JP2013173159A - CONTINUOUS CASTING METHOD OF HIGH-C HIGH-Mn NONMAGNETIC STEEL - Google Patents

CONTINUOUS CASTING METHOD OF HIGH-C HIGH-Mn NONMAGNETIC STEEL Download PDF

Info

Publication number
JP2013173159A
JP2013173159A JP2012038886A JP2012038886A JP2013173159A JP 2013173159 A JP2013173159 A JP 2013173159A JP 2012038886 A JP2012038886 A JP 2012038886A JP 2012038886 A JP2012038886 A JP 2012038886A JP 2013173159 A JP2013173159 A JP 2013173159A
Authority
JP
Japan
Prior art keywords
slab
steel
continuous casting
content
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012038886A
Other languages
Japanese (ja)
Other versions
JP5761075B2 (en
Inventor
Michikazu Koga
道和 古賀
Nobuyuki Takahira
信幸 高平
Hirotaka Hatada
寛隆 畑田
Naotada Yoshida
直嗣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012038886A priority Critical patent/JP5761075B2/en
Publication of JP2013173159A publication Critical patent/JP2013173159A/en
Application granted granted Critical
Publication of JP5761075B2 publication Critical patent/JP5761075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method by which the occurrence of crack of a cast metal of high-C high-Mn nonmagnetic steel can be suppressed, in particular, the occurrence of crack in a bloom can be made nil, and a maintenance-free cast slab can be produced.SOLUTION: There is provided a continuous casting method of high-C high-Mn nonmagnetic steel having a composition containing, by mass, C:0.85-1.0%, Si:0.10-0.50%, Mn:13.0-16.0%, P:≤0.050%, N:0.003-0.05%, and V:0.01-0.50%, and the balance comprising Fe with impurities. In the method, contents of P and C satisfy inequality [P]≤-0.1241×[C]+0.1557, molten steel in a mold is stirred by an electromagnetic stirring device, a specific flow rate of secondary cooling water is set to be 0.20-0.50 L/kg-steel, and a casting rate is set to be 0.60-0.90 m/min. Surface temperature of a cast metal when straightening the bend of the cast metal in a continuous casting machine, is preferably ≥850°C. The cast metal is preferably a bloom with an aspect ratio of its cross section being 1 to 1.7.

Description

本発明は、高C高Mn非磁性鋼の連続鋳造方法に関し、特に、Pの含有率を大きく低減しなくても鋳片の表面および内部の割れの発生を抑制することが可能な方法に関する。   The present invention relates to a continuous casting method for high-C, high-Mn nonmagnetic steel, and more particularly, to a method capable of suppressing the occurrence of cracks on the surface and inside of a slab without greatly reducing the P content.

Mnを11.0〜16.0質量%含有する高Mn鋼は、非磁性鋼として使用される。この高Mn非磁性鋼は、熱膨張係数が普通鋼の約1.5倍であり、800℃以下では脆化して熱間加工性が低下するため、連続鋳造法で製造した場合には鋳片に割れが多発するという欠点がある。さらに、この割れを手入れして除去する際には、結晶粒界に析出した炭化物の影響により、亀甲状の割れが発生することがある。   High Mn steel containing 11.0 to 16.0% by mass of Mn is used as nonmagnetic steel. This high Mn non-magnetic steel has a thermal expansion coefficient about 1.5 times that of ordinary steel and becomes brittle at 800 ° C. or lower, resulting in reduced hot workability. Has the disadvantage of frequent cracking. Furthermore, when this crack is cared for and removed, a turtle shell-shaped crack may occur due to the influence of carbides precipitated at the grain boundaries.

このような高Mn鋼の割れの発生を抑制する方法として、特許文献1では、高Mn鋼を連続鋳造して得られた鋳片をその後直ちに昇熱して1180〜1230℃の範囲で均熱し、次いで予備圧延を経てから必要に応じて加熱処理を施し、しかる後水靱処理を行う高Mn鋼の製造方法において、Pの含有率を0.030%以下とし、連続鋳造時の2次冷却比水量を0.7〜1.1L/kg−steelの範囲とし、鋳片の昇温過程における昇熱速度を30〜35℃/hとする方法が開示されている。   As a method for suppressing the occurrence of cracks in such high-Mn steel, in Patent Document 1, the slab obtained by continuously casting the high-Mn steel is then heated immediately and soaked in the range of 1180-1230 ° C. Then, after pre-rolling, if necessary, heat treatment is performed, and then a high-Mn steel manufacturing method in which a water toughness treatment is performed. In this case, the P content is set to 0.030% or less, and the secondary cooling ratio during continuous casting. A method is disclosed in which the amount of water is in the range of 0.7 to 1.1 L / kg-steel, and the heating rate in the temperature raising process of the slab is 30 to 35 ° C./h.

