JP2011230182A - Method for manufacturing high manganese-steel - Google Patents

Method for manufacturing high manganese-steel Download PDF

Info

Publication number
JP2011230182A
JP2011230182A JP2010105712A JP2010105712A JP2011230182A JP 2011230182 A JP2011230182 A JP 2011230182A JP 2010105712 A JP2010105712 A JP 2010105712A JP 2010105712 A JP2010105712 A JP 2010105712A JP 2011230182 A JP2011230182 A JP 2011230182A
Authority
JP
Japan
Prior art keywords
steel
temperature
content
following formula
high manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105712A
Other languages
Japanese (ja)
Other versions
JP5041029B2 (en
Inventor
Naotada Yoshida
直嗣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010105712A priority Critical patent/JP5041029B2/en
Publication of JP2011230182A publication Critical patent/JP2011230182A/en
Application granted granted Critical
Publication of JP5041029B2 publication Critical patent/JP5041029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for highly productively manufacturing high manganese-steel with high quality, wherein generation of surface defects such as a surface crack is suppressed.SOLUTION: The method is for manufacturing high manganese-steel by continuous casting method. In the method, molten steel temperature T (unit: °C) in a molten steel container shortly before supplying hot water to a mold is controlled to satisfy the following formula (1) while casting speed Vc (unit: m/min) is selected within a range of the following formula (2): a≤T≤a+50 (1), Vc≥0.02×(T-a) (2). Here, a is a value determined by the following formula (3) based on the composition of the steel. (C%), etc., in the formula are respectively contents of C, etc., (unit: mass%) in the chemical composition: a=1562-{62×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)} (3).

Description

本発明は、高品質な、特に表面欠陥が抑制された、10質量%以上の含有量でMnを含有する鋼材料(本発明において「高マンガン含有鋼」という。)を提供可能な連続鋳造方法に関する。   The present invention is a continuous casting method capable of providing a high-quality steel material containing Mn at a content of 10% by mass or more, particularly with suppressed surface defects (referred to as “high manganese-containing steel” in the present invention). About.

高マンガン含有鋼は、オーステナイト系ステンレス鋼と比較して、同等以上の強度を有すること、透磁率が低いこと、および原料コストが低いことから、高張力部材、耐摩耗材、非磁性材などの用途に用いられる。特に、Mn含有量が10〜31質量%の鋼はその安定した非磁性能を利用し、永久磁石や電流による磁場を乱さない部材、たとえば、発電用タービン部材や磁気浮上鉄道用部材として使用される。   High manganese-containing steel has higher strength than that of austenitic stainless steel, low magnetic permeability, and low raw material cost, so it can be used for high-strength members, wear-resistant materials, non-magnetic materials, etc. Used for. In particular, steel having an Mn content of 10 to 31% by mass utilizes its stable non-magnetic performance, and is used as a member that does not disturb a magnetic field due to a permanent magnet or current, for example, a power generation turbine member or a magnetic levitation railway member. The

高マンガン含有鋼は鋳造時にオーステナイト単相で凝固を完了するため、柱状粒組織が発達しやすい。形成されるオーステナイト柱状粒は粗大であり、粒界が割れの起点や伝播経路となる。さらにオーステナイト単相であることは熱間加工性を著しく低下させる場合も多い。したがって、高マンガン含有鋼は、連続鋳造あるいは熱間圧延時の割れ感受性が高い材料と認識されている。   High manganese-containing steel completes solidification in an austenite single phase during casting, and thus a columnar grain structure is likely to develop. The formed austenite columnar grains are coarse, and the grain boundaries serve as crack initiation points and propagation paths. Furthermore, being an austenite single phase often significantly reduces hot workability. Therefore, high manganese content steel is recognized as a material with high cracking susceptibility during continuous casting or hot rolling.

連続鋳造時の割れ発生を抑制する手段として、特許文献1に、重量%で、C:0.9〜1.20%、Mn:11.0〜14.0%を含有する鋼の製造方法において、P含有量を0.030%以下、連続鋳造時の二次冷却水比を0.7〜1.1L/kgの範囲に調整し、鋳片の昇熱過程の昇熱速度を30〜35℃/hの範囲に調整する製造方法が開示されている。   As a means for suppressing the occurrence of cracks during continuous casting, Patent Document 1 discloses a steel manufacturing method containing C: 0.9 to 1.20% and Mn: 11.0 to 14.0% by weight. The P content is 0.030% or less, the secondary cooling water ratio during continuous casting is adjusted to a range of 0.7 to 1.1 L / kg, and the heating rate of the slab during the heating process is adjusted to 30 to 35. The manufacturing method adjusted to the range of ° C./h is disclosed.

特開昭59−13556号公報JP 59-13556 A

「鉄鋼の凝固」 付録 鉄鋼の凝固現象に関するデータ集(日本鉄鋼協会・鉄鋼基礎共同研究会・凝固部会編、1977年発行)"Steel Solidification" Appendix Data Collection on Solidification Phenomena of Steel (issued in 1977)

特許文献1に開示される方法では、連続鋳造後の後に、連続鋳造スラブ表面手入れを行う均熱−予備圧延工程が前提であってその際の表面割れの助長拡大を防止することを主な目的としている。しかし、このような従来の製造方法では、アズキャストのままの鋳片段階での表面割れをある程度許容することとなり、鋳片手入れによるコスト増加は避けられない。さらに、鋳片疵によって鋳造が不安定になり、鋳造を緊急停止しなければならない場合もある。   In the method disclosed in Patent Document 1, it is premised on a soaking-pre-rolling step in which the surface of a continuously cast slab is cleaned after continuous casting, and the main object is to prevent the surface cracks from being promoted. It is said. However, in such a conventional manufacturing method, surface cracks in the as-cast slab stage are allowed to some extent, and an increase in cost due to slab care is inevitable. Furthermore, casting may become unstable due to the slab and the casting must be stopped urgently.

本発明は、表面割れなどの表面欠陥の発生が抑制された高品質な高マンガン含有鋼を生産性高く製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a high-quality, high-manganese-containing steel in which generation of surface defects such as surface cracks is suppressed with high productivity.

本発明者は鋳片の表面欠陥の発生原因を検討した結果、液相線温度と組成との関係および固相線温度と組成との関係を適切に把握し、その関係に基づいて連続鋳造の操業条件を設定することで、表面欠陥の発生を効果的に抑制できるとの知見に至った。そして、高マンガン含有鋼においては、これらの関係が一般的な炭素鋼とは大きく異なるとの知見も得た。   As a result of examining the cause of surface defects in the slab, the present inventor appropriately grasped the relationship between the liquidus temperature and the composition and the relationship between the solidus temperature and the composition, and based on the relationship, the continuous casting It came to the knowledge that generation | occurrence | production of a surface defect can be suppressed effectively by setting operation conditions. And in high manganese content steel, the knowledge that these relations differed from general carbon steel was also acquired.

以上の知見に基づき完成された本発明は次のとおりである。
(1)基本成分として、質量%で、C:0.09%以上1.5%以下、Si:0.05%以上1.0%以下、Mn:10%以上31%以下、Cr:10%以下、P:0.05%以下、S:0.02%以下、Al:0.003%以上0.1%以下、N:0.005%以上0.50%以下を含有し、残部がFeおよび不純物からなる化学組成を有する高マンガン含有鋼を連続鋳造法により製造する方法であって、鋳型に給湯する直前の溶鋼容器内の溶鋼温度T(単位:℃)が下記式(i)を満たすように制御するとともに、鋳造速度Vc(単位:m/min)を下記式(ii)の範囲に選定することを特徴とする高マンガン含有鋼の製造方法:
a≦T≦a+50 (i)
Vc≧0.02×(T−a) (ii)
ここで、aは鋼の組成から下記式(iii)により決定される値であり、式中の(C%)、(Si%)、(Mn%)および(Cr%)は、それぞれ、前記化学組成におけるC,Si,MnおよびCrの含有量(単位:質量%)である。
a=1562−{62×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)} (iii)
The present invention completed based on the above knowledge is as follows.
(1) As basic components, in mass%, C: 0.09% to 1.5%, Si: 0.05% to 1.0%, Mn: 10% to 31%, Cr: 10% P: 0.05% or less, S: 0.02% or less, Al: 0.003% or more and 0.1% or less, N: 0.005% or more and 0.50% or less, with the balance being Fe And a high manganese-containing steel having a chemical composition comprising impurities by a continuous casting method, wherein the molten steel temperature T (unit: ° C.) in the molten steel container immediately before supplying hot water to the mold satisfies the following formula (i) And a method for producing a high manganese content steel, wherein the casting speed Vc (unit: m / min) is selected within the range of the following formula (ii):
a ≦ T ≦ a + 50 (i)
Vc ≧ 0.02 × (T−a) (ii)
Here, a is a value determined by the following formula (iii) from the composition of steel, and (C%), (Si%), (Mn%) and (Cr%) in the formula are respectively It is content (unit: mass%) of C, Si, Mn, and Cr in the composition.
a = 1562− {62 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%)} (iii)

