JP4627069B2 - Manufacturing method of high nitrogen steel - Google Patents

Manufacturing method of high nitrogen steel Download PDF

Info

Publication number
JP4627069B2
JP4627069B2 JP2007123319A JP2007123319A JP4627069B2 JP 4627069 B2 JP4627069 B2 JP 4627069B2 JP 2007123319 A JP2007123319 A JP 2007123319A JP 2007123319 A JP2007123319 A JP 2007123319A JP 4627069 B2 JP4627069 B2 JP 4627069B2
Authority
JP
Japan
Prior art keywords
nitrogen
steel
molten steel
index
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007123319A
Other languages
Japanese (ja)
Other versions
JP2007326150A (en
Inventor
史生 高橋
義和 百井
耕司 梶川
人久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007123319A priority Critical patent/JP4627069B2/en
Publication of JP2007326150A publication Critical patent/JP2007326150A/en
Application granted granted Critical
Publication of JP4627069B2 publication Critical patent/JP4627069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、高窒素鋼の製造方法に関するものであり、さらに詳しくは、窒素を多量に含有する合金鋼において、ガス欠陥のない健全な鋼塊を得るための製造方法に関するものである。   The present invention relates to a method for producing high nitrogen steel, and more particularly to a production method for obtaining a healthy steel ingot free from gas defects in an alloy steel containing a large amount of nitrogen.

ステンレス鋼や耐熱鋼などの合金鋼において、窒素含有量を高めて耐食性や耐酸化性を向上させ、且つ室温強度や高温強度も向上させる試みがなされており、特許文献1や特許文献2のように高窒素鋼とその製造方法が提案されている。
一方で、窒素を多量に含有する合金鋼を製造する場合、常圧で鋳造した鋼塊はブローホールやポロシティと呼ばれる多くのガス欠陥を含むことがあり、圧延や鍛造時に割れの原因になったり、製品に残存して機械的特性の劣化を招いたりする。
そのため、このようなガス欠陥の生成を防止するため、従来から特許文献3や特許文献4、5のような、加圧雰囲気下で溶解し鋳造する方法が提案されている。
In alloy steels such as stainless steel and heat-resistant steel, attempts have been made to increase the nitrogen content to improve corrosion resistance and oxidation resistance, and to improve room temperature strength and high temperature strength. High nitrogen steel and its manufacturing method have been proposed.
On the other hand, when producing alloy steel containing a large amount of nitrogen, the steel ingot cast at normal pressure may contain many gas defects called blowholes and porosity, which may cause cracking during rolling and forging. Or remain in the product and cause deterioration of mechanical properties.
Therefore, in order to prevent the generation of such gas defects, conventionally, a method of melting and casting in a pressurized atmosphere as in Patent Document 3 and Patent Documents 4 and 5 has been proposed.

一般に、窒素ガスを含む雰囲気においては、合金鋼の溶湯の平衡窒素溶解度は、各合金化学成分の質量パーセントと日本学術振興会が推奨する相互作用助係数を用いて下記の式3により求めることができる(非特許文献1参照)。
Log[%N]=−518/T−1.063−0.007*[%Ni]−(−148/T+0.033+(1.56/T−0.00053)*[%Cr])*[%Cr]−(−33.2/T+0.0064)*[%Mo]−(−1420/T+0.635)*[%V]−(280/T+0.0816)*[%Nb]+0.002*[%W]−0.012*[%Co]−0.01*[%Al]−0.13*[%C]−0.048*[%Si]+0.02*[%Mn]−0.007*[%S]−0.059*[%P] ・・・(式3)
ここで、[%N]:1気圧における平衡窒素溶解度(質量パーセント)、T:溶鋼の温度である。
In general, in an atmosphere containing nitrogen gas, the equilibrium nitrogen solubility of the molten alloy steel can be obtained by the following Equation 3 using the mass percentage of each alloy chemical component and the interaction aid recommended by the Japan Society for the Promotion of Science. Yes (see Non-Patent Document 1).
Log [% N] e = −518 / T−1.063−0.007 * [% Ni] − (− 148 / T + 0.033 + (1.56 / T−0.00053) * [% Cr]) * [% Cr]-(-33.2 / T + 0.0064) * [% Mo]-(-1420 / T + 0.635) * [% V]-(280 / T + 0.0816) * [% Nb] +0.002 * [% W]-0.012 * [% Co]-0.01 * [% Al]-0.13 * [% C]-0.048 * [% Si] + 0.02 * [% Mn]- 0.007 * [% S] −0.059 * [% P] (Formula 3)
Here, [% N] e : equilibrium nitrogen solubility (mass percent) at 1 atm, T: temperature of molten steel.

また、常圧以下の雰囲気においては、溶鋼の平衡窒素溶解度はSievertzの法則に従うことが知られており、上記式によって求められた1気圧における平衡窒素溶解度と窒素分圧の1/2乗を用いて、下記の式4のように求めることができる。
[%N]N2=[%N]*PN2 1/2 ・・・(式4)
ここで、[%N]N2:窒素分圧PN2気圧における平衡窒素溶解度(質量パーセント)、PN2:窒素分圧(atm)である。
Further, in an atmosphere of atmospheric pressure or lower, it is known that the equilibrium nitrogen solubility of molten steel follows Sievertz's law, using the equilibrium nitrogen solubility at 1 atm obtained from the above formula and the 1/2 power of the nitrogen partial pressure. Thus, it can be obtained as shown in Equation 4 below.
[% N] N2 = [% N] e * P N2 1/2 (Formula 4)
Here, [% N] N2 : nitrogen partial pressure PN2 equilibrium nitrogen solubility (mass percent) at PN2 atmospheric pressure, PN2 : nitrogen partial pressure (atm).

窒素分圧が常圧以上10気圧以下の加圧雰囲気下においては、これらの式に窒素自身の相互作用助係数を加えた下記式5が成り立つことを発明者らは見出しており、合金鋼に添加する窒素量から必要となる窒素分圧を決定することができることから、溶解時に窒素分圧を調節することによって所定の窒素量を歩留り良く溶鋼に添加することが可能である。
Log[%N]N2=−518/T−1.063+1/2*Log(PN2)−0.007*[%Ni]−(−148/T+0.033+(1.56/T−0.00053)*[%Cr])*[%Cr]−(−33.2/T+0.0064)*[%Mo]−(−1420/T+0.635)*[%V]−(280/T+0.0816)*[%Nb]+0.002*[%W]−0.012*[%Co]−0.01*[%Al]−0.13*[%C]−0.048*[%Si]+0.02*[%Mn]−0.007*[%S]−0.059*[%P]−(0.051−0.0034*[%N])*[%N] ・・・(式5)
ここで、[%N]N2:窒素分圧PN2気圧における平衡窒素溶解度(質量パーセント)、PN2:窒素分圧(atm)である。
The inventors have found that in a pressurized atmosphere where the nitrogen partial pressure is greater than or equal to normal pressure and less than or equal to 10 atm, the following formula 5 is established by adding the interaction coefficient of nitrogen itself to these formulas. Since the necessary nitrogen partial pressure can be determined from the amount of nitrogen to be added, it is possible to add a predetermined amount of nitrogen to the molten steel with good yield by adjusting the nitrogen partial pressure during melting.
Log [% N] N2 = −518 / T−1.063 + 1/2 * Log (P N2 ) −0.007 * [% Ni] − (− 148 / T + 0.033 + (1.56 / T−0.00053) ) * [% Cr]) * [% Cr] − (− 33.2 / T + 0.0064) * [% Mo] − (− 1420 / T + 0.635) * [% V] − (280 / T + 0.0816) * [% Nb] +0.002 * [% W] −0.012 * [% Co] −0.01 * [% Al] −0.13 * [% C] −0.048 * [% Si] +0 .02 * [% Mn] −0.007 * [% S] −0.059 * [% P] − (0.051−0.0034 * [% N]) * [% N] (formula 5)
Here, [% N] N2 : nitrogen partial pressure PN2 equilibrium nitrogen solubility (mass percent) at PN2 atmospheric pressure, PN2 : nitrogen partial pressure (atm).

しかし、溶解時に平衡窒素溶解度まで窒素を添加した場合、凝固時には液相と晶出した固相との間で窒素を含めた合金化学成分の固液分配が生じ、晶出した固相は液相よりも窒素を含有することができないことから余分な窒素を液相へ排出する。その結果、加圧雰囲気下であっても合金組成によっては液相側の窒素濃度が平衡窒素溶解度を上回る現象が生じる。そのため、過剰となった分の窒素が凝固前面でガス気泡化して固相に捕捉され、凝固後の鋼塊中にガス欠陥が生成することがある。   However, when nitrogen is added to the equilibrium nitrogen solubility during dissolution, solid-liquid distribution of the alloy chemical components including nitrogen occurs between the liquid phase and the crystallized solid phase during solidification, and the crystallized solid phase is in the liquid phase. Excess nitrogen is discharged to the liquid phase because it cannot contain nitrogen. As a result, even in a pressurized atmosphere, depending on the alloy composition, a phenomenon occurs in which the nitrogen concentration on the liquid phase side exceeds the equilibrium nitrogen solubility. Therefore, the excess nitrogen is gas-bubbled on the solidification front surface and trapped in the solid phase, and gas defects may be generated in the steel ingot after solidification.