特許文献1には、連続鋳造時の2次冷却比水量を上記範囲とした理由として、2次冷却比水量が0.7L/kg−steel未満では、バルジング応力による内部割れが発生し、1.1L/kg−steel超では熱応力による表面割れおよび表皮下割れが発生することが挙げられている。   In Patent Document 1, as the reason for setting the secondary cooling specific water amount during continuous casting in the above range, if the secondary cooling specific water amount is less than 0.7 L / kg-steel, an internal crack occurs due to bulging stress. If it exceeds 1 L / kg-steel, it is mentioned that surface cracks and subepidermal cracks due to thermal stress occur.

しかし、特許文献1で開示された技術では、2次冷却比水量が0.7〜1.1L/kg−steelと大きいため、連続鋳造する鋳片がブルームである場合のように鋳造が低速で行われるときには、連続鋳造機内での冷却時の熱応力により鋳片に割れが発生するという問題がある。また、同文献には、鋳片の割れが皆無となった事例は記載されておらず、そのため、同文献で開示された技術で製造された鋳片には何らかの手入れが必要であると考えられる。   However, in the technique disclosed in Patent Document 1, since the secondary cooling specific water amount is as large as 0.7 to 1.1 L / kg-steel, casting is performed at a low speed as in the case where the slab to be continuously cast is bloom. When performed, there is a problem that cracks occur in the slab due to thermal stress during cooling in the continuous casting machine. In addition, the literature does not describe a case where the slab was completely cracked. Therefore, it is considered that the slab manufactured by the technique disclosed in the literature requires some care. .

また、特許文献1で開示された技術では、Pの含有率を0.030%以下まで低減しなければならず、精錬に多大な時間とコストが必要である。   Moreover, in the technique disclosed in Patent Document 1, the P content must be reduced to 0.030% or less, and a great amount of time and cost are required for refining.

特公昭63−39336号公報Japanese Examined Patent Publication No. 63-39336

本発明は、上記の問題に鑑みてなされたものであり、高Mn鋼の鋳片の表面および内部の割れの発生を抑制すること、特にブルームにおける割れの発生を皆無とすることが可能であり、手入れが不要である鋳片を製造することができる連続鋳造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can suppress the occurrence of cracks on the surface and inside of a slab of high Mn steel, and in particular, can eliminate the occurrence of cracks in bloom. An object of the present invention is to provide a continuous casting method capable of producing a slab that does not require maintenance.

上記の目的を達成するため、本発明者らは、C含有率の異なる高C高Mn非磁性鋼を用いて連続鋳造試験を行い、鋳造条件について検討した。   In order to achieve the above object, the present inventors conducted a continuous casting test using high-C, high-Mn nonmagnetic steels having different C contents, and examined casting conditions.

その結果、高Mn非磁性鋼の鋳片で発生する、粒界割れや熱応力割れ等が発生する原因としては、熱膨張係数が大きいことのほかに、CやPの含有による脆化、および2次冷却により発生する熱応力があることを知見した。さらに、C含有率とP含有率が所定の関係にあれば、P含有率を0.030質量%以下にまで低減しなくても鋳片の表面および内部に割れが発生しないことを知見した。この検討内容については後述する。ここで、「高C高Mn非磁性鋼」とは、C含有率が0.85質量%以上の高Mn鋼をいう。   As a result, the cause of the occurrence of grain boundary cracking, thermal stress cracking, etc. occurring in the cast slab of high Mn non-magnetic steel, in addition to the large thermal expansion coefficient, embrittlement due to the inclusion of C and P, and It was found that there was a thermal stress generated by secondary cooling. Furthermore, it has been found that if the C content and the P content are in a predetermined relationship, cracks do not occur on the surface and inside of the slab even if the P content is not reduced to 0.030% by mass or less. Details of this examination will be described later. Here, “high C high Mn nonmagnetic steel” refers to high Mn steel having a C content of 0.85 mass% or more.

また、垂直曲げ型の連続鋳造機のように、鋳片の曲がりを矯正する矯正帯を有する連続鋳造機を用いる場合には、矯正帯を通過する際の鋳片の表面温度が850℃以上であれば、鋳片の表面に割れが発生しないことを知見した。   In addition, when using a continuous casting machine having a correction band for correcting the bending of the slab, such as a vertical bending type continuous casting machine, the surface temperature of the slab when passing through the correction band is 850 ° C. or more. If it exists, it discovered that a crack did not generate | occur | produce on the surface of a slab.

本発明は、これらの知見に基づいてなされたものであり、その要旨は、下記(1)〜(3)の高C高Mn非磁性鋼の連続鋳造方法にある。   This invention is made | formed based on these knowledge, The summary exists in the continuous casting method of the high C high Mn nonmagnetic steel of the following (1)-(3).