(2)前記鋳型に給湯する直前の溶鋼容器内の溶鋼温度Tがさらに下記式(i’)を満たすように制御するとともに、前記鋳造速度Vc(単位:m/min)を下記式(ii’)の範囲に選定することを特徴とする上記(1)記載の高マンガン含有鋼の製造方法:
a≦T≦a+30 (i’)
Vc≧0.025×(T−a) (ii’)
(2) The molten steel temperature T in the molten steel container just before the hot water supply to the mold is controlled to satisfy the following formula (i ′), and the casting speed Vc (unit: m / min) is set to the following formula (ii ′) The method for producing a high manganese content steel according to the above (1), characterized in that it is selected within the range of:
a ≦ T ≦ a + 30 (i ′)
Vc ≧ 0.025 × (T−a) (ii ′)

(3)前記化学組成がさらに下記式(iv)を満たす、上記(1)または(2)記載の高マンガン含有鋼の製造方法:
(Mn%)+40.2×(C%)+122×(P%)<62.2 (iv)
ここで、上記式(iv)中の(Mn%)、(C%)および(P%)は、それぞれ、前記化学組成におけるMn,CおよびPの含有量(単位:質量%)である。
(3) The method for producing a high manganese-containing steel according to (1) or (2), wherein the chemical composition further satisfies the following formula (iv):
(Mn%) + 40.2 × (C%) + 122 × (P%) <62.2 (iv)
Here, (Mn%), (C%) and (P%) in the above formula (iv) are the contents (unit: mass%) of Mn, C and P in the chemical composition, respectively.

(4)前記化学組成がさらに下記式(v)を満たす、上記(1)から(3)のいずれかに記載の高マンガン含有鋼の製造方法:
(%C)+4.3(%P)<1.21 (v)
ここで、上記式(v)中の(C%)および(P%)は、それぞれ、前記化学組成におけるCおよびPの含有量(単位:質量%)である。
(4) The method for producing a high manganese-containing steel according to any one of (1) to (3), wherein the chemical composition further satisfies the following formula (v):
(% C) +4.3 (% P) <1.21 (v)
Here, (C%) and (P%) in the above formula (v) are the contents of C and P (unit: mass%) in the chemical composition, respectively.

本発明によれば、高マンガン含有鋼材料を連続鋳造法により製造する際に、鋳片表面欠陥の発生が防止される。さらに、その好適態様においては、後工程の熱間圧延時にも割れ感受性の低い連続鋳造鋳片が提供される。したがって、本発明により、品質の良好な鋼材を安定的に製造することが実現される。得られた鋼材料は、熱間圧延時にも十分な熱間加工性を有し、材料固有の非磁性能を要求される用途に使用できる。   According to the present invention, when a high manganese content steel material is produced by a continuous casting method, occurrence of a slab surface defect is prevented. Furthermore, in the suitable aspect, the continuous cast slab with a low crack sensitivity is provided also at the time of the hot rolling of a post process. Therefore, according to the present invention, it is possible to stably manufacture a steel material with good quality. The obtained steel material has sufficient hot workability even during hot rolling, and can be used for applications requiring non-magnetic performance unique to the material.

液相線温度実測値と液相線温度推算値の比較を示すグラフである。It is a graph which shows the comparison of a liquidus temperature actual value and a liquidus temperature estimated value. 鋳造速度と鋳造温度の関係を示すグラフである。It is a graph which shows the relationship between casting speed and casting temperature.

以下、本発明に係る製造方法を詳しく説明する。以下の説明における高マンガン含有鋼の化学組成における成分元素の含有量を示す「%」は質量%を意味する。
1.表面欠陥についての検討
Mn含有量が10〜31質量%の高マンガン含有鋼を連続鋳造により製造する際には、当該鋼の化学組成におけるMnの含有量が高いことに由来して、種々の鋳片表面欠陥が発生しやすい。主な鋳片表面欠陥として、1)縦割れ、2)かぶれ疵、3)微小ひび割れが挙げられる。
Hereinafter, the production method according to the present invention will be described in detail. In the following description, “%” indicating the content of component elements in the chemical composition of the high manganese-containing steel means mass%.
1. Study on surface defects When manufacturing high manganese content steel with Mn content of 10-31 mass% by continuous casting, various castings are derived from the high Mn content in the chemical composition of the steel. Single-surface defects are likely to occur. Main slab surface defects include 1) vertical cracks, 2) rashes, and 3) microcracks.

これらの鋳片表面欠陥のうち、縦割れおよびかぶれ疵は、鋳型内の冷却の不均一および鋳造温度、すなわちタンディッシュから浸漬ノズルを経て鋳型内に供給する溶湯の流れや温度の不適正に起因する。   Among these slab surface defects, vertical cracks and rashes are caused by uneven cooling in the mold and casting temperature, that is, the flow of molten metal supplied from the tundish through the immersion nozzle to the mold and improper temperature. To do.

特に鋳型に給湯する直前の溶鋼容器内の溶鋼温度(以下、「鋳造温度」と略記する。)が過度に高い場合には、鋳型内に形成された初期凝固殻がこの鋳造温度が過度に高い注湯流によって再溶融して破断されるときもあり、このとき、この破断した凝固殻が表面欠陥の起点となる。   Especially when the molten steel temperature in the molten steel container immediately before the hot water supply to the mold (hereinafter abbreviated as “casting temperature”) is excessively high, the initial solidified shell formed in the mold has an excessively high casting temperature. In some cases, the molten metal is remelted and broken by the pouring flow, and at this time, the broken solidified shell becomes a starting point of the surface defect.

このような凝固殻の再溶融に起因する表面欠陥の発生を防止するには、鋳造温度が過度に高くなることを回避すればよいが、鋳造温度が低いと湯面の一部が凝固するいわゆる湯面皮張りが生じ鋳造が不安定になるおそれがある。このため、表面欠陥の発生を抑制しつつ、安定な連続鋳造を実現するためには、鋳型内の溶鋼の凝固・再溶融挙動を適切に把握することが必要とされる。そして、この溶鋼の凝固・再溶融挙動に最も関連する物性がその溶鋼の液相線温度および固相線温度である。したがって、縦割れおよびかぶれ疵の発生を抑制するためには、鋳型内の溶鋼の液相線温度および固相線温度を正確に把握することが必要とされる。   In order to prevent the occurrence of surface defects due to such remelting of the solidified shell, it is only necessary to avoid excessively high casting temperature. However, when the casting temperature is low, a part of the molten metal surface is solidified. There is a risk that casting will become unstable due to hot-water skinning. For this reason, in order to realize stable continuous casting while suppressing the occurrence of surface defects, it is necessary to appropriately grasp the solidification / remelting behavior of the molten steel in the mold. The physical properties most relevant to the solidification / remelting behavior of the molten steel are the liquidus temperature and the solidus temperature of the molten steel. Therefore, in order to suppress the occurrence of vertical cracks and rashes, it is necessary to accurately grasp the liquidus temperature and the solidus temperature of the molten steel in the mold.

一方、鋳片表面の微小割れは、冷却あるいは復熱時に鋳片表層部に熱応力が生じ、高マンガン含有鋼における粗大なオーステナイト柱状晶の結晶粒界にこの熱応力が集中した結果、粒界を伝播し生じた鋳片表面の割れ欠陥である。特に高マンガン含有鋼は添加元素の含有量が高く凝固を完了する固相線温度が低いためミクロ偏析部で共晶炭化物が形成しやすく、これが粒界割れの起点となる。   On the other hand, micro cracks on the surface of the slab surface are caused by thermal stress in the surface layer of the slab during cooling or reheating, and this thermal stress is concentrated at the grain boundaries of coarse austenite columnar crystals in high manganese steel. This is a crack defect on the surface of the slab generated by propagating the slab. In particular, high manganese-containing steel has a high content of additive elements and a low solidus temperature at which solidification is completed, so that eutectic carbide is easily formed in the micro-segregation part, which becomes the starting point of grain boundary cracking.

