JPH08311620A - Stainless steel excellent in hot workability and molten salt corrosion resistance - Google Patents

Stainless steel excellent in hot workability and molten salt corrosion resistance

Info

Publication number
JPH08311620A
JPH08311620A JP7142605A JP14260595A JPH08311620A JP H08311620 A JPH08311620 A JP H08311620A JP 7142605 A JP7142605 A JP 7142605A JP 14260595 A JP14260595 A JP 14260595A JP H08311620 A JPH08311620 A JP H08311620A
Authority
JP
Japan
Prior art keywords
stainless steel
weight
content
corrosion resistance
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7142605A
Other languages
Japanese (ja)
Other versions
JP3468916B2 (en
Inventor
Masato Yamamoto
正人 山本
Nobukazu Fujimoto
延和 藤本
Yoshihiro Uematsu
美博 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14260595A priority Critical patent/JP3468916B2/en
Publication of JPH08311620A publication Critical patent/JPH08311620A/en
Application granted granted Critical
Publication of JP3468916B2 publication Critical patent/JP3468916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To produce a stainless steel excellent in hot workability and molten salt corrosion resistance. CONSTITUTION: This stainless steel has a compsn. contg. 0.03 to 0.1% C, <=2.0% Mn, <=0.02% N, 10 to 15% Ni, 14.0 to 20.0% Cr, 0.2 to 1.5% Si, 0.5 to 4.0% Al and 0.0005 to 0.05% B, and the balance substantial Fe. If required, it may contain <=0.5% Ti and <=0.5% La as well. Furthermore, the relationship of, by atomic ratio, Al%/N%>=4 is preferably valid between the Al content and the N content. Thus, it is used as the material suitable for structural materials, parts or the like exposed to a severe high temp. corrosive atmosphere such as a separator for a molten carbonate type fuel battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
用セパレータ等の材料として使用される熱間加工性及び
耐溶融塩腐食性に優れたステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to stainless steel used as a material for a separator for molten carbonate fuel cells and having excellent hot workability and molten salt corrosion resistance.

【0002】[0002]

【従来の技術】ステンレス鋼にAlを添加するとき、優
れた耐酸化性及び耐高温腐食性を呈するステンレス鋼が
得られる。たとえば、Fe−Cr−Al系のステンレス
鋼は、その優れた高温特性を利用して燃焼器具用部材,
自動車用排ガス部材等として使用されている。しかし、
フェライト系ステンレス鋼は、オーステナイト系ステン
レス鋼に比較して高温強度が低く、高温構造材等として
あまり使用されていないのが実情である。高温の溶融塩
に曝される雰囲気に使用される用途にあっては、オース
テナイト系ステンレス鋼が専ら使用されている。たとえ
ば、溶融炭酸塩が他燃料電池のセパレータ材料には、電
解質である溶融炭酸塩によって溶融塩腐食を起こさない
耐食性が要求される。このような要求を満足する材料と
しては、SUS316L,SUS310S等の高級ステ
ンレス鋼が使用されてきた。溶融炭酸塩に対する耐腐食
性は、特開昭62−294153号公報で開示されてい
るように、Al添加によって向上させることができる。
2. Description of the Related Art When Al is added to stainless steel, a stainless steel exhibiting excellent oxidation resistance and high temperature corrosion resistance is obtained. For example, Fe-Cr-Al-based stainless steel utilizes its excellent high-temperature characteristics to make members for combustion appliances,
It is used as an exhaust gas member for automobiles. But,
The ferritic stainless steel has a lower high temperature strength than the austenitic stainless steel and is not used as a high temperature structural material or the like in reality. Austenitic stainless steel is exclusively used for applications used in an atmosphere exposed to a high temperature molten salt. For example, molten carbonate is another type of fuel cell separator material that is required to have corrosion resistance so that molten carbonate, which is an electrolyte, does not cause molten salt corrosion. High-grade stainless steels such as SUS316L and SUS310S have been used as materials satisfying such requirements. Corrosion resistance to molten carbonate can be improved by adding Al, as disclosed in JP-A-62-294153.