(1)質量%で、C:0.85〜1.0%、Si:0.10〜0.50%、Mn:13.0〜16.0%、P:0.050%以下、N:0.003〜0.05%およびV:0.01〜0.50%を含有し、残部がFeおよび不純物からなる高C高Mn非磁性鋼の連続鋳造方法であって、PおよびCの含有率が下記(1)式を満足し、鋳型内の溶鋼を電磁攪拌装置で攪拌し、2次冷却比水量を0.20〜0.50L/kg−steel、鋳造速度を0.60〜0.90m/minとすることを特徴とする高C高Mn非磁性鋼の連続鋳造方法。
[P]≦−0.1241×[C]+0.1557 …(1)
ここで、[P]および[C]はそれぞれ前記溶鋼中のPおよびCの含有率(質量%)である。
(1) By mass%, C: 0.85 to 1.0%, Si: 0.10 to 0.50%, Mn: 13.0 to 16.0%, P: 0.050% or less, N: A continuous casting method of a high C high Mn nonmagnetic steel containing 0.003 to 0.05% and V: 0.01 to 0.50% with the balance being Fe and impurities, and containing P and C The rate satisfies the following formula (1), the molten steel in the mold is stirred with an electromagnetic stirrer, the secondary cooling specific water amount is 0.20 to 0.50 L / kg-steel, and the casting speed is 0.60 to 0.00. A continuous casting method for high-C, high-Mn nonmagnetic steel, characterized by being 90 m / min.
[P] ≦ −0.1241 × [C] +0.1557 (1)
Here, [P] and [C] are the contents (mass%) of P and C in the molten steel, respectively.

(2)連続鋳造機において鋳片の曲がりを矯正する際の鋳片の表面温度を850℃以上とすることを特徴とする前記(1)に記載の高C高Mn非磁性鋼の連続鋳造方法。 (2) The continuous casting method for high-C, high-Mn nonmagnetic steel according to (1), wherein the surface temperature of the slab when correcting the bending of the slab in a continuous casting machine is 850 ° C. or higher. .

(3)前記鋳片は、横断面のアスペクト比が1〜1.7のブルームであることを特徴とする前記(1)または(2)に記載の高C高Mn非磁性鋼の連続鋳造方法。 (3) The continuous casting method for high-C, high-Mn nonmagnetic steel according to (1) or (2), wherein the slab is a bloom having a cross-sectional aspect ratio of 1 to 1.7. .

以下の説明では、鋼の成分組成についての「質量%」を単に「%」と表記する。   In the following description, “mass%” for the component composition of steel is simply expressed as “%”.

本発明の高C高Mn非磁性鋼の連続鋳造方法によれば、鋳片の表面および内部の割れの発生を抑制することができ、特にブルームにおける割れの発生を皆無とすることができる。また、P含有率を0.030%以下にまで低減しなくてもよい。本発明の方法で得られた鋳片は、表面品質および内部品質に優れているため、手入れが不要である。   According to the continuous casting method of the high C, high Mn nonmagnetic steel of the present invention, the occurrence of cracks on the surface and inside of the slab can be suppressed, and in particular, the occurrence of cracks in bloom can be eliminated. Further, the P content may not be reduced to 0.030% or less. Since the slab obtained by the method of the present invention is excellent in surface quality and internal quality, maintenance is unnecessary.

鋳片のC含有率およびP含有率と、割れの発生の有無との関係を示す図である。It is a figure which shows the relationship between C content rate and P content rate of a slab, and the presence or absence of generation | occurrence | production of a crack.

1.鋼の成分組成の範囲
本発明が対象とする高C高Mn非磁性鋼の成分組成の範囲、およびこの範囲に限定した理由について説明する。
1. The range of the component composition of steel The range of the component composition of the high C high Mn nonmagnetic steel which this invention makes object, and the reason limited to this range are demonstrated.

C:0.85〜1.0%
C含有率を0.85%以上としたのは、0.85%未満では鋼の用途上必要な強度が得られないからである。また、1.0%以下としたのは、1.0%よりも大きいと炭化物の析出による鋼の脆化が顕著となり、かつ熱間加工性が著しく低下するからである。
C: 0.85-1.0%
The reason why the C content is set to 0.85% or more is that if the C content is less than 0.85%, the strength required for steel use cannot be obtained. Further, the reason why it is set to 1.0% or less is that if it exceeds 1.0%, embrittlement of steel due to precipitation of carbides becomes remarkable and hot workability is remarkably lowered.

Si:0.10〜0.50%
Si含有率を0.10〜0.50%としたのは、熱間加工性の低下を防止するためである。0.50%以下としたのは、0.50%よりも大きいと表面割れが発生し、表面品質が悪化するからである。
Si: 0.10 to 0.50%
The reason why the Si content is 0.10 to 0.50% is to prevent a decrease in hot workability. The reason why the content is set to 0.50% or less is that if it exceeds 0.50%, surface cracking occurs and the surface quality deteriorates.

