JP5063024B2 - Method of casting alloy steel containing Cr and Ni - Google Patents

Method of casting alloy steel containing Cr and Ni Download PDF

Info

Publication number
JP5063024B2
JP5063024B2 JP2006101841A JP2006101841A JP5063024B2 JP 5063024 B2 JP5063024 B2 JP 5063024B2 JP 2006101841 A JP2006101841 A JP 2006101841A JP 2006101841 A JP2006101841 A JP 2006101841A JP 5063024 B2 JP5063024 B2 JP 5063024B2
Authority
JP
Japan
Prior art keywords
steel
nitrogen
phase
content
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006101841A
Other languages
Japanese (ja)
Other versions
JP2007275903A (en
Inventor
徹 加藤
浩史 林
光夫 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006101841A priority Critical patent/JP5063024B2/en
Publication of JP2007275903A publication Critical patent/JP2007275903A/en
Application granted granted Critical
Publication of JP5063024B2 publication Critical patent/JP5063024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

本発明は、CrおよびNiを含有する合金鋼の鋳造時に鋳片表層部分に発生するピンホール、およびこれに起因して圧延、鍛造などの加工時に発生する表面疵を防止または低減することのできる鋳造方法に関する。
INDUSTRIAL APPLICABILITY The present invention can prevent or reduce pinholes generated in the surface part of a slab during casting of alloy steel containing Cr and Ni , and surface flaws generated during processing such as rolling and forging due to this. The present invention relates to a casting method.

従来、ステンレス鋼または高合金鋼を鋳造した後、分塊工程で圧延または鍛造を行うと、圧延方向に線状に伸びた筋状の表面疵が発生することがあった。このような疵が発生すると、その後の製品圧延において疵が残存または拡大して製品として出荷できなくなるため、分塊ビレットの段階で手入れを行う必要があり、この手入れにともなう歩留りの低下や手入れコストが問題となっていた。   Conventionally, when stainless steel or high alloy steel is cast and then rolled or forged in the lump process, streaky surface defects extending linearly in the rolling direction may occur. When such wrinkles occur, the wrinkles remain or expand in subsequent product rolling and cannot be shipped as a product. Therefore, it is necessary to carry out care at the stage of the billet billet, resulting in reduced yield and maintenance costs associated with this care. Was a problem.

最近、化学プラントや海洋構造物などの産業用機器や構造物の大型化を目的として、構造用ステンレス鋼の強度向上の要請が増大しており、これに対応して、窒素(N)を添加し、その固溶強化作用により強度の向上を図った鋼種が知られている。例えば、SUS304N2、SUS304LN、SUS316N、SUS316LNなどのオーステナイト系ステンレス鋼である。また、特許文献1には、過酷な環境条件下での適用を目的として固溶強化成分である窒素を0.18〜0.25質量%含有させ、強度と耐食性を高め、かつ、熱間加工性を向上させるために、BおよびO含有率を規定し、さらに強度向上と熱間加工性確保のバランスからNb含有率を規定した高窒素ステンレス鋼が開示されている。   Recently, with the aim of increasing the size of industrial equipment and structures such as chemical plants and offshore structures, there is an increasing demand for improving the strength of structural stainless steel. Nitrogen (N) is added accordingly. In addition, a steel type whose strength is improved by its solid solution strengthening action is known. For example, austenitic stainless steel such as SUS304N2, SUS304LN, SUS316N, and SUS316LN. Patent Document 1 contains 0.18 to 0.25% by mass of nitrogen, which is a solid solution strengthening component, for the purpose of application under harsh environmental conditions, enhances strength and corrosion resistance, and performs hot working. In order to improve the properties, a high nitrogen stainless steel is disclosed in which the B and O contents are defined, and the Nb content is defined from the balance between improving the strength and ensuring hot workability.