微小割れを抑制するには連続鋳造時の二次冷却を弱冷とすることが効果的であるが、固相線温度が低い合金鋼では、低温まで粒界が脆弱なため弱冷却を行っても微小割れを防止することは容易ではない。   In order to suppress microcracks, it is effective to weaken the secondary cooling during continuous casting. However, in alloy steel with a low solidus temperature, the grain boundary is fragile to a low temperature, so weak cooling is performed. However, it is not easy to prevent microcracking.

また、鋼の固相線温度を高め上記の固液共存温度幅を制限することは鋳片表層部の熱間延性を確保する観点からも好ましい。
このように、微小割れの抑制、さらには熱間圧延工程の加工性の確保の観点からも鋼の固相線温度を正確に把握することが重要である。
Moreover, it is preferable also from a viewpoint of ensuring the hot ductility of slab surface layer part to raise the solidus temperature of steel and to restrict | limit said solid-liquid coexistence temperature range.
Thus, it is important to accurately grasp the solidus temperature of steel from the viewpoint of suppressing microcracking and ensuring workability in the hot rolling process.

2.高マンガン含有鋼
本発明に係る高マンガン含有鋼の化学組成は、基本成分として、質量%で、C:0.09%以上1.5%以下、Si:0.05%以上1.0%以下、Mn:10%以上31%以下、Cr:10%以下、P:0.05%以下、S:0.02%以下、Al:0.003%以上0.1%以下、N:0.005%以上0.50%以下を含有し、残部がFeおよび不純物からなる。
2. High Manganese Content Steel The chemical composition of the high manganese content steel according to the present invention is, as a basic component, mass%, C: 0.09% or more and 1.5% or less, Si: 0.05% or more and 1.0% or less. Mn: 10% to 31%, Cr: 10% or less, P: 0.05% or less, S: 0.02% or less, Al: 0.003% to 0.1%, N: 0.005 % And 0.50% or less, with the balance being Fe and impurities.

以下、各元素の含有量範囲について説明する。
C:0.09%以上1.5%以下
Cは、オーステナイト相を安定化し材料強度を確保するのに必要な元素である。しかしながら、C含有量が1.5%を超えると延性および加工性が悪化する。したがって、このC含有量を0.09%以上1.5%以下の範囲とすることで、構造材料に適した組成とすることが実現される。
Hereinafter, the content range of each element will be described.
C: 0.09% or more and 1.5% or less C is an element necessary for stabilizing the austenite phase and ensuring material strength. However, when the C content exceeds 1.5%, ductility and workability deteriorate. Therefore, by setting the C content in the range of 0.09% to 1.5%, a composition suitable for the structural material can be realized.

Si:0.05%以上1.0%以下
Siは脱酸に必要な元素であり、固溶強化の効果もあり、合金成分には欠かせない。これらの効果を確実に得るために、Siの含有量は0.05%以上とする。しかしながら、Si含有量が1.0%を超えるとその効果は飽和し加工性(延性)が劣化する。したがって、Siの含有量は1.0%以下とする。
Si: 0.05% or more and 1.0% or less Si is an element necessary for deoxidation, has an effect of solid solution strengthening, and is indispensable for an alloy component. In order to ensure these effects, the Si content is set to 0.05% or more. However, when the Si content exceeds 1.0%, the effect is saturated and workability (ductility) deteriorates. Therefore, the Si content is 1.0% or less.

Mn:10%以上31%以下
Mnはオーステナイト相を安定化し材料強度を確保するのに必要な元素である。特に、10%以上の高濃度Mnを含有することによってオーステナイト相の特徴的な性質である、非磁性あるいは低温での高強度の性能が得られる。しかしながら、含有量が31%を超えると加工性が大きく損なわれる。したがって、Mn含有量は10%以上31%以下とする。
Mn: 10% or more and 31% or less Mn is an element necessary for stabilizing the austenite phase and ensuring the material strength. In particular, by containing 10% or more of high-concentration Mn, non-magnetic or high-strength performance at a low temperature, which is a characteristic property of the austenite phase, can be obtained. However, if the content exceeds 31%, workability is greatly impaired. Therefore, the Mn content is 10% or more and 31% or less.

Cr:10%以下
Crはオーステナイト相を安定させるとともに、固溶強化によって強度を向上させるのに有用な元素である。必要に応じて添加してもよいが、含有量が10%を超えると加工性が大きく損なわれる。
Cr: 10% or less Cr is an element useful for stabilizing the austenite phase and improving the strength by solid solution strengthening. Although it may be added as necessary, when the content exceeds 10%, workability is greatly impaired.

P:0.05%以下
Pは鋼中に含まれる不純物元素であり、靭性低下あるいは熱間脆化を招くため、P含有量は少なければ少ないほどよい。さらに、0.05%を超えると溶接性を著しく低下させる。したがって、P含有量は0.05%以下とする。
P: 0.05% or less P is an impurity element contained in steel and causes toughness reduction or hot embrittlement. Therefore, the smaller the P content, the better. Further, if it exceeds 0.05%, the weldability is remarkably lowered. Therefore, the P content is 0.05% or less.

S:0.02%以下
Sは鋼中に含まれる不純物元素で靭性の低下を招くため、S含有量は少なければ少ないほどよい。さらに、0.02%を超えると腐食起点となるMnS介在物量が多くなり耐食性を低下させる。したがって、P含有量は0.05%以下とする。
S: 0.02% or less Since S is an impurity element contained in steel and causes a decrease in toughness, the smaller the S content, the better. Furthermore, if it exceeds 0.02%, the amount of MnS inclusions that become the starting point of corrosion increases and the corrosion resistance is lowered. Therefore, the P content is 0.05% or less.

Al:0.003%以上0.1%以下
Alは脱酸に必要な元素であり、鋼中に不可避に存在する。脱酸の効果を得る観点から、Al含有量の下限は0.003%とする。一方、0.1%を超えて含有されると、過剰なAlNが生成して熱間加工性が低下する。したがって、Al含有量は0.003%以上0.1%以下とする。
Al: 0.003% or more and 0.1% or less Al is an element necessary for deoxidation, and inevitably exists in steel. From the viewpoint of obtaining the effect of deoxidation, the lower limit of the Al content is 0.003%. On the other hand, if the content exceeds 0.1%, excess AlN is generated and hot workability is lowered. Therefore, the Al content is set to 0.003% to 0.1%.

N:0.005%以上0.50%以下
Nはオーステナイト相を安定化し固溶あるいは析出によって強度を上げる作用を有する。MnとCrとの親和力が大きいため、高マンガン含有鋼で容易に固溶させることができるが、含有量0.5%を超えると熱間加工性が低下する。したがって、N含有量は0.005%以上0.50%以下とする。
N: 0.005% or more and 0.50% or less N has an effect of stabilizing the austenite phase and increasing the strength by solid solution or precipitation. Since the affinity between Mn and Cr is large, it can be easily solid-solved with high manganese-containing steel. However, when the content exceeds 0.5%, hot workability decreases. Therefore, the N content is set to be 0.005% or more and 0.50% or less.

本発明に係る高マンガン含有鋼は、上記の基本成分に加えて下記成分を含有することができる。
V:0.3%以下
Vは析出硬化によって強度を向上させるのに有用な元素である。必要に応じて微量添加してもよいが、含有量が0.3%を超えると効果が飽和して加工性が大きく損なわれる。
High manganese content steel concerning the present invention can contain the following ingredients in addition to the above-mentioned basic ingredient.
V: 0.3% or less V is an element useful for improving the strength by precipitation hardening. A small amount may be added if necessary, but if the content exceeds 0.3%, the effect is saturated and workability is greatly impaired.

3.液相線温度および固相線温度
上記のように連続鋳造される溶鋼の液相線温度および固相線温度を正確に把握することは高品質の鋳片を生産性高く製造することにとって重要であるところ、これらの液相線温度および固相線温度は合金成分の含有量によって変化するため、液相線温度と組成との関係、および固相線温度と組成との関係を正確に把握することが必要とされる。
3. Liquidus temperature and solidus temperature It is important for producing high quality slabs with high productivity to accurately grasp the liquidus temperature and solidus temperature of continuously cast steel as described above. At some point, the liquidus temperature and the solidus temperature vary depending on the content of the alloy components. Therefore, the relationship between the liquidus temperature and the composition, and the relationship between the solidus temperature and the composition are accurately grasped. Is needed.