Mn:13.0〜16.0%
Mn含有率を13.0〜16.0%としたのは、非磁性鋼に要求される透磁率を満足するためである。
Mn: 13.0 to 16.0%
The reason why the Mn content is 13.0 to 16.0% is to satisfy the magnetic permeability required for nonmagnetic steel.

P:0.050%以下
P含有率を0.050%以下としたのは、0.050%以下の場合と比較して、0.050%よりも大きい場合は熱間加工性が著しく低くなるからである。P含有率は、0.030%よりも大きく0.050%以下であることが好ましい。鋼のP含有率を0.030%よりも大きく0.050%以下する場合、Mn原料としてP含有率が高く安価なものを使用することができ、コストの削減ができるからである。
P: 0.050% or less When the P content is 0.050% or less, the hot workability is remarkably lowered when the P content is greater than 0.050% compared to 0.050% or less. Because. The P content is preferably greater than 0.030% and less than or equal to 0.050%. This is because when the P content of steel is greater than 0.030% and 0.050% or less, an Mn raw material with a high P content can be used, and the cost can be reduced.

N:0.003〜0.05%、V:0.01〜0.50%
NおよびVの含有率を上記範囲としたのは、鉄筋としての機械的特性を満足するためである。
N: 0.003-0.05%, V: 0.01-0.50%
The reason why the content ratios of N and V are in the above range is to satisfy the mechanical properties as a reinforcing bar.

上述の成分以外の残部は、Feおよび不純物である。   The balance other than the above components is Fe and impurities.

2.P含有率とC含有率の関係
また、本発明の高C高Mn非磁性鋼の連続鋳造方法では、鋼中のP含有率とC含有率との関係を下記(1)式で規定する。
[P]≦−0.1241×[C]+0.1557 …(1)
ここで、[P]および[C]はそれぞれ前記溶鋼中のPおよびCの含有率(質量%)である。
2. Relationship between P content and C content In the continuous casting method for high C and high Mn nonmagnetic steel of the present invention, the relationship between the P content and the C content in the steel is defined by the following equation (1).
[P] ≦ −0.1241 × [C] +0.1557 (1)
Here, [P] and [C] are the contents (mass%) of P and C in the molten steel, respectively.

これは、鋼中のC含有率によって鋳片の割れが発生するP含有率の上限が変化するという、後述する実施例の結果(図1参照)により得られた知見に基づくものである。   This is based on the knowledge obtained from the result of an example described later (see FIG. 1) that the upper limit of the P content at which slab cracking occurs depends on the C content in steel.

3.電磁攪拌
本発明の連続鋳造方法では、鋳型内の溶鋼を電磁攪拌装置を用いて攪拌する。これは、鋳片の内部に等軸晶を形成し、内部割れの発生を防止するためである。また、電磁攪拌により、凝固シェルの厚さを均一にすることができる。
3. Electromagnetic stirring In the continuous casting method of the present invention, molten steel in a mold is stirred using an electromagnetic stirring device. This is for forming equiaxed crystals inside the slab and preventing the occurrence of internal cracks. Further, the thickness of the solidified shell can be made uniform by electromagnetic stirring.

4.2次冷却比水量
2次冷却比水量とは、下記(2)式で定義される値である。
R=m/(t×w×ρ×Vc) …(2)
ここで、R:2次冷却比水量(L/kg−steel)、m:2次冷却水流量(L/min)、t:鋳片の厚さ(m)、w:鋳片のスプレー幅(m)、ρ:鋼の密度(kg/m3)、Vc:鋳造速度(m/min)である。
4. Secondary cooling specific water amount The secondary cooling specific water amount is a value defined by the following equation (2).
R = m / (t × w × ρ × Vc) (2)
Here, R: secondary cooling specific water amount (L / kg-steel), m: secondary cooling water flow rate (L / min), t: slab thickness (m), w: slab spray width ( m), ρ: density of steel (kg / m 3 ), Vc: casting speed (m / min).

本発明の連続鋳造方法では、2次冷却比水量は0.20〜0.50L/kg−steelとする。これは、鋳片の割れの発生を防止するためである。2次冷却比水量が0.20L/kg−steel未満では、隣接するサポートロールの間において鋳片にバルジングが発生し、このバルジングに起因して本発明が対象とする高C高Mn非磁性鋼の鋳片に内部割れが発生する。また、2次冷却比水量が0.50L/kg−steelよりも大きいと、熱応力による表面割れが発生する。   In the continuous casting method of the present invention, the secondary cooling specific water amount is 0.20 to 0.50 L / kg-steel. This is to prevent occurrence of cracks in the slab. When the secondary cooling specific water amount is less than 0.20 L / kg-steel, bulging occurs in the slab between adjacent support rolls, and the high C high Mn nonmagnetic steel targeted by the present invention due to this bulging. Internal cracks occur in the slab. On the other hand, if the secondary cooling specific water amount is larger than 0.50 L / kg-steel, surface cracking due to thermal stress occurs.

5.鋳造速度
本発明の連続鋳造方法では、鋳造速度は0.60〜0.90m/minとする。これは、熱膨張係数の影響を低減させること、およびバルジングを低減させることを目的とする。
5. Casting speed In the continuous casting method of the present invention, the casting speed is set to 0.60 to 0.90 m / min. This aims at reducing the influence of the thermal expansion coefficient and reducing bulging.

鋳造速度が0.60m/min未満では、本発明が対象とする高C高Mn非磁性鋼の熱膨張係数が大きすぎて鋳片に焼割れが発生する。また、この場合、後述する鋳片の矯正温度が850℃以上となるため、鋳片の曲がりを矯正する際に表面割れが発生する。焼割れとは、2次冷却にむらがあった鋼が、体積膨張により生じた歪みのために割れる現象をいう。   If the casting speed is less than 0.60 m / min, the thermal expansion coefficient of the high-C, high-Mn nonmagnetic steel targeted by the present invention is too large, and the slab is cracked. In this case, since the correction temperature of the slab described later is 850 ° C. or higher, surface cracks occur when correcting the bending of the slab. The term “fire cracking” refers to a phenomenon in which steel with uneven secondary cooling cracks due to distortion caused by volume expansion.

鋳造速度が0.90m/minよりも大きいと、上述のバルジングに起因して鋳片に内部割れが発生する。   If the casting speed is higher than 0.90 m / min, internal cracks occur in the slab due to the bulging described above.

6.矯正温度
本発明の連続鋳造方法では、鋳片の曲がりを矯正する矯正帯を有する連続鋳造装置を用いる場合には、矯正帯を通過する際の鋳片の表面温度(以下「矯正温度」という。)を850℃以上とする。本発明者らの調査の結果、矯正温度を850℃以上とした場合、本発明が対象とする高C高Mn非磁性鋼の鋳片の矯正時に発生する熱応力による表面割れおよびバルジングによる鋳片の内部割れが、850℃未満とした場合と比較して大幅に少ないことがわかっている。
6). Correction temperature In the continuous casting method of the present invention, when a continuous casting apparatus having a correction band for correcting the bending of the slab is used, the surface temperature of the slab when passing through the correction band (hereinafter referred to as “correction temperature”). ) At 850 ° C. or higher. As a result of the investigation by the present inventors, when the correction temperature is 850 ° C. or more, the slab is formed by surface cracking and bulging due to thermal stress generated during the correction of the slab of high C high Mn nonmagnetic steel targeted by the present invention. It has been found that the internal cracking of is significantly less than when it is less than 850 ° C.

7.本発明の連続鋳造方法に好ましい鋳片
本発明の連続鋳造方法に適用する鋳片は、横断面のアスペクト比(横断面の長辺の長さを短辺の長さで割った値)が1〜1.7であるブルームが好ましい。ブルームは、横断面のアスペクト比が1.7よりも大きい鋳片と比較して、バルジングが発生しにくい。そのため、ブルームの鋳造に本発明の連続鋳造方法を適用することにより、表面および内部の割れの発生を皆無とすることができる。
7). Preferred slab for the continuous casting method of the present invention The slab applied to the continuous casting method of the present invention has an aspect ratio of the cross section (the value obtained by dividing the length of the long side of the cross section by the length of the short side). Blooms of ~ 1.7 are preferred. Blooms are less susceptible to bulging than slabs with a cross-sectional aspect ratio greater than 1.7. Therefore, by applying the continuous casting method of the present invention to bloom casting, it is possible to eliminate the occurrence of cracks on the surface and inside.

また、ブルームは、横断面のアスペクト比が1.7よりも大きい鋳片と比較して、必要な2次冷却比水量が小さいため、2次冷却水を節約することもできる。   In addition, since the required amount of secondary cooling ratio water is small compared to a slab having a cross-sectional aspect ratio larger than 1.7, the bloom can also save secondary cooling water.

本発明の高C高Mn非磁性鋼の連続鋳造方法を完成するため、以下に示す試験を実施して、その結果を評価した。   In order to complete the continuous casting method of the high C high Mn nonmagnetic steel of the present invention, the following tests were conducted and the results were evaluated.

1.試験条件
垂直曲げ型の連続鋳造機を使用し、鋳片として横断面の大きさが幅400mm、厚さ300mmのブルーム(横断面のアスペクト比1.33)を作成した。鋳造中、鋳型内の溶鋼は、電磁攪拌により流速25〜40cm/sで攪拌した。鋳造に用いた溶鋼は表1に示す成分組成の高C高Mn非磁性鋼とした。これらの鋼は、安価なMn合金を使用できる、P含有率が0.055%以下の高Mn鋼である。同表には、上記(1)式で規定するP含有率の最大値、2次冷却比水量、鋳造速度および鋳片の矯正温度も示した。
1. Test conditions A vertical bending type continuous casting machine was used to produce a bloom (a cross-sectional aspect ratio of 1.33) having a width of 400 mm and a thickness of 300 mm as a cast piece. During casting, the molten steel in the mold was stirred at a flow rate of 25 to 40 cm / s by electromagnetic stirring. The molten steel used for casting was a high C high Mn nonmagnetic steel having the composition shown in Table 1. These steels are high Mn steels that can use inexpensive Mn alloys and have a P content of 0.055% or less. The table also shows the maximum value of the P content defined by the above formula (1), the secondary cooling specific water amount, the casting speed, and the slab correction temperature.

Figure 2013173159
Figure 2013173159

表1に示す本発明例1〜7は、いずれも溶鋼の組成、2次冷却比水量および鋳造速度が本発明の規定を満足していた。比較例1は、2次冷却比水量が本発明の規定よりも大きい値であった。比較例2は、P含有率が本発明の規定範囲を超えて大きい値であった。比較例3は、C含有率が、本発明の規定範囲を超えて大きい値であった。比較例4は、鋳造速度および鋳片の矯正温度が本発明の規定を超えて小さい値であった。比較例5は、P含有率が、上記(1)式を満たさず、本発明の規定を満たさなかった。   In each of Invention Examples 1 to 7 shown in Table 1, the composition of the molten steel, the secondary cooling specific water amount, and the casting speed satisfied the provisions of the present invention. In Comparative Example 1, the secondary cooling specific water amount was larger than the regulation of the present invention. In Comparative Example 2, the P content was a large value exceeding the specified range of the present invention. In Comparative Example 3, the C content was a large value exceeding the specified range of the present invention. In Comparative Example 4, the casting speed and the slab correction temperature were small values exceeding the limits of the present invention. In Comparative Example 5, the P content did not satisfy the above formula (1) and did not satisfy the definition of the present invention.

2.試験結果
上記条件で作製した鋳片について、表面割れおよび内部割れの発生状況を評価した。表面割れの評価は、鋳片表面を目視観察およびカラーチェックすることによって行った。目視観察は鋳片全長について行い、カラーチェックは鋳片のうち鋳造方向に1mの長さの部分について行った。ここで、カラーチェックとは、JIS Z 2343−1に規定される染色浸透探傷検査をいう。内部割れの評価は、鋳片から採取し、研削したサンプルの横断面をカラーチェックすることによって行った。
2. Test result About the slab produced on the said conditions, the occurrence condition of a surface crack and an internal crack was evaluated. The surface crack was evaluated by visual observation and color check of the slab surface. Visual observation was performed on the entire length of the slab, and color check was performed on a portion of the slab having a length of 1 m in the casting direction. Here, the color check refers to a dye penetrant inspection specified in JIS Z 2343-1. Internal cracks were evaluated by color-checking the cross section of the sample taken from the slab and ground.

評価結果を、前記表2に製造条件と併せて示した。本発明例1〜7の鋳片は、全長にわたり表面が健全であり、表面割れおよび内部割れのいずれも全く見られなかった。また、この鋳片を圧延して鋼片を作製したところ、この鋼片についても割れは認められず、手入れの必要は全くなかった。このように、本発明の連続鋳造方法によれば、垂直曲げ型の連続鋳造方法において安定した鋳片の製造が可能であり、熱間圧延材の母材となる健全な鋳片を得られるといえる。   The evaluation results are shown in Table 2 together with the production conditions. The slabs of Invention Examples 1 to 7 had a sound surface over the entire length, and neither surface cracks nor internal cracks were observed. Moreover, when this slab was rolled to produce a steel slab, no cracks were observed in this steel slab, and no maintenance was required. As described above, according to the continuous casting method of the present invention, it is possible to produce a stable slab in the vertical bending type continuous casting method, and to obtain a healthy slab as a base material of a hot-rolled material. I can say that.

一方、比較例1〜5の鋳片は、表面割れおよび内部割れのいずれかが発生した。このうち、比較例3の鋳片で表面割れが発生した理由は、C含有率が本発明の規定範囲を超えて大きい値であったためと考えられる。比較例4の鋳片で、P含有率が本発明の規定を満足していたにもかかわらず内部割れが発生した理由は、矯正温度が低かったためと考えられる。また、比較例5の鋳片で表面割れが発生した理由は、P含有率が、上記(1)式で規定する上限を超えて大きい値であったためと考えられる。   On the other hand, in the cast pieces of Comparative Examples 1 to 5, either surface cracks or internal cracks occurred. Among these, the reason why the surface crack occurred in the slab of Comparative Example 3 is considered that the C content was a large value exceeding the specified range of the present invention. The reason why the internal crack occurred in the slab of Comparative Example 4 although the P content satisfied the provisions of the present invention is considered to be because the correction temperature was low. Moreover, it is thought that the reason why the surface crack occurred in the slab of Comparative Example 5 was that the P content was a large value exceeding the upper limit defined by the above formula (1).