【0003】しかし、オーステナイト系ステンレス鋼に
多量のAlを添加すると、Ni−Al系金属間化合物が
オーステナイトマトリックスに析出し、熱間加工性を著
しく低下させる。そのため、連続鋳造,熱間圧延,熱間
鍛造等の際に割れが発生し易くなり、場合によっては製
造時に鋼材が破断することもある。特に通常の連続鋳造
設備でAl含有オーステナイト系ステンレス鋼の熱延鋼
板を製造しようとすると、スラブの表面温度が1000
℃以下になるため表面割れが発生し、製品歩留りが著し
く低下する。Al含有オーステナイト系ステンレス鋼の
熱間加工性は、特開昭55−443498号公報では、
凝固時にδフェライトを少量析出させること,La,C
e等の希土類元素の添加等によって向上するとされてい
る。特開昭60−262945号公報では、1000〜
1200℃の温度範囲で熱間圧延することにより割れを
防止している。また、特公昭64−4580号公報で
は、Sの極低化及び酸化物形成元素の抑制によって熱間
加工性を改善している。
However, when a large amount of Al is added to austenitic stainless steel, Ni-Al based intermetallic compounds are precipitated in the austenitic matrix and the hot workability is remarkably reduced. Therefore, cracks are likely to occur during continuous casting, hot rolling, hot forging, etc., and in some cases, the steel material may break during manufacturing. In particular, when it is attempted to manufacture a hot-rolled steel sheet of Al-containing austenitic stainless steel with a normal continuous casting facility, the surface temperature of the slab is 1000.
Since the temperature is below ℃, surface cracking occurs and the product yield is significantly reduced. The hot workability of Al-containing austenitic stainless steel is described in JP-A-55-443498.
Precipitating a small amount of δ-ferrite during solidification, La, C
It is said to be improved by adding a rare earth element such as e. In JP-A-60-262945, 1000-
Cracking is prevented by hot rolling in the temperature range of 1200 ° C. In Japanese Patent Publication No. 64-4580, hot workability is improved by extremely lowering S and suppressing oxide forming elements.

【0004】[0004]

【発明が解決しようとする課題】溶融炭酸塩型燃料電池
用セパレータとして従来から使用されているSUS31
0Sのステンレス鋼は、耐食性が不足し、鋼材コストも
高い。特に特開昭62−294153号公報の材料は、
25%Cr−20%Ni鋼を基本組成にしていることか
ら、非常に高価な鋼材である。他方、1000〜120
0℃での熱間圧延により割れを抑制する特開昭60−2
62945号公報は、通常の連続鋳造設備で製造する場
合にスラブの表面温度が1000℃以下になることから
特殊な設備構成を必要とするばかりでなく、製品歩留り
も低くなる。本発明は、このような問題を解消すべく案
出されたものであり、合金元素の含有量を相関的に調整
し、なかでもN含有量を抑制しB含有量を規制すること
により、熱間加工時、特に800〜1000℃での割れ
発生を防止し、優れた耐溶融塩腐食性を呈し、しかも安
価なAl含有ステンレス鋼を得ることを目的とする。
SUS31 conventionally used as a separator for molten carbonate fuel cells
0S stainless steel lacks corrosion resistance and the cost of steel materials is high. In particular, the material disclosed in JP-A-62-294153 is
Since it has a basic composition of 25% Cr-20% Ni steel, it is a very expensive steel material. On the other hand, 1000-120
Suppressing cracking by hot rolling at 0 ° C
The 62945 gazette requires not only a special equipment structure because the surface temperature of the slab becomes 1000 ° C. or less when it is manufactured by a normal continuous casting equipment, but also the product yield is low. The present invention has been devised to solve such a problem, and adjusts the content of alloying elements in a correlative manner, and among them, suppresses the N content and regulates the B content to improve heat The object of the present invention is to obtain an Al-containing stainless steel which prevents cracking particularly at 800 to 1000 ° C. during hot working, exhibits excellent molten salt corrosion resistance, and is inexpensive.

【0005】[0005]

【課題を解決するための手段】本発明のステンレス鋼
は、その目的を達成するため、C:0.03〜0.1重
量%,Mn:2.0重量%以下,N:0.02重量%以
下,Ni:10〜15重量%,Cr:14.0〜20.
0重量%,Si:0.2〜1.5重量%,Al:0.5
〜4.0重量%及びB:0.0005〜0.05重量%
を含み、残部が実質的にFeからなる組成を持つことを
特徴とする。本発明のステンレス鋼は、必要に応じてT
i:0.5重量%以下,更にLa:0.5重量%以下を
含むことができる。また、Al含有量とN含有量との間
に原子比でAl%/N%≧4の関係を成立させることが
好ましい。更に、式(1)で定義されるδ(%)の値を
0.5〜4.0%の範囲になるように、各合金成分の含
有量が調整されていることが好ましい。 δ(%)=1.57×Cr%+0.7×Si%+3.89×Al% −1.57×Ni%−0.16×Mn%−38.5×C%−7.65 ・・・・・(1)
In order to achieve the object, the stainless steel of the present invention has C: 0.03 to 0.1% by weight, Mn: 2.0% by weight or less, N: 0.02% by weight. % Or less, Ni: 10 to 15% by weight, Cr: 14.0 to 20.
0% by weight, Si: 0.2 to 1.5% by weight, Al: 0.5
~ 4.0 wt% and B: 0.0005-0.05 wt%
And the balance is substantially Fe. The stainless steel of the present invention has a T
i: 0.5 wt% or less, and La: 0.5 wt% or less can be included. Further, it is preferable to establish a relationship of Al% / N% ≧ 4 in atomic ratio between the Al content and the N content. Further, it is preferable that the content of each alloy component is adjusted so that the value of δ (%) defined by the formula (1) is in the range of 0.5 to 4.0%. δ (%) = 1.57 × Cr% + 0.7 × Si% + 3.89 × Al% −1.57 × Ni% −0.16 × Mn% −38.5 × C% −7.65 ... (1)