しかしながら、次に説明するように、高マンガン含有鋼におけるこれらの関係は、一般的な炭素鋼における関係と顕著に相違する。
非特許文献1によれば、炭素鋼に対する液相線温度TL(単位:℃)の推算式の一例として、下記推算式(A)が挙げられる。
However, as will be described below, these relationships in high manganese steels are significantly different from those in general carbon steel.
According to Non-Patent Document 1, the following estimation formula (A) is given as an example of an estimation formula for the liquidus temperature TL (unit: ° C.) for carbon steel.

TL=1536−{78×(C%)+7.6×(Si%)+4.9×(Mn%)+1.3×(Cr%)+34.4×(P%)+38×(S%)} (A)
ここで、上記式(A)中の(C%)、(Si%)、(Mn%)、(Cr%)、(P%)および(S%)は、それぞれ、鋼の化学組成におけるC,Si,Mn,Cr,SおよびPの含有量(単位:質量%)である。
TL = 1536- {78 × (C%) + 7.6 × (Si%) + 4.9 × (Mn%) + 1.3 × (Cr%) + 34.4 × (P%) + 38 × (S%)} (A)
Here, (C%), (Si%), (Mn%), (Cr%), (P%) and (S%) in the above formula (A) are respectively C, It is content (unit: mass%) of Si, Mn, Cr, S and P.

表1に示されるMn含有量が比較的高い化学組成を有する複数の鋼について、下記の方法により液相線温度を測定するとともに、上記の推算式(A)に基づいて液相線温度の推算値を求めた。なお、表1における各合金元素の含有量の単位は質量%であり、各鋼の化学組成における残部はFeおよび不可避的不純物である。   For a plurality of steels having a relatively high Mn content shown in Table 1, the liquidus temperature is measured by the following method, and the liquidus temperature is estimated based on the above estimation formula (A). The value was determined. In addition, the unit of content of each alloy element in Table 1 is mass%, and the balance in the chemical composition of each steel is Fe and inevitable impurities.

Figure 2011230182
Figure 2011230182

本発明において実施された液相線温度および固相線温度の測定方法は次のとおりである。
アルゴンガス雰囲気中で、鋼試料70〜80gを内径20mmのアルミナるつぼ内で溶解し、炉温度を1480℃に15〜20分保持した後、電気炉の温度制御を用いて冷却速度10℃/minにて炉を冷却する。このとき、溶鋼試料に浸漬した保護管内の熱電対にて試料温度を測定する。試料の冷却曲線には、凝固に伴った特徴点が現れるので、これらに基づいて液相線温度および固相線温度を評価する。最初の特徴点として、凝固が開始(潜熱の放出を開始)したときに復熱した後の最大温度あるいはプラトー温度を液相線温度とする。次に、熱分析で得られる内部発熱がゼロとなる温度を凝固潜熱の放出が終了する固相線温度とする。ここで、内部発熱とは、試料の冷却曲線から解析的に得られる値であり、試料の温度微分値(冷却速度)および試料・炉間の温度差によって生じる外部抜熱速度の和である。凝固が進行する温度区間では試料が凝固潜熱を発生するため内部発熱が正となる。しかし、凝固が終了すると、比熱一定かつ冷却速度一定の単相の冷却条件では内部発熱がゼロとなる。
The method for measuring the liquidus temperature and the solidus temperature carried out in the present invention is as follows.
In an argon gas atmosphere, 70 to 80 g of a steel sample was melted in an alumina crucible having an inner diameter of 20 mm, the furnace temperature was maintained at 1480 ° C. for 15 to 20 minutes, and then the cooling rate was 10 ° C./min using temperature control of the electric furnace. Cool the furnace at At this time, the sample temperature is measured with a thermocouple in a protective tube immersed in the molten steel sample. Since characteristic points accompanying solidification appear in the cooling curve of the sample, the liquidus temperature and the solidus temperature are evaluated based on them. As the first characteristic point, the liquidus temperature is defined as the maximum temperature or plateau temperature after recuperation when solidification starts (latent heat release starts). Next, the temperature at which internal heat generation obtained by thermal analysis becomes zero is defined as the solidus temperature at which the release of latent heat of solidification ends. Here, the internal heat generation is a value analytically obtained from the cooling curve of the sample, and is the sum of the temperature differential value (cooling rate) of the sample and the external heat removal rate caused by the temperature difference between the sample and the furnace. In the temperature zone in which solidification proceeds, the sample generates latent heat of solidification, so internal heat generation is positive. However, when solidification is completed, the internal heat generation becomes zero under single-phase cooling conditions where the specific heat is constant and the cooling rate is constant.

図1および表2に、表1に示される各鋼についての液相線温度の実測値および上記推算式(A)に基づく推算値を、両者を比較可能に示す。これらの結果から、従来の推算式(A)によると、液相線温度が実測値に比べ概ね20℃以上(ずれ量の平均値は22.3℃)も低温側に推定されていることがわかる。このように大きくずれるのは、炭素鋼では比較的低濃度のMnに対する寄与係数としては大きな数値が設定されているためと考えられる。例えば、炭素鋼で多用されている2つの式、平居の式および川和の式(非特許文献1)を参照すれば、Mn含有量1質量%増加あたりの温度降下は、4.8〜4.9℃程度となる。   FIG. 1 and Table 2 show the measured values of the liquidus temperature and estimated values based on the above estimation formula (A) for each steel shown in Table 1 so that they can be compared. From these results, according to the conventional estimation formula (A), the liquidus temperature is estimated to be approximately 20 ° C. or higher (average value of deviation is 22.3 ° C.) on the low temperature side compared to the actual measurement value. Recognize. Such a large deviation is considered to be because a large numerical value is set as a contribution coefficient for a relatively low concentration of Mn in carbon steel. For example, referring to two formulas frequently used in carbon steel, Hirai's formula and Kawawa's formula (Non-Patent Document 1), the temperature drop per 1% by mass increase in Mn content is 4.8-4. It becomes about 9 ℃.

Figure 2011230182
Figure 2011230182

このように20℃も実測値と相違してしまうと、もはや上記式(A)は推算式として機能しない。
そこで、表1に示される鋼の組成および表2に示される液相線温度の実測値から、新たに推算式を求めると、下記式(B)のようになる。
Thus, when 20 ° C. is different from the actually measured value, the above formula (A) no longer functions as an estimation formula.
Thus, when a new estimation formula is obtained from the steel composition shown in Table 1 and the measured value of the liquidus temperature shown in Table 2, the following formula (B) is obtained.

TL=1532−{62×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)+40×(P%)+40×(S%)} (B)
ここで、上記式(B)中の(C%)、(Si%)、(Mn%)、(Cr%)、(P%)および(S%)は、それぞれ、鋼の化学組成におけるC,Si,Mn,Cr,SおよびPの含有量(単位:質量%)である。
TL = 1532− {62 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%) + 40 × (P%) + 40 × (S%)} (B)
Here, (C%), (Si%), (Mn%), (Cr%), (P%), and (S%) in the above formula (B) are respectively C and C in the chemical composition of steel. It is content (unit: mass%) of Si, Mn, Cr, S and P.

図1および表2には、上記推算式(B)に基づく推算値も示してある。
これらの結果から明らかなように、上記式(B)に基づく推算値と実測値とのずれは上記式(B)に基づく推算値と実測値とのずれよりもはるかに小さく、ずれ量の平均値は3℃程度である。
FIG. 1 and Table 2 also show estimated values based on the estimation formula (B).
As is clear from these results, the deviation between the estimated value based on the above equation (B) and the actually measured value is much smaller than the deviation between the estimated value based on the above equation (B) and the actually measured value. The value is about 3 ° C.

液相線温度TLと同様に、先に述べた固相線温度の測定結果と組成との比較から、以下の固相線温度TSの推算式(C)を求めた。
TS=1467−{165×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)+500×(P%)+40×(S%)} (C)
Similarly to the liquidus temperature TL, the following estimation formula (C) of the solidus temperature TS was obtained from the comparison between the measurement results of the solidus temperature described above and the composition.
TS = 1467− {165 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%) + 500 × (P%) + 40 × (S%)} (C)

4.高マンガン含有鋼の連続鋳造条件
新たに求められた上記の液相線温度TLの推算式(B)および固相線温度TSの推算式(C)に基づき設定される高マンガン含有鋼の連続鋳造条件について以下に説明する。
4). Continuous casting conditions for steel containing high manganese content Continuous casting of steel containing high manganese content set based on the newly calculated formula (B) for the liquidus temperature TL and formula (C) for the solidus temperature TS The conditions will be described below.

(1)鋳造温度
鋳造温度は、一般に、液相線温度を基準として、それに対する溶鋼過熱度を適正範囲内に制御する。高マンガン含有鋼を含めた合金鋼を鋳造するための適正範囲は、液相線温度を基準とする過熱度として、経験的に30〜80℃である。溶鋼過熱度が適正値の下限の30℃よりも小さいと、鋳型内で特に冷えやすい湯面付近の溶鋼温度が液相線以下となって湯面の一部が凝固するいわゆる湯面皮張りが生じ鋳造が不安定になるおそれがある。また、溶鋼過熱度が適正値の上限の80℃よりも大きいと鋳型内に形成した凝固シェルが再溶解して破れやすくなり、かぶれ疵の発生や鋳型内ブレークアウトを生じるおそれがある。
(1) Casting temperature Generally, the casting temperature controls the degree of superheated molten steel within an appropriate range with reference to the liquidus temperature. An appropriate range for casting alloy steel including high manganese-containing steel is empirically 30 to 80 ° C. as the degree of superheat based on the liquidus temperature. If the molten steel superheat degree is lower than the lower limit of 30 ° C, the so-called molten surface skinning occurs in which the molten steel temperature near the molten metal surface, which is particularly easy to cool in the mold, becomes below the liquidus and the molten metal surface partially solidifies. Casting may become unstable. On the other hand, if the degree of superheated molten steel is higher than the upper limit of 80 ° C., the solidified shell formed in the mold is easily remelted and easily broken, and there is a risk of causing rashes and breakout in the mold.

したがって、上記の本発明に係る高マンガン含有鋼の液相線温度の推算式(B)に基づくと、鋳造温度Tの適正範囲は、下記式(1)のように設定される。
a≦T≦a+50 (1)
ここで、aは、鋼の組成から下記式(3)により決定される適正な鋳造温度の下限値(単位:℃)であり、式中の(C%)、(Si%)、(Mn%)および(Cr%)は、それぞれ、鋼の化学組成におけるC,Si,MnおよびCrの含有量(単位:質量%)である。
a=1562−{62×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)} (3)
Therefore, based on the above formula (B) of the liquidus temperature of the high manganese content steel according to the present invention, the appropriate range of the casting temperature T is set as the following formula (1).
a ≦ T ≦ a + 50 (1)
Here, a is a lower limit value (unit: ° C.) of an appropriate casting temperature determined by the following formula (3) from the steel composition, and (C%), (Si%), (Mn%) in the formula ) And (Cr%) are the contents (unit: mass%) of C, Si, Mn and Cr in the chemical composition of steel, respectively.
a = 1562− {62 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%)} (3)

なお、上記式(3)における大括弧内の部分は上記式(B)においてP含有量の項およびS含有量の項を削除したものに該当する。本発明に係る高マンガン含有鋼におけるPおよびSの含有量は合計でも0.07%であるから、上記式(B)によれば、これらの項が液相線温度TLの推算値に与える影響は最大でも3℃未満である。しかも、通常の製鋼プロセスにおいてはいずれの含有量についても0.02%以下程度になるように脱りん処理および脱硫処理が行われているため、P含有量の項およびS含有量の項が液相線温度に与える影響は合計でも1℃程度に限定される。それゆえ、上記式(B)からP含有量の項およびS含有量の項を削除しても、液相線温度TLの推算値に与える影響は軽微である。むしろ、これらの成分元素の寄与を考慮せずに主要な合金成分である上記の4元素のみで液相線温度を比較的小さな誤差で予測できることの方が、作業性の観点からは有利である。以上の理由により、上記の本発明に係る鋳造温度の適正範囲を決定する式(1)においては、P含有量の項およびSの含有量の項を有さないこととしている。   In addition, the part in the square bracket in the said Formula (3) corresponds to what deleted the term of P content and the term of S content in the said Formula (B). Since the content of P and S in the high manganese content steel according to the present invention is 0.07% in total, according to the above formula (B), the influence of these terms on the estimated value of the liquidus temperature TL. Is less than 3 ° C. at the maximum. In addition, since the dephosphorization treatment and the desulfurization treatment are performed so that the content is about 0.02% or less in the normal steelmaking process, the terms of P content and S content are liquid. The total effect on the phase line temperature is limited to about 1 ° C. Therefore, even if the P content term and the S content term are deleted from the formula (B), the influence on the estimated value of the liquidus temperature TL is negligible. Rather, it is more advantageous from the viewpoint of workability that the liquidus temperature can be predicted with a relatively small error using only the above-mentioned four elements which are main alloy components without considering the contribution of these component elements. . For the above reason, in the above formula (1) for determining the appropriate range of the casting temperature according to the present invention, there is no term for the P content and no term for the S content.

鋳造温度Tがaより小さいと、低温鋳込みとなって連続鋳造鋳型内での湯面皮張りなどの支障をきたす場合があり、湯面の凝固物が鋳片に巻き込まれると重大な鋳造欠陥の原因になる。   If the casting temperature T is lower than a, it may cause low temperature casting, which may cause troubles such as the surface of the molten metal in the continuous casting mold. become.

他方、鋳造温度Tがa+50を超えると、高温鋳込みとなって鋳型内に形成される初期凝固殻が高温の注湯流により破断し欠陥の起点となる。鋳型内で凝固殻が再溶解して生じる二重肌の痕跡は、鋳片かぶれ疵欠陥として現れ問題となる。   On the other hand, when the casting temperature T exceeds a + 50, the initial solidified shell formed in the mold by high-temperature casting breaks due to the high-temperature pouring flow, and becomes the starting point of the defect. The traces of double skin caused by redissolving of the solidified shell in the mold appear as slab burrs and become a problem.

(2)鋳造速度
鋳造速度Vcは安定な連続鋳造を実現するために鋼種に応じて適切に設定されるべきものである。
(2) Casting speed The casting speed Vc should be appropriately set according to the steel type in order to realize stable continuous casting.

鋳型内で形成される凝固シェルが成長する過程では、シェルの厚さ方向の温度勾配に伴って発生する熱収縮差のため、凝固シェルが鋳型から浮き上がり離れようとする応力が発生する。このとき、適正な鋳造速度であれば、凝固シェルは溶鋼静圧によって鋳型面に押さえられるため凝固シェルの変形は生じない。しかしながら、鋳造速度が過度に小さい場合は、凝固シェルの変形が生じかぶれ疵の発生を招くおそれが高まる。したがって、安定な鋳造速度を行うためには、シェル変形の抑制の観点から鋳造速度に下限値が設定される。   In the process of growth of the solidified shell formed in the mold, a stress is generated to cause the solidified shell to lift away from the mold due to a thermal contraction difference that occurs with a temperature gradient in the thickness direction of the shell. At this time, if the casting speed is appropriate, the solidified shell is pressed against the mold surface by the molten steel static pressure, so that the solidified shell does not deform. However, when the casting speed is excessively low, the solidified shell is deformed and there is a high risk of causing rashes. Therefore, in order to perform a stable casting speed, a lower limit is set to the casting speed from the viewpoint of suppressing shell deformation.

この下限値について本発明者らが検討した結果、鋳造速度が低くなったときに凝固シェルの変形が生じるか否かを決定する因子として、鋳造温度が大きく影響することが明らかになった。特に、図2に示されるように、上記式(3)により求められる適正な鋳造温度の下限値aに対する鋳造温度Tの差、すなわちT−aが、簡易的には鋳造速度の下限値に正比例すると考えられることが明らかになった。そして、複数の鋼について鋳造試験を行った結果、この比例係数は0.02m/(min・℃)と求められた。   As a result of the examination of the lower limit by the present inventors, it has been clarified that the casting temperature has a great influence as a factor for determining whether or not the solidified shell is deformed when the casting speed is lowered. In particular, as shown in FIG. 2, the difference between the casting temperature T and the lower limit value a of the appropriate casting temperature obtained by the above formula (3), that is, Ta is simply proportional to the lower limit value of the casting speed. It became clear that this was considered. And as a result of performing the casting test about several steel, this proportionality coefficient was calculated | required with 0.02 m / (min * degreeC).

以上の検討により、鋳造速度Vcに関し、下記式(2)が成立することが明らかになった。
Vc≧0.02×(T−a) (2)
すなわち、上記式(1)および(2)を満たすように、鋳造温度Tおよび鋳造速度Vcを設定して連続鋳造を行うことで、得られた鋳片における表面欠陥を安定的に抑制することが実現される。
From the above examination, it has been clarified that the following formula (2) is established with respect to the casting speed Vc.
Vc ≧ 0.02 × (T−a) (2)
That is, by setting the casting temperature T and the casting speed Vc so as to satisfy the above formulas (1) and (2) and performing continuous casting, surface defects in the obtained slab can be stably suppressed. Realized.