ガス気泡が生成する機構は、図13に示す概念図により理解することができる。凝固前面には固相から固液分配により排出された窒素の濃化した濃化溶鋼が形成される。凝固時の偏析によって形成される濃化溶鋼中の合金元素および窒素の濃度は、既存の偏析の解析解を用いることによって推定することができる(例えば、非特許文献2)。特に炭素や窒素の偏析濃度は、固相内拡散を考慮した非特許文献3に示されている下記の式6を用いて推定することが望ましい。
/C=[1−{1−βk/(1+β)}fs](k−1)/{1−(βk/1+β)}・・・(式6)
ただし、
β=4D/L
:液相濃度(質量パーセント)
:初期濃度(質量パーセント)
k:分配係数
fs:固相率
:拡散係数(m/s)
:部分凝固時間(s)
L:デンドライトアーム間隔の1/2値(m)である。
なお、発明者らの調査では、tとLは連動して変化するが、300<t<4000、5×10−4<L<5×10−3の範囲では、液相濃度はtとLが変化してもほとんど影響を受けないことが確認されている。
The mechanism by which gas bubbles are generated can be understood from the conceptual diagram shown in FIG. Concentrated molten steel enriched with nitrogen discharged from the solid phase by solid-liquid distribution is formed on the solidification front. The concentration of alloy elements and nitrogen in the concentrated molten steel formed by segregation during solidification can be estimated by using an existing analytical solution for segregation (for example, Non-Patent Document 2). In particular, it is desirable to estimate the segregation concentration of carbon or nitrogen using the following formula 6 shown in Non-Patent Document 3 in consideration of diffusion in the solid phase.
C L / C 0 = [1− {1−βk / (1 + β)} fs] (k−1) / {1− (βk / 1 + β)} (Expression 6)
However,
β = 4D s t f / L 2
C L : Liquid phase concentration (mass percent)
C 0 : Initial concentration (mass percent)
k: partition coefficient fs: solid phase ratio D s : diffusion coefficient (m 2 / s)
t f : Partial solidification time (s)
L: 1/2 value (m) of the dendrite arm interval.
In the investigation by the inventors, t f and L change in conjunction with each other. However, in the range of 300 <t f <4000, 5 × 10 −4 <L <5 × 10 −3 , the liquid phase concentration is t It has been confirmed that even if f and L change, they are hardly affected.

さらに、濃化溶鋼からガス気泡が核生成し成長するためには、非特許文献4に記載されているように、ガス気泡の内圧は下記の式7を満たさなければならない。
bubble≧P+ρh/1013.25+1.974*10−6σ/r ・・・(式7)
ここで、Pbubble:ガス気泡の内圧(atm)、P:雰囲気圧力(atm)、ρ:溶鋼密度(g/cm)、ガス気泡の浴高さ(cm)、σ:溶鋼表面張力(dyn/cm)、r:ガス気泡の半径(cm)である。
上記式右辺の第二項は溶鋼静圧の項であり第三項は表面張力の項であるが、一般的に第三項の寄与は小さいためガス気泡の内圧は雰囲気圧力と溶鋼静圧によって決定されるとみなすことができる。
Furthermore, in order for gas bubbles to nucleate and grow from the concentrated molten steel, as described in Non-Patent Document 4, the internal pressure of the gas bubbles must satisfy the following equation (7).
P bubble ≧ P + ρh / 1013.25 + 1.974 * 10 −6 σ / r (Expression 7)
Where P bubble : gas bubble internal pressure (atm), P: atmospheric pressure (atm), ρ: molten steel density (g / cm 3 ), gas bubble bath height (cm), σ: molten steel surface tension (dyn) / Cm), r: radius of gas bubbles (cm).
The second term on the right side of the above formula is the term of molten steel static pressure and the third term is the term of surface tension. Generally, the contribution of the third term is small, so the internal pressure of gas bubbles depends on the atmospheric pressure and the molten steel static pressure. It can be regarded as determined.

加えて、発明者らは母溶鋼と凝固前面(固相率fs=0.3)に形成された濃化溶鋼の密度差の絶対値が0.01(g/cm)以上の場合、固液共存領域における対流が発生してガス欠陥が生成することを発見した。母溶鋼および濃化溶鋼の密度は、各成分の密度と濃度から加成性が成り立つとして、下記の式8で計算することができ、下記の式9で溶鋼密度差を計算することができる。
ρ=Σρ×C ・・・(式8)
ここで、ρ:溶鋼密度(g/cm)、ρ:各成分の密度(g/cm)、C:各成分の濃度(wt%)である。
Δρ=ρ−ρ ・・・(式9)
ここで、Δρ:溶鋼密度差(g/cm)、ρ:母溶鋼の密度(g/cm)、ρL:濃化溶鋼の密度(g/cm)である。
この場合のガス欠陥が生成する機構は、図14に示す概略図により理解することができる。密度差に起因する対流がデンドライト樹枝の間で発生すると母溶鋼と濃化溶鋼は不連続に接触することになり、窒素を多く含有する濃化溶鋼から窒素溶解度の小さい母溶鋼に多量の窒素が供給されるため、ガス気泡が生成することになる。
特許2639849号特許明細書 特開平06−322487号公報 特開平04−238663号公報 特開2000−212631号公報 特開2003−221615号公報 ”日本学術振興会製鋼第19委員会編 製鋼反応の推奨平衡値”、p.17−21,258,259 ”Philosophical Magazine A81”、2001、No.1、p.153−159 ”Transactions ISIJ26”、1986、No.12、p.1045−1051 ”鉄と鋼65”、1979、No.10、P.1561−1570
In addition, the inventors have found that when the absolute value of the density difference between the mother molten steel and the concentrated molten steel formed on the solidification front surface (solid phase ratio fs = 0.3) is 0.01 (g / cm 3 ) or more, It was discovered that convection occurs in the liquid coexistence region and gas defects are generated. The density of the mother molten steel and the concentrated molten steel can be calculated by the following equation 8 assuming that additivity is established from the density and concentration of each component, and the molten steel density difference can be calculated by the following equation 9.
ρ = Σρ i × C i (Equation 8)
Here, ρ: molten steel density (g / cm 3 ), ρ i : density of each component (g / cm 3 ), C i : concentration of each component (wt%).
Δρ = ρ 0 −ρ L (Equation 9)
Here, Δρ is a molten steel density difference (g / cm 3 ), ρ 0 is a mother molten steel density (g / cm 3 ), and ρL is a concentrated molten steel density (g / cm 3 ).
The mechanism by which gas defects are generated in this case can be understood from the schematic diagram shown in FIG. When convection due to density difference occurs between dendritic dendrites, the mother molten steel and the concentrated molten steel will come into discontinuous contact, and a large amount of nitrogen will flow from the concentrated molten steel containing a large amount of nitrogen to the molten mother steel with a low nitrogen solubility. Since it is supplied, gas bubbles are generated.
Patent 2639849 Patent Specification Japanese Patent Laid-Open No. 06-322487 Japanese Patent Laid-Open No. 04-238663 Japanese Patent Laid-Open No. 2000-212631 JP2003-221615A “Recommended equilibrium value of steelmaking reaction edited by the 19th Committee of the Japan Society for the Promotion of Science”, p. 17-21, 258, 259 “Philosophy Magazine A81”, 2001, no. 1, p. 153-159 “Transactions ISIJ26”, 1986, No. 12, p. 1045-1051 “Iron and Steel 65”, 1979, No. 10, P.I. 1561-1570

ガス欠陥の生成を防止して健全な鋼塊を製造するために、従来の技術では前記のように高圧雰囲気を保って鋳造する方法が提案されている。特許文献2では鋳造時あるいは凝固時に全圧を窒素分圧の3倍よりも大きくするとしており、特許文献1では固相における窒素の平均溶解度に相当する窒素分圧の1.5倍以上の全圧を加えて鋳造するとしている。また、特許文献4では凝固時の鋼中に溶存し得る濃度を超えない窒素量を溶鋼に添加して窒素分圧を高く保ったまま鋳造するとしている。   In order to prevent the generation of gas defects and produce a healthy steel ingot, the conventional technique has proposed a method of casting while maintaining a high-pressure atmosphere as described above. In Patent Document 2, the total pressure is set to be larger than three times the nitrogen partial pressure during casting or solidification. In Patent Document 1, the total pressure is 1.5 times or more of the nitrogen partial pressure corresponding to the average solubility of nitrogen in the solid phase. It is supposed to cast with pressure. In Patent Document 4, the amount of nitrogen not exceeding the concentration that can be dissolved in the steel during solidification is added to the molten steel, and casting is performed while keeping the nitrogen partial pressure high.

しかし、いずれの先行技術も凝固偏析に基づくガス欠陥の生成現象を正確に反映しておらず、理論的に窒素分圧と全圧の関係を比例関係で整理することは困難であることから、ガス分圧の調節については根拠に乏しい。また、窒素固溶度の大きいオーステナイト系鋼では、窒素ガスのみの加圧雰囲気でも健全な鋼塊を鋳造することは可能であるが、オーステナイト系鋼以外の鋼種では、溶鋼の窒素含有量が平衡窒素溶解度に到達する前に鋳造しなければ健全な鋼塊を得られないので、窒素含有量が変わるたびに操業条件を変える必要が生じる。   However, none of the prior art accurately reflects the phenomenon of gas defect generation based on solidification segregation, and it is theoretically difficult to organize the relationship between nitrogen partial pressure and total pressure in a proportional relationship. There is little evidence for adjusting the gas partial pressure. In addition, with austenitic steels with high nitrogen solid solubility, it is possible to cast a healthy steel ingot even in a pressurized atmosphere of only nitrogen gas, but with steel types other than austenitic steels, the nitrogen content of the molten steel is balanced. Since a healthy steel ingot cannot be obtained unless it is cast before reaching nitrogen solubility, it is necessary to change operating conditions each time the nitrogen content changes.