【0006】本発明のステンレス鋼は、高温の溶融塩に
接触する構造部材の特性及び熱間加工による割れ発生状
況等を調べた多数の実験結果から、熱間加工性に有害な
AlNが粒界に析出することを抑制すべく各合金成分及
びその含有量が定められたものである。耐溶融塩腐食性
は、前掲した各先行文献と同様にAl含有量を高く設定
することにより確保される。他方、Al含有量の増量に
伴って劣化しがちな熱間加工性は、N含有量の規制及び
B,Ti,La等の添加によって改善する。本発明ステ
ンレス鋼にに含まれる合金成分及びその含有量を説明す
る。 C:0.03〜0.1重量% 高温強度に有効な合金元素であり、0.03重量%以上
のC添加で顕著な効果が発揮される。しかし、0.1重
量%を超える多量のC添加は、鋼材の熱間加工性を劣化
させ、熱間圧延や熱間鍛造の際に割れが発生し易くな
る。 Mn:2.0重量%以下 オーステナイト形成元素であり、溶製時の脱酸及び脱硫
に有効な元素であることから、通常は1重量%程度のM
nを含有させる。しかし、2.0重量%を超える多量の
Mn含有は、溶融塩に対する耐食性を劣化させる。
In the stainless steel of the present invention, AlN, which is harmful to hot workability, is found in the grain boundaries from a number of experimental results in which the characteristics of the structural members that come into contact with the molten salt at high temperature and the occurrence of cracks due to hot working are investigated. Each alloy component and its content are determined in order to suppress precipitation in the alloy. The molten salt corrosion resistance is secured by setting a high Al content as in the above-mentioned prior art documents. On the other hand, the hot workability that tends to deteriorate with increasing Al content is improved by controlling the N content and adding B, Ti, La and the like. The alloy components contained in the stainless steel of the present invention and their contents will be described. C: 0.03 to 0.1% by weight It is an alloy element effective for high temperature strength, and a remarkable effect is exhibited by adding 0.03% by weight or more of C. However, the addition of a large amount of C exceeding 0.1% by weight deteriorates the hot workability of the steel material, and cracks easily occur during hot rolling or hot forging. Mn: 2.0 wt% or less Since it is an austenite forming element and is an element effective for deoxidation and desulfurization during melting, M is usually about 1 wt%.
n is included. However, a large amount of Mn content exceeding 2.0% by weight deteriorates the corrosion resistance to molten salt.

【0007】N:0.02重量%以下 オーステナイト形成元素であり、高温強度の改善にも有
効に働く合金元素である。本発明者等は、Al含有オー
ステナイト系ステンレス鋼の熱間加工性に対して種々の
検討を行った結果、800〜1000℃における熱間加
工性の低下は粒界に偏析したAlNに起因することを見
い出した。AlNは、粒界に偏析した場合にのみ熱間加
工性を低下させる。そして、AlNの悪影響を抑制する
ためには、N含有量を0.02重量%以下にする必要が
あることが判った。そして、粒界におけるAl及びNの
濃度を原子比率でAl/N≧4にするとき、AlNの悪
影響が抑制されることが判った。 Ni:10〜15重量% オーステナイト形成元素であり、オーステナイト相を維
持するためには10重量%以上が必要である。しかし、
多量のNiを添加すると製品価格を高騰させるので、本
発明においてはNi含有量の上限を15重量%に規定し
た。
N: 0.02% by weight or less It is an austenite forming element and is an alloying element that also effectively works to improve high temperature strength. As a result of various studies on the hot workability of the Al-containing austenitic stainless steel, the inventors have found that the decrease in hot workability at 800 to 1000 ° C. is due to AlN segregated at the grain boundaries. Found out. AlN reduces hot workability only when segregated at grain boundaries. It was found that the N content should be 0.02 wt% or less in order to suppress the adverse effect of AlN. Then, it was found that when the concentration of Al and N in the grain boundary was set to Al / N ≧ 4 in atomic ratio, the adverse effect of AlN was suppressed. Ni: 10 to 15 wt% It is an austenite forming element, and 10 wt% or more is necessary to maintain the austenite phase. But,
The addition of a large amount of Ni increases the price of the product, so in the present invention, the upper limit of the Ni content is defined as 15% by weight.