なお、上記式(1)および(2)式を満たしても、鋳込み初期の非定常期には表面欠陥、具体的にはかぶれ疵が発生する場合もある。このような初期のかぶれ疵も安定的に抑制することが可能な、より好ましい鋳造速度Tと鋳造速度Vcの関係は、下記式(1’)および(2’)により表される。   Even if the above formulas (1) and (2) are satisfied, surface defects, specifically rashes may occur in the unsteady phase at the beginning of casting. A more preferable relationship between the casting speed T and the casting speed Vc that can stably suppress such initial rash is expressed by the following equations (1 ') and (2').

a≦T≦a+30 (1’)
Vc≧0.025×(T−a) (2’)
一方、鋳造速度が過度に大きい場合には、鋳型内の冷却が不十分となって凝固シェルが鋳型内で十分に形成されず、このため鋳型内の鋳片または鋳型から出て二次冷却されている鋳片における凝固シェルが破れてブレークアウトが発生するおそれが高まる。
a ≦ T ≦ a + 30 (1 ′)
Vc ≧ 0.025 × (T−a) (2 ′)
On the other hand, if the casting speed is excessively high, the cooling in the mold is insufficient, and the solidified shell is not sufficiently formed in the mold, so that it is secondarily cooled out of the slab or mold in the mold. There is an increased risk that the solidified shell in the cast slab is broken and breakout occurs.

5.良好な熱間加工性の観点から好ましい組成上の特徴
続いて、本発明に係る高マンガン含有鋼について良好な熱間加工性を実現する観点から好ましい組成上の特徴について説明する。
5). Preferred compositional features from the standpoint of good hot workability Next, the preferred compositional features of the high manganese-containing steel according to the present invention from the standpoint of achieving good hot workability will be described.

良好な熱間加工性を実現する観点からは、鋼の組成が下記式(4)を満たすことが好ましい。この式は、粒界の液膜脆化によって高温延性を損なわないよう、連続鋳造時の曲げ矯正、鍛造あるいは圧延など通常の熱間加工温度の上限である1200℃よりも高温側に固相線温度を維持するために、熱間脆化温度の下限として1210℃を選定し、上記式(C)により求められる固相線温度が1210℃以上を満たすとして求めた組成条件を表す式である。
1467−{165×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)+500×(P%)+40×(S%)}>1210 (4)
From the viewpoint of realizing good hot workability, the steel composition preferably satisfies the following formula (4). In order to prevent high temperature ductility from being impaired by liquid film embrittlement at the grain boundaries, this equation is used for solidus lines on the higher temperature side than 1200 ° C. which is the upper limit of normal hot working temperature such as bending correction, forging or rolling during continuous casting. In order to maintain the temperature, 1210 ° C. is selected as the lower limit of the hot embrittlement temperature, and this is a formula representing a composition condition obtained by assuming that the solidus temperature obtained by the above formula (C) satisfies 1210 ° C. or higher.
1467- {165 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%) + 500 × (P%) + 40 × (S%)}> 1210 (4)

上記式(4)において、Si含有量が1質量%以下であること、Cr含有量の項における係数は相対的に小さくCr含有量も10質量%以下であること、S含有量が0.02質量%以下であり高Mn含有のため容易にMnSを形成することから、Si、Cr,Sの各元素含有量の項を寄与は小さいと考えられる。そこで、これらSi,Cr,Sの各元素含有量の項に基づく温度影響分を2℃に固定してこれらの項を省略すると、下記式(4’)となり、下記式(5)が導かれる。   In the above formula (4), the Si content is 1% by mass or less, the coefficient in the Cr content term is relatively small, the Cr content is 10% by mass or less, and the S content is 0.02%. Since MnS is easily formed because it is less than mass% and contains high Mn, it is considered that the contribution of each element content of Si, Cr, S is small. Therefore, if the temperature influence based on the terms of each element content of Si, Cr, S is fixed at 2 ° C. and these terms are omitted, the following formula (4 ′) is obtained, and the following formula (5) is derived. .

1467−{165×(C%)+4.1×(Mn%)+500×(P%)+2}>1210 (4)’
(Mn%)+40.2×(C%)+122×(P%)<62.2 (5)
ここで、上記式(4)〜(5)中の(C%)、(Si%)、(Mn%)、(Cr%)、(P%)および(S%)は、それぞれ、鋼の化学組成におけるC,Si,Mn,Cr、PおよびSの含有量(単位:質量%)である。
1467- {165 × (C%) + 4.1 × (Mn%) + 500 × (P%) + 2}> 1210 (4) ′
(Mn%) + 40.2 × (C%) + 122 × (P%) <62.2 (5)
Here, (C%), (Si%), (Mn%), (Cr%), (P%), and (S%) in the above formulas (4) to (5) are respectively the chemistry of steel. It is content (unit: mass%) of C, Si, Mn, Cr, P and S in the composition.

上記式(5)の左辺が62.2以上になると、固相線温度が1200℃以下に低温化し、融点1200℃以下の共晶炭化物が生成し、熱間脆化を引き起こす可能性がある。
また、高温延性を損なわないよう、固液共存温度幅を狭めるため、C含有量とP含有量とが下記式(6)を満たすことが好ましい。
When the left side of the above formula (5) is 62.2 or more, the solidus temperature is lowered to 1200 ° C. or less, and eutectic carbide having a melting point of 1200 ° C. or less is generated, which may cause hot embrittlement.
Moreover, in order not to impair high temperature ductility, in order to narrow the solid-liquid coexistence temperature range, it is preferable that C content and P content satisfy | fill following formula (6).

(%C)+4.3(%P)<1.21 (6)
ここで、上記式(6)中の(C%)および(P%)は、それぞれ、鋼の化学組成におけるCおよびPの含有量(単位:質量%)である。
(% C) +4.3 (% P) <1.21 (6)
Here, (C%) and (P%) in the above formula (6) are the contents (unit: mass%) of C and P in the chemical composition of steel, respectively.

上記式(6)は、共存温度幅(液相線温度−固相線温度)は190℃未満であることが熱間加工性の確保の観点から好ましいという知見に基づいている。上記式(6)の左辺が1.21以上になると固液共存温度幅が190℃を超えるため、熱間脆化を引き起こす可能性が高まる。   The above formula (6) is based on the finding that the coexistence temperature range (liquidus temperature−solidus temperature) is preferably less than 190 ° C. from the viewpoint of ensuring hot workability. When the left side of the above formula (6) is 1.21 or more, the solid-liquid coexistence temperature range exceeds 190 ° C., so that the possibility of causing hot embrittlement increases.

2.5tonの溶鋼を用いた垂直型連続鋳造機による試験を行った。表3に示される組成を有する溶鋼を溶解炉にて溶製し、取鍋を介してタンディッシュに注入した。タンディッシュの溶鋼温度を1430〜1490℃に調整して、浸漬ノズルから振動する内部水冷の銅板鋳型に給湯し、表3の条件にて連続鋳造を行って、鋳型下方では、水スプレーによる二次冷却を行い、厚さ100mm×幅800mm×長さ3500mmのスラブ鋳片を得た。二次冷却は、鋳片重量1kgあたり比水量を0.5〜1.0Lとした。鋳片は室温まで冷却した後、鋳片表面疵の有無の調査を行うとともに、一部は熱間圧延試験用の母材試料とした。加熱温度1100℃、総圧下率80%、仕上圧延温度800℃の条件にて熱間圧延を実施し、表面割れ・耳割れ等の欠陥がなく表面健全な板厚20mmの鋼板が得られた。   A test using a vertical continuous casting machine using 2.5 ton molten steel was performed. Molten steel having the composition shown in Table 3 was melted in a melting furnace and poured into a tundish through a ladle. The molten steel temperature of the tundish is adjusted to 1430-1490 ° C., hot water is supplied to the internal water-cooled copper plate mold that vibrates from the immersion nozzle, continuous casting is performed under the conditions shown in Table 3, and secondary water spraying is performed below the mold. Cooling was performed to obtain a slab slab having a thickness of 100 mm, a width of 800 mm, and a length of 3500 mm. Secondary cooling was performed with a specific water amount of 0.5 to 1.0 L per kg of slab weight. After cooling the slab to room temperature, the slab was examined for the presence or absence of surface defects on the slab, and a part was used as a base material sample for a hot rolling test. Hot rolling was performed under the conditions of a heating temperature of 1100 ° C., a total rolling reduction of 80%, and a finish rolling temperature of 800 ° C., and a steel plate having a surface thickness of 20 mm with no defects such as surface cracks and ear cracks was obtained.