加えて、いずれの先行技術においても大型鋼塊を製造する場合には上述の溶鋼静圧が無視できなくなるにもかかわらず考慮されていない。さらに、限定された製造設備で試行錯誤した上での開発技術であることから、必要となる圧力を過大に見積もる傾向があり、製造設備に依存し適用できる鋼種に制限があるなど汎用性に欠けている。
このように、従来の方法では不必要に高圧雰囲気に保つことから、製造設備に相応の耐圧構造が必要となるため製造コストの増大を招くといった問題が生じる。さらに、この問題を回避するために比較的低圧で鋳造することができる雰囲気圧力を探そうとすると、合金組成や鋼塊サイズ及び窒素添加量が変わるたびに試行錯誤しなければならなくなるという問題を有している。
In addition, in any of the prior arts, when manufacturing a large steel ingot, the above-mentioned molten steel static pressure is not taken into consideration even though it cannot be ignored. Furthermore, because it is a development technology after trial and error in a limited production facility, there is a tendency to overestimate the required pressure, and there is a lack of versatility such as restrictions on the types of steel that can be applied depending on the production facility. ing.
Thus, since the conventional method keeps the high-pressure atmosphere unnecessarily, a pressure-resistant structure corresponding to the manufacturing equipment is required, which causes an increase in manufacturing cost. Furthermore, when trying to find an atmospheric pressure that can be cast at a relatively low pressure in order to avoid this problem, there is a problem that trial and error must be performed each time the alloy composition, the steel ingot size, and the nitrogen addition amount change. Have.

本発明は、上記事情を背景としてなされたものであり、ガス欠陥の生成現象を正確に反映してガス欠陥の生成を効果的に防止する窒素分圧と全圧との調整を容易に行うことを可能にする高窒素鋼の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and easily adjusts the partial pressure of nitrogen and the total pressure to accurately prevent the generation of gas defects by accurately reflecting the phenomenon of generation of gas defects. It aims at providing the manufacturing method of the high nitrogen steel which makes it possible.

すなわち、本発明の高窒素鋼の製造方法のうち請求項1記載の発明は、窒素を多量に含有させると常圧雰囲気下では鋼塊中にガス欠陥が生成する合金鋼の溶鋼を、加圧雰囲気下で製造するにあたり、所定の窒素含有量を達成する窒素分圧を有する混合ガス雰囲気中で溶解し、平衡状態になった溶鋼から鋼塊を造塊する時、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm )未満の場合は、下記式1に示す過剰窒素指数INDEX(1)が0よりも小さい値を持つように前記窒素分圧と前記全圧を調節して溶鋼を凝固させることを特徴とする高窒素鋼の製造方法。
INDEX(1)=C (P N2 ,fs.p)−C (P TOTAL ,fs.p)・・・(式1)
ここで、
INDEX(1):過剰窒素指数(wtppm)
fs.p:包晶反応固相率
(P N2 ,fs.p):窒素分圧P N2 (atm)条件での包晶反応固相率における液相中の窒素濃度(wtppm)
(P TOTAL ,fs.p):全圧P TOTAL (atm)条件での包晶反応固相率における液相の許容窒素溶解度(wtppm)
That is, the invention according to claim 1 of the method for producing high nitrogen steel of the present invention is to pressurize molten steel of alloy steel in which a gas defect is generated in a steel ingot under a normal pressure atmosphere when a large amount of nitrogen is contained. When producing steel ingots from molten steel that has been melted in a mixed gas atmosphere having a nitrogen partial pressure that achieves a predetermined nitrogen content and in equilibrium, when manufacturing in an atmosphere, When the absolute value of the density difference from the mother steel is less than 0.01 (g / cm 3 ), the nitrogen partial pressure is set so that the excess nitrogen index INDEX (1) shown in the following formula 1 has a value smaller than 0. And a method for producing high nitrogen steel, wherein the molten steel is solidified by adjusting the total pressure.
INDEX (1) = C L N (P N2 , fs.p) −C e N (P TOTAL , fs.p) (Formula 1)
here,
INDEX (1): excess nitrogen index (wtppm)
fs. p: Peritectic reaction solid fraction
C L N (P N2 , fs.p): Nitrogen concentration in the liquid phase (wtppm) in the peritectic reaction solid phase ratio under the condition of nitrogen partial pressure P N2 (atm)
C e N (P TOTAL , fs.p): Permissible nitrogen solubility (wtppm) of the liquid phase in the peritectic reaction solid phase ratio under the total pressure P TOTAL (atm) condition

なお、本発明では、溶鋼に加えられる雰囲気圧力と溶鋼静圧を加算した圧力を全圧と表記することとする。また、本発明では、包晶反応固相率は、凝固時にフェライト凝固からオーステナイト凝固に切り替わる固相率であり、固相率全率においてオーステナイト凝固する場合は0とする。   In the present invention, the pressure obtained by adding the atmospheric pressure applied to the molten steel and the molten steel static pressure is referred to as total pressure. In the present invention, the peritectic reaction solid phase ratio is a solid phase ratio that switches from ferrite solidification to austenite solidification at the time of solidification, and is 0 when the austenite solidification occurs at the total solid phase ratio.

請求項記載の高窒素鋼の製造方法の発明は、窒素を多量に含有させると常圧雰囲気下では鋼塊中にガス欠陥が生成する合金鋼の溶鋼を、加圧雰囲気下で製造するにあたり、所定の窒素含有量を達成する窒素分圧を有する混合ガス雰囲気中で溶解し、平衡状態になった溶鋼から鋼塊を造塊する時、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm)以上の場合は、下記式2に示す過剰窒素指数INDEX(2)が0よりも小さい値を持つように前記窒素分圧と前記全圧を調節して溶鋼を凝固させることを特徴とする高窒素鋼の製造方法。
INDEX(2)=C (PN2,fs=0.75)−C (PTOTAL,fs=0)・・・(式2)
ここで、
INDEX(2):過剰窒素指数(wtppm)
(PN2,fs=0.75):窒素分圧PN2(atm)条件での固相率0.75における液相中の窒素濃度(wtppm)
(PTOTAL,fs=0):全圧PTOTAL(atm)条件での固相率0における液相の許容窒素溶解度(wtppm)
The invention of the method for producing high nitrogen steel according to claim 2 is for producing a molten steel of alloy steel in which a gas defect is generated in a steel ingot under a normal pressure atmosphere when a large amount of nitrogen is contained. When a steel ingot is made from molten steel that has been melted in a mixed gas atmosphere having a nitrogen partial pressure to achieve a predetermined nitrogen content and is in an equilibrium state, the density difference between the concentrated molten steel and the mother molten steel at the solidification front When the absolute value of is not less than 0.01 (g / cm 3 ), the nitrogen partial pressure and the total pressure are adjusted so that the excess nitrogen index INDEX (2) shown in the following formula 2 has a value smaller than 0. And then solidifying the molten steel, a method for producing high nitrogen steel.
INDEX (2) = C L N (P N2 , fs = 0.75) −C e N (P TOTAL , fs = 0) (Equation 2)
here,
INDEX (2): excess nitrogen index (wtppm)
C L N (P N2 , fs = 0.75): nitrogen concentration (wtppm) in the liquid phase at a solid phase ratio of 0.75 under the condition of nitrogen partial pressure P N2 (atm)
C e N (P TOTAL , fs = 0): Permissible nitrogen solubility (wtppm) of the liquid phase at a solid phase ratio of 0 under the total pressure P TOTAL (atm) condition

請求項記載の高窒素鋼の製造方法の発明は、請求項1または2に記載の発明において、前記合金鋼は、前記造塊時に液相線温度において晶出する初晶が窒化物以外となる窒素含有量および合金組成を有することを特徴とする。 The invention of the method for producing high nitrogen steel according to claim 3 is the invention according to claim 1 or 2 , wherein the alloy steel has a primary crystal that crystallizes at a liquidus temperature at the time of ingot formation other than nitride. It has the following nitrogen content and alloy composition.

前記したように濃化溶鋼に濃化する合金成分から、所定の窒素分圧における平衡窒素溶解度が既存の偏析の解析解と前記した相互作用助係数などを用いた算出方法(式5)などによって求められ、さらに、固相内拡散を考慮した濃化溶鋼中の窒素濃度が式6などを用いて算出することができる。
前記した相互作用助係数などを用いた算出方法(式5)の窒素分圧の項に、雰囲気圧力と溶鋼静圧の和を導入することによって液相の許容できる窒素溶解度を求めることができる。
そして、凝固前面に形成される濃化溶鋼中の窒素濃度がこの許容窒素溶解度を下回ればガス気泡は核生成せず、凝固後の鋼塊にはガス欠陥は生成しないものと考えられる。
As described above, from the alloy components concentrated in the concentrated molten steel, the equilibrium nitrogen solubility at a predetermined nitrogen partial pressure is calculated by the existing analytical solution for segregation and the calculation method (formula 5) using the above-mentioned interaction coefficient, etc. Further, the nitrogen concentration in the concentrated molten steel in consideration of diffusion in the solid phase can be calculated using Equation 6 or the like.
The allowable nitrogen solubility of the liquid phase can be obtained by introducing the sum of the atmospheric pressure and the molten steel static pressure into the term of the nitrogen partial pressure in the calculation method (formula 5) using the interaction aid coefficient described above.
And if the nitrogen concentration in the concentrated molten steel formed on the solidification front surface is lower than the allowable nitrogen solubility, gas bubbles are not nucleated, and it is considered that no gas defects are generated in the solidified steel ingot.

なお、加圧雰囲気下における溶解では、所定の窒素含有量を達成するのに必要十分な窒素分圧に調節する必要がある。その際、過分に窒素分圧を高めると余分な窒素が溶鋼に溶存してしまい、鋼塊を造塊する際にガス欠陥が生成してしまうため、窒素以外のガスも含んだ混合ガス雰囲気にして全圧を調節することが望ましい。窒素以外のガスには溶鋼と反応する空気や酸素が主成分となることは好ましくなく、溶鋼と反応しない希ガス(He、Ne、Ar等)のような不活性ガスが主成分となることが望ましい。
また、加圧雰囲気下における造塊では、溶鋼に添加した窒素が雰囲気に放出されて所定の窒素含有量を下回らないように、凝固中も平衡窒素溶解度に合わせて窒素分圧を調節することが望ましい。
Note that, in melting under a pressurized atmosphere, it is necessary to adjust to a nitrogen partial pressure that is necessary and sufficient to achieve a predetermined nitrogen content. At that time, excessively increasing the nitrogen partial pressure causes excess nitrogen to be dissolved in the molten steel, and gas defects are generated when the steel ingot is formed, so a mixed gas atmosphere containing gas other than nitrogen is created. It is desirable to adjust the total pressure. It is not preferable that the gas other than nitrogen is mainly composed of air or oxygen that reacts with the molten steel, and an inert gas such as a rare gas (He, Ne, Ar, etc.) that does not react with the molten steel. desirable.
In addition, in ingot formation under a pressurized atmosphere, the nitrogen partial pressure can be adjusted according to the equilibrium nitrogen solubility during solidification so that the nitrogen added to the molten steel is not released into the atmosphere and falls below the predetermined nitrogen content. desirable.

