を防止できる。   In the invention according to claim 2, the gas generated in the furnace body is discharged from a gas discharge port provided between the longitudinal intermediate point of the furnace body and the waste inlet side inner wall surface of the heat medium jacket. I made it. Since the gas generated in the furnace body is discharged from the gas outlet provided between the longitudinal intermediate point of the furnace body and the waste inlet side wall surface of the heat medium jacket, it is provided at the longitudinal end point of the furnace body. Compared with the case where gas is discharged from the gas discharge port, dry distillation gas and water vapor generated when carbonizing the waste can be quickly discharged out of the furnace. When the dry distillation gas is quickly discharged, the malodorous component of the dry distillation gas is less likely to adhere to the carbide, so that the possibility that the carbide taken out from the furnace emits a bad smell is reduced. Accordingly, it is possible to prevent the quality of the carbide from being lowered.

加えて、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けたガス排出口から、炉体内で発生するガスを排出することで、廃棄物を炭化させたときに発生する乾留ガスや水蒸気が、炭化物取出し口側へ流れることが少なくなる。仮に乾留ガスや水蒸気が炭化物取出し口側へ流れると、炉体内から炭化物を取り出したときに、炭化物に乾留ガスや水蒸気が付着する。この乾留ガスや水蒸気が付着した炭化物が、高温の炉体内から低温の炭化物取出し口の下流側近傍へ流れ込むと、炉体内と炭化物取出し口の下流側近傍の温度差により、炭化物取出し口の下流側近傍の配管内で乾留ガスや水蒸気が結露する。同様に、乾留ガスや水蒸気を付着した炭化物が、炭化物取出し口の下流側に配置される炭化物貯留槽へ流れると、炉体内と炭化物貯留槽内の温度差により、炭化物貯留槽内で乾留ガスや水蒸気が結露する。このような結露が生じれば、配管内や炭化物貯留槽内に水分が発生するため、配管内や炭化物貯留槽内に炭化物が固着し易くなる。   In addition, the waste generated is carbonized by discharging the gas generated in the furnace body from the gas outlet provided between the longitudinal intermediate point of the furnace body and the waste inlet side inner wall surface of the heating medium jacket. The carbonization gas and water vapor generated during the process are less likely to flow toward the carbide outlet. If dry distillation gas and water vapor flow toward the carbide outlet, the carbonized gas and water vapor adhere to the carbide when the carbide is taken out from the furnace. When the carbonized carbon adhering to the dry distillation gas or water vapor flows from the high temperature furnace to the downstream side of the low temperature carbide outlet, the temperature difference between the furnace body and the downstream side of the carbide outlet leads to the downstream side of the carbide outlet. Condensation of dry distillation gas and water vapor occurs in nearby piping. Similarly, when carbonized carbon or steam adhering to the charcoal flows into the charcoal storage tank located downstream of the carbide outlet, the carbonization gas and the carbonization gas in the charcoal storage tank are caused by the temperature difference between the furnace body and the charcoal storage tank. Water vapor condenses. If such dew condensation occurs, moisture is generated in the pipe and the carbide storage tank, so that the carbide is easily fixed in the pipe and the carbide storage tank.

その点、本発明では、炉体の長手方向中間点と熱媒ジャケットの廃棄物投入口側内壁面との間に設けたガス排出口から、乾留ガスや水蒸気を速やかに排出できるので、配管内や炭化物貯留槽内に水分が発生することがない。したがって、配管内や炭化物貯留槽内に炭化物が固着し難くなり、炭化物を円滑に搬送できる。本発明によれば、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物の処理方法を提供することができる。   In that respect, in the present invention, since the carbonization gas and water vapor can be quickly discharged from the gas discharge port provided between the longitudinal intermediate point of the furnace body and the waste inlet side inner wall surface of the heating medium jacket, And no moisture is generated in the carbide storage tank. Therefore, it becomes difficult for the carbide to adhere to the pipe or the carbide storage tank, and the carbide can be smoothly conveyed. ADVANTAGE OF THE INVENTION According to this invention, the waste processing method which prevents the quality fall of a carbide | carbonized_material and can convey a carbide | carbonized_material smoothly can be provided.

廃棄物処理設備の構成を説明する図である。It is a figure explaining the structure of a waste treatment facility. 本発明に係る廃棄物の処理装置の構成を説明する図である。It is a figure explaining the structure of the processing apparatus of the waste which concerns on this invention. ガス排出口の最適位置を説明する図である。It is a figure explaining the optimal position of a gas exhaust port. 本発明に係る別の廃棄物の処理装置の構成を説明する図である。It is a figure explaining the structure of the processing apparatus of another waste which concerns on this invention. 従来の技術の基本構成を説明する図である。It is a figure explaining the basic composition of the conventional technology.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

本発明の実施例を図面に基づいて説明する。
図1に示されるように、廃棄物処理設備10は、設備上流側に配置され有機物が含まれる廃棄物(詳細後述)を貯留する廃棄物貯留槽11と、この廃棄物貯留槽11から投入される廃棄物を内部に導入し廃棄物を乾燥させる廃棄物乾燥装置20(詳細後述)と、この廃棄物乾燥装置20から取出される廃棄物を内部に導入し廃棄物を炭化させて炭化物を得る廃棄物炭化装置30(詳細後述)と、この廃棄物炭化装置30から取出される炭化物を貯留する炭化物貯留槽61とを有する。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a waste treatment facility 10 is input from a waste storage tank 11 that stores waste (details will be described later) disposed on the upstream side of the facility and contains organic substances, and the waste storage tank 11. A waste drying device 20 (details will be described later) for introducing waste into the interior and drying the waste, and introducing the waste taken out from the waste drying device 20 into the interior to carbonize the waste to obtain a carbide. It has a waste carbonization device 30 (details will be described later) and a carbide storage tank 61 for storing the carbide taken out from the waste carbonization device 30.

有機物が含まれる廃棄物は、実施例では、自動車の車体塗装工場で生じる廃棄物を適用する。自動車の車体塗装工場で生じる廃棄物は、脱脂処理工程後の水洗いで排出される排水汚泥、皮膜形成工程で排出される化成スラッジ、塗膜形成工程で排出される塗料滓の3つである。これらの排水汚泥、化成スラッジ、塗料滓は、水分を含んだ廃棄物である。また、排水汚泥、化成スラッジ、塗料滓は、廃棄物貯留槽11よりも上流側に配置される混合機で混合された後、廃棄物として廃棄物配管12を介して廃棄物貯留槽11に投入される。   In the embodiment, waste containing organic matter is waste generated in a car body painting factory of an automobile. There are three types of waste generated in automobile body painting factories: wastewater sludge discharged by washing after the degreasing treatment process, chemical sludge discharged in the film forming process, and paint waste discharged in the film forming process. These wastewater sludge, chemical sludge, and paint slag are wastes containing moisture. In addition, wastewater sludge, chemical sludge, and paint slag are mixed by a mixer disposed upstream of the waste storage tank 11 and then introduced into the waste storage tank 11 through the waste pipe 12 as waste. Is done.

廃棄物乾燥装置20は、水平に延びて廃棄物を貯留する乾燥炉体21と、この乾燥炉体21の上流側端部に設けられ乾燥炉体21内へ廃棄物を投入する乾燥側廃棄物投入管22と、乾燥炉体21の下流側端部に設けられ乾燥炉体21内から廃棄物を取出す乾燥側廃棄物取出し管23と、乾燥側廃棄物投入管22と乾燥側廃棄物取出し管23との間に乾燥炉体21の外周面を覆うようにして設けられ乾燥炉体21の周壁を熱するために高温排気ガス(詳細後述)を導入する乾燥側熱媒ジャケット24(詳細後述)と、乾燥炉体21の上流側端部に設けられ水蒸気(詳細後述)を取出す水蒸気取出し管25とで構成される。廃棄物は、乾燥炉体21に設けられる乾燥側搬送機構で装置上流側から下流側へ搬送される。また、搬送中に高温排気ガスの熱が乾燥炉体21の周壁を介して廃棄物に伝わることで、廃棄物の乾燥が実施される。   The waste drying apparatus 20 includes a drying furnace body 21 that extends horizontally and stores waste, and a dry waste that is provided at the upstream end of the drying furnace body 21 and inputs waste into the drying furnace body 21. Input pipe 22, dry side waste take-out pipe 23 provided at the downstream end of dry furnace body 21 to take out waste from inside dry furnace body 21, dry side waste input pipe 22 and dry side waste take-out pipe A drying-side heat medium jacket 24 (detailed later) for introducing high-temperature exhaust gas (detailed later) to heat the peripheral wall of the drying furnace body 21 provided so as to cover the outer peripheral surface of the drying furnace body 21. And a water vapor take-out pipe 25 that is provided at the upstream end of the drying furnace body 21 and takes out water vapor (described later in detail). Waste is transported from the upstream side of the apparatus to the downstream side by a drying side transport mechanism provided in the drying furnace body 21. Further, the heat of the high-temperature exhaust gas is transmitted to the waste through the peripheral wall of the drying furnace body 21 during the conveyance, so that the waste is dried.

廃棄物炭化装置30は、水平に延びて廃棄物を貯留する炭化炉体31と、この炭化炉体31の上流側端部に設けられ炭化炉体31内へ廃棄物を投入する炭化側廃棄物投入管32と、炭化炉体31の下流側端部に設けられ炭化炉体31内から炭化物を取出す炭化物取出し管33と、炭化炉体31に設けられ廃棄物を蒸し焼きして炭化させるために過熱蒸気(詳細後述)を導入する過熱蒸気導入管34(詳細後述)と、炭化側廃棄物投入管32と炭化物取出し管33との間に炭化炉体31の外周面を覆うようにして設けられ炭化炉体31の周壁を熱するために高温排気ガス(詳細後述)を導入する炭化側熱媒ジャケット35(詳細後述)とで構成される。廃棄物は、炭化炉体31に設けられる炭化側搬送機構(詳細後述)で装置上流側から下流側へ搬送され、廃棄物の炭化は、搬送中に実施される。また、炭化物取出し管33に、炭化物の取出しを調節する炭化物取出し調節部40(詳細後述)が接続されている。なお、高温排気ガスは、600℃のガスである。   The waste carbonization apparatus 30 includes a carbonization furnace body 31 that extends horizontally and stores waste, and a carbonization-side waste that is provided at an upstream end of the carbonization furnace body 31 and inputs waste into the carbonization furnace body 31. A heating pipe 32, a carbide take-off pipe 33 provided at the downstream end of the carbonization furnace body 31 for taking out carbide from the carbonization furnace body 31, and a superheater provided in the carbonization furnace body 31 for steaming and carbonizing the waste. Carbonized to cover the outer peripheral surface of the carbonization furnace body 31 between a superheated steam introduction pipe 34 (details will be described later) for introducing steam (details will be described later) and the carbonization-side waste input pipe 32 and the carbide take-out pipe 33. It is comprised with the carbonization side heat-medium jacket 35 (detailed later) which introduces high temperature exhaust gas (detailed later) in order to heat the surrounding wall of the furnace body 31. Waste is transported from the upstream side of the apparatus to the downstream side by a carbonization side transport mechanism (described later in detail) provided in the carbonization furnace body 31, and carbonization of the waste is performed during transport. The carbide take-out pipe 33 is connected to a carbide take-out adjusting unit 40 (details will be described later) for adjusting the take-out of the carbide. The high temperature exhaust gas is a gas at 600 ° C.

加えて、廃棄物処理設備10は、液化天然ガスなどの燃料を燃焼させて水蒸気を生成するボイラ62と、水蒸気をさらに過熱させて過熱蒸気を生成する過熱機63とを有する。過熱機63で生成された過熱蒸気は、過熱蒸気配管67を介して炭化炉体31内に供給される。   In addition, the waste treatment facility 10 includes a boiler 62 that burns fuel such as liquefied natural gas to generate steam, and a superheater 63 that further superheats steam to generate superheated steam. The superheated steam generated by the superheater 63 is supplied into the carbonization furnace body 31 through the superheated steam pipe 67.

炭化炉体31にガス排出管80(詳細後述)が設けられ、このガス排出管80に排出ガス配管81を介して乾留ガス排出ブロワ75が接続されている。乾留ガス排出ブロワ75を運転させることにより、廃棄物炭化時に生じる乾留ガスや水蒸気は、炭化炉体31内から乾留ガス排出ブロワ75へ吸引される。さらに、乾留ガス排出ブロワ75は、吸引した乾留ガスを過熱機63に送る。過熱機63で乾留ガスが熱分解されると、高温排気ガスが発生する。この高温排気ガスを乾燥側熱媒ジャケット24及び炭化側熱媒ジャケット35に投入することで、高温排気ガスの熱を有効に利用することができる。   The carbonization furnace body 31 is provided with a gas exhaust pipe 80 (details will be described later), and a dry distillation gas exhaust blower 75 is connected to the gas exhaust pipe 80 via an exhaust gas pipe 81. By operating the dry distillation gas discharge blower 75, dry distillation gas and water vapor generated during carbonization of the waste are sucked into the dry distillation gas discharge blower 75 from the carbonization furnace body 31. Further, the dry distillation gas discharge blower 75 sends the sucked dry distillation gas to the superheater 63. When the dry distillation gas is thermally decomposed by the superheater 63, high-temperature exhaust gas is generated. By introducing this high-temperature exhaust gas into the drying-side heat medium jacket 24 and the carbonization-side heat medium jacket 35, the heat of the high-temperature exhaust gas can be used effectively.

乾燥側熱媒ジャケット24内に流入した高温排気ガスは、乾燥炉体21の周壁を介して廃棄物に熱を伝える。乾燥炉体21内に投入される廃棄物は、大量の水分を含むが、高温排気ガスの熱によって乾燥側廃棄物取出し管23から取出されるときには含水率が35%程度に低下する。また、乾燥炉体21の水蒸気取出し管25から水蒸気が取出される。すなわち、含水率35%程度の廃棄物が、廃棄物炭化装置30に投入される。次に廃棄物炭化装置30の詳細構造を図2で説明する。   The high-temperature exhaust gas that has flowed into the drying-side heat medium jacket 24 transfers heat to the waste through the peripheral wall of the drying furnace body 21. The waste thrown into the drying furnace body 21 contains a large amount of moisture, but when it is taken out from the dry-side waste take-out pipe 23 by the heat of the high-temperature exhaust gas, the moisture content is reduced to about 35%. Further, water vapor is taken out from the water vapor take-out pipe 25 of the drying furnace body 21. That is, waste having a moisture content of about 35% is put into the waste carbonization apparatus 30. Next, the detailed structure of the waste carbonization apparatus 30 will be described with reference to FIG.

図2に示されるように、廃棄物炭化装置30の炭化炉体31は、長手部材である筒部82と、この筒部82の上流側端83に取付けられている上流側蓋84と、筒部82の下流側端85に取付けられている下流側蓋86とからなる。なお、炭化炉体31は、実施例では水平に延ばしたが、斜めに延ばして設置してもよい。   As shown in FIG. 2, the carbonization furnace body 31 of the waste carbonization apparatus 30 includes a cylindrical portion 82 that is a longitudinal member, an upstream lid 84 that is attached to an upstream end 83 of the cylindrical portion 82, and a cylinder And a downstream lid 86 attached to the downstream end 85 of the portion 82. In addition, although the carbonization furnace body 31 extended horizontally in the Example, you may extend and install diagonally.

筒部82の上流側端83に炭化側廃棄物投入管32が取付けられ、筒部82の下流側端85に炭化物取出し管33が取付けられている。また、上流側蓋84に過熱蒸気導入管34が取付けられている。なお、廃棄物炭化装置30に設けられる加熱手段とは、熱源である過熱蒸気を炭化炉体31内に導入する過熱蒸気導入管34のことである。   The carbonized waste input pipe 32 is attached to the upstream end 83 of the cylinder part 82, and the carbide take-out pipe 33 is attached to the downstream end 85 of the cylinder part 82. Further, the superheated steam introduction pipe 34 is attached to the upstream lid 84. The heating means provided in the waste carbonization apparatus 30 is a superheated steam introduction pipe 34 that introduces superheated steam as a heat source into the carbonization furnace body 31.

炭化側熱媒ジャケット35は、筒部82の廃棄物投入管32側に設けられている上流側熱媒リング部材53と、筒部82の炭化物取出し管33側に設けられている下流側熱媒リング部材54と、筒部82の外周面79を覆うように設けられ上流側熱媒リング部材53及び下流側熱媒リング部材54を繋ぐ熱媒筒部55とで構成される。熱媒筒部55の上流側端部に、炭化側高温排気ガス導入管36が設けられ、熱媒筒部55の下流側端部に、炭化側高温排気ガス取出し管37が設けられている。炭化側高温排気ガス導入管36から炭化側熱媒ジャケット35の内部へ導入した高温排気ガスで、筒部82の周壁78を熱する。高温排気ガスで周壁78を熱することにより、炭化炉体31内に過熱蒸気が導入されたとき、炭化炉体31内を高温に保つことが可能となる。   The carbonization side heat medium jacket 35 includes an upstream side heat medium ring member 53 provided on the waste input pipe 32 side of the cylinder part 82 and a downstream side heat medium provided on the carbide extraction pipe 33 side of the cylinder part 82. The ring member 54 is configured to include an upstream heat medium ring member 53 and a heat medium cylinder portion 55 that are provided so as to cover the outer peripheral surface 79 of the cylinder portion 82 and connect the downstream heat medium ring member 54. A carbonized high temperature exhaust gas introduction pipe 36 is provided at the upstream end of the heat medium cylinder 55, and a carbonization high temperature exhaust gas take-out pipe 37 is provided at the downstream end of the heat medium cylinder 55. The peripheral wall 78 of the cylindrical portion 82 is heated with the high-temperature exhaust gas introduced from the carbonization-side high-temperature exhaust gas introduction pipe 36 into the carbonization-side heat medium jacket 35. By heating the peripheral wall 78 with the high-temperature exhaust gas, when superheated steam is introduced into the carbonization furnace body 31, the inside of the carbonization furnace body 31 can be kept at a high temperature.

筒部82の長手方向中間位置に筒部軸方向に交差する直線87を引き、この直線87上に長手方向中間点88を描く。また、上流側熱媒リング部材53の内壁面を炭化側熱媒ジャケット35の上流側内壁面76として、この上流側内壁面76に沿って直線89を引き、この直線89上に点91を描く。このとき、ガス排出管80は、長手方向中間点88と点91の間に配置されている。すなわち、筒部82の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76との間に、ガス排出管80が設けられている。このガス排出管80から、炭化炉体31内で発生する乾留ガスや水蒸気を炭化炉体31外へ排出する。   A straight line 87 that intersects in the axial direction of the cylinder part is drawn at an intermediate position in the longitudinal direction of the cylindrical part 82, and a longitudinal intermediate point 88 is drawn on the straight line 87. Further, the inner wall surface of the upstream heat medium ring member 53 is used as the upstream inner wall surface 76 of the carbonization-side heat medium jacket 35, and a straight line 89 is drawn along the upstream inner wall surface 76, and a point 91 is drawn on the straight line 89. . At this time, the gas discharge pipe 80 is disposed between the longitudinal intermediate point 88 and the point 91. That is, the gas discharge pipe 80 is provided between the longitudinal intermediate point 88 of the cylindrical portion 82 and the upstream inner wall surface 76 of the carbonization side heat medium jacket 35. From this gas discharge pipe 80, dry distillation gas and water vapor generated in the carbonization furnace body 31 are discharged out of the carbonization furnace body 31.

また、炭化炉体31に炭化側搬送機構92が設けられている。この炭化側搬送機構92は、上流側蓋84に設けた上流側軸受部93及び下流側蓋86に設けた下流側軸受部94に回転自在に支持され廃棄物を炭化炉体31の上流側端部から下流側端部へ送るスクリュー形の搬送部95と、この搬送部95の軸96に連結され搬送部95を回転させると共に制御部97で運転が制御される電動機98とからなる。なお、搬送部95の型式は、実施例ではスクリュー形を適用したが、パドル形やリボン形を適用してもよい。   The carbonization furnace body 31 is provided with a carbonization-side transport mechanism 92. The carbonization-side transport mechanism 92 is rotatably supported by an upstream bearing portion 93 provided on the upstream lid 84 and a downstream bearing portion 94 provided on the downstream lid 86, so that waste is upstream of the carbonization furnace body 31. A screw-type transport unit 95 that feeds from the head to the downstream end, and an electric motor 98 that is connected to a shaft 96 of the transport unit 95 and that rotates the transport unit 95 and whose operation is controlled by the control unit 97. In addition, although the screw form was applied to the model of the conveyance part 95 in the Example, you may apply a paddle form or a ribbon form.

さらに、上流側蓋84に、搬送部95の軸貫通部を密封する上流側密封部99が設けられ、下流側蓋86に、搬送部95の軸貫通部を密封する下流側密封部101が設けられている。炭化炉体31は、筒部82が上流側蓋84及び下流側蓋86で閉止されていると共に、上流側蓋84及び下流側蓋86の軸貫通部が上流側密封部99及び下流側密封部101で密封されているので、炭化炉体31の気密性を確保できる。すなわち、炭化炉体31内に外部から空気が侵入することを防止できる。   Further, the upstream lid 84 is provided with an upstream sealing portion 99 that seals the shaft penetrating portion of the transport portion 95, and the downstream lid 86 is provided with a downstream sealing portion 101 that seals the shaft penetrating portion of the transport portion 95. It has been. In the carbonization furnace 31, the cylindrical portion 82 is closed by the upstream lid 84 and the downstream lid 86, and the shaft penetrating portions of the upstream lid 84 and the downstream lid 86 are the upstream sealing portion 99 and the downstream sealing portion. Since it is sealed with 101, the airtightness of the carbonization furnace body 31 can be ensured. That is, air can be prevented from entering the carbonization furnace body 31 from the outside.

炭化物取出し調節部40は、炭化物取出し管33に接続され炭化物を一時貯留する第1取出し容器41と、この第1取出し容器41に接続され第1アクチュエータ42で第1弁体43を開閉する第1取出しバルブ44と、この第1取出しバルブ44に接続され炭化物を一時貯留する第2取出し容器45と、この第2取出し容器45に接続され第2アクチュエータ46で第2弁体47を開閉する第2取出しバルブ48とからなる。第1アクチュエータ42及び第2アクチュエータ46の開閉を制御部97で制御することにより、炭化物貯留槽(図1の符号61)への炭化物の供給量を調節できる。   The carbide take-out adjusting unit 40 is connected to the carbide take-out pipe 33 and temporarily stores the carbide, and the first take-out container 41 is connected to the first take-out container 41 and the first actuator 42 is used to open and close the first valve body 43. A second take-out valve 44, a second take-out container 45 connected to the first take-out valve 44 for temporarily storing carbide, and a second actuator 46 connected to the second take-out container 45 to open and close the second valve body 47. And a take-out valve 48. By controlling the opening and closing of the first actuator 42 and the second actuator 46 by the control unit 97, the amount of carbide supplied to the carbide reservoir (reference numeral 61 in FIG. 1) can be adjusted.

加えて、第2取出し容器45を取り囲むように冷却ジャケット49が設けられ、冷却ジャケット49に冷却水供給配管51及び冷却水取出し配管52が接続されている。冷却ジャケット49内に冷却水を供給し、冷却水で炭化物を冷却することによって、炭化物が軟化し難くなり、炭化物の型崩れが防止できる。炭化物は防振材の材料として出荷されるので、型崩れ防止により炭化物の品質が向上する。   In addition, a cooling jacket 49 is provided so as to surround the second extraction container 45, and a cooling water supply pipe 51 and a cooling water extraction pipe 52 are connected to the cooling jacket 49. By supplying cooling water into the cooling jacket 49 and cooling the carbide with the cooling water, it becomes difficult for the carbide to be softened, and the shape of the carbide can be prevented from being lost. Since the carbide is shipped as a material for the vibration isolator, the quality of the carbide is improved by preventing the loss of shape.

電動機98を起動して搬送部95が回転し、過熱蒸気導入管34から過熱蒸気が供給されている状態で、廃棄物を炭化側廃棄物投入管32から筒部82内へ投入すると、廃棄物は炭化炉体31の上流側端部から下流側端部へ向けて搬送される。この搬送時に廃棄物がスクリュー形の搬送部95で攪拌されると共に過熱蒸気と接触するので、廃棄物を蒸し焼きして炭化させることができる。廃棄物を炭化させることにより、炭化物が得られる。なお、過熱蒸気により廃棄物に含まれた水分が蒸発する。また、廃棄物を炭化させたときに発生する乾留ガスは、ガス排出管80から排出され、過熱機(図1の符号63)に投入される。次に廃棄物を炭化させたときに炭化炉体31内で生じる、蒸発水分量及び乾留ガス量を図3で説明する。   When the electric motor 98 is started and the transport section 95 rotates and superheated steam is supplied from the superheated steam introduction pipe 34, waste is thrown into the cylindrical portion 82 from the carbonization-side waste input pipe 32. Is conveyed from the upstream end of the carbonization furnace body 31 toward the downstream end. During the transportation, the waste is stirred by the screw-shaped transport unit 95 and is in contact with the superheated steam, so that the waste can be steamed and carbonized. By carbonizing the waste, a carbide is obtained. Note that the water contained in the waste is evaporated by the superheated steam. In addition, the dry distillation gas generated when the waste is carbonized is discharged from the gas discharge pipe 80 and supplied to the superheater (reference numeral 63 in FIG. 1). Next, the amount of evaporated water and the amount of dry distillation gas generated in the carbonization furnace body 31 when the waste is carbonized will be described with reference to FIG.

図3(a)は炭化炉体(図2の符号31)内で発生する蒸発水分量と廃棄物の炭化時間の相関を示すグラフであり、横軸に炭化時間、縦軸に蒸発水分量を示す。本発明者等は以下の条件で試験を行った。
A−1、廃棄物炭化装置への廃棄物の投入量:毎時400kg
A−2、廃棄物の含水率:35%
A−3、炉内温度:450℃
A−4、廃棄物の炭化時間:30分
FIG. 3A is a graph showing the correlation between the amount of evaporated water generated in the carbonization furnace body (reference numeral 31 in FIG. 2) and the carbonization time of waste, and the horizontal axis represents the carbonization time, and the vertical axis represents the evaporated water amount. Show. The present inventors conducted tests under the following conditions.
A-1, Amount of waste input to the waste carbonizer: 400kg / hour
A-2, Waste water content: 35%
A-3, furnace temperature: 450 ° C
A-4, Carbonization time of waste: 30 minutes

蒸発水分が発生するピークT1は、廃棄物の炭化時間を30分としたとき、廃棄物投入後8分から12分の間であった。次に乾留ガス量と廃棄物の炭化時間の相関を説明する。   The peak T1 at which evaporated moisture is generated was between 8 minutes and 12 minutes after the waste was charged when the carbonization time of the waste was 30 minutes. Next, the correlation between the amount of dry distillation gas and the carbonization time of waste will be described.

図3(b)は炭化炉体(図2の符号31)内で発生する乾留ガス量と廃棄物の炭化時間の相関を示すグラフであり、横軸に炭化時間、縦軸に乾留ガス量を示す。本発明者等は以下の条件で試験を行った。
B−1、廃棄物炭化装置への廃棄物の投入量:毎時400kg
B−2、廃棄物の含水率:35%
B−3、炉内温度:450℃
B−4、廃棄物の炭化時間:30分
FIG. 3B is a graph showing the correlation between the amount of dry distillation gas generated in the carbonization furnace body (reference numeral 31 in FIG. 2) and the carbonization time of waste, and the horizontal axis represents the carbonization time, and the vertical axis represents the dry distillation gas amount. Show. The present inventors conducted tests under the following conditions.
B-1, Amount of waste input to the waste carbonizer: 400kg / hour
B-2, Waste water content: 35%
B-3, furnace temperature: 450 ° C
B-4, Carbonization time of waste: 30 minutes

乾留ガスが発生するピークT2は、廃棄物の炭化時間を30分としたとき、廃棄物投入後12分から15分の間であった。次に蒸発水分量及び乾留ガス量と、ガス排出口の関係を説明する。   The peak T2 at which dry distillation gas is generated was between 12 minutes and 15 minutes after the waste was charged when the carbonization time of the waste was 30 minutes. Next, the relationship between the amount of evaporated water and the amount of dry distillation gas and the gas outlet will be described.

図3(c)は廃棄物炭化装置30を模式的に示した図である。なお、前述した廃棄物の炭化時間30分を、炭化側熱媒ジャケット35の上流側内壁面76から下流側内壁面77までの長さに対応させ、時間0分に該当する上流側内壁面76を0%とし、時間30分に該当する下流側内壁面77を100%とする。   FIG. 3C is a diagram schematically showing the waste carbonization apparatus 30. The above-mentioned waste carbonization time of 30 minutes corresponds to the length from the upstream inner wall surface 76 to the downstream inner wall surface 77 of the carbonization side heat medium jacket 35, and the upstream inner wall surface 76 corresponding to time 0 minutes. Is set to 0%, and the downstream inner wall surface 77 corresponding to 30 minutes is set to 100%.

蒸発水分量のピークT1の始点は、廃棄物投入後8分であり、炭化側熱媒ジャケット35の上流側内壁面76から25%の位置となる。また、乾留ガス量のピークT2の終点は、廃棄物投入後15分であり、炭化側熱媒ジャケット35の上流側内壁面76から50%の位置となる。ガス排出管80を、炭化側熱媒ジャケット35の上流側内壁面76から25%〜50%の位置に配置させることで、水蒸気及び乾留ガスを円滑に炭化炉体31の外方へ排出させることができる。すなわち、炭化側熱媒ジャケット35の上流側内壁面76から下流側内壁面77までの長さを100%としたとき、上流側内壁面76から25%〜50%の位置がガス排出管80の最適な設置部位となる。   The starting point of the peak T1 of the evaporated water amount is 8 minutes after the introduction of the waste, and is 25% from the upstream inner wall surface 76 of the carbonization side heat medium jacket 35. In addition, the end point of the peak T2 of the dry distillation gas amount is 15 minutes after the introduction of the waste, and is 50% from the upstream inner wall surface 76 of the carbonization side heat medium jacket 35. By disposing the gas discharge pipe 80 at a position of 25% to 50% from the upstream inner wall surface 76 of the carbonization side heat medium jacket 35, water vapor and dry distillation gas can be discharged smoothly to the outside of the carbonization furnace body 31. Can do. That is, when the length from the upstream inner wall surface 76 to the downstream inner wall surface 77 of the carbonization side heat medium jacket 35 is 100%, the position of 25% to 50% from the upstream inner wall surface 76 is the position of the gas exhaust pipe 80. It becomes the optimal installation site.

なお、ガス排出管80は、実施例では、炭化側熱媒ジャケット35の上流側内壁面76から30%の位置に配置したが、上流側内壁面76から25%〜50%の位置であれば、ガス排出口の位置は任意に決めることができる。   In addition, in the Example, although the gas exhaust pipe 80 was arrange | positioned in the position of 30% from the upstream inner wall surface 76 of the carbonization side heat medium jacket 35, if it is a position of 25%-50% from the upstream inner wall surface 76, it is. The position of the gas outlet can be arbitrarily determined.

ガス排出管80を、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたので、ガス排出管80が炭化炉体31の長手方向終点に設けられる場合に比べて、廃棄物を炭化させたときに発生する乾留ガスや水蒸気を速やかに炭化炉体31外に排出することができる。乾留ガスが速やかに排出されると、炭化物に乾留ガスの悪臭成分が付着し難くなるので、炭化炉体31から取出される炭化物が悪臭を放つ可能性が低減される。したがって、炭化物の品質低下を防止できる。   Since the gas discharge pipe 80 is provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization-side heat medium jacket 35, the gas discharge pipe 80 is at the longitudinal end point of the carbonization furnace body 31. Compared with the case where it is provided, the dry distillation gas and water vapor generated when the waste is carbonized can be quickly discharged out of the carbonization furnace body 31. When the dry distillation gas is quickly discharged, the malodorous component of the dry distillation gas is less likely to adhere to the carbide, so that the possibility that the carbide taken out from the carbonization furnace body 31 emits a bad odor is reduced. Accordingly, it is possible to prevent the quality of the carbide from being lowered.

加えて、ガス排出管80を、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたことで、廃棄物を炭化させたときに発生する乾留ガスや水蒸気が、炭化物取出し管33側へ流れることが少なくなる。仮に乾留ガスや水蒸気が炭化物取出し管33側へ流れると、炭化炉体31内から炭化物を取り出したときに、炭化物に乾留ガスや水蒸気が付着する。この乾留ガスや水蒸気が付着した炭化物が、高温の炭化炉体31内から低温の炭化物取出し管33の下流側近傍へ流れ込むと、炭化炉体31内と炭化物取出し管33の下流側近傍の温度差により、炭化物取出し管33の下流側近傍の配管内で乾留ガスや水蒸気が結露する。同様に、乾留ガスや水蒸気が付着した炭化物が、炭化物取出し管33の下流側に配置される炭化物貯留槽(図1の符号61)へ流れると、炭化炉体31内と炭化物貯留槽内の温度差により、炭化物貯留槽内で乾留ガスや水蒸気が結露することがある。このような結露が生じれば、配管内や炭化物貯留槽内に水分が発生するため、配管内や炭化物貯留槽内に炭化物が固着し易くなる。   In addition, since the gas discharge pipe 80 is provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization-side heat medium jacket 35, the gas discharge pipe 80 is generated when the waste is carbonized. The dry distillation gas and water vapor are less likely to flow toward the carbide take-out pipe 33. If dry distillation gas or water vapor flows toward the carbide take-out pipe 33, when the carbide is taken out from the carbonization furnace body 31, the dry distillation gas or water vapor adheres to the carbide. When the carbide adhering to the dry distillation gas or water vapor flows from the inside of the high temperature carbonization furnace body 31 to the downstream side of the low temperature carbide extraction pipe 33, the temperature difference between the inside of the carbonization furnace body 31 and the downstream side of the carbide extraction pipe 33 is low. As a result, dry distillation gas and water vapor are condensed in the pipe near the downstream side of the carbide take-out pipe 33. Similarly, when the carbide to which dry distillation gas or water vapor is attached flows to a carbide storage tank (reference numeral 61 in FIG. 1) disposed on the downstream side of the carbide take-out pipe 33, the temperature in the carbonization furnace 31 and the carbide storage tank. Due to the difference, dry distillation gas and water vapor may condense in the carbide storage tank. If such dew condensation occurs, moisture is generated in the pipe and the carbide storage tank, so that the carbide is easily fixed in the pipe and the carbide storage tank.