【0008】Cr:14.0〜20.0重量% 溶融塩に対する耐腐食性を向上させる上で重要な作用を
果たす合金元素である。耐腐食性の向上は、14.0重
量%以上のCr含有で顕著になる。しかし、20.0重
量%を超える過剰のCrは、オーステナイト相を不安定
にし、熱間加工性を劣化させる。 Si:0.2〜1.5重量% 鋼材の高温強度及び耐食性の改善に有効な合金元素であ
り、耐食性の改善には0.2重量%以上のSiが必要と
される。しかし、1.5重量%を超える多量のSi含有
は、製造性や熱間加工性を阻害する原因となる。 Al:0.5〜4.0重量% 溶製時に脱酸作用を呈し、溶融塩に対する耐腐食性を改
善する上でも有効な合金元素である。耐腐食性の改善
は、Alの緻密な酸化皮膜が形成されることによるもの
であり、0.5重量%以上のAl添加で顕著になる。し
かし、4.0重量%を超える多量のAl含有は、製造性
や熱間加工性を劣化させる原因となる。
Cr: 14.0 to 20.0% by weight It is an alloying element which plays an important role in improving the corrosion resistance to molten salt. The improvement of the corrosion resistance becomes remarkable when the content of Cr is 14.0% by weight or more. However, an excess of Cr exceeding 20.0% by weight makes the austenite phase unstable and deteriorates the hot workability. Si: 0.2 to 1.5% by weight It is an alloy element effective for improving the high temperature strength and corrosion resistance of steel materials, and 0.2% by weight or more of Si is required for improving the corrosion resistance. However, a large amount of Si content exceeding 1.5% by weight becomes a cause of impairing manufacturability and hot workability. Al: 0.5 to 4.0% by weight It is an alloying element that exhibits a deoxidizing action during melting and is effective in improving the corrosion resistance against molten salt. The improvement in corrosion resistance is due to the formation of a dense oxide film of Al, which becomes remarkable when Al is added in an amount of 0.5% by weight or more. However, the inclusion of a large amount of Al exceeding 4.0% by weight causes deterioration of manufacturability and hot workability.

【0009】B:0.0005〜0.05重量% 優先的に粒界に偏析し、S,P等の粒界偏析に起因した
熱間加工性の低下を防止する作用を呈する合金元素であ
る。また、800〜1000℃における熱間加工時の延
性を低下させる原因であるAlNの粒界への析出は、N
を鋼中に固定するBの添加によって抑制される。このよ
うなBの添加効果は、0.0005重量%以上で顕著に
なる。しかし、0.05重量%を超える多量のB添加
は、却って熱間加工性を低下させる原因となる。 Ti:必要に応じ0.5重量%以下 N及びCを固定して熱間加工性を改善すると共に、高温
強度を向上させる上でも有効な合金元素である。また、
Tiは、鋼材表面に形成される酸化皮膜を緻密化し、耐
溶融塩腐食性を改善する。更に、Laと同様にAl系酸
化皮膜に取り込まれ、スケールの熱伝導性を向上させ
る。しかし、0.5重量%を超える多量のTiが含まれ
ると、熱間加工性が低下する。
B: 0.0005 to 0.05% by weight It is an alloying element which segregates preferentially at the grain boundaries and prevents the deterioration of the hot workability due to the segregation of S, P, etc. at the grain boundaries. . In addition, the precipitation of AlN at the grain boundaries, which is a cause of lowering the ductility during hot working at 800 to 1000 ° C., is N
Is fixed in the steel by the addition of B. Such an effect of adding B becomes remarkable at 0.0005% by weight or more. However, the addition of a large amount of B exceeding 0.05% by weight rather causes a reduction in hot workability. Ti: 0.5% by weight or less if necessary N and C are fixed and are alloy elements effective in improving hot workability and improving high temperature strength. Also,
Ti densifies an oxide film formed on the surface of the steel material and improves molten salt corrosion resistance. Further, like La, it is taken into the Al-based oxide film and improves the thermal conductivity of the scale. However, if a large amount of Ti exceeding 0.5% by weight is contained, the hot workability deteriorates.