本発明で定義した過剰窒素指数INDEX(1)は、凝固時の偏析過程で濃化していく濃化溶鋼中の窒素濃度と濃化溶鋼の許容窒素溶解度の差で表される過剰窒素濃度の最大値であり、図1に示すように、過剰窒素濃度は固相率を横軸にとった図面上ではピークを持った曲線となる。過剰窒素濃度が0以上となる領域は、凝固中に過剰となる窒素の総量を示すことになり、この過剰窒素がガス気泡化することによって鋼塊中にガス欠陥が生成する。   The excess nitrogen index INDEX (1) defined in the present invention is the maximum of the excess nitrogen concentration represented by the difference between the nitrogen concentration in the concentrated molten steel that is concentrated in the segregation process during solidification and the allowable nitrogen solubility of the concentrated molten steel. As shown in FIG. 1, the excess nitrogen concentration is a curve having a peak on the drawing in which the solid fraction is taken on the horizontal axis. The region where the excess nitrogen concentration becomes 0 or more indicates the total amount of nitrogen that becomes excessive during solidification, and gas defects are generated in the steel ingot due to the formation of gas bubbles in the excess nitrogen.

発明者らは、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm)未満の場合、凝固中に晶出する固相がフェライト相からオーステナイト相に切り替わる包晶反応凝固が開始される固相率において過剰窒素濃度が最大値を示すことを発見し、これを過剰窒素指数INDEX(1)と定義している。過剰窒素指数INDEX(1)が0となる全圧はガス欠陥が生成する臨界の圧力を意味する。 When the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is less than 0.01 (g / cm 3 ), the inventors changed the solid phase that crystallizes during solidification from the ferrite phase to the austenite phase. It has been found that the excess nitrogen concentration shows the maximum value at the solid phase ratio at which peritectic reaction coagulation starts, and this is defined as the excess nitrogen index INDEX (1). The total pressure at which the excess nitrogen index INDEX (1) becomes 0 means the critical pressure at which gas defects are generated.

また、本発明で定義した過剰窒素指数INDEX(2)は、固相率0.75における濃化溶鋼の窒素濃度と固相率0に相当する母溶鋼の許容窒素溶解度の差で表される過剰窒素濃度であり、母溶鋼と濃化溶鋼の密度差が大きいと、固液共存領域において対流が発生し、流動限界固相率近傍における高窒素濃度の濃化溶鋼が固相率0である母溶鋼と不連続に接触する。この時の過剰窒素濃度が0以上となると、過剰窒素がガス気泡化し鋼塊中にガス欠陥が生成する。   The excess nitrogen index INDEX (2) defined in the present invention is an excess represented by the difference between the nitrogen concentration of the concentrated molten steel at a solid phase ratio of 0.75 and the allowable nitrogen solubility of the mother molten steel corresponding to a solid phase ratio of 0. If the density difference between the molten steel and the concentrated molten steel is large, convection occurs in the solid-liquid coexistence region, and the concentrated molten steel with a high nitrogen concentration near the flow limit solid phase ratio has a solid phase ratio of 0. Contact discontinuously with molten steel. If the excess nitrogen concentration at this time becomes 0 or more, excess nitrogen gas bubbles and gas defects are generated in the steel ingot.

発明者らは、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm)以上の場合に、固液共存領域における対流が発生してガス欠陥が生成することを発見し、固相率0.75における濃化溶鋼の窒素濃度と固相率0に相当する母溶鋼の許容窒素溶解度の差で表される過剰窒素濃度を過剰窒素指数INDEX(2)と定義している。過剰窒素指数INDEX(2)が0となる全圧はガス欠陥が生成する臨界の圧力を意味する。
本発明では、凝固前面における濃化溶鋼と母溶鋼の密度差の絶対値によって、いずれかの過剰窒素指数を選択し、その過剰窒素指数が0よりも小さい値になるように全圧を調節することによって凝固中の過剰窒素を解消することから、先行技術より低圧条件であっても安定的に健全な鋼塊を製造することが可能となる。
When the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is 0.01 (g / cm 3 ) or more, the inventors generate convection in the solid-liquid coexistence region and generate gas defects. The excess nitrogen concentration represented by the difference between the nitrogen concentration of the concentrated molten steel at a solid phase ratio of 0.75 and the allowable nitrogen solubility of the mother molten steel corresponding to a solid phase ratio of 0 is expressed as the excess nitrogen index INDEX (2). It is defined as The total pressure at which the excess nitrogen index INDEX (2) becomes 0 means the critical pressure at which gas defects are generated.
In the present invention, any excess nitrogen index is selected according to the absolute value of the density difference between the concentrated molten steel and the mother molten steel on the solidification front surface, and the total pressure is adjusted so that the excess nitrogen index becomes a value smaller than 0. By eliminating excess nitrogen during solidification, it is possible to produce a stable steel ingot stably even under lower pressure conditions than in the prior art.

本発明の式は、液相線温度において晶出する初晶がフェライト相であってもオーステナイト相であっても適用することが可能であり、包晶反応凝固が生じる合金鋼であっても適用できる。
本発明では、窒素を添加する合金鋼に特に制限を設けず、窒素含有量も特に限定されるものではない。しかし、液相線温度において晶出する初晶が窒化物となる合金鋼では、窒化物が粗大に晶出し、ガス欠陥の無い鋼塊であっても熱間加工性などの機械的特性を劣化させることから、本発明を適用することは好ましくない。
また、本発明は、溶鋼に窒素を添加する方法は気相−液相間における窒素吸収反応に限定するものではなく、加圧雰囲気の窒素分圧を必要十分な窒素分圧に調節するかぎりにおいては、窒化合金を溶鋼に添加するような固相−液相間反応やスラグに添加した窒化物から溶鋼に窒素を吸収させるようなスラグ−液相間反応による窒素添加方法であっても構わない。
The formula of the present invention can be applied regardless of whether the primary crystal that crystallizes at the liquidus temperature is a ferrite phase or an austenite phase, and even an alloy steel that causes peritectic reaction solidification. it can.
In the present invention, no particular limitation is imposed on the alloy steel to which nitrogen is added, and the nitrogen content is not particularly limited. However, in alloy steels in which the primary crystals that crystallize at the liquidus temperature are nitrides, the nitrides crystallize coarsely, and even mechanical ingots with no gas defects deteriorate mechanical properties such as hot workability. Therefore, it is not preferable to apply the present invention.
In the present invention, the method for adding nitrogen to molten steel is not limited to the nitrogen absorption reaction between the gas phase and the liquid phase, as long as the nitrogen partial pressure in the pressurized atmosphere is adjusted to a necessary and sufficient nitrogen partial pressure. May be a method of adding nitrogen by a solid phase-liquid phase reaction in which a nitride alloy is added to molten steel or a slag-liquid phase reaction in which nitrogen is absorbed into molten steel from a nitride added to slag. .

さらに、本発明では、加圧雰囲気を維持できる設備であれば精錬・溶解方法に関する制限は特に無い。ただし、凝固収縮に起因するサクションなどによって凝固中に減圧環境が生じるとガス欠陥は生成しやすくなることから、指向性凝固が得やすく凝固方向を調節でき、ザクや引け巣などが生成する最終凝固部を押湯部に制御できるような造塊方法が望ましく、加圧雰囲気を維持できるエレクトロスラグ再溶解法やアーク再溶解法などを用いると確実に健全な鋼塊を製造することができる。   Furthermore, in the present invention, there is no particular limitation on the refining / dissolving method as long as the facility can maintain a pressurized atmosphere. However, if a reduced pressure environment occurs during solidification due to suction due to solidification shrinkage, etc., gas defects are likely to be generated. An ingot forming method in which the part can be controlled to a feeder part is desirable, and a sound steel ingot can be reliably produced by using an electroslag remelting method or an arc remelting method that can maintain a pressurized atmosphere.

すなわち、本発明の高窒素鋼の製造方法は、窒素含有合金鋼を加圧雰囲気下で製造するにあたり、所定の窒素含有量を達成する窒素分圧を有する混合ガス雰囲気中で前記合金鋼を溶解し、平衡状態になった溶鋼から鋼塊を造塊する際に、凝固時の固相率および窒素分圧に基づく液相中の窒素濃度が、凝固時の固相率および全圧に基づく液相中の許容窒素溶解度よりも小さくなるように、前記窒素分圧と前記全圧を調節して前記溶鋼を凝固させるので、物性値の情報によって確認試験を実施する必要も無く操業条件が決定できる。
前記窒素分圧と前記全圧の調節は、下式に示す過剰窒素指数INDEX(1)あるいはINDEX(2)が0よりも小さい値を持つようにして行うことができる。
That is, in the method for producing high nitrogen steel of the present invention, when producing a nitrogen-containing alloy steel in a pressurized atmosphere, the alloy steel is dissolved in a mixed gas atmosphere having a nitrogen partial pressure that achieves a predetermined nitrogen content. However, when ingots are made from molten steel in an equilibrium state, the nitrogen concentration in the liquid phase based on the solid fraction and the nitrogen partial pressure during solidification is the same as the liquid concentration based on the solid fraction and total pressure during solidification. Since the molten steel is solidified by adjusting the nitrogen partial pressure and the total pressure so as to be smaller than the allowable nitrogen solubility in the phase, it is possible to determine the operating conditions without the need to carry out a confirmation test based on the information on the physical property values. .
The nitrogen partial pressure and the total pressure can be adjusted so that the excess nitrogen index INDEX (1) or INDEX (2) shown in the following equation has a value smaller than zero.

凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm)未満の場合
INDEX(1)=C (PN2,fs.p)−C (PTOTAL,fs.p)・・・(式1)
ここで、
INDEX(1):過剰窒素指数(wtppm)
fs.p:包晶反応固相率
(PN2,fs.p):窒素分圧PN2(atm)条件での包晶反応固相率における液相中の窒素濃度(wtppm)
(PTOTAL,fs.p):全圧PTOTAL(atm)条件での包晶反応固相率における液相の許容窒素溶解度(wtppm)
When the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is less than 0.01 (g / cm 3 ) INDEX (1) = C L N (P N2 , fs.p) −C e N ( P TOTAL , fs.p) (Formula 1)
here,
INDEX (1): excess nitrogen index (wtppm)
fs. p: peritectic reaction solid phase ratio C L N (P N2 , fs.p): nitrogen concentration in liquid phase (wtppm) in peritectic reaction solid phase ratio under nitrogen partial pressure P N2 (atm) condition
C e N (P TOTAL , fs.p): Permissible nitrogen solubility (wtppm) of the liquid phase in the peritectic reaction solid phase ratio under the total pressure P TOTAL (atm) condition

凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cm)以上の場合
INDEX(2)=C (PN2,fs=0.75)−C (PTOTAL,fs=0)・・・(式2)
ここで、
INDEX(2):過剰窒素指数(wtppm)
(PN2,fs=0.75):窒素分圧PN2(atm)条件での固相率0.75における液相中の窒素濃度(wtppm)
(PTOTAL,fs=0):全圧PTOTAL(atm)条件での固相率0における液相の許容窒素溶解度(wtppm)
When the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is 0.01 (g / cm 3 ) or more INDEX (2) = C L N (P N2 , fs = 0.75) −C e N (P TOTAL , fs = 0) (Expression 2)
here,
INDEX (2): excess nitrogen index (wtppm)
C L N (P N2 , fs = 0.75): nitrogen concentration (wtppm) in the liquid phase at a solid phase ratio of 0.75 under the condition of nitrogen partial pressure P N2 (atm)
C e N (P TOTAL , fs = 0): Permissible nitrogen solubility (wtppm) of the liquid phase at a solid phase ratio of 0 under the total pressure P TOTAL (atm) condition

本発明の製造方法により、常圧雰囲気ではガス欠陥が生成して製品化が困難であった高窒素鋼を、過分な耐圧設備の建設や製造コストの増大を招くことなく、且つ鋼種が変わるたびに試行錯誤を繰り返すことなく、必要最小限の耐圧設備で確実に健全な鋼塊を製造することができる。また、先行技術よりも低圧条件で製造ができることから原材料費の低減や工期短縮の点で有利であり製造コストが低く抑えられる。
この結果、本発明の高窒素鋼の製造方法を採用して製造された高窒素鋼は、健全な内部品質を有しつつ安価且つ鋼塊質量の増大を図ることが可能となり、特に高窒素鋼の大型構造材への供給に対する貢献は多分に大きい。
By the production method of the present invention, high nitrogen steel, which has been difficult to produce due to the generation of gas defects in an atmospheric pressure atmosphere, without excessive construction of pressure-resistant equipment and an increase in production cost, and whenever the steel type changes. Thus, a sound steel ingot can be reliably produced with the minimum necessary pressure resistance equipment without repeating trial and error. Further, since the production can be performed under a lower pressure condition than the prior art, it is advantageous in terms of reducing raw material costs and shortening the construction period, and the production cost can be kept low.
As a result, the high nitrogen steel manufactured by adopting the manufacturing method of the high nitrogen steel of the present invention can be inexpensive and increase the mass of the steel ingot while having a sound internal quality. The contribution to the supply of large structural materials is much greater.

以下に、本発明の一実施形態について図表を交えて説明する。
例えば、表1の組成になるように窒素以外の原料を配合し、真空誘導溶解炉で溶解し合金鋼を作製する。次いで、得られた合金鋼から溶解母材を分割し、耐圧容器内に雰囲気加熱炉を設置した加圧溶解炉にて再溶解する。その際、加圧溶解炉内の雰囲気は窒素−Ar混合ガス雰囲気とする。なお、本発明としては、窒素以外のガス種が限定されるものではなく、前記したように他の希ガスなどを用いることができる。溶解時の窒素分圧は、合金鋼で目標とする窒素含有量が得られるように設定する。設定方法は、常法により行うことができ、例えば前記式5を用いて目的の窒素含有量となる窒素分圧を求める方法により定めることができる。
なお、使用した加圧溶解炉は11気圧まで加圧が可能であり、母材を溶解するるつぼが下降することにより上方に向かって一方向凝固ができる昇降機構を有していることから、最終凝固部を鋼塊上部に制御して鋼塊を製造することが可能である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
For example, raw materials other than nitrogen are blended so as to have the composition shown in Table 1, and melted in a vacuum induction melting furnace to produce alloy steel. Next, the molten base material is divided from the obtained alloy steel and re-melted in a pressure melting furnace in which an atmospheric heating furnace is installed in the pressure vessel. At that time, the atmosphere in the pressure melting furnace is a nitrogen-Ar mixed gas atmosphere. In the present invention, gas species other than nitrogen are not limited, and other rare gases can be used as described above. The partial pressure of nitrogen at the time of melting is set so that the target nitrogen content can be obtained with the alloy steel. The setting method can be performed by an ordinary method, and can be determined by, for example, a method for obtaining a partial pressure of nitrogen at which the target nitrogen content is obtained using the formula 5.
The pressure melting furnace used can be pressurized up to 11 atm. Since the crucible for melting the base material descends, it has a lifting mechanism that can solidify in one direction upward. It is possible to manufacture a steel ingot by controlling the solidification part at the top of the steel ingot.

上記組成の合金鋼では、前記式5を用いることによって成分に基づく加圧雰囲気下での液相における平衡窒素溶解度を算出することができる。この算出結果を用いて所定の窒素分圧下での液相における窒素濃度が算出される。
さらに、所定の窒素分圧下における窒素濃度を基にして前記式6により固相内拡散を考慮した窒素濃度C (PN2,fs.p)を算出する。なお、凝固前面における濃化溶鋼と母溶鋼との密度差は、前記式8、9を用いると合金鋼の組成に従って0.002〜0.007(g/cm)となり、該算出における包晶反応固相率fs.pは、合金鋼の組成に従って0.6となる。
In the alloy steel having the above composition, the equilibrium nitrogen solubility in the liquid phase under a pressurized atmosphere based on the components can be calculated by using the above formula 5. Using this calculation result, the nitrogen concentration in the liquid phase under a predetermined nitrogen partial pressure is calculated.
Further, based on the nitrogen concentration under a predetermined nitrogen partial pressure, the nitrogen concentration C L N (P N2 , fs.p) in consideration of the diffusion in the solid phase is calculated by the above equation 6. The density difference between the concentrated molten steel and the mother molten steel on the solidified front surface is 0.002 to 0.007 (g / cm 3 ) according to the composition of the alloy steel when using the above formulas 8 and 9, and the peritectic in the calculation Reaction solid fraction fs. p becomes 0.6 according to the composition of the alloy steel.

式6におけるCは、上記式5で算出された窒素濃度である。また、分配係数kは初晶の窒素含有量とCの比により得ることができ、拡散係数D(m/s)は既存のフェライト相あるいはオーステナイト相中の窒素の拡散係数により得ることができる。
さらに、部分凝固時間t(s)は、凝固時の液相線温度から固相線温度まで温度降下するのに要する時間を計測することにより得ることができ、デンドライトアーム間隔の1/2値L(m)は、実際に製造した鋼塊の断面を観察することにより得ることができる。
加えて、発明者らは式6におけるt/Lの値を2.21〜4.27×10(s/m)のいずれかに固定しても算出結果に変動が少ないことを見いだしており、計測や観察を行わずにこれらの数値を式6に導入する方法もある。
C 0 in Equation 6 is the nitrogen concentration calculated in Equation 5 above. The distribution coefficient k can be obtained from the ratio of the nitrogen content of primary crystal to C 0 , and the diffusion coefficient D s (m 2 / s) can be obtained from the diffusion coefficient of nitrogen in the existing ferrite phase or austenite phase. Can do.
Furthermore, the partial solidification time t f (s) can be obtained by measuring the time required for the temperature to drop from the liquidus temperature to the solidus temperature during solidification, and is half the dendrite arm interval. L (m) can be obtained by observing the cross section of the actually produced steel ingot.
In addition, the inventors found that even if the value of t f / L 2 in Equation 6 is fixed at any of 2.21 to 4.27 × 10 9 (s / m 2 ), there is little variation in the calculation result. There is also a method of introducing these numerical values into Equation 6 without performing measurement or observation.