上記のように、高合金鋼やステンレス鋼において種々の理由により窒素濃度を高めた鋼種が開発されているが、これらの鋼種の一部では、鋼中に窒素などのガス成分が過剰に含有されることから、凝固時にそれらのガス成分が溶解度を超えてピンホールを発生することがある。このようなピンホールが存在すると、圧延時にピンホールが拡大して圧延後のビレット、コイル、製品などの表面疵の原因となるおそれがある。   As mentioned above, high alloy steels and stainless steels have been developed with high nitrogen concentrations for various reasons, but some of these steel types contain excessive amounts of gas components such as nitrogen. Therefore, these gas components may exceed the solubility during solidification to generate pinholes. If such a pinhole is present, the pinhole may be enlarged during rolling, which may cause surface defects such as billets, coils, and products after rolling.

ステンレス鋼は、その優れた耐食性と美麗さを生かして塗装やメッキを行わず各種建築物、交通機関などの外装材として使用されることが多いが、鋳造後に鋳片内にピンホールなどの欠陥が存在すると、圧延後にも筋状の疵として残存し、表面光沢などを損なうという問題がある。これに対して、特許文献2などのように浸漬ノズルからの吐出流量、鋳型断面積および浸漬ノズルの吐出孔角度などの鋳造条件、ならびに熱間圧延時の加熱炉在炉時間といった圧延条件を規定した技術が開示されている。しかしながら、前記特許文献2に開示されたように、鋳型内への溶鋼供給条件などの鋳造条件や鋳片加熱条件などの適正化により防止できる表面疵は、鋳型内の溶鋼内に浮遊する微小な気泡に基づくピンホールである。したがって、上記特許文献2に開示された技術などを適用しても、凝固の進行にともない溶解度を超えて長く生成するピンホールの発生に対しては何ら低減効果が得られないという問題がある。   Stainless steel is often used as an exterior material for various buildings and transportations without taking advantage of its excellent corrosion resistance and beauty, but it is not suitable for coating or plating. If there is, there is a problem in that it remains as a streak after rolling and impairs surface gloss and the like. On the other hand, as in Patent Document 2, the casting conditions such as the discharge flow rate from the immersion nozzle, the mold cross-sectional area and the discharge nozzle angle of the immersion nozzle, and the rolling conditions such as the furnace time during hot rolling are specified. Have been disclosed. However, as disclosed in Patent Document 2, surface flaws that can be prevented by optimizing the casting conditions such as the molten steel supply conditions into the mold and the slab heating conditions are minute floats floating in the molten steel in the mold. It is a pinhole based on bubbles. Therefore, even if the technique disclosed in Patent Document 2 is applied, there is a problem that no reduction effect can be obtained for the generation of pinholes that are generated longer than the solubility as the solidification progresses.

上記のとおり、高合金鋼やステンレス鋼の製品特性や表面性状などに着目して鋼品質の向上や改善を図った技術は数多く開示されているものの、溶鋼中に溶解する窒素や水素(H)などに起因して凝固時に生成するピンホールや、ピンホールに起因して熱間加工時に発生する表面疵の改善に関する報告は見当たらない。   As described above, although many techniques for improving and improving steel quality by focusing on the product characteristics and surface properties of high alloy steel and stainless steel have been disclosed, nitrogen and hydrogen dissolved in molten steel (H) There are no reports on pinholes generated during solidification due to the above, or improvement of surface defects generated during hot working due to pinholes.

特開平6−293942号公報(特許請求の範囲および段落[0016])JP-A-6-293942 (Claims and paragraph [0016]) 特開2003−10946号公報(特許請求の範囲および段落[0016])JP 2003-10946 (Claims and paragraph [0016])

前述のとおり、鋳造後のステンレス鋼または高合金鋼の圧延または鍛造などで発生する線状に伸びた表面疵の原因となるのは、凝固の進行にともない鋼中のガスが溶解度を超えて長く生成するピンホールであり、このピンホールは、従来の発生防止技術では、低減効果が得られないという問題がある。本発明は、上記の問題に鑑みてなされたものであり、その課題は、ステンレス鋼または高合金鋼などのCrおよびNiを含有する合金鋼を鋳造する際に、鋳片表層部に発生しやすい上記ピンホールの生成を防止し、さらに、分塊工程における圧延または鍛造の際に、ビレット表面に発生しやすい加工方向に伸びた筋状の表面疵の生成を防止することにある。
As mentioned above, the cause of surface defects that occur in rolling or forging of stainless steel or high alloy steel after casting is that the gas in the steel becomes longer than the solubility as the solidification progresses. There is a problem that a reduction effect cannot be obtained by the conventional generation prevention technology. The present invention has been made in view of the above problems, and the problem is likely to occur in the slab surface layer when casting alloy steel containing Cr and Ni such as stainless steel or high alloy steel. The object of the present invention is to prevent the generation of the pinholes and to prevent the generation of streak-like surface defects extending in the processing direction that are likely to occur on the billet surface during rolling or forging in the lump process.