【0010】La:必要に応じ0.5重量%以下 希土類元素は、熱間加工性を向上させる効果があり、一
般にはLa,Ce等の混合物やY等が使用されている。
しかし、CeやYはクラスターを形成し易く、特に連続
鋳造時にはヘゲや縦割れの発生を助長し、製品の歩留り
を著しく低下させたり、製品を提供できないこともあ
る。この点、Laは、クラスターやヘゲ等を発生させる
ことなく、熱間加工性の向上に有効に作用する。また、
溶融炭酸塩型燃料電池用セパレータの集電板として使用
する鋼材には、電気伝導性があることが好ましい。しか
し、Al系の酸化物皮膜は、電気抵抗が高く、溶融炭酸
塩の環境で形成されたスケールも同様に低い電気伝導性
を示す。これに対し、Laを添加した鋼材の表面に生成
する酸化皮膜は、Laの酸化物を取り込んでいることか
ら高い電気伝導性を示す。しかし、0.5重量%を超え
る多量のLa含有は、熱間加工時に割れを助長させる。
La: 0.5% by weight or less as required Rare earth elements have the effect of improving hot workability, and mixtures of La, Ce and the like, Y and the like are generally used.
However, Ce and Y are likely to form clusters, and particularly during continuous casting, the production of shavings and vertical cracks is promoted, the yield of the product is significantly reduced, and the product may not be provided in some cases. In this respect, La effectively acts on the improvement of hot workability without generating clusters, whiskers and the like. Also,
It is preferable that the steel material used as the collector plate of the molten carbonate fuel cell separator has electrical conductivity. However, the Al-based oxide film has high electric resistance, and the scale formed in the environment of molten carbonate also shows low electric conductivity. On the other hand, the oxide film formed on the surface of the steel material to which La is added exhibits high electrical conductivity because it incorporates the oxide of La. However, the inclusion of a large amount of La exceeding 0.5% by weight promotes cracking during hot working.

【0011】δ(%):0.5〜4.0% 本発明に従ったステンレス鋼の鋳塊又は鋳片に現れるδ
フェライト量は、前掲した式(1)で予測することがで
きる。式(1)は、本発明者等によって求められた式で
ある。δ(%)が0.5〜4.0の範囲となるように各
合金成分が調整されているとき、優れた熱間加工性を示
し、熱間圧延や熱間鍛造の際に割れ発生が防止される。
その結果、通常の熱延設備によって高い歩留りで高品質
の熱延鋼帯を製造することが可能になる。
Δ (%): 0.5-4.0% δ appearing in the ingot or slab of stainless steel according to the present invention
The amount of ferrite can be predicted by the above-mentioned formula (1). Expression (1) is an expression obtained by the present inventors. When each alloy component is adjusted so that δ (%) is in the range of 0.5 to 4.0, excellent hot workability is exhibited, and cracking occurs during hot rolling or hot forging. To be prevented.
As a result, it becomes possible to manufacture a high-quality hot-rolled steel strip with a high yield by using an ordinary hot-rolling equipment.

【0012】[0012]

【実施例】表1に示した成分・組成をもつ各種ステンレ
ス鋼を30kgの真空溶解炉で溶製した後、連続鋳造で
鋳塊にした。表1において、Aグループの鋼材は本発明
に従ったステンレス鋼であり、Bグループの鋼材は比較
ステンレス鋼である。B1はBを含んでいない点で本発
明の要件を満足しておらず、B2はCeを含んでいる点
で本発明の要件を満足していない。得られた鋳塊を切削
加工し、直径10mmの熱間引張り試験片を作製した。
熱間引張り試験は、試験温度を800〜1000℃と
し、連続鋳造を想定して引張り速度を10-2/秒に設定
した。
EXAMPLE Various stainless steels having the components and compositions shown in Table 1 were melted in a 30 kg vacuum melting furnace and then continuously cast into ingots. In Table 1, Group A steels are stainless steels according to the invention and Group B steels are comparative stainless steels. B1 does not satisfy the requirements of the present invention in that it does not contain B, and B2 does not satisfy the requirements of the present invention in that it contains Ce. The obtained ingot was cut to prepare a hot tensile test piece having a diameter of 10 mm.
In the hot tensile test, the test temperature was set to 800 to 1000 ° C., and the tensile speed was set to 10 −2 / sec assuming continuous casting.

【0013】[0013]

【表1】 [Table 1]