一方、液相の許容窒素溶解度C (PTOTAL,fs.p)は、既存の偏析の解析解と前記式5の窒素分圧の項に雰囲気圧力と溶鋼静圧の和を導入することによって液相の許容できる窒素溶解度を求めることができる。溶鋼静圧は、式7の右辺第二項を用いて算出することができる。この際にhは、湯面と凝固前面との間の距離により求めることができる。
上記溶解において平衡状態に至った後は、溶鋼から鋼塊を造塊する際に、上記で求められたC (PN2,fs.p)とC (PTOTAL,fs.p)の差(式1)で表される過剰窒素指数INDEX(1)が0未満となるようにして窒素分圧と全圧とを調整する。その結果、得られた高窒素鋼はガス欠陥が無く優れた品質を有している。
また、例えば、表2の組成(質量%、残部Feおよび不可避不純物)になるように窒素以外の原料を配合し、真空誘導溶解炉で溶解し合金鋼を作製する。次いで、得られた合金鋼から溶解母材を分割し、前記加圧溶解炉にて再溶解する。
On the other hand, the permissible nitrogen solubility C e N (P TOTAL , fs.p) in the liquid phase is obtained by introducing the sum of the atmospheric pressure and the molten steel static pressure into the existing analytical solution of segregation and the nitrogen partial pressure term of the above formula 5. Can determine the acceptable nitrogen solubility of the liquid phase. The molten steel static pressure can be calculated using the second term on the right side of Equation 7. In this case, h can be obtained from the distance between the molten metal surface and the solidification front surface.
After reaching the equilibrium state in the melting, when the steel ingot is formed from the molten steel, C L N (P N2 , fs.p) and C e N (P TOTAL , fs.p) obtained above are obtained. The partial pressure of nitrogen and the total pressure are adjusted so that the excess nitrogen index INDEX (1) represented by the difference (Equation 1) is less than 0. As a result, the obtained high nitrogen steel has excellent quality with no gas defects.
Further, for example, raw materials other than nitrogen are blended so as to have the composition shown in Table 2 (mass%, remaining Fe and inevitable impurities), and melted in a vacuum induction melting furnace to produce alloy steel. Next, the molten base material is divided from the obtained alloy steel and remelted in the pressure melting furnace.

凝固前面における濃化溶鋼と母溶鋼との密度差は、前記式8、9を用いると合金鋼の組成に従って0.015〜0.016(g/cm)となる。そのため、所定の窒素分圧下における窒素濃度を基にして前記式6により固相内拡散を考慮した窒素濃度C (PN2,fs=0.75)を算出する。
さらに、液相の許容窒素溶解度C (PTOTAL,fs=0)は、母溶鋼の化学成分と前記式5の窒素分圧の項に雰囲気圧力と溶鋼静圧の和を導入することによって液相の許容できる窒素溶解度を求めることができる。
上記溶解において平衡状態に至った後は、溶鋼から鋼塊を造塊する際に、上記で求められたC (PN2,fs=0.75)とC (PTOTAL,fs=0)の差(式2)で表される過剰窒素指数INDEX(2)が0未満となるようにして窒素分圧と全圧とを調整する。その結果、得られた高窒素鋼はガス欠陥が無く優れた品質を有している。
また、例えば、表3の組成(質量%、残部Feおよび不可避不純物)になるように窒素以外の原料を配合し、真空誘導溶解炉で溶解し合金鋼を作製する。次いで、得られた合金鋼から溶解母材を分割し、前記加圧溶解炉にて再溶解する。
When the above formulas 8 and 9 are used, the density difference between the concentrated molten steel and the mother molten steel at the solidification front is 0.015 to 0.016 (g / cm 3 ) according to the composition of the alloy steel. Therefore, the nitrogen concentration C L N (P N2 , fs = 0.75) considering the diffusion in the solid phase is calculated by the above equation 6 based on the nitrogen concentration under a predetermined nitrogen partial pressure.
Further, the permissible nitrogen solubility C e N (P TOTAL , fs = 0) of the liquid phase is obtained by introducing the sum of the atmospheric pressure and the molten steel static pressure into the chemical component of the mother molten steel and the nitrogen partial pressure term of the formula 5 above. An acceptable nitrogen solubility of the liquid phase can be determined.
After reaching the equilibrium state in the melting, when the steel ingot is formed from the molten steel, C L N (P N2 , fs = 0.75) and C e N (P TOTAL , fs = The partial pressure of nitrogen and the total pressure are adjusted so that the excess nitrogen index INDEX (2) represented by the difference (Equation 2) of 0) is less than 0. As a result, the obtained high nitrogen steel has excellent quality with no gas defects.
Further, for example, raw materials other than nitrogen are blended so as to have the composition shown in Table 3 (mass%, remaining Fe and inevitable impurities), and melted in a vacuum induction melting furnace to produce alloy steel. Next, the molten base material is divided from the obtained alloy steel and remelted in the pressure melting furnace.

凝固前面における濃化溶鋼と母溶鋼との密度差は、前記式8、9を用いると合金鋼の組成に従って−0.016〜−0.020(g/cm)となる。そのため、所定の窒素分圧下における窒素濃度を基にして前記式6により固相内拡散を考慮した窒素濃度C (PN2,fs=0.75)を算出する。
さらに、液相の許容窒素溶解度C (PTOTAL,fs=0)は、母溶鋼の化学成分と前記式5の窒素分圧の項に雰囲気圧力と溶鋼静圧の和を導入することによって液相の許容できる窒素溶解度を求めることができる。
上記溶解において平衡状態に至った後は、溶鋼から鋼塊を造塊する際に、上記で求められたC (PN2,fs=0.75)とC (PTOTAL,fs=0)の差(式2)で表される過剰窒素指数INDEX(2)が0未満となるようにして窒素分圧と全圧とを調整する。その結果、得られた高窒素鋼はガス欠陥が無く優れた品質を有している。
以上、本発明について上記実施形態に基づいて説明をしたが、本発明は上記実施形態の説明内容に限定されるものではなく、本発明の範囲内において適宜の変更が可能である。
The density difference between the concentrated molten steel and the mother molten steel on the solidification front is −0.016 to −0.020 (g / cm 3 ) according to the composition of the alloy steel when the above formulas 8 and 9 are used. Therefore, the nitrogen concentration C L N (P N2 , fs = 0.75) considering the diffusion in the solid phase is calculated by the above equation 6 based on the nitrogen concentration under a predetermined nitrogen partial pressure.
Further, the permissible nitrogen solubility C e N (P TOTAL , fs = 0) of the liquid phase is obtained by introducing the sum of the atmospheric pressure and the molten steel static pressure into the chemical component of the mother molten steel and the nitrogen partial pressure term of the formula 5 above. An acceptable nitrogen solubility of the liquid phase can be determined.
After reaching the equilibrium state in the melting, when the steel ingot is formed from the molten steel, C L N (P N2 , fs = 0.75) and C e N (P TOTAL , fs = The partial pressure of nitrogen and the total pressure are adjusted so that the excess nitrogen index INDEX (2) represented by the difference (Equation 2) of 0) is less than 0. As a result, the obtained high nitrogen steel has excellent quality with no gas defects.
Although the present invention has been described based on the above embodiment, the present invention is not limited to the description of the above embodiment, and appropriate modifications can be made within the scope of the present invention.

以下に、本発明の実施例を説明する。
上記実施形態で示される表1の組成の合金鋼および真空誘導溶解炉および加圧溶解炉を用いて造塊を行った。
その際に、実施例1として窒素分圧を3atm、Ar分圧を4atmとした全圧7atmの加圧雰囲気下で、加圧溶解炉を用いて凝固試験を行った。続いて、比較例1として窒素分圧を3atm、Ar分圧を2.5atmとした全圧5.5atmの加圧雰囲気下で実施例と同様に凝固試験を行った。
Examples of the present invention will be described below.
Ingot forming was performed using an alloy steel having the composition shown in Table 1 shown in the above embodiment, a vacuum induction melting furnace, and a pressure melting furnace.
At that time, as Example 1, a solidification test was performed using a pressure melting furnace in a pressurized atmosphere with a nitrogen partial pressure of 3 atm and an Ar partial pressure of 4 atm and a total pressure of 7 atm. Subsequently, as Comparative Example 1, a coagulation test was performed in the same manner as in the example under a pressurized atmosphere with a nitrogen partial pressure of 3 atm and an Ar partial pressure of 2.5 atm and a total pressure of 5.5 atm.

図2に実施例1の液相窒素濃度と許容窒素溶解度を、図3に比較例1の液相窒素濃度と許容窒素溶解度を示す。図2に示すように、実施例1では全固相率にわたって液相の窒素濃度は許容窒素溶解度を下回ることが想定された。一方、図3に示したように、比較例1では固相率0.52〜0.77にかけて、許容窒素溶解度を超える窒素濃化が想定された。   FIG. 2 shows the liquid phase nitrogen concentration and allowable nitrogen solubility of Example 1, and FIG. 3 shows the liquid nitrogen concentration and allowable nitrogen solubility of Comparative Example 1. As shown in FIG. 2, in Example 1, it was assumed that the nitrogen concentration in the liquid phase was below the allowable nitrogen solubility over the entire solid phase ratio. On the other hand, as shown in FIG. 3, in Comparative Example 1, nitrogen concentration exceeding the allowable nitrogen solubility was assumed over the solid phase ratio of 0.52 to 0.77.

図4に実施例1および比較例1の固相率−過剰窒素濃度図を示す。両者の過剰窒素濃度の最大値は包晶反応固相率である固相率0.60で現れ、本発明の式より、実施例1では過剰窒素指数が0を下回るためガス欠陥が生成せず、比較例1では過剰窒素指数が0を上回るためガス欠陥が生成すると判断された。
図5に実施例1の鋼塊の縦断面を、図6に比較例1の鋼塊の縦断面を図面代用写真(倍率0.5倍)によって示す。図5および図6に示したように、本発明の式が判断したように、比較例1にはガス欠陥が生成し実施例1の鋼塊にはガス欠陥は存在しなかった。次に、窒素分圧、全圧の条件を変えて同様の凝固試験を行った。窒素分圧の変更によって目標窒素含有量、包晶反応固相率も変動する。
表4に本発明の実施例として行った表1の合金鋼の試験結果をまとめて示す。表4に示したように、本発明を用いることによって簡便にガス欠陥生成臨界圧力が推定され、種々の窒素含有量を有する合金鋼をガス欠陥の無い健全な鋼塊として製造できることが証明された。
FIG. 4 shows solid phase ratio-excess nitrogen concentration diagrams of Example 1 and Comparative Example 1. The maximum value of the excess nitrogen concentration of both appears at a solid phase ratio of 0.60, which is the peritectic reaction solid phase ratio. From the formula of the present invention, in Example 1, the excess nitrogen index is less than 0, so no gas defects are generated. In Comparative Example 1, it was determined that a gas defect was generated because the excess nitrogen index exceeded 0.
FIG. 5 shows a longitudinal section of the steel ingot of Example 1, and FIG. 6 shows a longitudinal section of the steel ingot of Comparative Example 1 by a drawing substitute photograph (0.5 times magnification). As shown in FIG. 5 and FIG. 6, as judged by the formula of the present invention, gas defects were generated in Comparative Example 1 and there were no gas defects in the steel ingot of Example 1. Next, the same coagulation test was performed by changing the conditions of the nitrogen partial pressure and the total pressure. By changing the nitrogen partial pressure, the target nitrogen content and the peritectic reaction solid fraction also vary.
Table 4 summarizes the test results of the alloy steels of Table 1 performed as examples of the present invention. As shown in Table 4, the critical pressure for gas defect generation was easily estimated by using the present invention, and it was proved that alloy steels having various nitrogen contents can be produced as healthy steel ingots without gas defects. .

次いで、上記実施形態で示される表2の組成の合金鋼および真空誘導溶解炉および加圧溶解炉を用いて造塊を行った。
その際に、実施例4として窒素分圧を6atm、Ar分圧を5atmとした全圧11atmの加圧雰囲気下で、加圧溶解炉を用いて凝固試験を行った。続いて、比較例4として窒素分圧を6atm、Ar分圧を4atmとした全圧10atmの加圧雰囲気下で実施例と同様に凝固試験を行った。
Next, ingot forming was performed using an alloy steel having a composition shown in Table 2 shown in the above embodiment, a vacuum induction melting furnace, and a pressure melting furnace.
At that time, as Example 4, a solidification test was performed using a pressure melting furnace in a pressurized atmosphere of a total pressure of 11 atm with a nitrogen partial pressure of 6 atm and an Ar partial pressure of 5 atm. Subsequently, as Comparative Example 4, a coagulation test was performed in the same manner as in the example in a pressurized atmosphere with a nitrogen partial pressure of 6 atm and an Ar partial pressure of 4 atm and a total pressure of 10 atm.

図7に実施例4と比較例4の液相窒素濃度と許容窒素溶解度を示す。図7に示すように、実施例4では固相率0.75の濃化溶鋼の窒素濃度は母溶鋼の許容窒素溶解度を下回ることが想定された。一方、比較例4では母溶鋼の許容窒素溶解度を上回ることが想定された。
図8に実施例4の鋼塊の縦断面を、図9に比較例4の鋼塊の縦断面を図面代用写真(倍率0.5倍)によって示す。図8および図9に示したように、本発明の式が判断したように、比較例4にはガス欠陥が生成し実施例4の鋼塊にはガス欠陥は存在しなかった。次に、窒素分圧、全圧の条件を変えて同様の凝固試験を行った。
表5に本発明の実施例として行った表2の合金鋼の試験結果をまとめて示す。表5に示したように、本発明を用いることによって簡便にガス欠陥生成臨界圧力が推定され、種々の窒素含有量を有する合金鋼をガス欠陥の無い健全な鋼塊として製造できることが証明された。
FIG. 7 shows the liquid phase nitrogen concentration and allowable nitrogen solubility in Example 4 and Comparative Example 4. As shown in FIG. 7, in Example 4, it was assumed that the nitrogen concentration of the concentrated molten steel having a solid phase ratio of 0.75 was lower than the allowable nitrogen solubility of the mother molten steel. On the other hand, in Comparative Example 4, it was assumed that the allowable nitrogen solubility of the mother molten steel was exceeded.
FIG. 8 shows a longitudinal section of the steel ingot of Example 4, and FIG. 9 shows a longitudinal section of the steel ingot of Comparative Example 4 by a drawing substitute photograph (0.5 times magnification). As shown in FIGS. 8 and 9, as judged by the equation of the present invention, gas defects were generated in Comparative Example 4, and there were no gas defects in the steel ingot of Example 4. Next, the same coagulation test was performed by changing the conditions of the nitrogen partial pressure and the total pressure.
Table 5 summarizes the test results of the alloy steels of Table 2 that were used as examples of the present invention. As shown in Table 5, by using the present invention, gas critical critical pressure was easily estimated, and it was proved that alloy steels having various nitrogen contents can be produced as healthy steel ingots without gas defects. .

次いで、上記実施形態で示される表3の組成の合金鋼および真空誘導溶解炉および加圧溶解炉を用いて造塊を行った。
その際に、実施例6として窒素分圧を1.5atm、Ar分圧を7.5atmとした全圧9atmの加圧雰囲気下で、加圧溶解炉を用いて凝固試験を行った。続いて、比較例6として窒素分圧を1.5atm、Ar分圧を5.5atmとした全圧7atmの加圧雰囲気下で実施例と同様に凝固試験を行った。
Next, ingot forming was performed using an alloy steel having the composition of Table 3 shown in the above embodiment, a vacuum induction melting furnace, and a pressure melting furnace.
At that time, as Example 6, a solidification test was performed using a pressure melting furnace in a pressurized atmosphere with a nitrogen partial pressure of 1.5 atm and an Ar partial pressure of 7.5 atm and a total pressure of 9 atm. Subsequently, as Comparative Example 6, a coagulation test was performed in the same manner as in the example in a pressurized atmosphere with a nitrogen partial pressure of 1.5 atm and an Ar partial pressure of 5.5 atm and a total pressure of 7 atm.

図10に実施例6と比較例6の液相窒素濃度と許容窒素溶解度を示す。図10に示すように、実施例6では固相率0.75の濃化溶鋼の窒素濃度は母溶鋼の許容窒素溶解度を下回ることが想定された。一方、比較例6では母溶鋼の許容窒素溶解度を上回ることが想定された。
図11に実施例6の鋼塊の縦断面を、図12に比較例6の鋼塊の縦断面を図面代用写真(倍率0.5倍)によって示す。図11および図12に示したように、本発明の式が判断したように、比較例6にはガス欠陥が生成し実施例6の鋼塊にはガス欠陥は存在しなかった。次に、窒素分圧、全圧の条件を変えて同様の凝固試験を行った。
表6に本発明の実施例として行った表3の合金鋼の試験結果をまとめて示す。表6に示したように、本発明を用いることによって簡便にガス欠陥生成臨界圧力が推定され、種々の窒素含有量を有する合金鋼をガス欠陥の無い健全な鋼塊として製造できることが証明された。
FIG. 10 shows the liquid phase nitrogen concentration and allowable nitrogen solubility in Example 6 and Comparative Example 6. As shown in FIG. 10, in Example 6, the nitrogen concentration of the concentrated molten steel having a solid phase ratio of 0.75 was assumed to be lower than the allowable nitrogen solubility of the mother molten steel. On the other hand, in Comparative Example 6, it was assumed that the allowable nitrogen solubility of the mother molten steel was exceeded.
FIG. 11 shows a longitudinal section of the steel ingot of Example 6, and FIG. 12 shows a longitudinal section of the steel ingot of Comparative Example 6 with a drawing substitute photograph (0.5 magnification). As shown in FIG. 11 and FIG. 12, as judged by the formula of the present invention, gas defects were generated in Comparative Example 6, and no gas defects were present in the steel ingot of Example 6. Next, the same coagulation test was performed by changing the conditions of the nitrogen partial pressure and the total pressure.
Table 6 summarizes the test results of the alloy steels shown in Table 3 that were conducted as examples of the present invention. As shown in Table 6, by using the present invention, the critical pressure for gas defect generation was easily estimated, and it was proved that alloy steels having various nitrogen contents could be produced as healthy steel ingots without gas defects. .

本発明で定義した過剰窒素濃度を説明するための模式的な固相率−過剰窒素濃度の関係を示す図である。It is a figure which shows the typical solid phase ratio-excess nitrogen concentration relationship for demonstrating the excess nitrogen concentration defined by this invention. 本発明の実施例1の液相窒素濃度と許容窒素溶解度の変化を示す図である。It is a figure which shows the change of the liquid phase nitrogen concentration of Example 1 of this invention, and an allowable nitrogen solubility. 本発明の比較例1の液相窒素濃度と許容窒素溶解度の変化を示す図である。It is a figure which shows the change of the liquid phase nitrogen concentration of the comparative example 1 of this invention, and permissible nitrogen solubility. 本発明の実施例1と比較例1の固相率−過剰窒素濃度の関係を示す図である。It is a figure which shows the relationship of the solid-phase rate-excess nitrogen concentration of Example 1 and Comparative Example 1 of the present invention. 本発明の実施例1の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot longitudinal cross-section of Example 1 of this invention. 本発明の比較例1の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot vertical cross section of the comparative example 1 of this invention. 本発明の実施例4と比較例4の液相窒素濃度と許容窒素溶解度の変化を示す図である。It is a figure which shows the change of the liquid phase nitrogen density | concentration of Example 4 and the comparative example 4 of this invention, and an allowable nitrogen solubility. 本発明の実施例4の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot longitudinal cross-section of Example 4 of this invention. 本発明の比較例4の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot longitudinal cross-section of the comparative example 4 of this invention. 本発明の実施例6と比較例6の液相窒素濃度と許容窒素溶解度の変化を示す図である。It is a figure which shows the change of the liquid phase nitrogen density | concentration and allowable nitrogen solubility of Example 6 and Comparative Example 6 of this invention. 本発明の実施例6の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot longitudinal cross-section of Example 6 of this invention. 本発明の比較例6の鋼塊縦断面を示す図面代用写真(倍率0.5倍)である。It is a drawing substitute photograph (0.5-times multiplication factor) which shows the steel ingot vertical cross section of the comparative example 6 of this invention. 凝固前面においてガス気泡が生成する機構を説明するための概念的な図である。It is a conceptual diagram for demonstrating the mechanism in which a gas bubble produces | generates in the solidification front surface. 固液共存領域において対流が発生する機構を説明するための概念的な図である。It is a conceptual diagram for demonstrating the mechanism in which a convection arises in a solid-liquid coexistence area | region.