その点、本発明では、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたガス排出管80から、乾留ガスや水蒸気を速やかに排出できるので、配管内や炭化物貯留槽内に水分が発生することがない。したがって、配管内や炭化物貯留槽内に炭化物が固着し難くなり、炭化物を円滑に搬送できる。本発明によれば、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物炭化装置30を提供することができる。   In this regard, in the present invention, dry distillation gas and water vapor can be quickly discharged from the gas discharge pipe 80 provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization side heat medium jacket 35. Therefore, moisture is not generated in the piping or the carbide storage tank. Therefore, it becomes difficult for the carbide to adhere to the pipe or the carbide storage tank, and the carbide can be smoothly conveyed. According to the present invention, it is possible to provide a waste carbonization apparatus 30 that can prevent deterioration of the quality of carbides and can smoothly convey the carbides.

以上に述べた廃棄物炭化装置30を用いた廃棄物炭化方法を次に述べる。
図2において、廃棄物の処理方法は、有機物が含まれる廃棄物を、筒部82の上流側端部に設けられた炭化側廃棄物投入管32に投入し、廃棄物を、炭化炉体31に設けられた炭化側搬送機構92で炭化炉体31の下流側端部に向けて搬送し、搬送されている廃棄物を、上流側蓋84に過熱蒸気導入管34から供給される過熱蒸気で蒸し焼きして炭化させ、炭化により得られた炭化物を、筒部82の下流側端部に設けられた炭化物取出し管33から取出してなり、炭化炉体31内で発生するガスを、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76との間に設けられているガス排出管80から排出するようにして実施される。
A waste carbonization method using the waste carbonization apparatus 30 described above will be described next.
In FIG. 2, the waste treatment method is such that a waste containing organic matter is put into a carbonization-side waste input pipe 32 provided at an upstream end of the cylindrical portion 82, and the waste is put into a carbonization furnace body 31. Is transported toward the downstream end of the carbonization furnace body 31 by the carbonization-side transport mechanism 92 provided in the superheated steam supplied from the superheated steam introduction pipe 34 to the upstream lid 84. Steamed and carbonized, and the carbide obtained by carbonization is taken out from the carbide take-out pipe 33 provided at the downstream end of the cylindrical portion 82, and the gas generated in the carbonization furnace body 31 is converted into the carbonization furnace body 31. The exhaust gas is discharged from a gas discharge pipe 80 provided between the intermediate point 88 in the longitudinal direction and the upstream inner wall surface 76 of the carbonization side heat medium jacket 35.

炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたガス排出管80から、炭化炉体31内で発生するガスを排出するので、炭化炉体31の長手方向終点に設けたガス排出口からガスを排出する場合に比べて、廃棄物を炭化させたときに発生する乾留ガスや水蒸気を速やかに炉外に排出することができる。乾留ガスが速やかに排出されると、炭化物に乾留ガスの悪臭成分が付着し難くなるので、炭化炉体31から取出される炭化物が悪臭を放つ可能性が低減される。したがって、炭化物の品質低下を防止できる。   Since the gas generated in the carbonization furnace body 31 is discharged from the gas discharge pipe 80 provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization-side heat medium jacket 35, the carbonization furnace Compared with the case where gas is discharged from the gas discharge port provided at the end point in the longitudinal direction of the body 31, the dry distillation gas and water vapor generated when carbonizing the waste can be quickly discharged out of the furnace. When the dry distillation gas is quickly discharged, the malodorous component of the dry distillation gas is less likely to adhere to the carbide, so that the possibility that the carbide taken out from the carbonization furnace body 31 emits a bad odor is reduced. Accordingly, it is possible to prevent the quality of the carbide from being deteriorated.

加えて、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたガス排出管80から、炭化炉体31内で発生するガスを排出することで、廃棄物を炭化させたときに発生する乾留ガスや水蒸気が、炭化物取出し管33側へ流れることが少なくなる。仮に乾留ガスや水蒸気が炭化物取出し管33へ流れると、炭化炉体31内から炭化物を取り出したときに、炭化物に乾留ガスや水蒸気が付着する。この乾留ガスや水蒸気が付着した炭化物が、高温の炭化炉体31内から低温の炭化物取出し管33の下流側近傍へ流れ込むと、炭化炉体31内と炭化物取出し管33の下流側近傍の温度差により、炭化物取出し管33の下流側近傍の配管内で乾留ガスや水蒸気が結露する。同様に、乾留ガスや水蒸気が付着した炭化物が、炭化物取出し管33の下流側に配置される炭化物貯留槽(図1の符号61)へ流れると、炉体内と炭化物貯留槽内の温度差により、炭化物貯留槽内で乾留ガスや水蒸気が結露する。このような結露が生じれば、配管内や炭化物貯留槽内に水分が発生するため、配管内や炭化物貯留槽内に炭化物が固着し易くなる。   In addition, the gas generated in the carbonization furnace body 31 is discharged from a gas discharge pipe 80 provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization-side heat medium jacket 35. Thus, dry distillation gas and water vapor generated when carbonizing the waste are less likely to flow toward the carbide extraction pipe 33. If dry distillation gas or water vapor flows into the carbide take-out pipe 33, when the carbide is taken out from the carbonization furnace body 31, the dry distillation gas or water vapor adheres to the carbide. When the carbide adhering to the dry distillation gas or water vapor flows from the inside of the high temperature carbonization furnace body 31 to the downstream side of the low temperature carbide extraction pipe 33, the temperature difference between the inside of the carbonization furnace body 31 and the downstream side of the carbide extraction pipe 33 is low. As a result, dry distillation gas and water vapor are condensed in the pipe near the downstream side of the carbide take-out pipe 33. Similarly, when the carbide to which the dry distillation gas or water vapor is attached flows to the carbide storage tank (reference numeral 61 in FIG. 1) disposed on the downstream side of the carbide extraction pipe 33, due to the temperature difference between the furnace body and the carbide storage tank, Carbonized gas and water vapor are condensed in the carbide storage tank. If such dew condensation occurs, moisture is generated in the pipe and the carbide storage tank, so that the carbide is easily fixed in the pipe and the carbide storage tank.

その点、本発明では、炭化炉体31の長手方向中間点88と炭化側熱媒ジャケット35の上流側内壁面76の間に設けたガス排出管80から、乾留ガスや水蒸気を速やかに排出できるので、配管内や炭化物貯留槽内に水分が発生することがない。したがって、配管内や炭化物貯留槽内に炭化物が固着し難くなり、炭化物を円滑に搬送できる。本発明によれば、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物の処理方法を提供することができる。   In this regard, in the present invention, dry distillation gas and water vapor can be quickly discharged from the gas discharge pipe 80 provided between the longitudinal intermediate point 88 of the carbonization furnace body 31 and the upstream inner wall surface 76 of the carbonization side heat medium jacket 35. Therefore, moisture is not generated in the piping or the carbide storage tank. Therefore, it becomes difficult for the carbide to adhere to the pipe or the carbide storage tank, and the carbide can be smoothly conveyed. ADVANTAGE OF THE INVENTION According to this invention, the waste processing method which prevents the quality fall of a carbide | carbonized_material and can convey a carbide | carbonized_material smoothly can be provided.

これまでに説明した廃棄物炭化装置30は、炭化炉体31が静止側部材で、炭化炉体31に設けた搬送部95が回転側部材であった。廃棄物炭化装置の他の形式として、炭化炉体が回転側部材となる形式がある。次に炭化炉体が回転する廃棄物炭化装置を図4で説明する。   In the waste carbonization apparatus 30 described so far, the carbonization furnace body 31 is a stationary side member, and the transport unit 95 provided in the carbonization furnace body 31 is a rotation side member. As another form of the waste carbonization apparatus, there is a form in which the carbonization furnace body becomes a rotation side member. Next, a waste carbonization apparatus in which the carbonization furnace body rotates will be described with reference to FIG.

図4に示されるように、廃棄物炭化装置110は、斜めに延びて廃棄物を貯留する中間炭化炉体111(詳細後述)と、この中間炭化炉体111の上流側端を覆うように設けられている上流側炭化炉体112(詳細後述)と、中間炭化炉体111の下流側端を覆うように設けられている下流側炭化炉体113(詳細後述)とからなる。すなわち、廃棄物炭化装置110を1つの炭化炉体とすれば、炭化炉体が3分割されているので、炭化炉体の上流側端に上流側炭化炉体112が配置され、炉体の下流側端に下流側炭化炉体113が配置されている。   As shown in FIG. 4, the waste carbonization apparatus 110 is provided so as to cover an intermediate carbonization furnace body 111 (described later in detail) that extends obliquely and stores waste, and an upstream end of the intermediate carbonization furnace body 111. The upstream carbonization furnace body 112 (described later in detail) and the downstream carbonization furnace body 113 (described later in detail) provided so as to cover the downstream end of the intermediate carbonization furnace body 111. That is, if the waste carbonization apparatus 110 is a single carbonization furnace body, the carbonization furnace body is divided into three parts. Therefore, the upstream carbonization furnace body 112 is disposed at the upstream end of the carbonization furnace body, and the downstream of the furnace body. A downstream carbonization furnace body 113 is disposed at the side end.

中間炭化炉体111は、上流側設置面123に設けた中間炭化炉体駆動部115と、下流側設置面117に回転自在に設けた下流側ローラ118とで支持されている。中間炭化炉体駆動部115は、設置面123に設けられている電動機124と、設置面123に回転自在に設けられ電動機124の出力軸に繋がっている駆動ギヤ125と、中間炭化炉体111の外周面119に取付けられ駆動ギヤ125に噛合っている従動ギヤ126とからなる。電動機124を起動させることで駆動ギヤ125が回転し、この駆動ギヤ125のトルクが従動ギヤ126に伝達されるので、中間炭化炉体111が回転する。すなわち、駆動ギヤ125は、従動ギヤ126にトルクを伝達すると共に、中間炭化炉体111の上流側を支持している。   The intermediate carbonization furnace body 111 is supported by an intermediate carbonization furnace body drive unit 115 provided on the upstream installation surface 123 and a downstream roller 118 provided rotatably on the downstream installation surface 117. The intermediate carbonization furnace body drive unit 115 includes an electric motor 124 provided on the installation surface 123, a drive gear 125 rotatably provided on the installation surface 123 and connected to the output shaft of the electric motor 124, and the intermediate carbonization furnace body 111. The driven gear 126 is attached to the outer peripheral surface 119 and meshes with the drive gear 125. When the electric motor 124 is started, the drive gear 125 rotates, and the torque of the drive gear 125 is transmitted to the driven gear 126, so that the intermediate carbonization furnace body 111 rotates. That is, the drive gear 125 transmits torque to the driven gear 126 and supports the upstream side of the intermediate carbonization furnace body 111.

中間炭化炉体111の内周面127に、中間炭化炉体111の長手方向に延びる複数の羽根128、129、131、132、133が設けられている。中間炭化炉体111を回転させた状態で、中間炭化炉体111内に廃棄物を投入すると、廃棄物は複数の羽根128、129、131、132、133で攪拌される。   A plurality of blades 128, 129, 131, 132, 133 extending in the longitudinal direction of the intermediate carbonization furnace body 111 are provided on the inner peripheral surface 127 of the intermediate carbonization furnace body 111. When waste is put into the intermediate carbonization furnace body 111 while the intermediate carbonization furnace body 111 is rotated, the waste is stirred by a plurality of blades 128, 129, 131, 132, and 133.

なお、羽根128、129、131、132、133は、実施例では、長手方向に延ばしたが、羽根を軸方向に対して傾斜させ、且つ羽根の先端を下流側へ向けて羽根を内周面に取付けてもよい。また、羽根の数量や取付間隔は、運転条件を考慮して任意に決めてよい。   In the embodiment, the blades 128, 129, 131, 132, and 133 are extended in the longitudinal direction, but the blades are inclined with respect to the axial direction, and the blades are directed to the downstream side so that the blades are on the inner peripheral surface. You may attach to. The number of blades and the mounting interval may be arbitrarily determined in consideration of operating conditions.

上流側炭化炉体112は、設置面134の上流側に設けられている投入側ケーシング135と、この投入側ケーシング135の上板114に設けられ炭化炉体の中間部付近まで延びる略J字状のガス排出管137(詳細後述)と、投入側ケーシング135の上流側側板136に取付けられ炭化炉体内へ廃棄物を投入する炭化側廃棄物投入管142と、中間炭化炉体111の外周面119の上流側端部に取付けた投入回転側リング143を囲うように投入側ケーシング135に設けられ中間炭化炉体111の回転時に外気が侵入することが防ぐ投入側密封部144とからなる。   The upstream-side carbonization furnace body 112 has a substantially J-shape extending to the vicinity of an intermediate portion of the carbonization furnace body provided on the charging-side casing 135 provided on the upstream side of the installation surface 134 and the upper plate 114 of the charging-side casing 135. Gas discharge pipe 137 (described later in detail), a carbonization-side waste input pipe 142 that is attached to the upstream side plate 136 of the input-side casing 135 and inputs waste into the carbonization furnace body, and an outer peripheral surface 119 of the intermediate carbonization furnace body 111 The charging side sealing part 144 is provided in the charging side casing 135 so as to surround the charging rotation side ring 143 attached to the upstream end of the charging side and prevents the outside air from entering when the intermediate carbonization furnace body 111 rotates.

下流側炭化炉体113は、設置面134の下流側に設けられている取出し側ケーシング145と、この取出し側ケーシング145の側板116に取付けられ炭化炉体内に過熱蒸気を導入する過熱蒸気導入管139と、取出し側ケーシング145の下流側底板146に設けられ炭化炉体内から炭化物を取出す炭化物取出し管147と、中間炭化炉体111の外周面119の下流側端部に取付けた取出し回転側リング148を囲うように取出し側ケーシング145に形成され中間炭化炉体111の回転時に外気が侵入することが防ぐ取出し側密封部149とからなる。投入側密封部144と取出し側密封部149により、炭化炉体内に空気が侵入することが防ぐことができる。なお、炭化物取出し管147の下流側には、炭化物取出し調節部(図2の符号40)が設けられる。   The downstream carbonization furnace body 113 includes a take-out side casing 145 provided on the downstream side of the installation surface 134 and a superheated steam introduction pipe 139 that is attached to the side plate 116 of the take-out side casing 145 and introduces superheated steam into the carbonization furnace body. A carbide extraction pipe 147 provided on the downstream bottom plate 146 of the extraction side casing 145 for extracting carbide from the body of the carbonization furnace, and an extraction rotation side ring 148 attached to the downstream end of the outer peripheral surface 119 of the intermediate carbonization furnace body 111. A take-out side sealing portion 149 that is formed in the take-out side casing 145 so as to surround and prevents outside air from entering when the intermediate carbonization furnace body 111 rotates is formed. The introduction side sealing portion 144 and the extraction side sealing portion 149 can prevent air from entering the inside of the carbonization furnace. Note that a carbide take-out adjusting portion (reference numeral 40 in FIG. 2) is provided on the downstream side of the carbide take-out pipe 147.

廃棄物炭化装置110の炭化側搬送機構151は、中間炭化炉体111と、複数の羽根128、129、131、132、133とで構成される。また、炭化側搬送機構151は、電動機124、駆動ギヤ125、従動ギヤ126で駆動される。中間炭化炉体111内に投入された廃棄物の搬送には、中間炭化炉体111及び複数の羽根128、129、131、132、133の回転と共に、中間炭化炉体111を傾斜角が1°になるように設置することが好ましい。なお、中間炭化炉体111は、水平に延ばして設置してもよい。   The carbonization side transport mechanism 151 of the waste carbonization apparatus 110 includes an intermediate carbonization furnace body 111 and a plurality of blades 128, 129, 131, 132, and 133. The carbonization-side transport mechanism 151 is driven by the electric motor 124, the drive gear 125, and the driven gear 126. For transporting the waste charged into the intermediate carbonization furnace body 111, the intermediate carbonization furnace body 111 and the blades 128, 129, 131, 132, 133 are rotated and the intermediate carbonization furnace body 111 is inclined at an angle of 1 °. It is preferable to install so that it becomes. The intermediate carbonization furnace body 111 may be installed extending horizontally.

加えて、中間炭化炉体111の外周面119に、上流側熱媒シール部121及び下流側熱媒シール部122を介して円筒状の炭化側熱媒ジャケット138が設けられている。すなわち、炭化側熱媒ジャケット138は、炭化側廃棄物投入管142の廃棄物投入口154と炭化物取出し管147との間に配置されていると共に中間炭化炉体111の外周面119を覆うようにして設けられている。さらに、炭化側熱媒ジャケット138の上流側端部に、炭化側高温排気ガス導入管141が設けられ、炭化側熱媒ジャケット138の下流側端部に、炭化側高温排気ガス取出し管155が設けられている。   In addition, a cylindrical carbonization side heat medium jacket 138 is provided on the outer peripheral surface 119 of the intermediate carbonization furnace body 111 via the upstream heat medium seal part 121 and the downstream heat medium seal part 122. That is, the carbonization side heat medium jacket 138 is disposed between the waste input port 154 of the carbonization side waste input pipe 142 and the carbide takeout pipe 147 and covers the outer peripheral surface 119 of the intermediate carbonization furnace body 111. Is provided. Further, a carbonization-side high-temperature exhaust gas introduction pipe 141 is provided at the upstream end of the carbonization-side heat medium jacket 138, and a carbonization-side high-temperature exhaust gas extraction pipe 155 is provided at the downstream end of the carbonization-side heat medium jacket 138. It has been.

炭化側高温排気ガス導入管141から炭化側熱媒ジャケット138の内部へ高温排気ガスを導入することにより、高温排気ガスの熱で中間炭化炉体111の周壁168を熱することができる。高温排気ガスで周壁168を熱することにより、中間炭化炉体111内に過熱蒸気が導入されたとき、中間炭化炉体111内を高温に保つことが可能となる。   By introducing the high temperature exhaust gas into the inside of the carbonization side heat medium jacket 138 from the carbonization side high temperature exhaust gas introduction pipe 141, the peripheral wall 168 of the intermediate carbonization furnace body 111 can be heated by the heat of the high temperature exhaust gas. By heating the peripheral wall 168 with the high-temperature exhaust gas, when the superheated steam is introduced into the intermediate carbonization furnace body 111, the inside of the intermediate carbonization furnace body 111 can be kept at a high temperature.

上流側熱媒シール部121に、600℃のガス温度で使用できる上流側熱媒シール部材162が設けられ、下流側熱媒シール部122に、600℃のガス温度で使用できる下流側熱媒シール部材163が設けられているので、中間炭化炉体111の回転中に高温排気ガスが炭化側熱媒ジャケット138の外方へ漏れることが防ぐことができる。   An upstream heat medium seal member 162 that can be used at a gas temperature of 600 ° C. is provided in the upstream heat medium seal portion 121, and a downstream heat medium seal that can be used at a gas temperature of 600 ° C. in the downstream heat medium seal portion 122. Since the member 163 is provided, it is possible to prevent the high-temperature exhaust gas from leaking out of the carbonization-side heat medium jacket 138 during the rotation of the intermediate carbonization furnace body 111.

電動機124を起動して中間炭化炉体111が回転し、過熱蒸気導入管139から過熱蒸気が供給されている状態で、廃棄物を炭化側廃棄物投入管142から炭化炉体内へ投入すると、廃棄物は炭化炉体の上流側端部から下流側端部へ向けて搬送される。この搬送時に廃棄物が複数の羽根128、129、131、132、133で攪拌されると共に過熱蒸気と接触するので、廃棄物を蒸し焼きして炭化させることができる。廃棄物を炭化させることにより、炭化物が得られる。なお、廃棄物を炭化させたときに発生する乾留ガスと水蒸気は、ガス排出管137から排出され、過熱機(図1の符号63)に投入される。   When the electric motor 124 is activated and the intermediate carbonization furnace body 111 rotates and superheated steam is supplied from the superheated steam introduction pipe 139, waste is thrown into the carbonization furnace body through the carbonization-side waste input pipe 142. A thing is conveyed toward the downstream end part from the upstream edge part of a carbonization furnace body. Since the waste is agitated by the plurality of blades 128, 129, 131, 132, and 133 and is in contact with the superheated steam during the conveyance, the waste can be steamed and carbonized. By carbonizing the waste, a carbide is obtained. Note that the dry distillation gas and water vapor generated when the waste is carbonized is discharged from the gas discharge pipe 137 and is put into a superheater (reference numeral 63 in FIG. 1).

加えて、ガス排出管137のガス排出口152は、3つの炉体112、111、113の合計長さの長手方向中間点153と、炭化側熱媒ジャケット138の上流側内壁面165に沿って引いた直線166上の点167との間に設けられている。   In addition, the gas discharge port 152 of the gas discharge pipe 137 extends along the longitudinal intermediate point 153 of the total length of the three furnace bodies 112, 111, and 113, and the upstream inner wall surface 165 of the carbonized heat medium jacket 138. It is provided between the point 167 on the drawn straight line 166.

ガス排出管137のガス排出口152を、長手方向中間点153と炭化側熱媒ジャケット138の上流側内壁面165との間に設けたので、ガス排出口152が下流側炭化炉体113側に設けられる場合に比べて、廃棄物を炭化させたときに発生する乾留ガスや水蒸気を速やかに炉体外に排出することができる。乾留ガスが速やかに排出されると、炭化物に乾留ガスの悪臭成分が付着し難くなるので、炭化炉体から取出される炭化物が悪臭を放つ可能性が低減される。したがって、炭化物の品質低下を防止できる。   Since the gas discharge port 152 of the gas discharge pipe 137 is provided between the longitudinal intermediate point 153 and the upstream inner wall surface 165 of the carbonization-side heat medium jacket 138, the gas discharge port 152 faces the downstream carbonization furnace body 113 side. Compared with the case where it is provided, the dry distillation gas and water vapor generated when the waste is carbonized can be quickly discharged out of the furnace body. When the dry distillation gas is quickly discharged, the malodorous component of the dry distillation gas is difficult to adhere to the carbide, so that the possibility that the carbide taken out from the carbonization furnace emits a bad smell is reduced. Accordingly, it is possible to prevent the quality of the carbide from being lowered.

加えて、ガス排出管137のガス排出口152を、長手方向中間点153と炭化側熱媒ジャケット138の上流側内壁面165との間に設けたことで、廃棄物を炭化させたときに発生する乾留ガスや水蒸気が、炭化物取出し管147側へ流れることが少なくなる。仮に乾留ガスや水蒸気が炭化物取出し管147側へ流れると、炭化炉体内から炭化物を取り出したときに、炭化物に乾留ガスや水蒸気が付着することがある。この乾留ガスや水蒸気が付着した炭化物が、高温の炭化炉体内から低温の炭化物取出し管147の下流側近傍へ流れ込むと、炉体内と炭化物取出し管147の下流側近傍の温度差により、炭化物取出し管147の下流側近傍の配管内で乾留ガスや水蒸気が結露する。同様に、乾留ガスや水蒸気を付着した炭化物が、炭化物取出し管147の下流側に配置される炭化物貯留槽(図1の符号61)へ流れると、炭化炉体内と炭化物貯留槽内の温度差により、炭化物貯留槽内で乾留ガスや水蒸気が結露する。このような結露が生じれば、配管内や炭化物貯留槽内に水分が発生するため、配管内や炭化物貯留槽内に炭化物が固着し易くなる。   In addition, the gas discharge port 152 of the gas discharge pipe 137 is provided between the longitudinal intermediate point 153 and the upstream inner wall surface 165 of the carbonization-side heat medium jacket 138, which is generated when the waste is carbonized. The carbonization gas or water vapor that flows is less likely to flow toward the carbide extraction pipe 147. If dry distillation gas or water vapor flows to the carbide take-out pipe 147 side, dry distillation gas or water vapor may adhere to the carbide when the carbide is taken out from the carbonization furnace. When the carbonized material to which the dry distillation gas or water vapor is attached flows from the high temperature carbonization furnace into the vicinity of the downstream side of the low temperature carbide extraction pipe 147, the carbide extraction pipe is caused by the temperature difference between the furnace body and the downstream side of the carbide extraction pipe 147. In the piping near the downstream side of 147, dry distillation gas and water vapor are condensed. Similarly, when the carbide adhering to the dry distillation gas or water vapor flows to the carbide storage tank (reference numeral 61 in FIG. 1) disposed on the downstream side of the carbide take-out pipe 147, due to the temperature difference between the carbonization furnace and the carbide storage tank. In the carbide storage tank, dry distillation gas and water vapor are condensed. If such dew condensation occurs, moisture is generated in the pipe and the carbide storage tank, so that the carbide is easily fixed in the pipe and the carbide storage tank.

その点、本発明では、炭化炉体の長手方向中間点153と炭化側熱媒ジャケット138の上流側内壁面165との間に設けたガス排出管137のガス排出口152から、乾留ガスや水蒸気を速やかに排出できるので、配管内や炭化物貯留槽内に水分が発生することがない。したがって、配管内や炭化物貯留槽内に炭化物が固着し難くなり、炭化物を円滑に搬送できる。本発明によれば、炭化物の品質低下を防止し、且つ炭化物を円滑に搬送できる廃棄物炭化装置110を提供することができる。   In that respect, in the present invention, dry distillation gas or water vapor is supplied from the gas discharge port 152 of the gas discharge pipe 137 provided between the longitudinal intermediate point 153 of the carbonization furnace body and the upstream inner wall surface 165 of the carbonization-side heat medium jacket 138. Can be quickly discharged, so that no moisture is generated in the piping or in the carbide storage tank. Therefore, it becomes difficult for the carbide to adhere to the pipe or the carbide storage tank, and the carbide can be smoothly conveyed. According to the present invention, it is possible to provide a waste carbonization apparatus 110 that can prevent deterioration of the quality of carbides and can smoothly convey the carbides.

尚、本発明に係る有機物が含まれる廃棄物は、実施の形態では排水汚泥、化成スラッジ、塗料滓を含んだ廃棄物を適用したが、油脂、接着剤、樹脂などを含んだ廃棄物、家庭や建設現場等で排出される汚泥を含んだ廃棄物も適用可能である。
また、本発明に係る熱媒ジャケットに導入される熱媒は、実施の形態では高温排気ガスを適用したが、この他に加熱空気、油、水蒸気等を適用してもよい。
Note that in the embodiment, waste containing organic matter according to the present invention is waste containing sludge, chemical sludge, and paint waste. However, waste containing oil, fat, adhesive, resin, etc. Also, waste containing sludge discharged at construction sites can be applied.
Moreover, although the high-temperature exhaust gas was applied to the heat medium introduced into the heat medium jacket according to the present invention in the embodiment, heated air, oil, water vapor, or the like may be applied.

本発明の廃棄物の処理技術は、自動車の車体塗装工場で生じる廃棄物処理に好適である。   The waste treatment technology of the present invention is suitable for the treatment of waste generated in an automobile body painting factory.

30、110…廃棄物の処理装置(廃棄物炭化装置)、31…炉体(炭化炉体)、32、142…廃棄物投入口(炭化側廃棄物投入管)、33、147…炭化物取出し口(炭化物取出し管)、34、139…加熱手段(過熱蒸気導入管)、35、138…熱媒ジャケット(炭化側熱媒ジャケット)、76、165…廃棄物投入口側内壁面(上流側内壁面)、78、168…周壁、79、119…外周面、80、137…ガス排出口(ガス排出管)、83…一端(上流側端)、85…他端(下流側端)、88、153…長手方向中間点、92、151…搬送機構(炭化側搬送機構)、111…炉体(中間炭化炉体)、112…炉体(上流側炭化炉体)、113…炉体(下流側炭化炉体)、136…一端(上流側側板)、146…他端(下流側底板)、152…ガス排出口、154…廃棄物投入口。   30, 110 ... Waste treatment apparatus (waste carbonization apparatus), 31 ... Furnace body (carbonization furnace body), 32, 142 ... Waste input port (carbonization side waste input pipe), 33,147 ... Carbide take-out port (Carbide take-out pipe), 34, 139 ... Heating means (superheated steam introduction pipe), 35, 138 ... Heat medium jacket (carbonization side heat medium jacket), 76, 165 ... Waste inlet side inner wall surface (upstream inner wall surface) , 78, 168 ... peripheral wall, 79, 119 ... outer peripheral surface, 80, 137 ... gas discharge port (gas discharge pipe), 83 ... one end (upstream side end), 85 ... other end (downstream side end), 88, 153 ... intermediate point in the longitudinal direction, 92, 151 ... transport mechanism (carbonization side transport mechanism), 111 ... furnace body (intermediate carbonization furnace body), 112 ... furnace body (upstream carbonization furnace body), 113 ... furnace body (downstream carbonization) Furnace), 136 ... one end (upstream side plate), 146 ... the other end (downstream bottom) ), 152 ... gas outlet, 154 ... waste inlet.

Claims (2)

水平又は斜めに延びて有機物が含まれる廃棄物を貯留する炉体と、この炉体の一端に設けられ前記炉体内へ前記廃棄物を投入する廃棄物投入口と、前記炉体に設けられ前記廃棄物を前記炉体の一端から他端へ搬送する搬送機構と、前記炉体に設けられ前記搬送機構で搬送される廃棄物を蒸し焼きして炭化させる加熱手段と、前記炉体の他端に設けられ前記炉体内から炭化物を取出す炭化物取出し口と、前記廃棄物投入口と前記炭化物取出し口との間に前記炉体の外周面を覆うようにして設けられ前記炉体の周壁を熱するために熱媒を導入する熱媒ジャケットとからなる廃棄物の処理装置において、
前記炉体内で発生するガスを炉外へ排出するガス排出口が前記炉体に設けられており、前記ガス排出口は、前記炉体の長手方向中間点と前記熱媒ジャケットの廃棄物投入口側内壁面との間に設けられていることを特徴とする廃棄物の処理装置。
A furnace body that extends horizontally or obliquely and stores waste containing organic matter, a waste input port that is provided at one end of the furnace body and that inputs the waste into the furnace body, and is provided in the furnace body A transport mechanism for transporting waste from one end of the furnace body to the other end; heating means provided in the furnace body for steaming and carbonizing the waste transported by the transport mechanism; and at the other end of the furnace body To heat the peripheral wall of the furnace body that is provided so as to cover the outer peripheral surface of the furnace body between the carbide outlet for removing carbide from the furnace body, and between the waste inlet and the carbide outlet. In a waste treatment apparatus comprising a heat medium jacket for introducing a heat medium into
A gas discharge port for discharging the gas generated in the furnace body to the outside of the furnace is provided in the furnace body, and the gas discharge port is disposed at a middle point in the longitudinal direction of the furnace body and a waste input port of the heating medium jacket. A waste processing apparatus, characterized in that the waste processing apparatus is provided between the side inner wall surfaces.
有機物が含まれる廃棄物を、炉体の一端に設けられた廃棄物投入口に投入し、前記廃棄物を、前記炉体に設けられた搬送機構で炉体の他端に向けて搬送し、搬送されている廃棄物を、前記炉体に設けられた加熱手段で蒸し焼きして炭化させ、炭化により得られた炭化物を、前記炉体の他端に設けられた炭化物取出し口から取出し、前記炉体の周壁を、炉体の外周面を覆うように設けられた熱媒ジャケット内の熱媒で熱してなる廃棄物の処理方法において、
前記炉体内で発生するガスを、前記炉体の長手方向中間点と前記熱媒ジャケットの廃棄物投入口側内壁面との間に設けられているガス排出口から排出するようにしたことを特徴とする廃棄物の処理方法。
Waste containing organic matter is put into a waste inlet provided at one end of the furnace body, and the waste is transported toward the other end of the furnace body by a transport mechanism provided in the furnace body, The waste being conveyed is steamed and carbonized by heating means provided in the furnace body, and the carbide obtained by carbonization is taken out from a carbide outlet provided at the other end of the furnace body, and the furnace In the method of treating waste, the peripheral wall of the body is heated with a heat medium in a heat medium jacket provided so as to cover the outer peripheral surface of the furnace body.
The gas generated in the furnace body is discharged from a gas discharge port provided between a longitudinal intermediate point of the furnace body and a waste inlet side inner wall surface of the heating medium jacket. Waste disposal method.
JP2010108257A 2010-05-10 2010-05-10 Apparatus and method for treating waste Pending JP2011236313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108257A JP2011236313A (en) 2010-05-10 2010-05-10 Apparatus and method for treating waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108257A JP2011236313A (en) 2010-05-10 2010-05-10 Apparatus and method for treating waste

Publications (1)

Publication Number Publication Date
JP2011236313A true JP2011236313A (en) 2011-11-24

Family

ID=45324648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108257A Pending JP2011236313A (en) 2010-05-10 2010-05-10 Apparatus and method for treating waste

Country Status (1)

Country Link
JP (1) JP2011236313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072335B1 (en) * 2016-06-10 2017-02-01 環境エネルギー株式会社 Metal scrap processing equipment
WO2017213159A1 (en) * 2016-06-10 2017-12-14 環境エネルギー株式会社 Scrap metal processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072335B1 (en) * 2016-06-10 2017-02-01 環境エネルギー株式会社 Metal scrap processing equipment
WO2017213159A1 (en) * 2016-06-10 2017-12-14 環境エネルギー株式会社 Scrap metal processing device

Similar Documents

Publication Publication Date Title
EP0782604B1 (en) Pyrolytic waste treatment system
JP2010106133A (en) Process and apparatus for making waste into fuel
KR101945401B1 (en) Organic waste disposal device
US4708641A (en) Waste removal system for problematic materials
JP2006205027A (en) Apparatus and method for reducing volume/weight of hydrous organic sludge or the like
JP2011236313A (en) Apparatus and method for treating waste
JP2005238120A (en) Vacuum drying/carbonization device
JP2006008736A (en) Carbonization treatment apparatus for organic waste
US7147681B1 (en) Method and device for removing recoverable waste products and non-recoverable waste products
KR102077097B1 (en) carbonizing and thermal decomposition apparatus
GB2144836A (en) Improvements in or relating to a pyrolysis reaction and apparatus
JP7246839B1 (en) Waste treatment equipment and waste treatment plant
JP6801295B2 (en) Sludge treatment equipment
JP4908914B2 (en) Processing equipment such as aluminum chips
JP2010143964A (en) Carbonization apparatus and method
JP4077811B2 (en) Heat treatment equipment using superheated steam
KR101945626B1 (en) Pressure controlled low temperature pyrolysis evaporator and organic wastes disposal method for using the same
KR20130029300A (en) Multiple stage drying and carbonizing apparatus of waste material
JP2011068824A (en) Carbonization facility for organic water-containing waste
KR100909941B1 (en) Food waste carbonizationer
KR102308315B1 (en) Organic waste disposal device that improves usability of organic waster
JP2002121560A (en) Process and device for carbonization
KR101924972B1 (en) Carbonization system of non-biodegradable waste using heat storage medium
JP2005211719A (en) Organic matter treatment method and system therefor
JP4685702B2 (en) Operation method of processing equipment such as aluminum chips