【0014】各試験片を試験温度1000℃の熱間引張
り試験に供し、試験前後の断面減少率を求めた。得られ
た断面減少率をN含有量との関係で整理したところ、図
1に示すように、N含有量を低減しBを添加したA1〜
3のステンレス鋼は高い延性を示すことが判った。更に
Ti添加したA4,A5及びLa添加したA6,A7の
ステンレス鋼は、より高い延性を示すことが判った。特
に、La添加したA6,A7では、N含有量が比較的高
いものであるにも拘らず、優れた延性をもっていた。こ
れに対し、B無添加の試験片B1は、断面減少率が40
%程度と低く、Aグループに比較して延性が著しく低い
ものであった。また、試験温度と断面減少率との関係を
調査したところ、図2に示すように、Aグループの試験
片は、何れも800〜1000℃の温度範囲で高い延性
を示した。なかでも、B及びTiを複合添加した試験片
A7は、何れの試験温度でも70%を超える高い断面減
少率をもち、延性に優れた材料であることが判る。
Each test piece was subjected to a hot tensile test at a test temperature of 1000 ° C., and the cross-sectional reduction rate before and after the test was obtained. When the obtained cross-section reduction rate was arranged in relation to the N content, as shown in FIG. 1, A1 in which the N content was reduced and B was added
It was found that stainless steel No. 3 exhibited high ductility. Further, it was found that the A4 and A5 stainless steels added with Ti and the A6 and A7 stainless steels added with La show higher ductility. In particular, La-added A6 and A7 had excellent ductility, even though the N content was relatively high. On the other hand, the test piece B1 containing no B has a cross-section reduction rate of 40.
%, The ductility was remarkably lower than that of the group A. Further, when the relationship between the test temperature and the cross-section reduction rate was investigated, as shown in FIG. 2, all the test pieces of the group A showed high ductility in the temperature range of 800 to 1000 ° C. Among them, it is understood that the test piece A7 to which B and Ti are added in combination has a high area reduction rate of more than 70% at any test temperature and is excellent in ductility.

【0015】次いで、延性が最も低下する800℃で熱
間引張り試験を実施し、試験片を粒界で破断させた後、
破面をオージェ分析した。なお、熱間引張り試験は、試
験後の破面が雰囲気により汚染されることを防止するた
め、真空度10-6トールの真空雰囲気で行い、破断後の
試験片を大気に曝すことなくオージェ分析装置に移し
た。試験後の破面をSEM観察した結果、Bグループの
試験片では粒状の析出物が破面全域に観察された。粒状
析出物は、オージェ分析の結果、AlNであることが推
測された。他方、Aグループの試験片では、粒状析出物
が破面にほとんど観察されなかった。各試験片につい
て、破面のAl濃度とN濃度との関係を図3に示す。図
3から、粒界のAl濃度及びN濃度との間に原子比でA
l%/N%≧4の関係を成立させるとき、より良好な延
性が得られることが確認された。
Then, a hot tensile test was carried out at 800 ° C. at which the ductility was the lowest, and after breaking the test piece at the grain boundary,
The fracture surface was subjected to Auger analysis. The hot tensile test is performed in a vacuum atmosphere with a vacuum degree of 10 -6 Torr in order to prevent the fracture surface after the test from being contaminated by the atmosphere, and the Auger analysis is performed without exposing the test piece after fracture to the atmosphere. It was transferred to the device. As a result of SEM observation of the fractured surface after the test, granular precipitates were observed on the entire fractured surface in the test specimens of group B. The granular precipitate was assumed to be AlN as a result of Auger analysis. On the other hand, in the test piece of group A, almost no granular precipitate was observed on the fracture surface. FIG. 3 shows the relationship between the Al concentration and the N concentration on the fracture surface of each test piece. From FIG. 3, the atomic ratio between the Al concentration and the N concentration at the grain boundary is A
It was confirmed that better ductility can be obtained when the relationship of 1% / N% ≧ 4 is established.