本発明者らは、上述の課題を解決するために、ステンレス鋼または高合金鋼の鋳造後の圧延や鍛造などで発生する線状に伸びた表面疵の実態および発生機構を検討するとともに、その発生原因となる鋳片表層部におけるピンホールの生成およびビレット表面での疵の発生を防止する方法を研究し、下記の(a)〜(d)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors examined the actual condition and generation mechanism of linearly-extending surface defects generated by rolling or forging after casting of stainless steel or high alloy steel, We studied the method of preventing the generation of pinholes in the slab surface layer, which is the cause of generation, and the generation of wrinkles on the billet surface, and obtained the following knowledge (a) to (d) to complete the present invention. .

(a)ビレットなどの表面疵の発生状況は鋼種によって差異があり、熱力学に基づく平衡計算により鋼の凝固挙動および鋼中の窒素(N)および水素(H)の溶解度について検討を行った結果、凝固過程において一旦δ相が生成する鋼種であって、かつδ相における窒素の溶解度を超える窒素含有率を有する鋼種においてのみ、表面疵発生などの問題が発生する。   (A) The occurrence of surface flaws such as billets varies depending on the steel type, and the results of investigations on the solidification behavior of steel and the solubility of nitrogen (N) and hydrogen (H) in steel by equilibrium calculation based on thermodynamics In addition, problems such as generation of surface defects occur only in a steel type that once generates a δ phase in the solidification process and has a nitrogen content exceeding the solubility of nitrogen in the δ phase.

(b)上記(a)の問題が発生する鋼種の鋳片には、その表層部にピンホールが生成している。このピンホールは、鋳片表面にほぼ垂直に10mm以上も長く伸びており、非常に特徴的な形状を呈する。   (B) A pinhole is formed in the surface layer portion of the slab of the steel type in which the problem (a) occurs. This pinhole extends longer than 10 mm substantially perpendicularly to the surface of the slab and exhibits a very characteristic shape.

(c)窒素含有率の高い鋼種においては疵の発生などの問題が発生するにも拘わらず、H含有率を10ppm未満に低下することにより、鋳片段階におけるピンホールの生成を防止することができる。   (C) Despite the occurrence of defects such as flaws in steel types with a high nitrogen content, the generation of pinholes at the slab stage can be prevented by reducing the H content to less than 10 ppm. it can.

(d)鋼中の硫黄(S)含有率を20ppm未満に低下することにより、ビレットの表面疵の生成を確実に防止することができる。   (D) By reducing the sulfur (S) content in the steel to less than 20 ppm, it is possible to reliably prevent the formation of billet surface flaws.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)および)に示すCrおよびNiを含有する合金鋼の鋳造方法にある。
The present invention has been completed based on the above findings, and the gist thereof is a casting method of alloy steel containing Cr and Ni shown in the following (1) and ( 2 ).