図1は、鋳片のC含有率およびP含有率と、割れの発生の有無との関係を示す図である。同図には、実施例のうち2次冷却比水量、鋳造速度および鋳片の矯正温度が本発明の規定を満足する、本発明例1〜7、比較例2および3の試験結果を示した。同図から、高C高Mn非磁性鋼中のC含有率によって鋳片の割れが発生するP含有率の上限が変化し、C含有率と鋳片の割れが発生するP含有率の上限の関係が下記(3)式で表せることがわかる。
[P]max=−0.1241×[C]+0.1557 …(3)
ここで、[P]maxは鋳片の割れが発生するP含有率の上限(質量%)、[C]はCの含有率(質量%)である。
FIG. 1 is a diagram showing the relationship between the C content and P content of a slab and the presence or absence of cracks. In the figure, the test results of Examples 1 to 7 of the present invention and Comparative Examples 2 and 3 in which the secondary cooling specific water amount, the casting speed and the correction temperature of the slab satisfy the provisions of the present invention are shown. . From the figure, the upper limit of the P content at which cracking of the slab occurs changes depending on the C content in the high C high Mn nonmagnetic steel, and the upper limit of the P content at which the cracking of the C content and the slab occurs It can be seen that the relationship can be expressed by the following equation (3).
[P] max = −0.1241 × [C] +0.1557 (3)
Here, [P] max is the upper limit (mass%) of the P content at which slab cracking occurs, and [C] is the C content (mass%).

また、図1から、P含有率が、(3)式で規定される[P]max以下であれば、0.030質量%よりも大きくても鋳片に割れが発生しないことがわかる。   Further, FIG. 1 shows that when the P content is equal to or less than [P] max defined by the expression (3), cracks do not occur in the slab even if it is greater than 0.030% by mass.

本発明の高C高Mn非磁性鋼の連続鋳造方法によれば、P含有率を0.030質量%以下にまで低減しなくても鋳片の表面および内部の割れの発生を抑制することができ、特にブルームにおける割れの発生を皆無とすることができる。本発明の方法で得られた鋳片は、表面品質および内部品質に優れているため、手入れが不要である。   According to the continuous casting method of the high C high Mn nonmagnetic steel of the present invention, it is possible to suppress the occurrence of cracks on the surface and inside of the slab without reducing the P content to 0.030% by mass or less. In particular, the occurrence of cracks in the bloom can be eliminated. Since the slab obtained by the method of the present invention is excellent in surface quality and internal quality, maintenance is unnecessary.

Claims (3)

質量%で、C:0.85〜1.0%、Si:0.10〜0.50%、Mn:13.0〜16.0%、P:0.050%以下、N:0.003〜0.05%およびV:0.01〜0.50%を含有し、残部がFeおよび不純物からなる高C高Mn非磁性鋼の連続鋳造方法であって、
PおよびCの含有率が下記(1)式を満足し、
鋳型内の溶鋼を電磁攪拌装置で攪拌し、
2次冷却比水量を0.20〜0.50L/kg−steel、鋳造速度を0.60〜0.90m/minとすることを特徴とする高C高Mn非磁性鋼の連続鋳造方法。
[P]≦−0.1241×[C]+0.1557 …(1)
ここで、[P]および[C]はそれぞれ前記溶鋼中のPおよびCの含有率(質量%)である。
In mass%, C: 0.85 to 1.0%, Si: 0.10 to 0.50%, Mn: 13.0 to 16.0%, P: 0.050% or less, N: 0.003 A continuous casting method of high C high Mn non-magnetic steel containing 0.05% and V: 0.01-0.50%, the balance being Fe and impurities,
The contents of P and C satisfy the following formula (1),
Stir the molten steel in the mold with an electromagnetic stirrer,
A continuous casting method of high C high Mn non-magnetic steel, characterized in that the secondary cooling specific water amount is 0.20 to 0.50 L / kg-steel and the casting speed is 0.60 to 0.90 m / min.
[P] ≦ −0.1241 × [C] +0.1557 (1)
Here, [P] and [C] are the contents (mass%) of P and C in the molten steel, respectively.
連続鋳造機において鋳片の曲がりを矯正する際の鋳片の表面温度を850℃以上とすることを特徴とする請求項1に記載の高C高Mn非磁性鋼の連続鋳造方法。   The continuous casting method for high C, high Mn non-magnetic steel according to claim 1, wherein the surface temperature of the slab when correcting the bending of the slab in a continuous casting machine is 850 ° C or higher. 前記鋳片は、横断面のアスペクト比が1〜1.7のブルームであることを特徴とする請求項1または2に記載の高C高Mn非磁性鋼の連続鋳造方法。   3. The continuous casting method for high C, high Mn nonmagnetic steel according to claim 1, wherein the slab is a bloom having a cross-sectional aspect ratio of 1 to 1.7. 4.
JP2012038886A 2012-02-24 2012-02-24 Continuous casting method of high C high Mn non-magnetic steel Active JP5761075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038886A JP5761075B2 (en) 2012-02-24 2012-02-24 Continuous casting method of high C high Mn non-magnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038886A JP5761075B2 (en) 2012-02-24 2012-02-24 Continuous casting method of high C high Mn non-magnetic steel