【0016】更に、B添加量と熱間引張り試験後の断面
減少率との関係を調査したところ、両者の間に図4に示
す関係が成立していることが判った。図4から、800
〜1000℃の温度域における延性はBの添加に伴って
改善されることが確認された。また、TiをBと複合添
加するとき、延性が更に向上し、その効果は800℃及
び1000℃で顕著になった。以上は、熱間加工性を調
査した結果を示すが、本実施例で使用したステンレス鋼
は、Al含有量が高いことから耐溶融塩腐食性にも優れ
た材料であった。また、Al系酸化皮膜の熱伝導性を向
上させるTi,La等を含む試験片A5〜7は、耐溶融
炭酸塩型燃料電池用セパレータに要求される特性を十分
に備える材料であった。また、LaとCeとの添加作用
を比較するため、A6,A7とB2の組成をもつそれぞ
れの鋼材を15kg真空溶解炉で溶製した。そして、鋳
塊を得た後、中央から切断し、切断面を鏡面研磨し、鋼
塊L断面を観察した。観察結果を示した表2にみられる
ように、Ceを添加した鋼B2は、Laを添加した鋼A
6,A7に比較して著しいクラスタの形成が観察され
た。このことから、Laの添加が有効であることが確認
された。
Further, when the relationship between the amount of B added and the cross-sectional reduction rate after the hot tensile test was investigated, it was found that the relationship shown in FIG. 4 was established between them. From FIG. 4, 800
It was confirmed that the ductility in the temperature range of up to 1000 ° C. was improved with the addition of B. Further, when Ti and B were added together, the ductility was further improved, and the effect was remarkable at 800 ° C and 1000 ° C. The above shows the results of an investigation of hot workability. The stainless steel used in this example was a material having excellent molten salt corrosion resistance because of its high Al content. In addition, the test pieces A5 to 7 containing Ti, La, etc., which improve the thermal conductivity of the Al-based oxide film, were materials sufficiently provided with the characteristics required for the molten carbonate fuel cell separator. Further, in order to compare the addition effect of La and Ce, respective steel materials having compositions of A6, A7 and B2 were melted in a vacuum melting furnace of 15 kg. After obtaining the ingot, the ingot was cut from the center, the cut surface was mirror-polished, and the cross section of the steel ingot L was observed. As shown in Table 2 showing the observation results, the steel B2 added with Ce is the steel A added with La.
6, remarkable formation of clusters was observed as compared with 6, A7. From this, it was confirmed that the addition of La was effective.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】以上に説明したように、本発明のステン
レス鋼は、耐溶融塩腐食性を改善するためにAl含有量
を高めたステンレス鋼の熱間加工性をN含有量の規制及
び規定量のB添加によって改善している。このステンレ
ス鋼は、比較的多量のAlを含む鋼材であるにも拘ら
ず、高い歩留りで熱延鋼帯に製造できる。得られた熱延
鋼帯は、溶融炭酸塩型燃料電池用セパレータ等の過酷な
高温腐食雰囲気に曝される構造材,部品等に好適な材料
として使用される。
As described above, in the stainless steel of the present invention, the hot workability of stainless steel having an increased Al content in order to improve the molten salt corrosion resistance is regulated and regulated with respect to the N content. The amount is improved by adding B. Although this stainless steel is a steel material containing a relatively large amount of Al, it can be manufactured into a hot rolled steel strip with a high yield. The obtained hot rolled steel strip is used as a material suitable for structural materials, parts and the like exposed to a severe high temperature corrosive atmosphere such as a molten carbonate fuel cell separator.

【図面の簡単な説明】[Brief description of drawings]

【図1】 1000℃の熱間引張り試験による断面減少
率に及ぼすN含有量の影響
FIG. 1 Influence of N content on cross-section reduction rate by hot tensile test at 1000 ° C.

【図2】 熱間引張り試験の試験温度と断面減少率との
関係
[Fig. 2] Relationship between test temperature and cross-section reduction rate in hot tensile test

【図3】 熱間引張り試験で破断した試験片の破面にお
けるAl濃度とN濃度との関係
FIG. 3 Relationship between Al concentration and N concentration on the fracture surface of a test piece fractured in a hot tensile test

【図4】 熱間引張り試験後の断面減少率に及ぼすB含
有量の影響
FIG. 4 Effect of B content on reduction rate of cross section after hot tensile test

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.1重量%,Mn:
2.0重量%以下,N:0.02重量%以下,Ni:1
0〜15重量%,Cr:14.0〜20.0重量%,S
i:0.2〜1.5重量%,Al:0.5〜4.0重量
%及びB:0.0005〜0.05重量%を含み、残部
が実質的にFeからなる熱間加工性及び耐溶融塩腐食性
に優れたステンレス鋼。
1. C: 0.03 to 0.1% by weight, Mn:
2.0 wt% or less, N: 0.02 wt% or less, Ni: 1
0-15% by weight, Cr: 14.0-20.0% by weight, S
i: 0.2 to 1.5% by weight, Al: 0.5 to 4.0% by weight, and B: 0.0005 to 0.05% by weight, with the balance being essentially Fe. And stainless steel with excellent molten salt corrosion resistance.
【請求項2】 Ti:0.5重量%以下を含む請求項1
記載のステンレス鋼。
2. A Ti content of 0.5% by weight or less.
Stainless steel listed.
【請求項3】 La:0.5重量%以下を含む請求項1
又は2記載のステンレス鋼。
3. La: 0.5 wt% or less is included.
Alternatively, the stainless steel described in 2.
【請求項4】 Al含有量とN含有量との間に原子比で
Al%/N%≧4の関係が成立している請求項1〜3の
何れかに記載のステンレス鋼。
4. The stainless steel according to claim 1, wherein the relationship of Al% / N% ≧ 4 in atomic ratio is established between the Al content and the N content.
【請求項5】 式(1)で定義されるδ(%)の値が
0.5〜4.0%の範囲になるように各合金成分の含有
量が調整されている請求項1〜4の何れかに記載のステ
ンレス鋼。 δ(%)=1.57×Cr%+0.7×Si%+3.89×Al% −1.57×Ni%−0.16×Mn%−38.5×C%−7.65 ・・・・・(1)
5. The content of each alloy component is adjusted so that the value of δ (%) defined by the formula (1) is in the range of 0.5 to 4.0%. The stainless steel according to any one of 1. δ (%) = 1.57 × Cr% + 0.7 × Si% + 3.89 × Al% −1.57 × Ni% −0.16 × Mn% −38.5 × C% −7.65 ... (1)
JP14260595A 1995-05-17 1995-05-17 Stainless steel with excellent hot workability and resistance to molten salt corrosion Expired - Fee Related JP3468916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14260595A JP3468916B2 (en) 1995-05-17 1995-05-17 Stainless steel with excellent hot workability and resistance to molten salt corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14260595A JP3468916B2 (en) 1995-05-17 1995-05-17 Stainless steel with excellent hot workability and resistance to molten salt corrosion