(1)CrおよびNiを含有し、質量%で、下記(1)式で表されるCr当量を下記(2)式で表されるNi当量により除した値が1.5以上であり、凝固過程で一旦δ相を生成し、該δ相における窒素溶解度を超える窒素含有率を有する合金鋼を鋳造する方法であって、
溶鋼中の水素含有率を10ppm未満とし、さらに、溶鋼中の硫黄含有率を7ppm以下とし
表面にほぼ垂直に10mm以上伸びたピンホールが生成していない鋳片を製造することを特徴とするCrおよびNiを含有する合金鋼の鋳造方法。
Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti・・・(1)
Ni当量=Ni+22×C+0.31×Mn+14.2×N+Cu ・・・・(2)
ここで、(1)式および(2)式中の元素記号は、鋼中における各元素の含有率(質量%)を表す。
(1) Containing Cr and Ni, the value obtained by dividing Cr equivalent represented by the following formula (1) by Ni equivalent represented by the following formula (2) in mass% is 1.5 or more, and solidification once generated the δ phase in the process, a method of casting an alloy steel having a nitrogen content of greater than nitrogen solubility in the δ phase,
The hydrogen content in the molten steel is less than 10 ppm, and the sulfur content in the molten steel is 7 ppm or less ,
A method for casting an alloy steel containing Cr and Ni, comprising producing a slab in which a pinhole extending approximately 10 mm or more substantially perpendicular to the surface is not formed.
Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti (1)
Ni equivalent = Ni + 22 × C + 0.31 × Mn + 14.2 × N + Cu (2)
Here, the element symbols in the formulas (1) and (2) represent the content (mass%) of each element in the steel.

)前記鋳造方法が連続鋳造方法であることを特徴とする上記(1)に記載のCrおよびNiを含有する合金鋼の鋳造方法。
( 2 ) The method for casting alloy steel containing Cr and Ni according to (1 ) above, wherein the casting method is a continuous casting method.

本発明において、「高合金鋼」とは、Cr、Niなどの合金元素の合計含有率が40質量%程度以上の鋼を意味する。   In the present invention, “high alloy steel” means steel having a total content of alloy elements such as Cr and Ni of about 40% by mass or more.

また、「凝固過程で一旦δ相を生成する鋼」とは、凝固過程で融液から一旦フェライト(δ)相を晶出する鋼を意味し、鋼成分組成の範囲では、Cr当量をNi当量により除した値が1.5程度以上の範囲にある鋼が該当する。ここで、Cr当量およびをNi当量は、例えば下記(1)式および(2)式などにより求めることができる。   “Steel that once generates δ phase during the solidification process” means a steel that once crystallizes the ferrite (δ) phase from the melt during the solidification process. This corresponds to steel having a value divided by about 1.5 or more. Here, the Cr equivalent and the Ni equivalent can be obtained by, for example, the following formulas (1) and (2).

Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti・・・(1)
Ni当量=Ni+22×C+0.31×Mn+14.2×N+Cu ・・・・(2)
ここで、(1)式および(2)式中の元素記号は、鋼中における各元素の含有率(質量%)を表す。
Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti (1)
Ni equivalent = Ni + 22 × C + 0.31 × Mn + 14.2 × N + Cu (2)
Here, the element symbols in the formulas (1) and (2) represent the content (mass%) of each element in the steel.

なお、以下の説明においては、鋼の成分組成についての「質量%」の表記を、「%」とも表記する。   In the following description, “% by mass” for the component composition of steel is also expressed as “%”.

本発明の方法によれば、凝固過程で一旦δ相を生成し、そのδ相における窒素溶解度を超える窒素含有率を有する、CrおよびNiを含有する合金鋼の溶鋼中の水素含有率を10ppm未満に調整して鋳造することにより、鋳片表層部に発生しやすいピンホールの生成を防止することができる。さらに、ピンホールの生成に起因して圧延または鍛造などの加工時にビレットなどの表面に発生しやすい線状疵の生成をも低減することができる。これに加えて、硫黄含有率を20ppm未満とすることにより、さらに一層、製品の表面疵の発生を低減し、表面品質を向上させることができる。
According to the method of the present invention, the hydrogen content in the molten steel of the alloy steel containing Cr and Ni having a nitrogen content exceeding the nitrogen solubility in the δ phase once generated in the solidification process is less than 10 ppm. By adjusting and casting, it is possible to prevent the generation of pinholes that are likely to occur in the slab surface layer. Furthermore, it is possible to reduce the generation of linear wrinkles that are likely to occur on the surface of billets or the like during processing such as rolling or forging due to the generation of pinholes. In addition to this, by making the sulfur content less than 20 ppm, it is possible to further reduce the occurrence of surface flaws on the product and improve the surface quality.

本発明は、前記のとおり、凝固過程で一旦δ相を生成し、そのδ相における窒素溶解度を超える窒素含有率を有する、CrおよびNiを含有する合金鋼を鋳造する際に、溶鋼中の水素含有率を10ppm未満に、または、これに加えてさらに溶鋼中の硫黄含有率を20ppm未満に調整して鋳造するCrおよびNiを含有する合金鋼の鋳造方法である。以下に、本発明の鋳造方法について詳細に説明する。
As described above, the present invention provides a method for producing hydrogen in molten steel when casting an alloy steel containing Cr and Ni, which once generates a δ phase in the solidification process and has a nitrogen content exceeding the nitrogen solubility in the δ phase. This is a method for casting an alloy steel containing Cr and Ni, which is cast by adjusting the content to less than 10 ppm or in addition to adjusting the sulfur content in the molten steel to less than 20 ppm. Below, the casting method of this invention is demonstrated in detail.

(1)表面疵の発生機構
本発明者らは、CrおよびNiを含有する合金鋼の分塊ビレットについて表面疵の発生状況を調査するとともに、その発生機構を検討した。
(1) Generation mechanism of surface flaws The present inventors investigated the generation state of surface flaws on a billet of alloy steel containing Cr and Ni and examined the generation mechanism.

その結果、疵の発生状況には鋼種による依存性があり、同一の製造条件であっても、全く表面疵が発生しない鋼種と、高い割合で表面疵が発生する鋼種とがあることが判明した。さらに、鋳片段階における欠陥が表面疵の起点になっている可能性があることを想定し、鋳片の表面性状を調査したところ、表面疵が高い割合で発生する鋼種では、しばしば鋳片表層部にピンホールが生成していることが明らかとなった。また、これらの鋼種に発生するピンホールは、鋳片表面にほぼ垂直に10mm以上も長く伸びた針状の形状を呈していることも判明した。   As a result, it was found that there is a dependence on the steel type in the occurrence of defects, and there are steel types that do not generate surface defects at all and steel types that generate surface defects at a high rate even under the same production conditions. . Furthermore, assuming that there is a possibility that defects at the slab stage may be the starting point of surface defects, the surface properties of the slab were investigated. It became clear that a pinhole was generated in the part. It has also been found that the pinholes generated in these steel types have a needle-like shape extending longer than 10 mm substantially perpendicular to the surface of the slab.

一般に、鋳片内に生成するピンホールの形状は、凝固の影響を受けるので、多少の凹凸はあるものの、概ね球状または球状に近い形状となる。これに対して、上記のように表面疵が高い割合で生成する鋼種に発生するピンホールは、鋳片表面にほぼ垂直に長く伸びた針状の特徴的な形状を有していることが確認された。   In general, the shape of the pinhole generated in the slab is affected by solidification, so that it is generally spherical or nearly spherical, although there are some irregularities. On the other hand, it is confirmed that the pinholes generated in the steel types generated with a high ratio of surface defects as described above have a needle-like characteristic shape extending substantially perpendicular to the slab surface. It was done.

通常、ピンホールは、溶鋼中に既に存在する気泡が凝固シェルに捕捉されることにより生成し、この場合には溶鋼の有する表面張力の大きさに応じて、球状または球状に近い形状となる。これに対して、長く伸びた針状の形状のピンホールは、凝固の進行にともなって溶鋼中の溶存ガスが固相側の飽和溶解度を超え、液相側に排出されて気泡を形成し、凝固界面の進行にともなって溶存ガスが排出されながらその気泡を細長く成長させ、これが固相に捕捉されながら針状形状を形成したものと考えられる。鋳片のより中心部では凝固時に溶鋼静圧が作用するため、気泡の生成が抑制される。   Usually, the pinhole is generated by trapping bubbles already existing in the molten steel in the solidified shell, and in this case, the pinhole has a spherical shape or a shape close to a spherical shape depending on the surface tension of the molten steel. On the other hand, the pinhole in the shape of a long needle extends, the dissolved gas in the molten steel exceeds the saturation solubility on the solid phase side as solidification progresses, and is discharged to the liquid phase side to form bubbles, It is considered that the bubbles are elongated while the dissolved gas is discharged along with the progress of the solidification interface, and this is trapped in the solid phase to form a needle-like shape. Since the molten steel static pressure acts at the center of the slab during solidification, the generation of bubbles is suppressed.