Publications (2)

Publication Number Publication Date
JP2013173159A true JP2013173159A (en) 2013-09-05
JP5761075B2 JP5761075B2 (en) 2015-08-12

Family

ID=49266597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038886A Active JP5761075B2 (en) 2012-02-24 2012-02-24 Continuous casting method of high C high Mn non-magnetic steel

Country Status (1)

Country Link
JP (1) JP5761075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117831A (en) * 2014-07-24 2014-10-29 成都亨通兆业精密机械有限公司 Gear production process favorable for improving machining efficiency and preventing component segregation
CN104128772A (en) * 2014-07-24 2014-11-05 成都亨通兆业精密机械有限公司 Gear production process facilitating improvement of production efficiency and decrease of segregation degree
WO2018186321A1 (en) 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
CN112570676A (en) * 2020-11-12 2021-03-30 安阳钢铁股份有限公司 Method for producing high-carbon steel by double-flow slab continuous casting machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913556A (en) * 1982-07-14 1984-01-24 Kawasaki Steel Corp Production of high manganese steel
JPS61193754A (en) * 1985-02-22 1986-08-28 Sumitomo Metal Ind Ltd Preventive method for hot cracking of steel ingot
JPH06322440A (en) * 1993-05-12 1994-11-22 Nippon Steel Corp Method for rolling high manganese nonmagnetic steel slab
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method
JP2008093711A (en) * 2006-10-12 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method of steel
JP2009000705A (en) * 2007-06-20 2009-01-08 Sumitomo Metal Ind Ltd Method for continuously casting cast slab
JP2011230182A (en) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd Method for manufacturing high manganese-steel
JP2012161820A (en) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd Manufacturing method of nonmagnetic steel using continuous casting

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913556A (en) * 1982-07-14 1984-01-24 Kawasaki Steel Corp Production of high manganese steel
JPS61193754A (en) * 1985-02-22 1986-08-28 Sumitomo Metal Ind Ltd Preventive method for hot cracking of steel ingot
JPH06322440A (en) * 1993-05-12 1994-11-22 Nippon Steel Corp Method for rolling high manganese nonmagnetic steel slab
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method
JP2008093711A (en) * 2006-10-12 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method of steel
JP2009000705A (en) * 2007-06-20 2009-01-08 Sumitomo Metal Ind Ltd Method for continuously casting cast slab
JP2011230182A (en) * 2010-04-30 2011-11-17 Sumitomo Metal Ind Ltd Method for manufacturing high manganese-steel
JP2012161820A (en) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd Manufacturing method of nonmagnetic steel using continuous casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117831A (en) * 2014-07-24 2014-10-29 成都亨通兆业精密机械有限公司 Gear production process favorable for improving machining efficiency and preventing component segregation
CN104128772A (en) * 2014-07-24 2014-11-05 成都亨通兆业精密机械有限公司 Gear production process facilitating improvement of production efficiency and decrease of segregation degree
WO2018186321A1 (en) 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
KR20190137084A (en) 2017-04-04 2019-12-10 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Fe-Mn-Si alloy castings with excellent low cycle fatigue properties
CN112570676A (en) * 2020-11-12 2021-03-30 安阳钢铁股份有限公司 Method for producing high-carbon steel by double-flow slab continuous casting machine

Also Published As

Publication number Publication date
JP5761075B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016047734A1 (en) Austenitic stainless steel sheet and method for producing same
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
JPWO2016114146A1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP2007160341A (en) Machine and method for continuously casting steel
JP6951060B2 (en) Manufacturing method of slabs
JP5761075B2 (en) Continuous casting method of high C high Mn non-magnetic steel
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP2007331022A (en) Method for manufacturing stainless steel welding wire
JP6828947B2 (en) Lightweight steel with excellent corrosion resistance and specific strength and its manufacturing method
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JP5248222B2 (en) Cold tool steel manufacturing method
JP6589096B2 (en) Continuous casting method of Ni-containing steel
JPH10237604A (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of blooming therefor, seamless steel tube using same, and its production
JP3606199B2 (en) Manufacturing method of thin steel sheet
JPH0693370A (en) Medium-carbon fe-c steel material minimal in surface flaw
KR101889176B1 (en) High strength duplex stainless steel reduced cracking and method for manufacturing the same
JP6349832B2 (en) Continuous cast slab for thick steel plate
JP6234871B2 (en) Manufacturing method for steel with less surface flaws
JP6402533B2 (en) Continuous casting method of Ni-containing steel
JP6534240B2 (en) Continuous cast slab of B-containing steel
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5761075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350