Publications (2)

Publication Number Publication Date
JPH08311620A true JPH08311620A (en) 1996-11-26
JP3468916B2 JP3468916B2 (en) 2003-11-25

Family

ID=15319215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14260595A Expired - Fee Related JP3468916B2 (en) 1995-05-17 1995-05-17 Stainless steel with excellent hot workability and resistance to molten salt corrosion

Country Status (1)

Country Link
JP (1) JP3468916B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011828A1 (en) * 1997-09-03 1999-03-11 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Method for reducing the resistivity of the corrosion-induced oxide layer, and applications
NL1012823C2 (en) * 1999-08-13 2001-02-19 Stichting Energie Corrosion resistant separator plate.
WO2002039530A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP2006236600A (en) * 2005-02-22 2006-09-07 Jfe Steel Kk Solid oxide fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011828A1 (en) * 1997-09-03 1999-03-11 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Method for reducing the resistivity of the corrosion-induced oxide layer, and applications
US6290790B1 (en) 1997-09-03 2001-09-18 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Method for reducing the resistivity of the corrosion-induced oxide layer, and applications
NL1012823C2 (en) * 1999-08-13 2001-02-19 Stichting Energie Corrosion resistant separator plate.
WO2001013450A2 (en) * 1999-08-13 2001-02-22 Stichting Energieonderzoek Centrum Nederland Corrosion resistant fuel cell separator plate
WO2001013450A3 (en) * 1999-08-13 2001-08-23 Robert Christiaan Makkus Corrosion resistant fuel cell separator plate
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
WO2002039530A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell
US6953636B2 (en) 2000-11-10 2005-10-11 Honda Giken Kogyo Kabushiki Kaisha Press separator for fuel cell made of stainless steel press formed in contiguous corrugations
JP2006236600A (en) * 2005-02-22 2006-09-07 Jfe Steel Kk Solid oxide fuel cell

Also Published As

Publication number Publication date
JP3468916B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
CA1326143C (en) Ferritic stainless steel and processing therefore
JP3397092B2 (en) Al-containing austenitic stainless steel with excellent hot workability
AU2013243635B2 (en) Cost-effective ferritic stainless steel
JP3247162B2 (en) Fe-Cr-Al-based alloy excellent in oxidation resistance and foil thereof
JP3468916B2 (en) Stainless steel with excellent hot workability and resistance to molten salt corrosion
CN116529396A (en) High Ni alloy excellent in weld high temperature cracking resistance
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JP4259151B2 (en) Heat resistant material
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP2602838B2 (en) High thermal expansion cast iron
JP3488173B2 (en) Cr-containing thin steel sheet excellent in ridging resistance and method for producing the same
JP4683712B2 (en) Ni-base alloy with excellent hot workability
JP2002173721A (en) Ni BASED ALLOY FOR MACHINE STRUCTURAL USE
JPH1096038A (en) High cr austenitic heat resistant alloy
JP3381457B2 (en) Austenitic stainless steel for high temperature with excellent weldability
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JP3492848B2 (en) Exhaust valve steel with excellent high temperature fatigue strength, normal and high temperature corrosion resistance and oxidation resistance
JP3399125B2 (en) Steel material with excellent toughness of weld heat affected zone
JP3363628B2 (en) Stainless steel excellent in corrosion resistance to molten salt and method for producing the same
WO2023166926A1 (en) HIGH-Ni ALLOY THICK STEEL SHEET HAVING EXCELLENT WELD HIGH-TEMPERATURE CRACKING RESISTANCE, AND METHOD FOR PRODUCING SAME
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
JP2000204448A (en) Nickel - iron - chromium alloy having ductility
JPH1161345A (en) Stainless steel superior in high temperature strength and hot workability
JP2022163586A (en) HIGH Ni ALLOY EXCELLENT IN WELD HOT CRACKING RESISTANCE

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees