JP2011231877A - 流体制御弁 - Google Patents
流体制御弁 Download PDFInfo
- Publication number
- JP2011231877A JP2011231877A JP2010103669A JP2010103669A JP2011231877A JP 2011231877 A JP2011231877 A JP 2011231877A JP 2010103669 A JP2010103669 A JP 2010103669A JP 2010103669 A JP2010103669 A JP 2010103669A JP 2011231877 A JP2011231877 A JP 2011231877A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- seat ring
- control valve
- fluid control
- seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Taps Or Cocks (AREA)
Abstract
【課題】 排気ガス流量制御弁(ボールバルブ)において、シール性能が損なわれることなく、十分なシール性能を発揮することを課題とする。
【解決手段】 リップシール5の弾性力を必要最小限にした場合であっても、ハウジング1の内部に設置された板スプリング6の付勢力のみで、スラスト方向にも、また、ラジアル方向にも、シートリング4を押圧付勢している。これによって、バルブ3の全閉時に、EGRガス流の中心軸線に対してバルブ3の軸心ズレが発生している場合であっても、シートリング4がバルブ3に倣って(調芯されて)、バルブ3がシートリング4のバルブシート面52に正規の位置で着座する。これにより、バルブ3の全閉時に、バルブ3のバルブシール面51とシートリング4のバルブシート面52とを密着させることが可能となる。したがって、十分なシール性能を発揮することができる。
【選択図】 図2
【解決手段】 リップシール5の弾性力を必要最小限にした場合であっても、ハウジング1の内部に設置された板スプリング6の付勢力のみで、スラスト方向にも、また、ラジアル方向にも、シートリング4を押圧付勢している。これによって、バルブ3の全閉時に、EGRガス流の中心軸線に対してバルブ3の軸心ズレが発生している場合であっても、シートリング4がバルブ3に倣って(調芯されて)、バルブ3がシートリング4のバルブシート面52に正規の位置で着座する。これにより、バルブ3の全閉時に、バルブ3のバルブシール面51とシートリング4のバルブシート面52とを密着させることが可能となる。したがって、十分なシール性能を発揮することができる。
【選択図】 図2
Description
本発明は、バルブの回転軸に対して、バルブのシール面とシートリングのシート面とのシール位置が偏心した流体制御弁に関するもので、特に内燃機関より流出した排気ガスを制御する排気ガス制御弁(排気ガス流量制御弁)に係わる。
[従来の技術]
従来より、流体制御弁として、図6ないし図8に示したように、エンジン本体101に結合するハウジング102と、このハウジング102に回転自在に支持されるシャフト103と、このシャフト103に支持固定されるバルブ104と、このバルブ104が着座可能なシートリング105と、ハウジング102の内部でシートリング105を弾性的に支持する弾性支持手段(Oリング106、保持リング107)とを備え、シャフト103、バルブ104の回転軸に対して、バルブ104のバルブシール面111とシートリング105のバルブシート面112とのシール位置が偏心した偏心型バタフライ弁(ボールバルブ)が提案されている(例えば、特許文献1参照)。
従来より、流体制御弁として、図6ないし図8に示したように、エンジン本体101に結合するハウジング102と、このハウジング102に回転自在に支持されるシャフト103と、このシャフト103に支持固定されるバルブ104と、このバルブ104が着座可能なシートリング105と、ハウジング102の内部でシートリング105を弾性的に支持する弾性支持手段(Oリング106、保持リング107)とを備え、シャフト103、バルブ104の回転軸に対して、バルブ104のバルブシール面111とシートリング105のバルブシート面112とのシール位置が偏心した偏心型バタフライ弁(ボールバルブ)が提案されている(例えば、特許文献1参照)。
バルブ104は、シートリング105のバルブシート面112に対して着座、離脱して流体流路108を閉鎖、開放する。
そして、バルブ104のバルブシール面111は、曲率中心点を中心とした曲率半径を有する球面の一部を構成している。
また、シートリング105のバルブシート面112は、バルブシール面111と同一曲率半径またはバルブシール面111よりも僅かに小さい曲率半径を有している。
そして、バルブ104のバルブシール面111は、曲率中心点を中心とした曲率半径を有する球面の一部を構成している。
また、シートリング105のバルブシート面112は、バルブシール面111と同一曲率半径またはバルブシール面111よりも僅かに小さい曲率半径を有している。
ここで、エンジン本体101の円筒部121とハウジング102の内周凸部122との軸方向距離は、図8に示したように、シートリング105の肉厚(軸線方向寸法)よりも僅かに大きくなっている。
そして、エンジン本体101の円筒部121の結合端面に形成された環状溝123にOリング106が圧縮状態で装着されている。このOリング106は、合成ゴム弾性体製で、バルブ104の全閉時に、バルブ104のバルブシール面111に対して、流体流路108の流体流れの軸線方向(スラスト方向)に向けてシートリング105を押圧付勢している。これにより、シートリング105は、ハウジング102の内部においてスラスト方向に移動可能に弾性支持される。
そして、エンジン本体101の円筒部121の結合端面に形成された環状溝123にOリング106が圧縮状態で装着されている。このOリング106は、合成ゴム弾性体製で、バルブ104の全閉時に、バルブ104のバルブシール面111に対して、流体流路108の流体流れの軸線方向(スラスト方向)に向けてシートリング105を押圧付勢している。これにより、シートリング105は、ハウジング102の内部においてスラスト方向に移動可能に弾性支持される。
また、ハウジング102の内周凹部124の内径は、図8に示したように、シートリング105の外径(半径方向寸法)よりも僅かに大きくなっている。
そして、ハウジング102の内周凹部124の内周面に形成された環状溝125に保持リング107が装着されている。そして、シートリング105は、保持リング107を介してハウジング102の内周凹部124に摺動自在に当接している。また、保持リング107は、合成樹脂製で、バルブ104の全閉時に、バルブ104のバルブシール面111に対して、流体流路108の流体流れの軸線方向に対して垂直な半径方向(ラジアル方向)に向けてシートリング105を押圧付勢している。これにより、シートリング105は、ハウジング102の内部においてラジアル方向に移動可能に弾性支持される。
そして、ハウジング102の内周凹部124の内周面に形成された環状溝125に保持リング107が装着されている。そして、シートリング105は、保持リング107を介してハウジング102の内周凹部124に摺動自在に当接している。また、保持リング107は、合成樹脂製で、バルブ104の全閉時に、バルブ104のバルブシール面111に対して、流体流路108の流体流れの軸線方向に対して垂直な半径方向(ラジアル方向)に向けてシートリング105を押圧付勢している。これにより、シートリング105は、ハウジング102の内部においてラジアル方向に移動可能に弾性支持される。
[従来の技術の不具合]
ところが、特許文献1に記載の偏心型バタフライ弁(ボールバルブ)においては、バルブ104の全閉位置から中間位置を経て全開位置に至るまでのバルブ回転範囲内で常にシートリング105とバルブ104とが摺動しており、バルブ104がその回転軸を中心にして全閉位置から全開位置に向けて回転するに従って、バルブ104とシートリング105との摺動部分の接触面積が変化(減少)する。これにより、シートリング105のバルブシート面112に偏摩耗(真円ズレ)が発生し、バルブ104の全閉時にシートリング105のバルブシート面112における偏摩耗により生じる隙間(バルブ104のバルブシール面111との間に形成される隙間)から流体(例えば吸入空気)が洩れる等の不具合が発生する。すなわち、シートリング105に発生する偏摩耗によって、バルブ104の全閉時における吸気洩れ流量が増加するという問題が生じる。
ところが、特許文献1に記載の偏心型バタフライ弁(ボールバルブ)においては、バルブ104の全閉位置から中間位置を経て全開位置に至るまでのバルブ回転範囲内で常にシートリング105とバルブ104とが摺動しており、バルブ104がその回転軸を中心にして全閉位置から全開位置に向けて回転するに従って、バルブ104とシートリング105との摺動部分の接触面積が変化(減少)する。これにより、シートリング105のバルブシート面112に偏摩耗(真円ズレ)が発生し、バルブ104の全閉時にシートリング105のバルブシート面112における偏摩耗により生じる隙間(バルブ104のバルブシール面111との間に形成される隙間)から流体(例えば吸入空気)が洩れる等の不具合が発生する。すなわち、シートリング105に発生する偏摩耗によって、バルブ104の全閉時における吸気洩れ流量が増加するという問題が生じる。
ところで、例えばディーゼルエンジン等の内燃機関(エンジン)の燃焼室より排出される排気ガス中に含まれる有害物質(例えば窒素酸化物:Nox)の低減を図るという目的で、排気ガスの一部であるEGRガスを排気通路から吸気通路に再循環させる排気ガス還流管(EGRガスパイプ)を備えた排気ガス循環装置(EGRシステム)が公知である。このEGRシステムにおいて、排気ガスを吸気通路に還流させると、エンジンの出力および運転性の低下を伴うので、EGRガスパイプの途中に排気ガス(EGRガス)の流量を制御するEGRガス流量制御弁が設置されている。
そして、このEGRガス流量制御弁に、図9ないし図11に示したように、特許文献1に記載の偏心型バタフライ弁(ボールバルブ)を適用した場合、バルブ104がその回転軸を中心にして回転することにより、特許文献1に記載の偏心型バタフライ弁(ボールバルブ)と同様に、シートリング105とバルブ104との摺動部分の接触面積が変化する。なお、バルブ104の全閉時には、図9に示したように、バルブ104のバルブシール面111とシートリング105のバルブシート面112とが全周シールとなり、バルブシート面112とバルブシール面111との接触面積が最も大きくなる。
また、バルブ104が全閉開度から中間開度まで回転した場合には、図10に示したように、バルブ104とシートリング105との摺動部分131の接触面積がバルブ104の全閉時よりも小さくなる。
また、バルブ104が中間開度から全開開度まで回転した場合には、図11に示したように、バルブ104とシートリング105との摺動部分132の接触面積が図10の中間開度の時よりも小さくなる。
また、バルブ104が中間開度から全開開度まで回転した場合には、図11に示したように、バルブ104とシートリング105との摺動部分132の接触面積が図10の中間開度の時よりも小さくなる。
したがって、EGRガス流量制御弁においては、バルブ104の全閉開度から全開開度に至るまで常にバルブ104とシートリング105とが摺動しており、シャフト103が回転するに従って、バルブ104とシートリング105との摺動部分の接触面積が小さくなるため、バルブ104とシートリング105との摺動部分131、132、特に摺動部分132において偏摩耗量が大きくなる。
これにより、バルブ104の全閉時においてシートリング105のバルブシート面112における偏摩耗により生じる隙間からEGRガスが洩れるため、バルブ104の全閉時におけるEGRガス洩れ流量が増加(つまりシール性能が低下)するという問題が生じる。
これにより、バルブ104の全閉時においてシートリング105のバルブシート面112における偏摩耗により生じる隙間からEGRガスが洩れるため、バルブ104の全閉時におけるEGRガス洩れ流量が増加(つまりシール性能が低下)するという問題が生じる。
[先行の技術の不具合]
そこで、バルブ104の全閉時においてシートリング105のバルブシート面112における偏摩耗の発生を抑制することで、バルブ104の全閉時におけるEGRガス(流体)洩れ流量の増加(つまりシール性能の低下)を防止するという目的で、既に特願2009−192317(平成21年8月21日出願)を出願した。この出願のEGRガス流量制御弁は、図12に示したように、ハウジング102、シャフト103、バタフライ型のバルブ104、シートリング105、スプリング109およびリップシール110を備えている。
スプリング109は、バルブ104とシートリング105とを密着させる方向(吸気流方向の軸線方向、スラスト方向)にシートリング105を押圧付勢する弾性支持部材を構成している。
そこで、バルブ104の全閉時においてシートリング105のバルブシート面112における偏摩耗の発生を抑制することで、バルブ104の全閉時におけるEGRガス(流体)洩れ流量の増加(つまりシール性能の低下)を防止するという目的で、既に特願2009−192317(平成21年8月21日出願)を出願した。この出願のEGRガス流量制御弁は、図12に示したように、ハウジング102、シャフト103、バタフライ型のバルブ104、シートリング105、スプリング109およびリップシール110を備えている。
スプリング109は、バルブ104とシートリング105とを密着させる方向(吸気流方向の軸線方向、スラスト方向)にシートリング105を押圧付勢する弾性支持部材を構成している。
また、リップシール110は、ハウジング102の内周面とシートリング105の外周面との間に介装されて、ハウジング102の内周面とシートリング105の外周面との間の環状隙間をシールするシール部材である。このリップシール110には、ハウジング102の内周面に弾性接触する円環状のゴムリップ、およびシートリング105の外周面に弾性接触する円環状のゴムリップが設けられている。
ここで、図12のEGRガス流量制御弁は、バルブ104を開弁する際に、シートリング105がラジアル方向に自由度を持って暴れて(ラジアル方向に揺動して)、シートリング105のバルブシート面112が擦れて偏摩耗する可能性がある。このため、バルブ104の全閉時におけるEGRガス洩れ流量が増加(つまりシール性能が低下)するのを防止するので、スプリング109に加えてリップシール110のラジアル方向の弾性力でシートリング105を保持している。
ここで、図12のEGRガス流量制御弁は、バルブ104を開弁する際に、シートリング105がラジアル方向に自由度を持って暴れて(ラジアル方向に揺動して)、シートリング105のバルブシート面112が擦れて偏摩耗する可能性がある。このため、バルブ104の全閉時におけるEGRガス洩れ流量が増加(つまりシール性能が低下)するのを防止するので、スプリング109に加えてリップシール110のラジアル方向の弾性力でシートリング105を保持している。
ところが、図12のEGRガス流量制御弁においては、リップシール110の弾性力がスプリング109のスプリング荷重に対して過大であると、バルブ104の中心が流体流路108の流体流れの中心軸線に対してズレている場合、バルブ104を全閉した時にシートリング105がハウジング102に倣ってバルブ104が浮いてしまう(バルブ104の全閉行程に対してシートリング105が追従できない)。すなわち、バルブ104の全閉時に、シートリング105のバルブシート面112とバルブ104のバルブシール面111とが片当たりして、シートリング105のバルブシート面112とバルブ104のバルブシール面111とが周方向全体で気密シール(全周シール)することができず、バルブ104の全閉時におけるシール性能が損なわれるという問題があった。
本発明の目的は、シートリングがラジアル方向に自由度を持って暴れて、シートリングのシート面が擦れて偏摩耗することを防いで、シール性能が損なわれることを防ぐことのできる流体制御弁を提供することにある。また、シール性能が損なわれることなく、十分なシール性能を発揮することのできる流体制御弁を提供することにある。
請求項1に記載の発明によれば、バルブの回転軸方向に対して、バルブの全閉時におけるシートリングに対するバルブのシール位置を偏心させた流体制御弁において、ハウジングには、シートリングをバルブ側に押圧付勢する押圧付勢手段が設置されている。
バルブは、流体流路に設けられる曲率中心点を中心とした曲率半径を持つ球面の一部で構成される(凸曲面形状の)シール面を設けている。
シートリングは、バルブのシール面と同一曲率中心点で、且つシール面と略同一曲率半径を持つ球面の一部で構成される(凹曲面形状の)シート面を設けている。
押圧付勢手段は、流体流路を流通する流体流れの軸方向に対してバルブのシール面の曲率中心側に傾斜する(傾斜)方向に向けてシートリングを押圧付勢するように構成されている。
バルブは、流体流路に設けられる曲率中心点を中心とした曲率半径を持つ球面の一部で構成される(凸曲面形状の)シール面を設けている。
シートリングは、バルブのシール面と同一曲率中心点で、且つシール面と略同一曲率半径を持つ球面の一部で構成される(凹曲面形状の)シート面を設けている。
押圧付勢手段は、流体流路を流通する流体流れの軸方向に対してバルブのシール面の曲率中心側に傾斜する(傾斜)方向に向けてシートリングを押圧付勢するように構成されている。
すなわち、流体流路を流通する流体流れの軸方向に対してバルブのシール面の曲率中心側に傾斜する(傾斜)方向に向けてシートリングを押圧付勢する押圧付勢手段をハウジングに設置したことにより、バルブ全閉時に、流体流路を流通する流体流れの中心軸線(流体流路の中心)に対してバルブの位置ズレ(バルブの軸心ズレ)が発生している場合であっても、シートリングがバルブに倣って(調芯されて)、バルブがシートリングのシート面に正規の位置で(つまり片当たりすることなく)着座する。これにより、バルブの全閉時に、バルブのシール面とシートリングのシート面とを密着させることが可能となるので、流体流路を確実に閉鎖(シール)することができる。
また、バルブを開弁する際に、押圧付勢手段のラジアル方向の分力でシートリングを斜めに押圧付勢することにより、シートリングがラジアル方向に自由度を持って暴れるのを防いで、バルブとシートリングとのシート部分(シートリングのシート面)が擦れて偏摩耗することを防ぐことができる。これにより、シール性能が損なわれるのを防ぐことができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
なお、バルブのシール面およびシートリングのシート面の曲率中心点を、流体流路を流通する流体流れの中心軸線上に設けても良い。
また、ラジアル方向の分力とは、流体流路を流通する流体流れの軸方向およびその軸方向に対して直交する半径方向(垂直方向)の内径側に作用する力(荷重)のことである。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
なお、バルブのシール面およびシートリングのシート面の曲率中心点を、流体流路を流通する流体流れの中心軸線上に設けても良い。
また、ラジアル方向の分力とは、流体流路を流通する流体流れの軸方向およびその軸方向に対して直交する半径方向(垂直方向)の内径側に作用する力(荷重)のことである。
請求項2に記載の発明によれば、シートリングは、流体流路を流通する流体流れの軸方向およびその軸方向に対して直交する垂直方向に移動自在に設置されている。
請求項3に記載の発明によれば、バルブは、シートリングのシート面に対して着座、離脱して流体流路を閉鎖、開放するように構成されている。
請求項4に記載の発明によれば、押圧付勢手段は、バルブとシートリングとを密着させる方向に、シートリングを押圧付勢する押圧付勢部材を有している。
請求項5に記載の発明によれば、押圧付勢手段は、バルブのシール面側にシートリングを押圧付勢する押圧付勢部材を有している。
請求項3に記載の発明によれば、バルブは、シートリングのシート面に対して着座、離脱して流体流路を閉鎖、開放するように構成されている。
請求項4に記載の発明によれば、押圧付勢手段は、バルブとシートリングとを密着させる方向に、シートリングを押圧付勢する押圧付勢部材を有している。
請求項5に記載の発明によれば、押圧付勢手段は、バルブのシール面側にシートリングを押圧付勢する押圧付勢部材を有している。
請求項6に記載の発明によれば、シートリングは、シート面側に対して流体流路を流通する流体流れの軸方向の反対側に当接面を設けている。
請求項7に記載の発明によれば、シートリングの当接面は、流体流路を流通する流体流れの軸方向に対して所定の傾斜角度分だけシート面側に向けて上り勾配となるように傾斜した傾斜面で構成されている。
請求項8に記載の発明によれば、シートリングの当接面は、バルブのシール面と同一曲率中心点で、且つシール面およびシート面の曲率半径よりも大きい曲率半径を持つ球面の一部で構成されている。
これによって、シートリングの当接面を、バルブのシール面およびシートリングのシート面と同一曲率中心の球面の一部で構成したことにより、シートリングを、バルブのシール面とシートリングのシート面との摺動範囲内で自由に摺動させることができるので、バルブの位置ズレ(バルブの軸心ズレ)に対するシートリングの追従性を高めることができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。
請求項7に記載の発明によれば、シートリングの当接面は、流体流路を流通する流体流れの軸方向に対して所定の傾斜角度分だけシート面側に向けて上り勾配となるように傾斜した傾斜面で構成されている。
請求項8に記載の発明によれば、シートリングの当接面は、バルブのシール面と同一曲率中心点で、且つシール面およびシート面の曲率半径よりも大きい曲率半径を持つ球面の一部で構成されている。
これによって、シートリングの当接面を、バルブのシール面およびシートリングのシート面と同一曲率中心の球面の一部で構成したことにより、シートリングを、バルブのシール面とシートリングのシート面との摺動範囲内で自由に摺動させることができるので、バルブの位置ズレ(バルブの軸心ズレ)に対するシートリングの追従性を高めることができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。
請求項9に記載の発明によれば、押圧付勢手段は、シートリングの当接面に当接してシートリングを押圧付勢する板ばね(押圧付勢部材)を有している。すなわち、押圧付勢手段は、シートリングに設けられる当接面(傾斜面または球面の一部)と、この当接面に当接して(バルブとシートリングとを密着させる方向に、あるいはバルブのシール面側に)シートリングを(斜めに)押圧付勢する板ばねとによって構成されている。
これによって、バルブを開弁する際に、板ばねのラジアル方向の分力でシートリングを斜めに押圧付勢することにより、シートリングがラジアル方向に自由度を持って暴れるのを防いで、バルブとシートリングとのシート部分(シートリングのシート面)が擦れて偏摩耗することを防ぐことができる。これにより、シール性能が損なわれるのを防ぐことができる。
これによって、バルブを開弁する際に、板ばねのラジアル方向の分力でシートリングを斜めに押圧付勢することにより、シートリングがラジアル方向に自由度を持って暴れるのを防いで、バルブとシートリングとのシート部分(シートリングのシート面)が擦れて偏摩耗することを防ぐことができる。これにより、シール性能が損なわれるのを防ぐことができる。
請求項10に記載の発明によれば、シートリングは、シート面側に対して流体流路を流通する流体流れの軸方向の反対側に係止部を設けている。
請求項11に記載の発明によれば、押圧付勢手段は、シートリングの係止部に係止されて(バルブとシートリングとを密着させる方向に、あるいはバルブのシール面側に)シートリングを(斜めに)押圧付勢する円錐スプリング(押圧付勢部材)を設けている。
これによって、バルブ全閉時に、流体流路を流通する流体流れの中心軸線(流体流路の中心)に対してバルブの位置ズレ(バルブの軸心ズレ)が発生している場合であっても、シートリングがバルブに倣って(調芯されて)、バルブがシートリングのシール面に正規の位置で(つまり片当たりすることなく)着座する。これにより、バルブの全閉時に、バルブのシール面とシートリングのシート面とを密着させることが可能となるので、流体流路を確実に閉鎖(シール)することができる。
請求項11に記載の発明によれば、押圧付勢手段は、シートリングの係止部に係止されて(バルブとシートリングとを密着させる方向に、あるいはバルブのシール面側に)シートリングを(斜めに)押圧付勢する円錐スプリング(押圧付勢部材)を設けている。
これによって、バルブ全閉時に、流体流路を流通する流体流れの中心軸線(流体流路の中心)に対してバルブの位置ズレ(バルブの軸心ズレ)が発生している場合であっても、シートリングがバルブに倣って(調芯されて)、バルブがシートリングのシール面に正規の位置で(つまり片当たりすることなく)着座する。これにより、バルブの全閉時に、バルブのシール面とシートリングのシート面とを密着させることが可能となるので、流体流路を確実に閉鎖(シール)することができる。
また、バルブを開弁する際に、円錐スプリングの付勢力(弾性力または復元力)でシートリングを斜めに押圧付勢することにより、シートリングがラジアル方向に自由度を持って暴れるのを防いで、バルブとシートリングとのシート部分(シートリングのシート面)が擦れて偏摩耗することを防ぐことができる。これにより、シール性能が損なわれるのを防ぐことができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
請求項12に記載の発明によれば、シートリングは、シート面側に対して流体流路を流通する流体流れの軸方向の反対側に、流体流路を流通する流体流れの軸方向に対して、所定の傾斜角度分だけシート面側に向けて上り勾配となるように傾斜した傾斜面を設けている。
請求項13に記載の発明によれば、押圧付勢手段は、シートリングの傾斜面に当接して(バルブとシートリングとを密着させる方向に、あるいはバルブのシール面側に)シートリングを(斜めに)押圧付勢する(環状の)ゴム弾性体(押圧付勢部材:例えば合成ゴム製のOリング等)を設けている。
これによって、バルブ全閉時に、流体流路を流通する流体流れの中心軸線(流体流路の中心)に対してバルブの位置ズレ(バルブの軸心ズレ)が発生している場合であっても、シートリングがバルブに倣って(調芯されて)、バルブがシートリングのシール面に正規の位置で(つまり片当たりすることなく)着座する。これにより、バルブの全閉時に、バルブのシール面とシートリングのシート面とを密着させることが可能となるので、流体流路を確実に閉鎖(シール)することができる。
請求項13に記載の発明によれば、押圧付勢手段は、シートリングの傾斜面に当接して(バルブとシートリングとを密着させる方向に、あるいはバルブのシール面側に)シートリングを(斜めに)押圧付勢する(環状の)ゴム弾性体(押圧付勢部材:例えば合成ゴム製のOリング等)を設けている。
これによって、バルブ全閉時に、流体流路を流通する流体流れの中心軸線(流体流路の中心)に対してバルブの位置ズレ(バルブの軸心ズレ)が発生している場合であっても、シートリングがバルブに倣って(調芯されて)、バルブがシートリングのシール面に正規の位置で(つまり片当たりすることなく)着座する。これにより、バルブの全閉時に、バルブのシール面とシートリングのシート面とを密着させることが可能となるので、流体流路を確実に閉鎖(シール)することができる。
また、バルブを開弁する際に、ゴム弾性体のラジアル方向の分力でシートリングを斜めに押圧付勢することにより、シートリングがラジアル方向に自由度を持って暴れるのを防いで、バルブとシートリングとのシート部分(シートリングのシート面)が擦れて偏摩耗することを防ぐことができる。これにより、シール性能が損なわれるのを防ぐことができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブの全閉時においてシートリングのシート面における偏摩耗により生じる隙間から流体が洩れ出すことはなく、バルブの全閉時における流体洩れ流量の増加を防止することができる。
請求項14に記載の発明によれば、流体制御弁は、ハウジングとシートリングとの間の隙間をシールすると共に、流体流路を流通する流体流れの軸方向に対して直交する径方向に弾性変形可能な環状のシール部材を備えている。
これによって、シール部材の弾性力をハウジングとシートリングとの間の隙間をシールすることが可能な最小限の弾性力にした場合であっても、押圧付勢手段(押圧付勢部材)の力のみで、流体流路を流通する流体流れの軸方向(スラスト方向)にも、また、流体流路を流通する流体流れの軸方向に対して直交する半径方向(ラジアル方向)にもシートリングを押圧付勢することができるので、請求項1に記載の発明の作用及び効果を達成できる。
これによって、シール部材の弾性力をハウジングとシートリングとの間の隙間をシールすることが可能な最小限の弾性力にした場合であっても、押圧付勢手段(押圧付勢部材)の力のみで、流体流路を流通する流体流れの軸方向(スラスト方向)にも、また、流体流路を流通する流体流れの軸方向に対して直交する半径方向(ラジアル方向)にもシートリングを押圧付勢することができるので、請求項1に記載の発明の作用及び効果を達成できる。
請求項15に記載の発明によれば、ハウジングには、シートリングの周囲を周方向に取り囲む周壁が設けられている。シートリングには、ハウジングの周壁の壁面に対向する対向面が設けられている。シール部材は、ハウジングの周壁の壁面(内周面)とシートリングの対向面(外周面)との間の環状隙間をシールするように構成されている。
これによって、シール部材の弾性力をハウジングの周壁の壁面(内周面)とシートリングの対向面(外周面)との間の隙間をシールすることが可能な最小限の弾性力にした場合であっても、押圧付勢手段(押圧付勢部材)の力のみで、スラスト方向にも、また、ラジアル方向にもシートリングを押圧付勢することができるので、請求項1に記載の発明の作用及び効果を達成できる。
請求項16に記載の発明によれば、シール部材には、ハウジングの周壁の壁面に弾性接触する環状の外周部、およびシートリングの対向面に弾性接触する環状の内周部が設けられている。
これによって、シール部材の弾性力をハウジングの周壁の壁面(内周面)とシートリングの対向面(外周面)との間の隙間をシールすることが可能な最小限の弾性力にした場合であっても、押圧付勢手段(押圧付勢部材)の力のみで、スラスト方向にも、また、ラジアル方向にもシートリングを押圧付勢することができるので、請求項1に記載の発明の作用及び効果を達成できる。
請求項16に記載の発明によれば、シール部材には、ハウジングの周壁の壁面に弾性接触する環状の外周部、およびシートリングの対向面に弾性接触する環状の内周部が設けられている。
以下、本発明の実施の形態を、図面に基づいて詳細に説明する。
本発明は、シートリングがラジアル方向に自由度を持って暴れて、シートリングのシート面が擦れて偏摩耗することを防いで、シール性能が損なわれることを防ぐという目的、また、シール性能が損なわれることなく、十分なシール性能を発揮するという目的を、流体流路を流通する流体流れの軸方向に対してバルブのシール面の曲率中心側に傾斜する(傾斜)方向に向けて、つまりスラスト方向にも、また、ラジアル方向にもシートリングを押圧付勢する押圧付勢部材を設けることで実現した。
本発明は、シートリングがラジアル方向に自由度を持って暴れて、シートリングのシート面が擦れて偏摩耗することを防いで、シール性能が損なわれることを防ぐという目的、また、シール性能が損なわれることなく、十分なシール性能を発揮するという目的を、流体流路を流通する流体流れの軸方向に対してバルブのシール面の曲率中心側に傾斜する(傾斜)方向に向けて、つまりスラスト方向にも、また、ラジアル方向にもシートリングを押圧付勢する押圧付勢部材を設けることで実現した。
[実施例1の構成]
図1ないし図3は本発明の実施例1を示したもので、図1はEGRガス流量制御弁を示した図で、図2はEGRガス流量制御弁の全閉状態を示した図である。
図1ないし図3は本発明の実施例1を示したもので、図1はEGRガス流量制御弁を示した図で、図2はEGRガス流量制御弁の全閉状態を示した図である。
本実施例の内燃機関の制御装置(エンジン制御システム)は、複数の気筒(例えば第1〜第4気筒)を有する内燃機関(エンジン)の各気筒毎の燃焼室より流出した排気ガスの一部であるEGRガスを排気管から吸気管に再循環(還流)させる排気ガス循環装置(内燃機関のEGR制御装置:以下EGRシステムと言う)と、このEGRシステムを燃料噴射装置等の各システムと関連して制御するエンジン制御ユニット(ECU)とを備えている。
ここで、ECUには、制御処理や演算処理を行うCPU、制御プログラムまたは制御ロジックや各種データを保存する記憶装置(ROMやRAM等のメモリ)等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。このECUは、後述するバルブ開度センサより出力される電気信号(EGRV開度信号)を含む、クランク角度センサ、アクセル開度センサ、エアフロメータ、吸気温度センサおよび冷却水温度センサ等の各種センサからのセンサ出力信号が、A/D変換器によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。このマイクロコンピュータは、バルブ開度センサより出力される電気信号(EGRV開度信号)に基づいて、エンジンの吸気管に還流するEGRガスの流量を計測(算出)し、この算出したEGRガスの流量を各種エンジン制御に使用する。
エンジンは、燃料が直接燃焼室内に噴射供給される直接噴射式のディーゼルエンジンが採用されている。このエンジンには、吸気管および排気管が接続されている。
吸気管の内部には、エンジンの各気筒毎の燃焼室に吸入空気を供給するための吸気通路が形成されている。吸気管は、排気通路から導入されたEGRガスを、エアクリーナで濾過された清浄な外気(新規吸入空気:新気)に合流させるEGRガス合流部を備えている。排気管の内部には、エンジンの各気筒毎の燃焼室より流出する排気ガスを排気浄化装置を経由して外部に排出するための排気通路が形成されている。排気管は、EGRガスをEGRシステムへ分岐させるEGRガス分岐部を備えている。
吸気管の内部には、エンジンの各気筒毎の燃焼室に吸入空気を供給するための吸気通路が形成されている。吸気管は、排気通路から導入されたEGRガスを、エアクリーナで濾過された清浄な外気(新規吸入空気:新気)に合流させるEGRガス合流部を備えている。排気管の内部には、エンジンの各気筒毎の燃焼室より流出する排気ガスを排気浄化装置を経由して外部に排出するための排気通路が形成されている。排気管は、EGRガスをEGRシステムへ分岐させるEGRガス分岐部を備えている。
本実施例のEGRシステムは、EGRガスパイプ、EGRガス流量制御弁を備えている。このEGRシステムは、EGRガス流量制御弁が開弁している時、エンジンより流出した排気ガス(エンジンの排出ガス)の一部が、EGRガスパイプを経由し、EGRガスとして吸気通路へ戻される。
EGRガスパイプは、エンジンの排気ガスを排気通路から吸気通路へ還流させる排気ガス還流管(EGRパイプ)である。このEGRガスパイプの内部には、排気ガス流路(EGRガス流路)が形成されている。
EGRガスパイプは、エンジンの排気ガスを排気通路から吸気通路へ還流させる排気ガス還流管(EGRパイプ)である。このEGRガスパイプの内部には、排気ガス流路(EGRガス流路)が形成されている。
EGRガス流量制御弁は、EGRガスパイプの途中に設置されている。このEGRガス流量制御弁は、EGRガス流路の開口面積を変更することで、EGRガス流路を経由して排気通路から吸気通路へ再循環(還流)されるEGRガスの流量(EGRガス量)を可変制御する排気ガス流量制御弁である。
EGRガス流量制御弁は、EGRガスパイプの途中に結合されるハウジング1と、このハウジング1に回転自在に支持されるシャフト2と、このシャフト2に支持固定されるバルブ3と、ハウジング1に対して弾性支持されるシートリング4と、ハウジング1の内周面とシートリング4の外周面との間の環状隙間を気密的にシールするリップシール(シール部材)5と、バルブ3のバルブシール面とシートリング4のバルブシート面とを密着させる方向に、シートリング4を押圧付勢する押圧付勢手段とを備え、バルブ3の回転軸に対して、バルブ3のバルブシール面とシートリング4のバルブシート面とのシール位置が所定の距離分だけ偏心した流体制御弁(ボールバルブ)である。
ここで、本実施例の押圧付勢手段は、図1ないし図3に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面(球面の一部)の曲率中心側に傾斜する傾斜方向に向けてシートリング4を斜めに押圧付勢する板スプリング(押圧付勢部材)6と、この板スプリング6の脱落を防止するプラグ9とによって構成されている。
本実施例のハウジング1は、耐熱性の金属により形成されており、このハウジング1の前後(上流側および下流側)に配置される両側のEGRガスパイプに締結ボルトを用いて締め付け固定されている。このハウジング1は、シャフト2およびバルブ3を全閉位置から全開位置に至るまで回転方向に開閉自在(回転自在)に保持するバルブボディ(装置)である。
ハウジング1の外壁部には、円筒状のブロック11、12が一体的に形成されている。ブロック11には、センサカバー13との間に空間(アクチュエータ収容空間)を形成するケーシング14が一体的に形成されている。
ブロック11は、ベアリング15を介して、シャフト2の回転軸方向の一端部を回転自在に支持している。
ブロック12は、ベアリング16を介して、シャフト2の回転軸方向の他端部を回転自在に支持している。
ハウジング1の外壁部には、円筒状のブロック11、12が一体的に形成されている。ブロック11には、センサカバー13との間に空間(アクチュエータ収容空間)を形成するケーシング14が一体的に形成されている。
ブロック11は、ベアリング15を介して、シャフト2の回転軸方向の一端部を回転自在に支持している。
ブロック12は、ベアリング16を介して、シャフト2の回転軸方向の他端部を回転自在に支持している。
センサカバー13およびケーシング14には、シャフト2の回転軸方向の一端部に固定される最終減速ギヤ17、この最終減速ギヤ17の周囲に螺旋状に巻装されるコイルスプリング18、磁力を発生するマグネット(永久磁石)19、およびこのマグネット19の磁力(または磁束)を検出する非接触式の磁気検出素子を有するホールIC20等が搭載されている。
センサカバー13には、ホールIC20およびヨーク(磁性体)を保持するセンサ搭載部が設けられている。
ケーシング14には、ブロック状の全閉側ストッパまたはブロック状の全開側ストッパが設けられている。そして、全閉側ストッパまたは全開側ストッパには、全閉側ストッパ部材または全開側ストッパ部材が捩じ込まれている。
センサカバー13には、ホールIC20およびヨーク(磁性体)を保持するセンサ搭載部が設けられている。
ケーシング14には、ブロック状の全閉側ストッパまたはブロック状の全開側ストッパが設けられている。そして、全閉側ストッパまたは全開側ストッパには、全閉側ストッパ部材または全開側ストッパ部材が捩じ込まれている。
ハウジング1は、EGRガス流の中心軸線方向(スラスト方向)に真っ直ぐに延びる2つの円筒状の第1、第2流路管部(第1、第2ブロック、第1、第2中継パイプ)21、22を有している。これらの第1、第2中継パイプ21、22間には、環状段差23が設けられている。
第1中継パイプ21は、エンジンの排気通路(EGRガス分岐部)から排気管側のEGRガスパイプ(EGRガス流路)を経由してハウジング1の内部流路にEGRガスを導入するためのEGR導入(EGR入口)ポート24が、第1中継パイプ21の上流端面(開口端面)で開口している。なお、第1中継パイプ21の内周面(ハウジング1の内周壁面)は、シートリング4の中心軸線上に設けられる曲率中心点を中心にした曲率半径を有する凹曲面である。
第1中継パイプ21は、エンジンの排気通路(EGRガス分岐部)から排気管側のEGRガスパイプ(EGRガス流路)を経由してハウジング1の内部流路にEGRガスを導入するためのEGR導入(EGR入口)ポート24が、第1中継パイプ21の上流端面(開口端面)で開口している。なお、第1中継パイプ21の内周面(ハウジング1の内周壁面)は、シートリング4の中心軸線上に設けられる曲率中心点を中心にした曲率半径を有する凹曲面である。
また、第1中継パイプ21の内部には、シートリング4およびリップシール5を収容するシートリング収納空間25が形成されている。つまり第1中継パイプ21は、シートリング4の周囲を円周方向に取り囲む周壁(ハウジングの周壁)を構成している。
シートリング収納空間25よりもEGRガス流方向の上流側(EGR導入ポート24側)の第1中継パイプ21の内周部には、プラグ9の外周部を圧入固定するプラグ保持部(圧入部)26、プラグ9のスラスト方向の位置を規制するプラグ係止部(環状段差)27、プラグ9との間に板スプリング6を挟み込むことで板スプリング6を係止するスプリング係止部(環状段差)28、および板スプリング6の外周部を圧入固定するスプリング保持部(圧入部、第1中継パイプ21の凹曲面)が設けられている。
シートリング収納空間25よりもEGRガス流方向の上流側(EGR導入ポート24側)の第1中継パイプ21の内周部には、プラグ9の外周部を圧入固定するプラグ保持部(圧入部)26、プラグ9のスラスト方向の位置を規制するプラグ係止部(環状段差)27、プラグ9との間に板スプリング6を挟み込むことで板スプリング6を係止するスプリング係止部(環状段差)28、および板スプリング6の外周部を圧入固定するスプリング保持部(圧入部、第1中継パイプ21の凹曲面)が設けられている。
第2中継パイプ22は、ハウジング1の内部流路から吸気管側のEGRガスパイプ(EGRガス流路)を経由してエンジンの吸気通路(EGRガス合流部)にEGRガスを導出するためのEGR導出(EGR出口)ポート29が、第2中継パイプ22の下流端面(開口端面)で開口している。
なお、環状段差23よりもEGR導入ポート24側の第1中継パイプ21の内径は、環状段差23よりもEGR導出ポート29側の第2中継パイプ22の内径よりも大きくなっている。
なお、環状段差23よりもEGR導入ポート24側の第1中継パイプ21の内径は、環状段差23よりもEGR導出ポート29側の第2中継パイプ22の内径よりも大きくなっている。
ハウジング1、つまり第1、第2中継パイプ21、22の内部には、EGRガス流路31〜35が形成されている。EGRガス流路31〜35は、EGRガス分岐部からEGRガス合流部へEGRガスを還流させるEGRガス流路(ハウジング1の内部流路、流体流路)である。
EGRガス流路31は、プラグ9の内部に形成されている。EGRガス流路32は、第1中継パイプ21の内部空間のうちでシートリング収納空間25のEGR導入ポート側に設けられている。EGRガス流路33は、シートリング4の内部に形成されている。EGRガス流路34は、シートリング4の内部、特にバルブシート面内に形成されており、EGRガス流量制御弁の弁孔を構成する。EGRガス流路35は、第1、第2中継パイプ21、22の内部空間を跨がるように、シートリング収納空間25よりもEGRガス流方向の下流側(EGR導出ポート側)に設けられている。
EGRガス流路31は、プラグ9の内部に形成されている。EGRガス流路32は、第1中継パイプ21の内部空間のうちでシートリング収納空間25のEGR導入ポート側に設けられている。EGRガス流路33は、シートリング4の内部に形成されている。EGRガス流路34は、シートリング4の内部、特にバルブシート面内に形成されており、EGRガス流量制御弁の弁孔を構成する。EGRガス流路35は、第1、第2中継パイプ21、22の内部空間を跨がるように、シートリング収納空間25よりもEGRガス流方向の下流側(EGR導出ポート側)に設けられている。
ハウジング1には、EGRガス流路31〜35を流通するEGRガス流の軸方向(スラスト方向)に対して直交する垂直方向(シャフト2に平行なバルブ3の回転軸方向)に貫通して延びるシャフト貫通孔36、37が形成されている。なお、ハウジング1に形成されるシャフト貫通孔37の開口部は、プラグ38により気密的に塞がれている。
ハウジング1のシャフト貫通孔36の孔壁面には、シャフト2の回転軸方向の一端部を回転自在に軸支する軸受け部材(ベアリング15等)が嵌合保持されている。また、ハウジング1のシャフト貫通孔37の孔壁面には、シャフト2の回転軸方向の他端部を回転自在に軸支する軸受け部材(ベアリング16等)が嵌合保持されている。
ハウジング1のシャフト貫通孔36の孔壁面には、シャフト2の回転軸方向の一端部を回転自在に軸支する軸受け部材(ベアリング15等)が嵌合保持されている。また、ハウジング1のシャフト貫通孔37の孔壁面には、シャフト2の回転軸方向の他端部を回転自在に軸支する軸受け部材(ベアリング16等)が嵌合保持されている。
本実施例のシャフト2は、耐熱性の金属により形成されており、EGRガス流路35およびシャフト貫通孔36、37を貫通して真っ直ぐに延設されている。このシャフト2は、EGRガス流の軸方向に対して直交する垂直方向で、且つバルブ3の回転軸方向に真っ直ぐに延びるように設置されている。
シャフト2の回転軸方向の一端部は、ベアリング15を介して、ハウジング1に回転自在に支持されている。また、シャフト2の回転軸方向の他端部は、ベアリング16を介して、ハウジング1に回転自在に支持されている。
また、シャフト2の回転軸方向の一端側(センサカバー側)には、最終減速ギヤ17の内周部にインサート成形されたバルブギヤプレート39がかしめ等の固定手段によって固定されている。つまり、シャフト2には、最終減速ギヤ17が組み付けられている。
シャフト2の回転軸方向の一端部は、ベアリング15を介して、ハウジング1に回転自在に支持されている。また、シャフト2の回転軸方向の他端部は、ベアリング16を介して、ハウジング1に回転自在に支持されている。
また、シャフト2の回転軸方向の一端側(センサカバー側)には、最終減速ギヤ17の内周部にインサート成形されたバルブギヤプレート39がかしめ等の固定手段によって固定されている。つまり、シャフト2には、最終減速ギヤ17が組み付けられている。
そして、シャフト2の回転軸方向の中央部付近には、シャフト2の円周方向の一部が平面カットされた2つの平面部41、42、およびこれらの平面部41、42を連通するように貫通する2つの挿通孔43が形成されている。そして、シャフト2の平面部(バルブ固定部)41には、締結ネジ等のスクリュー44を用いてバルブ3が締め付け固定されている。
ここで、バルブ3には、2つの挿通孔43に連通するようにバルブ3の板厚方向に貫通する2つのネジ孔45が形成されている。スクリュー44は、平面部42側から2つの挿通孔43を貫通して、2つのネジ孔45に捩じ込まれている。
本実施例では、シャフト2に挿通孔43を設け、また、バルブ3にネジ孔45を設けたが、シャフト2にスクリュー44が螺合するネジ孔を設け、また、バルブ3に挿通孔を設けても良い。
ここで、バルブ3には、2つの挿通孔43に連通するようにバルブ3の板厚方向に貫通する2つのネジ孔45が形成されている。スクリュー44は、平面部42側から2つの挿通孔43を貫通して、2つのネジ孔45に捩じ込まれている。
本実施例では、シャフト2に挿通孔43を設け、また、バルブ3にネジ孔45を設けたが、シャフト2にスクリュー44が螺合するネジ孔を設け、また、バルブ3に挿通孔を設けても良い。
ここで、本実施例のEGRガス流量制御弁は、シャフト2を介して、バルブ3を駆動するアクチュエータを備えている。
アクチュエータは、電力の供給を受けて駆動力を発生するモータ、およびこのモータの駆動力をシャフト2に伝達する動力伝達機構(歯車減速機構)等を有している。
EGRガス流量制御弁の弁体であるバルブ3を駆動するモータは、ECUによって電子制御されるモータ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
アクチュエータは、電力の供給を受けて駆動力を発生するモータ、およびこのモータの駆動力をシャフト2に伝達する動力伝達機構(歯車減速機構)等を有している。
EGRガス流量制御弁の弁体であるバルブ3を駆動するモータは、ECUによって電子制御されるモータ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
歯車減速機構は、モータのモータシャフト(出力軸)に固定されたモータギヤ、このモータギヤに噛み合う中間減速ギヤ、およびこの中間減速ギヤに噛み合う最終減速ギヤ17を有している。この最終減速ギヤ17は、合成樹脂により形成されており、シャフト2の回転軸方向の一端に固定されている。この最終減速ギヤ17の内周部には、金属よりなるバルブギヤプレート39がインサート成形されている。また、最終減速ギヤ17の外周部には、中間減速ギヤと噛み合う複数の凸状歯(ギヤ部)46が形成されている。
また、ハウジング1のブロック11および最終減速ギヤ17には、コイルスプリング18が螺旋状に巻装されている。
また、ハウジング1のブロック11および最終減速ギヤ17には、コイルスプリング18が螺旋状に巻装されている。
ここで、ハウジング1のケーシング14の開口部を塞ぐセンサカバー13およびシャフト2に固定される最終減速ギヤ17には、バルブ3の回転角度(EGRガス流量制御弁のバルブ開度)を検出するバルブ開度センサが搭載されている。
バルブ開度センサは、最終減速ギヤ17の内周部に取り付けられる一対のマグネット(永久磁石)19と、センサカバー13のセンサ搭載部にヨークと共に取り付けられるホールIC20とを備え、マグネット19の回転角度に対するホールIC20の出力変化特性を利用してバルブ3の回転角度を検出する非接触式の回転角度検出装置である。
なお、ホールIC20の代わりに、ホール素子単体、磁気抵抗素子等の非接触式の磁気検出素子を用いても良い。
バルブ開度センサは、最終減速ギヤ17の内周部に取り付けられる一対のマグネット(永久磁石)19と、センサカバー13のセンサ搭載部にヨークと共に取り付けられるホールIC20とを備え、マグネット19の回転角度に対するホールIC20の出力変化特性を利用してバルブ3の回転角度を検出する非接触式の回転角度検出装置である。
なお、ホールIC20の代わりに、ホール素子単体、磁気抵抗素子等の非接触式の磁気検出素子を用いても良い。
バルブ3は、耐熱性の金属により円板形状に形成されており、シャフト2の平面部41にスクリュー44を用いて締め付け固定されている。このバルブ3は、シートリング4のバルブシート面に対して着座、離脱してEGRガス流路31〜35を閉鎖、開放する回転型のプレートバルブ(バタフライバルブ)である。また、バルブ3は、円形状のバルブプレートにより構成されており、ハウジング1の内部流路(EGRガス流路31〜35)に開閉自在(回転自在)に設置(収容)されている。
バルブ3は、ハウジング1の内部流路(EGRガス流路31〜35)を流通するEGRガス流(流体流れ)の中心軸線上に設けられる曲率中心点(EGRガス流の中心軸線とシャフト2およびバルブ3の回転中心軸線との交点)を中心とした曲率半径を持つ球面の一部で構成される凸曲面形状のバルブシール面(バルブ外周面、凸曲面)51を有している。このバルブシール面51は、バルブ3によりEGRガス流路31〜35を全閉した際にシートリング4のバルブシート面52に密着する。そして、バルブ3のバルブシール面51とシートリング4のバルブシート面52とが密着すると、ハウジング1内に形成されるEGRガス流路31〜35が閉鎖される。また、バルブ3のバルブシール面51がシートリング4のバルブシート面52から離脱すると、EGRガス流路31〜35が開放される。
バルブ3は、エンジン運転時に、ECUからの制御信号に基づいて、EGRガス流路31〜35、特にEGRガス流路33〜35を全閉する全閉位置から、EGRガス流路31〜35を全開する全開位置に至るまでのバルブ作動範囲で、シャフト2、バルブ3の回転軸を中心にして回転動作(アクチュエータにより回転駆動)される。これにより、EGRガス流路31〜35、特にEGRガス流路33〜35の開口面積(排気ガス流通面積)が変更されるので、排気ガス流量(EGRガス流量、EGR量)が調整される。
なお、バルブ3の全閉時には、バルブ3のバルブシール面51がシートリング4のバルブシート面52に着座することで、EGRガス流路31〜35を閉鎖(全閉)する全閉位置(全閉開度の状態)に設定される。また、バルブ3の全開時には、バルブ3のバルブシール面51がシートリング4のバルブシート面52より離脱(離座)することで、EGRガス流路31〜35を全開する全開位置(全開開度の状態)に設定される。また、バルブ3は、エンジン運転状況に応じて全閉位置と全開位置との中間の中間開度に設定される。
シートリング4は、耐熱性の金属または耐熱性の合成樹脂により円筒形状に形成されており、ハウジング1の内部において、EGRガス流路31〜35を流通するEGRガス流の軸方向(スラスト方向)の上流側および下流側に移動自在に設置されている。このシートリング4は、ハウジング1の内部において、スラスト方向に対して直交する垂直方向の内側および外側(ラジアル方向の内径側および外径側)に移動自在に設置されている。
シートリング4は、EGRガス流路33、34の周囲を円周方向に取り囲むように設置された円筒状のノズル(円筒部)を有している。
シートリング4は、EGRガス流路33、34の周囲を円周方向に取り囲むように設置された円筒状のノズル(円筒部)を有している。
シートリング4は、その円筒部のスラスト方向の下流側の内周部(開口端面)に、バルブ3を全閉した際にバルブ3のバルブシール面51が着座(密着)する凹曲面形状のバルブシート面(凹曲面)52を有している。このバルブシート面52は、バルブ3のバルブシール面51と同一曲率中心点で、且つバルブシール面51と同一曲率半径または僅かに大きい曲率半径を持つ球面の一部で構成されている。
また、シートリング4の円筒部の内部には、EGRガス流路33、34が形成されている。このEGRガス流路33、34は、EGR導入ポート24側のEGRガス流路32とEGR導出ポート29側のEGRガス流路35とを連通する。特にEGRガス流路34は、バルブシート面52の内部に形成されている。
また、シートリング4の円筒部の内部には、EGRガス流路33、34が形成されている。このEGRガス流路33、34は、EGR導入ポート24側のEGRガス流路32とEGR導出ポート29側のEGRガス流路35とを連通する。特にEGRガス流路34は、バルブシート面52の内部に形成されている。
また、シートリング4の円筒部の外周部には、ハウジング1の内周壁面(第1中継パイプ21の凹曲面)との間に、リップシール5を収容する円環状の周方向溝(リップシール収納凹部)53が設けられている。このリップシール収納凹部53は、シートリング4の半径方向(ラジアル方向)の外側に開口部を有し、この開口側から奥側(シートリング4のラジアル方向の内側)まで延びるリング溝である。また、リップシール収納凹部53の奥側には、リップシール5のゴムリップ59が当接(接触)する底面が形成されている。 この底面は、シートリング4の中心軸線上に設けられる曲率中心点(第1中継パイプ21の凹曲面と同一の曲率中心点)を中心にした曲率半径を有する凸曲面である。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、板スプリング6の弾性接触部が当接する当接面を有している。このシートリング4の当接面には、板スプリング6の弾性接触部が当接する傾斜面(板スプリング6の弾性接触部が弾性接触するスプリング当接面)54が設けられている。
このシートリング4の傾斜面54は、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側(スラスト方向の下流側)に向けて上り勾配となるように傾斜した円錐台筒状のテーパ面で構成されている。
なお、傾斜面54は、板スプリング6の各弾性接触片63からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)として機能する。
このシートリング4の傾斜面54は、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側(スラスト方向の下流側)に向けて上り勾配となるように傾斜した円錐台筒状のテーパ面で構成されている。
なお、傾斜面54は、板スプリング6の各弾性接触片63からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)として機能する。
リップシール5は、合成ゴム等のゴム弾性体によって二重円筒状(U字状)に形成されている。このリップシール5は、ハウジング1の第1中継パイプ21の凹曲面(ハウジング1の周壁の壁面、内周面)とシートリング4の外周面(リップシール収納凹部53の底面)との間の環状隙間を気密的にシールするように構成されている。また、リップシール5は、EGRガス流の軸方向(スラスト方向)に対して直交する半径方向(ラジアル方向)に弾性変形可能な環状の弾性シール部材を構成している。
リップシール5は、断面横U字状に連結されるゴムリップ58、59を有している。
リップシール5は、断面横U字状に連結されるゴムリップ58、59を有している。
リップシール5のゴムリップ58は、ハウジング1の第1中継パイプ21の凹曲面に圧入される円環状の外周部(外周シール部、外周弾性接触部)である。このゴムリップ58は、ハウジング1の第1中継パイプ21の凹曲面に弾性接触する。また、ゴムリップ58は、リップシール5を環状隙間に装着した際にラジアル方向に弾性的に圧縮される。
リップシール5のゴムリップ59は、シートリング4をラジアル(半径)方向に弾性支持(フローティング支持)する円環状の内周部(内周シール部、内周弾性接触部)である。このゴムリップ59は、シートリング4の外周面(リップシール収納凹部53の底面)に弾性接触する。また、ゴムリップ59は、リップシール5を環状隙間に装着した際にラジアル方向に弾性的に圧縮される。なお、シートリング4のリップシール収納凹部53の底面は、ハウジング1の第1中継パイプ21の凹曲面との間に環状隙間を隔てて対向する対向面(凸曲面)を構成している。
そして、リップシール5は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4のリップシール収納凹部53の凸曲面との間に挟み込まれることで、ゴムリップ58、59に一定の圧縮変形が与えられた状態で使用される。
リップシール5のゴムリップ59は、シートリング4をラジアル(半径)方向に弾性支持(フローティング支持)する円環状の内周部(内周シール部、内周弾性接触部)である。このゴムリップ59は、シートリング4の外周面(リップシール収納凹部53の底面)に弾性接触する。また、ゴムリップ59は、リップシール5を環状隙間に装着した際にラジアル方向に弾性的に圧縮される。なお、シートリング4のリップシール収納凹部53の底面は、ハウジング1の第1中継パイプ21の凹曲面との間に環状隙間を隔てて対向する対向面(凸曲面)を構成している。
そして、リップシール5は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4のリップシール収納凹部53の凸曲面との間に挟み込まれることで、ゴムリップ58、59に一定の圧縮変形が与えられた状態で使用される。
板スプリング6は、耐熱性の金属により形成されている。この板スプリング6は、バルブ3とシートリング4とを密着させる方向に、シートリング4をスラスト方向に対して斜めに押圧付勢するように構成されている。そして、板スプリング6は、シートリング4に対して、シートリング4のバルブシート面52をバルブ3のバルブシール面51側にスラスト方向に対して斜めに押圧付勢する押圧付勢部材である。また、板スプリング6は、ハウジング1の第1中継パイプ21の内部(シートリング収納空間25)において、シートリング4をスラスト方向およびラジアル方向に弾性保持(フローティング支持)する弾性支持部材である。
板スプリング6は、スラスト方向に延びる円筒状の外周部(円筒部)61、この円筒部61の上流側端部をスラスト方向に対して直交するラジアル方向の外側に向けて直角に折り曲げて形成される円環状のフランジ62、円筒部61の下流側端部をシートリング4の傾斜面54に沿うように折り曲げて(折り返して)形成される弾性接触部(複数の弾性接触片63)等を有している。
円筒部61は、ハウジング1の環状段差23よりもEGR導入ポート24側(上流側)に設けられる第1中継パイプ21のスプリング嵌合部の内壁面に圧入固定される被圧入部である。なお、円筒部61を第1中継パイプ21のスプリング嵌合部の内壁面に対して摺動自在に接触するように構成しても良い。
円筒部61は、ハウジング1の環状段差23よりもEGR導入ポート24側(上流側)に設けられる第1中継パイプ21のスプリング嵌合部の内壁面に圧入固定される被圧入部である。なお、円筒部61を第1中継パイプ21のスプリング嵌合部の内壁面に対して摺動自在に接触するように構成しても良い。
フランジ62は、ハウジング1の第1中継パイプ21の開口端側(EGR導入ポート24側)に形成されるスプリング係止部28とプラグ9の外周端縁部との間に挟み込まれて係止(保持)される被係止部である。
弾性接触部の周方向には、図2に示したように、交互に等間隔で複数個(例えば6個)の弾性接触片63および複数個(例えば6個)のスリット64が設けられている。複数の弾性接触片63は、シートリング4の傾斜面54に当接してスプリング荷重を付与する円錐台筒状の荷重付与部であって、シートリング4をスラスト方向に対して斜めに押圧付勢する板ばね(弾性変形部)である。
なお、複数の弾性接触片63の先端は、シートリング4の円筒部の内周面近傍まで延びている。また、複数の弾性接触片63の内部には、EGRガス流路32、33を連通する円形状の貫通孔が形成されている。
弾性接触部の周方向には、図2に示したように、交互に等間隔で複数個(例えば6個)の弾性接触片63および複数個(例えば6個)のスリット64が設けられている。複数の弾性接触片63は、シートリング4の傾斜面54に当接してスプリング荷重を付与する円錐台筒状の荷重付与部であって、シートリング4をスラスト方向に対して斜めに押圧付勢する板ばね(弾性変形部)である。
なお、複数の弾性接触片63の先端は、シートリング4の円筒部の内周面近傍まで延びている。また、複数の弾性接触片63の内部には、EGRガス流路32、33を連通する円形状の貫通孔が形成されている。
板スプリング6は、スラスト方向において、シートリング4の傾斜面54とプラグ9の外周端縁部との間に、EGRガス流方向に平行なスラスト方向に圧縮された状態で設置されている。また、板スプリング6は、ラジアル方向において、ハウジング1の第1中継パイプ21の内壁面とシートリング4の傾斜面54との間に、EGRガス流方向に対して直交するラジアル方向に圧縮された状態で設置されている。
そして、板スプリング6は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4の傾斜面54との間に挟み込まれることで、複数の弾性接触片63に一定の圧縮変形が与えられた状態で使用される。
そして、板スプリング6は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4の傾斜面54との間に挟み込まれることで、複数の弾性接触片63に一定の圧縮変形が与えられた状態で使用される。
プラグ9は、耐熱性の金属により形成されている。このプラグ9の内部に形成されるEGRガス流路31は、EGR導入ポート24とEGRガス流路32とを連通する。また、プラグ9の外周部は、ハウジング1の第1中継パイプ21の開口端側(EGR導入ポート24側)に形成されるプラグ保持部26に圧入されて嵌合保持される被圧入部である。また、プラグ9は、ハウジング1の第1中継パイプ21のプラグ係止部27によりスラスト方向の下流側への移動が規制されることで、板スプリング6のスプリング荷重を所定値に維持する。また、プラグ9は、ハウジング1の第1中継パイプ21のスプリング係止部28との間に板スプリング6のフランジ62を挟み込んで係止することで、ハウジング1の第1中継パイプ21およびシートリング4から板スプリング6が離脱する(抜ける)のを防止するスプリング抜け防止部材である。
[実施例1の作用]
次に、本実施例のEGRガス流量制御弁(EGRV)の作動を図1ないし図3に基づいて簡単に説明する。
次に、本実施例のEGRガス流量制御弁(EGRV)の作動を図1ないし図3に基づいて簡単に説明する。
EGRVのバルブ3を駆動するモータへの電力供給が成されていない場合には、板スプリング6の各弾性接触片63を介して、ハウジング1の第1中継パイプ21の凹曲面にフローティング支持されたシートリング4のバルブシート面52にバルブ3のバルブシール面51が密着(着座)している。つまりバルブ3が全閉状態となっており、EGRガス流路31〜35、特に排気ガス流路33、34が閉鎖される(図1および図2参照)。これにより、EGRガスが吸入空気に混入しない。
次に、EGRVのバルブ3を所定のバルブ開度以上に開弁するように開弁作動させる場合には、先ずECUがエンジンの運転状況(運転状態)に対応して設定される制御目標値(目標開度)を演算する。そして、モータに電力を供給し、モータのモータシャフトを開弁作動方向に回転させる。これにより、モータの駆動力(モータトルク)が、モータギヤ、中間減速ギヤおよび最終減速ギヤ17に伝達される。そして、最終減速ギヤ17からモータの駆動力が伝達されたシャフト2が、最終減速ギヤ17の回転に伴って所定の回転角度(バルブ開度)だけ開弁作動方向に回転する。
このとき、シャフト2の平面部41に固定されたバルブ3は、シャフト2、バルブ3の回転軸を中心にした回転運動を行う。これにより、シートリング4のバルブシート面52に密着(着座)していたバルブ3が、シートリング4のバルブシート面52から離脱(離座)し、EGRガス流路31〜35、特に排気ガス流路33、34が開放される(図3参照)。
このとき、シャフト2の平面部41に固定されたバルブ3は、シャフト2、バルブ3の回転軸を中心にした回転運動を行う。これにより、シートリング4のバルブシート面52に密着(着座)していたバルブ3が、シートリング4のバルブシート面52から離脱(離座)し、EGRガス流路31〜35、特に排気ガス流路33、34が開放される(図3参照)。
したがって、バルブ3は、制御目標値に相当するバルブ開度に開弁制御される。これにより、エンジンの各気筒毎の燃焼室より流出した排気ガスの一部であるEGRガスが、排気管内に形成される排気通路(EGRガス分岐部)から、排気管側のEGRガスパイプの内部(EGRガス流路)→EGRガス流量制御弁のハウジング1の内部流路(EGR導入ポート24→EGRガス流路31→EGRガス流路32→EGRガス流路33→EGRガス流路34→EGRガス流路35→EGR導出ポート29)および吸気管側のEGRガスパイプの内部(EGRガス流路)を経由して、吸気管内に形成される吸気通路(EGRガス合流部)に再循環される。すなわち、EGRガスがエンジンの各気筒毎の吸気ポートおよび燃焼室に供給される吸入空気(エアクリーナで濾過された清浄な空気)に混入される。
一方、EGRVのバルブ3が所定のバルブ開度以上に開弁している状態から、バルブ3を全閉作動させる場合には、モータへの電力の供給を停止する、あるいはモータへの電力の供給を制限する。これにより、ハウジング1のブロック11および最終減速ギヤ17の周囲に螺旋状に巻装されるコイルスプリング18の付勢力(スプリング荷重)によって、バルブ3が全閉位置に戻される。
このとき、ハウジング1の第1中継パイプ21の凹曲面にフローティング支持されたシートリング4のバルブシート面52の周方向の一部にバルブ3が摺動接触しながら、シャフト2、バルブ3の回転軸を中心にしてバルブ3が回転運動を行う。
このとき、ハウジング1の第1中継パイプ21の凹曲面にフローティング支持されたシートリング4のバルブシート面52の周方向の一部にバルブ3が摺動接触しながら、シャフト2、バルブ3の回転軸を中心にしてバルブ3が回転運動を行う。
そして、バルブ3が全閉開度まで閉じると、シートリング4のバルブシート面52にバルブ3のバルブシール面51が密着(着座)する。これにより、EGRガス流路31〜35、特に排気ガス流路33、34が閉鎖される(図1および図2参照)。
したがって、バルブ3のバルブシール面51とシートリング4のバルブシート面52との間が完全に密着シールされる。これにより、バルブ3が全閉した際(バルブ3の全閉時)におけるEGRガスの洩れが確実に抑止されるため、EGRガスが吸入空気に混入しなくなる。
したがって、バルブ3のバルブシール面51とシートリング4のバルブシート面52との間が完全に密着シールされる。これにより、バルブ3が全閉した際(バルブ3の全閉時)におけるEGRガスの洩れが確実に抑止されるため、EGRガスが吸入空気に混入しなくなる。
[実施例1の効果]
以上のように、本実施例のEGRガス流量制御弁(EGRV)において、ハウジング1の第1中継パイプ21の内部に、EGRガス流路31〜35を流通するEGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けてシートリング4を斜めに押圧付勢する板スプリング6を設けている。
ここで、シートリング4の当接面、つまり板スプリング6の複数の弾性接触片63が接触する当接面として、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側に向けて上り勾配となるように傾斜した傾斜面54を設けている。
以上のように、本実施例のEGRガス流量制御弁(EGRV)において、ハウジング1の第1中継パイプ21の内部に、EGRガス流路31〜35を流通するEGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けてシートリング4を斜めに押圧付勢する板スプリング6を設けている。
ここで、シートリング4の当接面、つまり板スプリング6の複数の弾性接触片63が接触する当接面として、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側に向けて上り勾配となるように傾斜した傾斜面54を設けている。
そして、板スプリング6は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4の傾斜面54との間に挟み込まれることで、複数の弾性接触片63に一定の圧縮変形が与えられた状態で使用される。また、板スプリング6の複数の弾性接触片63は、シートリング4の傾斜面54に当接してシートリング4を斜めに押圧付勢するように、シートリング4の傾斜面54に対して平行な円錐台筒状の傾斜面を有している。
ここで、板スプリング6の複数の弾性接触片63からシートリング4の傾斜面54に作用する付勢力は、スラスト方向の分力(矢印Ft)を表すベクトルと、ラジアル方向の分力(矢印Fr)を表すベクトルとを2辺とする平行四辺形の対角線(矢印F)で表される。なお、板スプリング6の複数の弾性接触片63からシートリング4に作用する付勢力は、シートリング4の傾斜面54に対して直交する垂直方向に働く。
ここで、板スプリング6の複数の弾性接触片63からシートリング4の傾斜面54に作用する付勢力は、スラスト方向の分力(矢印Ft)を表すベクトルと、ラジアル方向の分力(矢印Fr)を表すベクトルとを2辺とする平行四辺形の対角線(矢印F)で表される。なお、板スプリング6の複数の弾性接触片63からシートリング4に作用する付勢力は、シートリング4の傾斜面54に対して直交する垂直方向に働く。
これによって、リップシール5のゴムリップ58、59の弾性力(付勢力、復元力)をハウジング1の第1中継パイプ21の内周面とシートリング4の外周面との間の環状隙間を気密的にシールすることが可能な必要最小限の弾性力にした場合であっても、板スプリング6の各弾性接触片63の付勢力のみで、スラスト方向にも、また、ラジアル方向にもシートリング4を押圧付勢することができる。
これにより、バルブ全閉時に、EGRガス流の中心軸線(EGRガス流路31〜35の中心)に対してバルブ3の位置ズレ(バルブ3の軸心ズレ)が発生している場合であっても、シートリング4がバルブ3のバルブシール面51に倣って(調芯されて)、バルブ3のバルブシール面51がシートリング4のバルブシート面52に正規の位置で(つまり片当たりすることなく)着座する。この結果、バルブ3の全閉時に、バルブ3のバルブシール面51とシートリング4のバルブシート面52とを密着させることが可能となるので、EGRガス流路31〜35を確実に閉鎖(シール)することができる。
したがって、バルブ3の全閉時におけるEGRガスの洩れが確実に抑止されるため、EGRガスが吸入空気に混入しなくなる。
これにより、バルブ全閉時に、EGRガス流の中心軸線(EGRガス流路31〜35の中心)に対してバルブ3の位置ズレ(バルブ3の軸心ズレ)が発生している場合であっても、シートリング4がバルブ3のバルブシール面51に倣って(調芯されて)、バルブ3のバルブシール面51がシートリング4のバルブシート面52に正規の位置で(つまり片当たりすることなく)着座する。この結果、バルブ3の全閉時に、バルブ3のバルブシール面51とシートリング4のバルブシート面52とを密着させることが可能となるので、EGRガス流路31〜35を確実に閉鎖(シール)することができる。
したがって、バルブ3の全閉時におけるEGRガスの洩れが確実に抑止されるため、EGRガスが吸入空気に混入しなくなる。
また、バルブ3を開弁する際に、板スプリング6の複数の弾性接触片63のラジアル方向の分力でシートリング4をスラスト方向に対してバルブ3のバルブシール面51の曲率中心側に向けて斜めに押圧付勢することにより、シートリング4がラジアル方向に自由度を持って暴れるのを防ぐことができる。つまりシートリング4がラジアル方向に振動するのを防ぐことができる。これにより、バルブ3のバルブシール面51とシートリング4のバルブシート面52とのシート部分(特にシートリング4のバルブシート面52)が擦れて偏摩耗することを防ぐことができるので、シール性能が損なわれるのを防止することができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブ3の全閉時においてシートリング4のバルブシート面52における偏摩耗により生じる隙間からEGRガスが洩れ出すことはなく、バルブ3の全閉時におけるEGRガス洩れ流量の増加を防止することができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、バルブ3の全閉時においてシートリング4のバルブシート面52における偏摩耗により生じる隙間からEGRガスが洩れ出すことはなく、バルブ3の全閉時におけるEGRガス洩れ流量の増加を防止することができる。
図4は本発明の実施例2を示したもので、図4(a)はEGRガス流量制御弁の一例を示した図で、図4(b)はEGRガス流量制御弁の他の例を示した図である。
本実施例のEGRガス流量制御弁(EGRV)は、ハウジング1、シャフト2、バルブ3、シートリング4、リップシール5および押圧付勢手段を備えている。
ここで、本実施例の押圧付勢手段は、図4(a)に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けて斜めに押圧付勢する円錐スプリング(押圧付勢部材)7と、この円錐スプリング7の脱落を防止するプラグ9とによって構成されている。
バルブ3は、バルブ3の全閉時にシートリング4のバルブシート面52に密着すると共に、ハウジング1の内部流路(EGRガス流路31〜35)を流通するEGRガス流(流体流れ)の中心軸線上に設けられる曲率中心点を中心とした曲率半径を持つ球面の一部で構成される凸曲面形状のバルブシール面(バルブ外周面、凸曲面)51を有している。
ここで、本実施例の押圧付勢手段は、図4(a)に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けて斜めに押圧付勢する円錐スプリング(押圧付勢部材)7と、この円錐スプリング7の脱落を防止するプラグ9とによって構成されている。
バルブ3は、バルブ3の全閉時にシートリング4のバルブシート面52に密着すると共に、ハウジング1の内部流路(EGRガス流路31〜35)を流通するEGRガス流(流体流れ)の中心軸線上に設けられる曲率中心点を中心とした曲率半径を持つ球面の一部で構成される凸曲面形状のバルブシール面(バルブ外周面、凸曲面)51を有している。
シートリング4は、内部にEGRガス流路33、34が形成された円筒部(ノズル、流路管部)を有している。このシートリング4は、その円筒部のスラスト方向の下流側の内周部(開口端面)に凹曲面形状のバルブシート面(凹曲面)52を有している。このバルブシート面52には、バルブ3を全閉した際にバルブ3のバルブシール面51が着座(密着)する。
また、バルブシート面52は、バルブ3のバルブシール面51と同一曲率中心点で、且つバルブシール面51と同一曲率半径または僅かに大きい曲率半径を持つ球面の一部で構成されている。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、円錐スプリング7の末端部(弾性接触部)が当接する当接面(円錐スプリング7が弾性接触する円錐スプリング当接面)を有している。このシートリング4の当接面には、図4(a)に示したように、円錐スプリング7の末端部(最小外径部)を収容保持する円環状の係止溝(シートリング4の係止部)55が設けられている。この係止溝55は、円錐スプリング7からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)である。
また、バルブシート面52は、バルブ3のバルブシール面51と同一曲率中心点で、且つバルブシール面51と同一曲率半径または僅かに大きい曲率半径を持つ球面の一部で構成されている。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、円錐スプリング7の末端部(弾性接触部)が当接する当接面(円錐スプリング7が弾性接触する円錐スプリング当接面)を有している。このシートリング4の当接面には、図4(a)に示したように、円錐スプリング7の末端部(最小外径部)を収容保持する円環状の係止溝(シートリング4の係止部)55が設けられている。この係止溝55は、円錐スプリング7からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)である。
円錐スプリング7は、EGRガス流方向の上流側に配置される最大外径部65からEGRガス流方向の下流側に配置される最小外径部66に向けてコイル平均径が漸減する非線形コイルスプリングである。この円錐スプリング7は、実施例1と同様にして、バルブ3とシートリング4とを密着させる方向に、シートリング4をスラスト方向に対して斜めに押圧付勢するように構成されている。そして、円錐スプリング7は、シートリング4に対して、シートリング4のバルブシート面52をバルブ3のバルブシール面51側にスラスト方向に対して斜めに押圧付勢する押圧付勢部材である。
また、円錐スプリング7は、最大外径部65がプラグ9の係止溝67に係止され、最小外径部66がシールリング4の係止溝55に係止されている。また、円錐スプリング7は、ハウジング1の第1中継パイプ21の内部(シートリング収納空間25)において、シートリング4をスラスト方向およびラジアル方向に弾性保持(フローティング支持)する弾性支持部材である。
また、円錐スプリング7は、最大外径部65がプラグ9の係止溝67に係止され、最小外径部66がシールリング4の係止溝55に係止されている。また、円錐スプリング7は、ハウジング1の第1中継パイプ21の内部(シートリング収納空間25)において、シートリング4をスラスト方向およびラジアル方向に弾性保持(フローティング支持)する弾性支持部材である。
円錐スプリング7の最小外径部66は、シートリング4の係止溝55の溝底面に当接してスプリング荷重を付与する荷重付与部(弾性接触部)であって、シートリング4をスラスト方向に対して斜めに押圧付勢する非線形コイルスプリング(弾性変形部)である。
円錐スプリング7は、スラスト方向において、シートリング4の係止溝55とプラグ9の係止溝67との間に、EGRガス流方向に平行なスラスト方向に対して傾斜する傾斜方向に圧縮された状態で設置されている。そして、円錐スプリング7は、シートリング4の係止溝55の溝底面とプラグ9の係止溝67の溝底面との間に挟み込まれることで、円錐スプリング7の最小外径部66に一定の圧縮変形が与えられた状態で使用される。
なお、円錐スプリング7の最大外径部65から最小外径部(弾性接触部)66に向かうコイル平均径の傾斜角度、つまりスラスト方向に対する傾斜角度(θ)は、下記の数1の式のように設定される。
[数1]
0°<θ<45°
円錐スプリング7は、スラスト方向において、シートリング4の係止溝55とプラグ9の係止溝67との間に、EGRガス流方向に平行なスラスト方向に対して傾斜する傾斜方向に圧縮された状態で設置されている。そして、円錐スプリング7は、シートリング4の係止溝55の溝底面とプラグ9の係止溝67の溝底面との間に挟み込まれることで、円錐スプリング7の最小外径部66に一定の圧縮変形が与えられた状態で使用される。
なお、円錐スプリング7の最大外径部65から最小外径部(弾性接触部)66に向かうコイル平均径の傾斜角度、つまりスラスト方向に対する傾斜角度(θ)は、下記の数1の式のように設定される。
[数1]
0°<θ<45°
プラグ9は、ハウジング1の第1中継パイプ21の凹曲面に形成されるプラグ保持部に圧入されて嵌合保持される外周部(被圧入部)を有している。このプラグ9は、ハウジング1の第1中継パイプ21およびシートリング4から円錐スプリング7が離脱する(抜ける)のを防止するスプリング抜け防止部材である。また、プラグ9の対向面(シートリング4の当接面との間に所定の軸方向距離を隔てて対向する対向面)には、円錐スプリング7の末端部(最大外径部)を収容保持する係止溝67が設けられている。
一方、本実施例の押圧付勢手段は、図4(b)に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けてシートリング4をスラスト方向に対して斜めに押圧付勢する合成ゴム弾性体製のOリング(押圧付勢部材)と、このOリング8の脱落を防止するプラグ9とによって構成されている。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、Oリング8が当接する当接面を有している。このシートリング4の当接面には、図4(b)に示したように、Oリング8が当接する傾斜面(Oリング8の凸曲面の一部が弾性接触するOリング当接面)54が設けられている。
このシートリング4の傾斜面54は、実施例1と同様にして、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側に向けて上り勾配となるように傾斜した円錐台筒状のテーパ面で構成されている。この傾斜面54は、Oリング8からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)である。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、Oリング8が当接する当接面を有している。このシートリング4の当接面には、図4(b)に示したように、Oリング8が当接する傾斜面(Oリング8の凸曲面の一部が弾性接触するOリング当接面)54が設けられている。
このシートリング4の傾斜面54は、実施例1と同様にして、スラスト方向に対して所定の傾斜角度分だけバルブシート面52側に向けて上り勾配となるように傾斜した円錐台筒状のテーパ面で構成されている。この傾斜面54は、Oリング8からのスプリング荷重を受け止める円錐台筒状の荷重受け部(荷重受け面)である。
Oリング8は、断面O形状の円環状合成ゴム弾性体であって、シートリング4の傾斜面54とプラグ9の対向面(シートリング4の傾斜面54との間に所定の軸方向距離を隔てて対向する対向面)との間に、EGRガス流方向に平行なスラスト方向(またはスラスト方向に対して傾斜する傾斜方向)に弾性的に圧縮された状態で設置されている。そして、Oリング8は、シートリング4の傾斜面54とプラグ9の対向面との間に挟み込まれることで、Oリング8に一定の圧縮変形が与えられた状態で使用される。
以上の構成により、本実施例のEGRVにおいては、実施例1と同様な効果を達成することができる。
以上の構成により、本実施例のEGRVにおいては、実施例1と同様な効果を達成することができる。
図5は本発明の実施例3を示したもので、図5はEGRガス流量制御弁の全閉状態を示した図である。
本実施例のEGRガス流量制御弁(EGRV)は、ハウジング1、シャフト2、バルブ3、シートリング4、リップシール5および押圧付勢手段を備えている。
ここで、本実施例の押圧付勢手段は、図5に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けてシートリング4を斜めに押圧付勢する板スプリング(押圧付勢部材)6と、この板スプリング6の脱落を防止するプラグ9とによって構成されている。
ここで、本実施例の押圧付勢手段は、図5に示したように、シートリング4に設けられる当接面(後述する)と、この当接面に当接して、EGRガス流の軸方向(スラスト方向)に対してバルブ3のバルブシール面51の曲率中心側に傾斜する傾斜方向に向けてシートリング4を斜めに押圧付勢する板スプリング(押圧付勢部材)6と、この板スプリング6の脱落を防止するプラグ9とによって構成されている。
シートリング4は、その円筒部のバルブシート面52側に対してスラスト方向の反対側に、板スプリング6の弾性接触部が当接する当接面を有している。このシートリング4の当接面には、板スプリング6の弾性接触部が当接する凸曲面(板スプリング6の弾性接触部が弾性接触するスプリング当接面)56が設けられている。
このシートリング4の凸曲面56は、バルブ3のバルブシール面51およびシートリング4のバルブシート面52の曲率半径の曲率中心点を中心とした、バルブシール面51およびバルブシート面52の曲率半径よりも大きい曲率半径を持つ球面の一部で構成されている。
なお、凸曲面56は、板スプリング6の各弾性接触片69からのスプリング荷重を受け止める荷重受け部(荷重受け面)として機能する。
このシートリング4の凸曲面56は、バルブ3のバルブシール面51およびシートリング4のバルブシート面52の曲率半径の曲率中心点を中心とした、バルブシール面51およびバルブシート面52の曲率半径よりも大きい曲率半径を持つ球面の一部で構成されている。
なお、凸曲面56は、板スプリング6の各弾性接触片69からのスプリング荷重を受け止める荷重受け部(荷重受け面)として機能する。
板スプリング6は、円筒部61、フランジ62、弾性接触部(複数の弾性接触片69)等を有している。なお、円筒部61およびフランジ62は、実施例1と同様な構造を有している。
弾性接触部の周方向には、交互に等間隔で複数個(例えば6個)のスリット64および複数個(例えば6個)の弾性接触片69が設けられている(図2参照)。
複数の弾性接触片69は、シートリング4の凸曲面56に当接する接触面が凹曲面となっている。この凹曲面は、シートリング4の凸曲面56と同一の曲率中心点で、且つ同一曲率半径または凸曲面56よりも僅かに大きい曲率半径を持つ球面の一部で構成されている。そして、複数の弾性接触片69は、シートリング4の凸曲面56に当接してスプリング荷重を付与する凹曲面形状の荷重付与部であって、シートリング4をスラスト方向に対して斜めに押圧付勢する板ばね(弾性変形部)である。
弾性接触部の周方向には、交互に等間隔で複数個(例えば6個)のスリット64および複数個(例えば6個)の弾性接触片69が設けられている(図2参照)。
複数の弾性接触片69は、シートリング4の凸曲面56に当接する接触面が凹曲面となっている。この凹曲面は、シートリング4の凸曲面56と同一の曲率中心点で、且つ同一曲率半径または凸曲面56よりも僅かに大きい曲率半径を持つ球面の一部で構成されている。そして、複数の弾性接触片69は、シートリング4の凸曲面56に当接してスプリング荷重を付与する凹曲面形状の荷重付与部であって、シートリング4をスラスト方向に対して斜めに押圧付勢する板ばね(弾性変形部)である。
板スプリング6は、スラスト方向において、シートリング4の凸曲面56とプラグ9の外周端縁部との間に、EGRガス流方向に平行なスラスト方向に弾性的に圧縮された状態で設置されている。また、板スプリング6は、ラジアル方向において、ハウジング1の第1中継パイプ21の内壁面とシートリング4の凸曲面56との間に、EGRガス流方向に対して直交するラジアル方向に圧縮された状態で設置されている。
そして、板スプリング6は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4の凸曲面56との間に挟み込まれることで、複数の弾性接触片69に一定の圧縮変形が与えられた状態で使用される。
そして、板スプリング6は、ハウジング1の第1中継パイプ21の凹曲面とシートリング4の凸曲面56との間に挟み込まれることで、複数の弾性接触片69に一定の圧縮変形が与えられた状態で使用される。
以上のように、本実施例のEGRVにおいては、シートリング4の凸曲面56および板スプリング6の各弾性接触片69を、バルブ3のバルブシール面51およびシートリング4のバルブシート面52と同一曲率中心で、且つバルブシール面51およびバルブシート面52の曲率半径よりも大きい曲率半径を持つ球面の一部で構成したことにより、シートリング4を、バルブ3のバルブシール面51とシートリング4のバルブシート面52との摺動範囲内で自由に摺動させることができるので、バルブ3の位置ズレ(バルブ3の軸心ズレ)に対するシートリング4の追従性を高めることができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、実施例1と同様な効果を達成することができる。
したがって、シール性能が損なわれることなく、十分なシール性能を発揮することができる。これにより、実施例1と同様な効果を達成することができる。
[変形例]
本実施例では、本発明の流体制御弁を、排気ガス(EGRガス、流体)の流量を制御するEGRガス流量制御弁に適用しているが、本発明の流体制御弁を、排気ガスの温度を制御する排気ガス制御弁に適用しても良い。また、本発明の流体制御弁を、内燃機関の燃焼室内に吸入される吸入空気量を制御するスロットルバルブ等の空気量制御弁、内燃機関の燃焼室内より排出される排気ガスの流量を制御する排気ガス流量制御弁、スロットルバルブをバイパスする吸入空気量を制御するアイドル回転速度制御弁等の空気流量制御弁に適用しても良い。
本実施例では、本発明の流体制御弁を、排気ガス(EGRガス、流体)の流量を制御するEGRガス流量制御弁に適用しているが、本発明の流体制御弁を、排気ガスの温度を制御する排気ガス制御弁に適用しても良い。また、本発明の流体制御弁を、内燃機関の燃焼室内に吸入される吸入空気量を制御するスロットルバルブ等の空気量制御弁、内燃機関の燃焼室内より排出される排気ガスの流量を制御する排気ガス流量制御弁、スロットルバルブをバイパスする吸入空気量を制御するアイドル回転速度制御弁等の空気流量制御弁に適用しても良い。
本実施例では、本発明の流体制御弁を、EGRガス流量制御弁等の流体流量制御弁に適用しているが、このような流体流量制御弁に限定する必要はなく、流体通路開閉弁、流体通路切替弁、流体圧力制御弁に適用しても良い。また、本発明の流体制御弁を、タンブル流制御弁やスワール流制御弁等の吸気流制御弁、吸気通路の通路長や通路断面積を変更する吸気可変弁等に適用しても良い。また、自動車等の車両に搭載される内燃機関(例えば走行用エンジン)として、ディーゼルエンジンだけでなく、ガソリンエンジンを用いても良い。
本実施例では、ハウジング1の内部流路を、EGR導入ポート24→EGRガス流路31→EGRガス流路32→EGRガス流路33→EGRガス流路34→EGRガス流路35→EGR導出ポート29の順序でEGRガスが流れるように構成しているが、ハウジング1の内部流路を、EGR導入ポート→EGRガス流路35→EGRガス流路34→EGRガス流路33→EGRガス流路32→EGRガス流路31→EGR導出ポートの順序でEGRガスが流れるように構成しても良い。
本実施例では、内部に流体流路が形成されたハウジングを、EGRガスパイプの途中に接続したハウジング1によって構成しているが、ハウジングを、吸気管の一部(排気ガス合流部、EGRガス合流部)、あるいは排気管の一部(排気ガス分岐部、EGRガス分岐部)を成すハウジングによって構成しても良い。
本実施例では、シャフト2とバルブ3とをスクリュー44等の締結手段を用いて締め付け固定しているが、シャフト2とバルブ3とを、レーザー溶接、ティグ溶接、ミグ溶接、電子ビーム溶接、アーク溶接しても良い。
本実施例では、シャフト2とバルブ3とをスクリュー44等の締結手段を用いて締め付け固定しているが、シャフト2とバルブ3とを、レーザー溶接、ティグ溶接、ミグ溶接、電子ビーム溶接、アーク溶接しても良い。
本実施例では、シャフト2を介してバルブ3を駆動するアクチュエータ(バルブ駆動装置)を、モータと動力伝達機構(例えば歯車減速機構等)とを備えたアクチュエータによって構成したが、シャフトを介してバルブを駆動するアクチュエータを、電磁式または電動式負圧制御弁を備えた負圧作動式アクチュエータや、コイルを含む電磁石を備えた電磁アクチュエータによって構成しても良い。
また、EGRガス流量制御弁(EGRV)のバルブ3を閉弁方向または開弁方向に付勢するコイルスプリング18を設置しなくても良い。この場合には、部品点数や組付工数を削減できる。
また、EGRガス流量制御弁(EGRV)のバルブ3を閉弁方向または開弁方向に付勢するコイルスプリング18を設置しなくても良い。この場合には、部品点数や組付工数を削減できる。
また、シャフト2にシートリング4をバルブ3から遠ざかる側に移動させるカム部を設けて、シャフト2が所定の回転角度分だけ回転することで、バルブ3が所定のバルブ開度以上に開弁したらシートリング4からバルブ3が完全に離れるようにシートリング4を押し出すようにしても良い。この場合、バルブ3が所定のバルブ開度以上に開弁すると、バルブ3とシートリング4とが摺動接触することはないので、シートリング4のバルブシート面52における偏摩耗の発生を抑制できる。これにより、バルブ3の全閉時(シートリング4のバルブシート面52にバルブ3のバルブシール面51が密着(着座)した時)における流体洩れ流量の増加およびシール性能の低下を更に防止することができる。
1 ハウジング
2 シャフト(EGRガス流量制御弁の弁軸)
3 バルブ(EGRガス流量制御弁の弁体)
4 シートリング(ノズル)
5 リップシール(シール部材)
6 板スプリング(押圧付勢手段、押圧付勢部材)
7 円錐スプリング(押圧付勢手段、押圧付勢部材)
8 合成ゴム弾性体製のOリング(押圧付勢手段、押圧付勢部材)
9 プラグ(押圧付勢手段)
21 ハウジングの第1中継パイプ(周壁、第1ブロック、第1流路管部)
22 ハウジングの第2中継パイプ(第2ブロック、第2流路管部)
24 ハウジングの第1中継パイプのEGR導入(入口)ポート
29 ハウジングの第2中継パイプのEGR導出(出口)ポート
31 EGRガス流路(流体流路)
32 EGRガス流路(流体流路)
33 EGRガス流路(流体流路)
34 EGRガス流路(流体流路)
35 EGRガス流路(流体流路)
51 バルブのバルブシール面
52 シートリングのバルブシート面
54 シートリングの傾斜面(押圧付勢手段、当接面)
55 シートリングの係止溝(押圧付勢手段、係止部)
56 シートリングの凸曲面(押圧付勢手段、当接面)
63 板スプリングの弾性接触片(弾性接触部)
65 円錐スプリングの最大外径部
67 円錐スプリングの最小外径部(弾性接触部)
69 板スプリングの弾性接触片(弾性接触部)
2 シャフト(EGRガス流量制御弁の弁軸)
3 バルブ(EGRガス流量制御弁の弁体)
4 シートリング(ノズル)
5 リップシール(シール部材)
6 板スプリング(押圧付勢手段、押圧付勢部材)
7 円錐スプリング(押圧付勢手段、押圧付勢部材)
8 合成ゴム弾性体製のOリング(押圧付勢手段、押圧付勢部材)
9 プラグ(押圧付勢手段)
21 ハウジングの第1中継パイプ(周壁、第1ブロック、第1流路管部)
22 ハウジングの第2中継パイプ(第2ブロック、第2流路管部)
24 ハウジングの第1中継パイプのEGR導入(入口)ポート
29 ハウジングの第2中継パイプのEGR導出(出口)ポート
31 EGRガス流路(流体流路)
32 EGRガス流路(流体流路)
33 EGRガス流路(流体流路)
34 EGRガス流路(流体流路)
35 EGRガス流路(流体流路)
51 バルブのバルブシール面
52 シートリングのバルブシート面
54 シートリングの傾斜面(押圧付勢手段、当接面)
55 シートリングの係止溝(押圧付勢手段、係止部)
56 シートリングの凸曲面(押圧付勢手段、当接面)
63 板スプリングの弾性接触片(弾性接触部)
65 円錐スプリングの最大外径部
67 円錐スプリングの最小外径部(弾性接触部)
69 板スプリングの弾性接触片(弾性接触部)
Claims (16)
- (a)内部に流体流路が形成されたハウジングと、
(b)このハウジングに回転自在に設置されて、前記流体流路を開閉するバルブと、
(c)このバルブを固定すると共に、前記バルブの回転軸方向に延びるシャフトと、
(d)前記ハウジングに対して弾性支持されて、前記バルブが着座、離脱するシートリングと、
(e)前記ハウジングに設置されて、前記バルブ側に前記シートリングを押圧付勢する押圧付勢手段と
を備え、
前記バルブの回転軸方向に対して、前記バルブの全閉時における前記シートリングに対する前記バルブのシール位置を偏心させた流体制御弁において、
前記バルブは、前記流体流路に設けられる曲率中心点を中心とした曲率半径を持つ球面の一部で構成されるシール面を有し、
前記シートリングは、前記シール面と同一曲率中心点で、且つ前記シール面と略同一曲率半径を持つ球面の一部で構成されるシート面を有し、
前記押圧付勢手段は、前記流体流路を流通する流体流れの軸方向に対して前記シール面の曲率中心側に傾斜する方向に向けて前記シートリングを押圧付勢するように構成されていることを特徴とする流体制御弁。 - 請求項1に記載の流体制御弁において、
前記シートリングは、前記流体流路を流通する流体流れの軸方向およびその軸方向に対して直交する垂直方向に移動自在に設置されていることを特徴とする流体制御弁。 - 請求項1または請求項2に記載の流体制御弁において、
前記バルブは、前記シートリングのシート面に対して着座、離脱して前記流体流路を閉鎖、開放するように構成されていることを特徴とする流体制御弁。 - 請求項1ないし請求項3のうちのいずれか1つに記載の流体制御弁において、
前記押圧付勢手段は、前記バルブと前記シートリングとを密着させる方向に、前記シートリングを押圧付勢する押圧付勢部材を有していることを特徴とする流体制御弁。 - 請求項1ないし請求項4のうちのいずれか1つに記載の流体制御弁において、
前記押圧付勢手段は、前記バルブのシール面側に前記シートリングを押圧付勢する押圧付勢部材を有していることを特徴とする流体制御弁。 - 請求項1ないし請求項5のうちのいずれか1つに記載の流体制御弁において、
前記シートリングは、前記シート面側に対して前記流体流路を流通する流体流れの軸方向の反対側に当接面を有していることを特徴とする流体制御弁。 - 請求項6に記載の流体制御弁において、
前記当接面は、前記流体流路を流通する流体流れの軸方向に対して所定の傾斜角度分だけ前記シート面側に向けて上り勾配となるように傾斜した傾斜面で構成されていることを特徴とする流体制御弁。 - 請求項6に記載の流体制御弁において、
前記当接面は、前記シール面と同一曲率中心点で、且つ前記シール面および前記シート面の曲率半径よりも大きい曲率半径を持つ球面の一部で構成されていることを特徴とする流体制御弁。 - 請求項7または請求項8に記載の流体制御弁において、
前記押圧付勢手段は、前記当接面に当接して前記シートリングを押圧付勢する板ばねを有していることを特徴とする流体制御弁。 - 請求項1ないし請求項5のうちのいずれか1つに記載の流体制御弁において、
前記シートリングは、前記シート面側に対して前記流体流路を流通する流体流れの軸方向の反対側に係止部を有していることを特徴とする流体制御弁。 - 請求項10に記載の流体制御弁において、
前記押圧付勢手段は、前記係止部に係止されて前記シートリングを押圧付勢する円錐スプリングを有していることを特徴とする流体制御弁。 - 請求項1ないし請求項7のうちのいずれか1つに記載の流体制御弁において、
前記シートリングは、前記シート面側に対して前記流体流路を流通する流体流れの軸方向の反対側に、前記流体流路を流通する流体流れの軸方向に対して、所定の傾斜角度分だけ前記シート面側に向けて上り勾配となるように傾斜した傾斜面を有していることを特徴とする流体制御弁。 - 請求項12に記載の流体制御弁において、
前記押圧付勢手段は、前記傾斜面に当接して前記シートリングを押圧付勢するゴム弾性体を有していることを特徴とする流体制御弁。 - 請求項1ないし請求項13のうちのいずれか1つに記載の流体制御弁において、
前記流体制御弁は、前記ハウジングと前記シートリングとの間の隙間をシールすると共に、前記流体流路を流通する流体流れの軸方向に対して直交する径方向に弾性変形可能な環状のシール部材を備えたことを特徴とする流体制御弁。 - 請求項14に記載の流体制御弁において、
前記ハウジングは、前記シートリングの周囲を周方向に取り囲む周壁を有し、
前記シートリングは、前記周壁の壁面に対向する対向面を有し、
前記シール部材は、前記周壁の壁面と前記シートリングの対向面との間の環状隙間をシールすることを特徴とする流体制御弁。 - 請求項15に記載の流体制御弁において、
前記シール部材は、前記周壁の壁面に弾性接触する環状の外周部、および前記シートリングの対向面に弾性接触する環状の内周部を有していることを特徴とする流体制御弁。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010103669A JP2011231877A (ja) | 2010-04-28 | 2010-04-28 | 流体制御弁 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010103669A JP2011231877A (ja) | 2010-04-28 | 2010-04-28 | 流体制御弁 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011231877A true JP2011231877A (ja) | 2011-11-17 |
Family
ID=45321401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010103669A Pending JP2011231877A (ja) | 2010-04-28 | 2010-04-28 | 流体制御弁 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011231877A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017116051A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社キッツ | ボールバルブ |
CN109458469A (zh) * | 2018-12-29 | 2019-03-12 | 苏州道森阀门有限公司 | 一种球阀阀座的碳石墨密封结构 |
CN114673800A (zh) * | 2022-03-22 | 2022-06-28 | 亚登阀门管件有限公司 | 一种可独立控制开关阀口的不锈钢球阀及方法 |
JP7319845B2 (ja) | 2019-06-28 | 2023-08-02 | 日立Astemo株式会社 | 制御弁 |
-
2010
- 2010-04-28 JP JP2010103669A patent/JP2011231877A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017116051A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社キッツ | ボールバルブ |
CN109458469A (zh) * | 2018-12-29 | 2019-03-12 | 苏州道森阀门有限公司 | 一种球阀阀座的碳石墨密封结构 |
JP7319845B2 (ja) | 2019-06-28 | 2023-08-02 | 日立Astemo株式会社 | 制御弁 |
CN114673800A (zh) * | 2022-03-22 | 2022-06-28 | 亚登阀门管件有限公司 | 一种可独立控制开关阀口的不锈钢球阀及方法 |
CN114673800B (zh) * | 2022-03-22 | 2023-07-11 | 亚登阀门管件有限公司 | 一种可独立控制开关阀口的不锈钢球阀及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011043218A (ja) | 流体制御弁 | |
JP4715396B2 (ja) | 流体制御弁 | |
US7971578B2 (en) | Exhaust gas recirculation valve for vehicle | |
JP2011058536A (ja) | 流体制御弁およびその製造方法 | |
EP2917551B1 (fr) | Vanne motorisée surmoulée a etanchéité améliorée | |
US10378655B2 (en) | Valve device | |
US8899215B2 (en) | Exhaust gas recirculation valve | |
JP5699662B2 (ja) | 内燃機関の排気装置 | |
JP2013044309A (ja) | 内燃機関の制御装置 | |
JP2011231877A (ja) | 流体制御弁 | |
KR100688132B1 (ko) | 유체밸브 장치 | |
JP2007239667A (ja) | 流体制御弁の製造方法 | |
JP2009002325A (ja) | 流体制御弁 | |
JP4665653B2 (ja) | 流量制御弁 | |
US8434736B2 (en) | Fluid passage valve | |
JP2012041827A (ja) | 流体制御弁 | |
JP4793290B2 (ja) | 流体制御弁 | |
JP2008095924A (ja) | シール装置 | |
JP2013096305A (ja) | 排気ガス制御弁、およびその組付方法 | |
KR20110041265A (ko) | 자동차 egr용 플랩 밸브 | |
JP2011252421A (ja) | 排気ガス再循環装置 | |
JP2016109184A (ja) | バタフライ弁および排気装置 | |
JP2012219890A (ja) | バルブユニット | |
JP2010210092A (ja) | 流体制御弁 | |
JP2012219684A (ja) | 排気ガス制御弁 |