鋳片表面疵の調査結果を表3に示す。   Table 3 shows the results of the slab surface defects.

Figure 2011230182
Figure 2011230182

本発明例のNo.1は、鋳造初期60秒間以内に極軽微な疵が発生したが、ほぼ健全であった。No.1の組成を有する鋼において鋳造速度を高めると、初期のかぶれ疵の発生が抑制されることが確認された(No.1’)。本発明例のNo.2および3は、鋳片表面のかぶれ疵欠陥は全くなく、熱間圧延試験時の割れも全くなかった。   No. of the example of the present invention. In No. 1, very slight wrinkles occurred within 60 seconds of casting, but it was almost sound. No. When the casting speed was increased in the steel having the composition of 1, it was confirmed that the occurrence of initial rashes was suppressed (No. 1 '). No. of the example of the present invention. In Nos. 2 and 3, there was no crater defect on the surface of the slab, and there were no cracks during the hot rolling test.

一方、比較例のNo.4〜6では、いずれも鋳片表面のかぶれ疵欠陥が発生した。比較例のNo.7は、低温溶鋼起因の鋳型内湯面の皮張りが発生した。また、比較例のNo.8では、鋳片表面に鋳片曲げ矯正時に生じたものと推定されるひび状の微小割れが発生した。   On the other hand, no. In all of 4-6, rash defects on the surface of the slab occurred. Comparative Example No. In No. 7, the molten metal surface in the mold caused by the low temperature molten steel was peeled off. Moreover, No. of the comparative example. In No. 8, crack-like microcracks estimated to have occurred during slab bending correction occurred on the slab surface.

本発明例および比較例における鋳造速度VとT−a(鋳造温度Tと上記式(3)で算出されるa値の差)の関係を図2に表す。鋳造速度Vが過小か、T−aが過大であるとかぶれ疵が発生することが理解される。   FIG. 2 shows the relationship between the casting speed V and Ta (the difference between the casting temperature T and the value a calculated by the above formula (3)) in the inventive example and the comparative example. It is understood that a rash occurs when the casting speed V is too low or when Ta is too high.

Claims (4)

基本成分として、質量%で、C:0.09%以上1.5%以下、Si:0.05%以上1.0%以下、Mn:10%以上31%以下、Cr:10%以下、P:0.05%以下、S:0.02%以下、Al:0.003%以上0.1%以下、N:0.005%以上0.50%以下を含有し、残部がFeおよび不純物からなる化学組成を有する高マンガン含有鋼を連続鋳造法により製造する方法であって、
鋳型に給湯する直前の溶鋼容器内の溶鋼温度T(単位:℃)が下記式(1)を満たすように制御するとともに、
鋳造速度Vc(単位:m/min)を下記式(2)の範囲に選定すること
を特徴とする高マンガン含有鋼の製造方法:
a≦T≦a+50 (1)
Vc≧0.02×(T−a) (2)
ここで、aは、鋼の組成から下記式(3)により決定される値であり、式中の(C%)、(Si%)、(Mn%)および(Cr%)は、それぞれ、前記化学組成におけるC,Si,MnおよびCrの含有量(単位:質量%)である。
a=1562−{62×(C%)+6×(Si%)+4.1×(Mn%)+1.5×(Cr%)} (3)
As basic components, in mass%, C: 0.09% to 1.5%, Si: 0.05% to 1.0%, Mn: 10% to 31%, Cr: 10% or less, P : 0.05% or less, S: 0.02% or less, Al: 0.003% or more and 0.1% or less, N: 0.005% or more and 0.50% or less, with the balance being Fe and impurities A method for producing a high manganese content steel having a chemical composition by a continuous casting method,
While controlling so that the molten steel temperature T (unit: ° C) in the molten steel container immediately before supplying hot water to the mold satisfies the following formula (1),
A method for producing a high manganese content steel, wherein the casting speed Vc (unit: m / min) is selected within the range of the following formula (2):
a ≦ T ≦ a + 50 (1)
Vc ≧ 0.02 × (T−a) (2)
Here, a is a value determined by the following formula (3) from the composition of steel, and (C%), (Si%), (Mn%) and (Cr%) in the formula are respectively It is content (unit: mass%) of C, Si, Mn and Cr in the chemical composition.
a = 1562− {62 × (C%) + 6 × (Si%) + 4.1 × (Mn%) + 1.5 × (Cr%)} (3)
前記鋳型に給湯する直前の溶鋼容器内の溶鋼温度Tがさらに下記式(1’)を満たすように制御するとともに、前記鋳造速度Vc(単位:m/min)を下記式(2’)の範囲に選定すること
を特徴とする請求項1記載の高マンガン含有鋼の製造方法:
a≦T≦a+30 (1’)
Vc≧0.025×(T−a) (2’)
The molten steel temperature T in the molten steel container immediately before the hot water supply to the mold is further controlled to satisfy the following formula (1 ′), and the casting speed Vc (unit: m / min) is within the range of the following formula (2 ′). The method for producing a high manganese content steel according to claim 1, wherein:
a ≦ T ≦ a + 30 (1 ′)
Vc ≧ 0.025 × (T−a) (2 ′)
前記化学組成がさらに下記式(5)を満たす、請求項1または2記載の高マンガン含有鋼の製造方法:
(Mn%)+40.2×(C%)+122×(P%)<62.2 (5)
ここで、上記式(5)中の(Mn%)、(C%)および(P%)は、それぞれ、前記化学組成におけるMn,CおよびPの含有量(単位:質量%)である。
The manufacturing method of the high manganese content steel of Claim 1 or 2 with which the said chemical composition further satisfy | fills following formula (5):
(Mn%) + 40.2 × (C%) + 122 × (P%) <62.2 (5)
Here, (Mn%), (C%) and (P%) in the above formula (5) are the contents (unit: mass%) of Mn, C and P in the chemical composition, respectively.
前記化学組成がさらに下記式(6)を満たす、請求項1から3のいずれかに記載の高マンガン含有鋼の製造方法:
(%C)+4.3(%P)<1.21 (6)
ここで、上記式(6)中の(C%)および(P%)は、それぞれ、前記化学組成におけるCおよびPの含有量(単位:質量%)である。
The manufacturing method of the high manganese content steel in any one of Claim 1 to 3 with which the said chemical composition further satisfy | fills following formula (6):
(% C) +4.3 (% P) <1.21 (6)
Here, (C%) and (P%) in the above formula (6) are the contents (unit: mass%) of C and P in the chemical composition, respectively.
JP2010105712A 2010-04-30 2010-04-30 Method for producing high manganese steel Active JP5041029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105712A JP5041029B2 (en) 2010-04-30 2010-04-30 Method for producing high manganese steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105712A JP5041029B2 (en) 2010-04-30 2010-04-30 Method for producing high manganese steel

Publications (2)

Publication Number Publication Date
JP2011230182A true JP2011230182A (en) 2011-11-17
JP5041029B2 JP5041029B2 (en) 2012-10-03

Family

ID=45320061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105712A Active JP5041029B2 (en) 2010-04-30 2010-04-30 Method for producing high manganese steel

Country Status (1)

Country Link
JP (1) JP5041029B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423795A (en) * 2011-11-25 2012-04-25 山西太钢不锈钢股份有限公司 Continuous casting method for high manganese steel
JP2012161820A (en) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd Manufacturing method of nonmagnetic steel using continuous casting
JP2013173159A (en) * 2012-02-24 2013-09-05 Nippon Steel & Sumitomo Metal Corp CONTINUOUS CASTING METHOD OF HIGH-C HIGH-Mn NONMAGNETIC STEEL
JP2013240800A (en) * 2012-05-18 2013-12-05 Nippon Steel & Sumitomo Metal Corp Method for producing slab
JP2014205907A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability and method of producing the same
JP2014205908A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability
KR20170069726A (en) * 2015-12-11 2017-06-21 주식회사 포스코 HIGH-Mn STEEL BRAKE DISK
WO2017105134A1 (en) * 2015-12-18 2017-06-22 주식회사 포스코 Wear resistant steel material excellent in toughness and internal quality, and method for manufacturing same
WO2017111473A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor
KR101798772B1 (en) 2016-06-23 2017-11-17 주식회사 포스코 Medium manganese steel sheet having high-elongation and high-strength and manufacturing method for the same
CN107790654A (en) * 2016-09-06 2018-03-13 鞍钢股份有限公司 A kind of control method of low-carbon Al killed cold heading steel continuous casting square billet pattern cracking
US10018236B2 (en) 2015-12-11 2018-07-10 Posco Attachable high-Mn steel brake disk
KR101899684B1 (en) 2016-12-22 2018-09-17 주식회사 포스코 Method for manufacturing wear-resistant steel plates having excellent surface quality
US20180363108A1 (en) * 2015-12-23 2018-12-20 Posco Non-magnetic steel material having excellent hot workability and manufacturing method therefor
JP2018204109A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP2018204110A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP2019519675A (en) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company In-situ dissimilar metal welding technology for enhanced wear resistant high manganese steel
JP2019183203A (en) * 2018-04-04 2019-10-24 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
EP3561122A4 (en) * 2016-12-23 2019-12-25 Posco Austenite steel material having superb surface characteristic, and method for producing same
EP3686306A4 (en) * 2017-09-20 2020-07-29 JFE Steel Corporation Steel plate and method for manufacturing same
WO2020153407A1 (en) 2019-01-25 2020-07-30 Jfeスチール株式会社 High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel
WO2022139396A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 High-manganese austenitic steel for disc brake
CN116083813A (en) * 2023-01-05 2023-05-09 鞍钢集团矿业有限公司 N microalloyed high manganese steel and heat treatment method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098045B (en) * 2014-07-10 2016-06-08 安徽通润汽车零部件有限公司 The preparation method of a kind of hydraulic jack lifting beam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913556A (en) * 1982-07-14 1984-01-24 Kawasaki Steel Corp Production of high manganese steel
JPH06170511A (en) * 1992-12-03 1994-06-21 Sumitomo Metal Ind Ltd Continuous casting method and tundish
JPH07331385A (en) * 1994-06-06 1995-12-19 Sumitomo Metal Ind Ltd Method for estimating liquidus temperature of stainless steel
JPH08143951A (en) * 1994-11-16 1996-06-04 Sumitomo Metal Ind Ltd Heating and slabbing method for stainless steel or high alloy steel material
JP2003112235A (en) * 2001-07-27 2003-04-15 Kawasaki Steel Corp CONTINUOUS CASTING METHOD FOR HIGH Cr- AND HIGH Al- CONTAINING STEEL
JP2003231950A (en) * 2002-02-07 2003-08-19 Sumitomo Metal Ind Ltd Welded structure of ferritic stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913556A (en) * 1982-07-14 1984-01-24 Kawasaki Steel Corp Production of high manganese steel
JPH06170511A (en) * 1992-12-03 1994-06-21 Sumitomo Metal Ind Ltd Continuous casting method and tundish
JPH07331385A (en) * 1994-06-06 1995-12-19 Sumitomo Metal Ind Ltd Method for estimating liquidus temperature of stainless steel
JPH08143951A (en) * 1994-11-16 1996-06-04 Sumitomo Metal Ind Ltd Heating and slabbing method for stainless steel or high alloy steel material
JP2003112235A (en) * 2001-07-27 2003-04-15 Kawasaki Steel Corp CONTINUOUS CASTING METHOD FOR HIGH Cr- AND HIGH Al- CONTAINING STEEL
JP2003231950A (en) * 2002-02-07 2003-08-19 Sumitomo Metal Ind Ltd Welded structure of ferritic stainless steel

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161820A (en) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd Manufacturing method of nonmagnetic steel using continuous casting
CN102423795A (en) * 2011-11-25 2012-04-25 山西太钢不锈钢股份有限公司 Continuous casting method for high manganese steel
JP2013173159A (en) * 2012-02-24 2013-09-05 Nippon Steel & Sumitomo Metal Corp CONTINUOUS CASTING METHOD OF HIGH-C HIGH-Mn NONMAGNETIC STEEL
JP2013240800A (en) * 2012-05-18 2013-12-05 Nippon Steel & Sumitomo Metal Corp Method for producing slab
JP2014205907A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability and method of producing the same
JP2014205908A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability
CN108368899A (en) * 2015-12-11 2018-08-03 株式会社Posco Potassium steel brake disc
KR20170069726A (en) * 2015-12-11 2017-06-21 주식회사 포스코 HIGH-Mn STEEL BRAKE DISK
KR101899635B1 (en) * 2015-12-11 2018-10-04 주식회사 포스코 ATTACHABLE HIGH-Mn STEEL BRAKE DISK
KR101889142B1 (en) * 2015-12-11 2018-08-16 주식회사 포스코 HIGH-Mn STEEL BRAKE DISK
US10018236B2 (en) 2015-12-11 2018-07-10 Posco Attachable high-Mn steel brake disk
WO2017105134A1 (en) * 2015-12-18 2017-06-22 주식회사 포스코 Wear resistant steel material excellent in toughness and internal quality, and method for manufacturing same
US20180363108A1 (en) * 2015-12-23 2018-12-20 Posco Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2017111473A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor
US11873546B2 (en) 2015-12-23 2024-01-16 Posco Co., Ltd Austenitic steel material having excellent hot workability and manufacturing method therefor
US10961610B2 (en) 2015-12-23 2021-03-30 Posco Non-magnetic steel material having excellent hot workability and manufacturing method therefor
JP2019519675A (en) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company In-situ dissimilar metal welding technology for enhanced wear resistant high manganese steel
KR101798772B1 (en) 2016-06-23 2017-11-17 주식회사 포스코 Medium manganese steel sheet having high-elongation and high-strength and manufacturing method for the same
CN107790654A (en) * 2016-09-06 2018-03-13 鞍钢股份有限公司 A kind of control method of low-carbon Al killed cold heading steel continuous casting square billet pattern cracking
CN107790654B (en) * 2016-09-06 2019-08-06 鞍钢股份有限公司 A kind of control method of low-carbon Al killed cold heading steel continuous casting square billet pattern cracking
KR101899684B1 (en) 2016-12-22 2018-09-17 주식회사 포스코 Method for manufacturing wear-resistant steel plates having excellent surface quality
EP3561122A4 (en) * 2016-12-23 2019-12-25 Posco Austenite steel material having superb surface characteristic, and method for producing same
JP2018204109A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP7135465B2 (en) 2017-06-08 2022-09-13 日本製鉄株式会社 Wear-resistant thick steel plate
JP7135464B2 (en) 2017-06-08 2022-09-13 日本製鉄株式会社 Wear-resistant thick steel plate
JP2018204110A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
EP3686306A4 (en) * 2017-09-20 2020-07-29 JFE Steel Corporation Steel plate and method for manufacturing same
JP2019183203A (en) * 2018-04-04 2019-10-24 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
WO2020153407A1 (en) 2019-01-25 2020-07-30 Jfeスチール株式会社 High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel
US11819909B2 (en) 2019-01-25 2023-11-21 Jfe Steel Corporation Method for manufacturing high-manganese steel cast slab and method for manufacturing high-manganese steel slab or steel sheet
WO2022139396A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 High-manganese austenitic steel for disc brake
CN116083813A (en) * 2023-01-05 2023-05-09 鞍钢集团矿业有限公司 N microalloyed high manganese steel and heat treatment method and application thereof

Also Published As

Publication number Publication date
JP5041029B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
JP6611236B2 (en) Fe-Cr-Ni-Mo alloy and method for producing the same
EP3524704B1 (en) Fe-cr-ni alloy and method for producing same
JP5360086B2 (en) Manufacturing method using continuous casting of nonmagnetic steel
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP2017057461A (en) Fe-Cr-Ni-BASED ALLOY EXCELLENT IN HIGH TEMPERATURE STRENGTH
JP7408347B2 (en) High Ni alloy and method for producing high Ni alloy
CN108642364A (en) Extra-supercritical unit martensite heat-resistant steel and its vacuum induction furnace smelting technique
JP5063024B2 (en) Method of casting alloy steel containing Cr and Ni
JP4627069B2 (en) Manufacturing method of high nitrogen steel
JP2005298909A (en) Cast slab having reduced surface crack
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
JP6838997B2 (en) Powder for continuous casting of steel and continuous casting method
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JPH0790471A (en) High mn and high n austenitic stainless steel cast slab and its production
JP4611327B2 (en) Continuous casting powder for Ni-Cu alloy and continuous casting method
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP5797461B2 (en) Stainless steel and manufacturing method thereof
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP2009248099A (en) Ni-CONTAINING STEEL SLAB AND CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL
JP4542079B2 (en) Casting method of Ti-containing Fe-Cr-Ni steel with excellent surface properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5041029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350