Claims (3)

窒素を多量に含有させると常圧雰囲気下では鋼塊中にガス欠陥が生成する合金鋼の溶鋼を、加圧雰囲気下で製造するにあたり、所定の窒素含有量を達成する窒素分圧を有する混合ガス雰囲気中で溶解し、平衡状態になった溶鋼から鋼塊を造塊する時、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cmMixing with nitrogen partial pressure to achieve a predetermined nitrogen content when producing molten steel of alloy steel in a pressurized atmosphere that generates gas defects in the steel ingot when containing a large amount of nitrogen When ingots are made from molten steel that has been melted and brought into equilibrium in a gas atmosphere, the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is 0.01 (g / cm 3 )未満の場合は、下記式1に示す過剰窒素指数INDEX(1)が0よりも小さい値を持つように前記窒素分圧と前記全圧を調節して溶鋼を凝固させることを特徴とする高窒素鋼の製造方法。) Is less than 0, the nitrogen partial pressure and the total pressure are adjusted so that the excess nitrogen index INDEX (1) expressed by the following formula 1 has a value smaller than 0, and the molten steel is solidified. Nitrogen steel manufacturing method.
INDEX(1)=CINDEX (1) = C L N (P(P N2N2 ,fs.p)−C, Fs. p) -C e N (P(P TOTALTOTAL ,fs.p)・・・(式1), Fs. p) (Formula 1)
ここで、here,
INDEX(1):過剰窒素指数(wtppm)INDEX (1): excess nitrogen index (wtppm)
fs.p:包晶反応固相率fs. p: Peritectic reaction solid fraction
C L N (P(P N2N2 ,fs.p):窒素分圧P, Fs. p): Nitrogen partial pressure P N2N2 (atm)条件での包晶反応固相率における液相中の窒素濃度(wtppm)Nitrogen concentration in liquid phase (wtppm) in peritectic reaction solid fraction under (atm) conditions
C e N (P(P TOTALTOTAL ,fs.p):全圧P, Fs. p): Total pressure P TOTALTOTAL (atm)条件での包晶反応固相率における液相の許容窒素溶解度(wtppm)Permissible nitrogen solubility (wtppm) of liquid phase at peritectic reaction solid fraction under (atm) conditions
ただし、包晶反応固相率は、凝固時にフェライト凝固からオーステナイト凝固に切り替わる固相率であり、固相率全率においてオーステナイト凝固する場合は0とする。However, the peritectic reaction solid phase ratio is a solid phase ratio that switches from ferrite solidification to austenite solidification at the time of solidification, and is 0 when the austenite solidification occurs at the total solid fraction.
窒素を多量に含有させると常圧雰囲気下では鋼塊中にガス欠陥が生成する合金鋼の溶鋼を、加圧雰囲気下で製造するにあたり、所定の窒素含有量を達成する窒素分圧を有する混合ガス雰囲気中で溶解し、平衡状態になった溶鋼から鋼塊を造塊する時、凝固前面における濃化溶鋼と母溶鋼との密度差の絶対値が0.01(g/cmMixing with nitrogen partial pressure to achieve a predetermined nitrogen content when producing molten steel of alloy steel in a pressurized atmosphere that generates gas defects in the steel ingot when containing a large amount of nitrogen When ingots are made from molten steel that has been melted and brought into equilibrium in a gas atmosphere, the absolute value of the density difference between the concentrated molten steel and the mother molten steel at the solidification front is 0.01 (g / cm 3 )以上の場合は、下記式2に示す過剰窒素指数INDEX(2)が0よりも小さい値を持つように前記窒素分圧と前記全圧を調節して溶鋼を凝固させることを特徴とする高窒素鋼の製造方法。In the above case, the molten nitrogen is solidified by adjusting the nitrogen partial pressure and the total pressure so that the excess nitrogen index INDEX (2) shown in the following formula 2 has a value smaller than 0. Nitrogen steel manufacturing method.
INDEX(2)=CINDEX (2) = C L N (P(P N2N2 ,fs=0.75)−C, Fs = 0.75) -C e N (P(P TOTALTOTAL ,fs=0)・・・(式2), Fs = 0) (Expression 2)
ここで、here,
INDEX(2):過剰窒素指数(wtppm)INDEX (2): excess nitrogen index (wtppm)
C L N (P(P N2N2 ,fs=0.75):窒素分圧P, Fs = 0.75): nitrogen partial pressure P N2N2 (atm)条件での固相率0.75における液相中の窒素濃度(wtppm)Nitrogen concentration in liquid phase (wtppm) at a solid phase ratio of 0.75 under (atm) conditions
C e N (P(P TOTALTOTAL ,fs=0):全圧P, Fs = 0): total pressure P TOTALTOTAL (atm)条件での固相率0における液相の許容窒素溶解度(wtppm)Allowable nitrogen solubility in liquid phase (wtppm) at a solid phase ratio of 0 under (atm) conditions
前記合金鋼は、前記造塊時に液相線温度において晶出する初晶が窒化物以外となる窒素含有量および合金組成を有することを特徴とする請求項1または2に記載の高窒素鋼の製造方法。3. The high nitrogen steel according to claim 1, wherein the alloy steel has a nitrogen content and an alloy composition in which an initial crystal that crystallizes at a liquidus temperature during the ingot formation is other than a nitride. 4. Production method.
JP2007123319A 2006-05-09 2007-05-08 Manufacturing method of high nitrogen steel Active JP4627069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123319A JP4627069B2 (en) 2006-05-09 2007-05-08 Manufacturing method of high nitrogen steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006129802 2006-05-09
JP2007123319A JP4627069B2 (en) 2006-05-09 2007-05-08 Manufacturing method of high nitrogen steel

Publications (2)

Publication Number Publication Date
JP2007326150A JP2007326150A (en) 2007-12-20
JP4627069B2 true JP4627069B2 (en) 2011-02-09

Family

ID=38926998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123319A Active JP4627069B2 (en) 2006-05-09 2007-05-08 Manufacturing method of high nitrogen steel

Country Status (1)

Country Link
JP (1) JP4627069B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437482B2 (en) * 2009-04-28 2014-03-12 ヒュンダイ スチール カンパニー High strength and high softness steel plate with high manganese nitrogen content and manufacturing method thereof
KR101193718B1 (en) 2010-03-25 2012-10-22 현대제철 주식회사 Nitrogen-added high manganese steel having high strength and large ductility and method for manufacturing the same
CN103882185B (en) * 2013-04-28 2015-09-30 河北联合大学 High pressure bottom blowing refining casting device and the method with its smelting high-nitrogen steel
KR101796089B1 (en) * 2016-09-06 2017-11-10 주식회사 포스코 Method for manufacturing steel
CN115401216B (en) * 2022-09-21 2024-03-05 华北理工大学 Method for preparing high-nitrogen stainless steel by alloy powder passing through selective laser melting
CN116024398B (en) * 2023-02-24 2024-08-09 东北大学 Determination method for minimum value of solidification pressure for inhibiting nitrogen pores, application of determination method and preparation method of high-nitrogen stainless steel cast ingot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639849B2 (en) * 1990-02-19 1997-08-13 新日本製鐵株式会社 Manufacturing method of high nitrogen ferritic heat resistant steel
JP2000212631A (en) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Production of high nitrogen steel
JP2003527482A (en) * 2000-03-16 2003-09-16 ファウエスゲー エネルギー−ウント シュミーデテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling and setting the concentration of gas components in a melt
JP2006007289A (en) * 2004-06-28 2006-01-12 Daido Steel Co Ltd Method for producing high nitrogen steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639849B2 (en) * 1990-02-19 1997-08-13 新日本製鐵株式会社 Manufacturing method of high nitrogen ferritic heat resistant steel
JP2000212631A (en) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Production of high nitrogen steel
JP2003527482A (en) * 2000-03-16 2003-09-16 ファウエスゲー エネルギー−ウント シュミーデテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling and setting the concentration of gas components in a melt
JP2006007289A (en) * 2004-06-28 2006-01-12 Daido Steel Co Ltd Method for producing high nitrogen steel

Also Published As

Publication number Publication date
JP2007326150A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
AU600771B2 (en) Ferritic stainless steel and processing therefore
JP4627069B2 (en) Manufacturing method of high nitrogen steel
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
JP7052807B2 (en) Manufacturing method of Ni-based alloy and Ni-based alloy
JP5360086B2 (en) Manufacturing method using continuous casting of nonmagnetic steel
JP5102739B2 (en) Steel and continuous cast slab with dispersed microsegregation of phosphorus
US10507520B2 (en) Copper-based alloys, processes for producing the same, and products formed therefrom
CA1082005A (en) Alloy for rare earth treatment of molten metals
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
JPH0790471A (en) High mn and high n austenitic stainless steel cast slab and its production
JP2006247672A (en) MOLD FLUX FOR CONTINUOUS CASTING TO Ni BASED MOLTEN METAL AND CONTINUOUS CASTING METHOD FOR Ni MATERIAL
JP2018114528A (en) Continuously cast slab of steel and method for producing the same
JP2008207187A (en) Powder for continuously casting ni-cu-based alloy, and continuous casting method
US10465258B2 (en) Grain refinement in iron-based materials
JP2003041351A (en) High chromium steel and manufacturing method therefor
JPH08311620A (en) Stainless steel excellent in hot workability and molten salt corrosion resistance
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof
JP2000212631A (en) Production of high nitrogen steel
JP4296158B2 (en) Method for producing Mg alloy
WO2024106226A1 (en) Ni-Cu ALLOY WITH EXCELLENT SURFACE PROPERTIES AND PRODUCTION METHOD THEREFOR
CN103290277A (en) High-purity high-strength aluminum alloy for ship cooling system and preparation method thereof
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
JP4542079B2 (en) Casting method of Ti-containing Fe-Cr-Ni steel with excellent surface properties
Pietrowski et al. Manufacturing technology of high-quality pressure castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250