そこで、市販の熱力学的平衡計算プログラム(プログラム名「Fact−Sage」)を用いて、鋼の凝固挙動、およびピンホールの発生起因と考えられる鋼中のガス成分である窒素および水素の溶解度を検討した。表1に、検討結果の一例とした9%Cr含有鋼、ならびにNiを20%およびCrを25%含有するSUS310鋼の成分組成を示す。   Therefore, using a commercially available thermodynamic equilibrium calculation program (program name “Fact-Sage”), the solidification behavior of the steel and the solubility of nitrogen and hydrogen, which are gas components in the steel considered to be caused by the occurrence of pinholes, were determined. investigated. Table 1 shows the component composition of 9% Cr-containing steel as an example of the examination results and SUS310 steel containing 20% Ni and 25% Cr.

Figure 0005063024
Figure 0005063024

図1は、9%Cr含有鋼の凝固過程での相変態挙動、ならびに窒素および水素の溶解度の計算結果を示す図であり、同図(a)は温度と各相の存在割合との関係を、同図(b)は温度と各相における窒素溶解度との関係を、そして同図(c)は温度と各相における水素溶解度との関係をそれぞれ表す。また。図2は、SUS310鋼の凝固過程での相変態挙動、ならびに窒素および水素の溶解度の計算結果を示す図であり、同図(a)は温度と各相の存在割合との関係を、同図(b)は温度と各相における窒素溶解度との関係を、そして同図(c)は温度と各相における水素溶解度との関係をそれぞれ表す。   FIG. 1 is a diagram showing calculation results of the phase transformation behavior in the solidification process of 9% Cr-containing steel and the solubility of nitrogen and hydrogen. FIG. 1 (a) shows the relationship between the temperature and the abundance ratio of each phase. (B) shows the relationship between temperature and nitrogen solubility in each phase, and (c) shows the relationship between temperature and hydrogen solubility in each phase. Also. FIG. 2 is a diagram showing calculation results of the phase transformation behavior in the solidification process of SUS310 steel and the solubility of nitrogen and hydrogen. FIG. 2 (a) shows the relationship between the temperature and the abundance of each phase. (B) shows the relationship between temperature and nitrogen solubility in each phase, and (c) shows the relationship between temperature and hydrogen solubility in each phase.

図1の結果に示されたとおり、9%Cr含有鋼では、凝固過程で一旦δ相が生成し、その後γ相に変態する。δ相中の窒素溶解度および水素溶解度は、いずれも液相中またはγ相中の溶解度に比較して著しく低く、その最小値は約290ppmである。9%Cr含有鋼には、基本成分はほぼ同一組成で、用途に応じて200ppm程度の窒素を含有する鋼種と、400〜500ppm程度の窒素を含有する鋼種があるが、400〜500ppm程度の窒素を含有する鋼種でのみピンホールやビレット表面疵の問題が発生する。この原因は、窒素含有率の高い鋼種では、一旦δ相が生成するときに、鋼中の窒素含有率がδ相における窒素溶解度を超えることにあると考えられる。   As shown in the results of FIG. 1, in the 9% Cr-containing steel, a δ phase is once generated during the solidification process and then transformed into a γ phase. Both nitrogen solubility and hydrogen solubility in the δ phase are significantly lower than the solubility in the liquid phase or the γ phase, and its minimum value is about 290 ppm. In 9% Cr-containing steels, the basic components are almost the same, and there are steel types containing about 200 ppm of nitrogen and steel types containing about 400 to 500 ppm of nitrogen, depending on the application, but about 400 to 500 ppm of nitrogen. The problem of pinholes and billet surface flaws occurs only in steel types that contain. This is thought to be due to the fact that in a steel type with a high nitrogen content, once the δ phase is generated, the nitrogen content in the steel exceeds the nitrogen solubility in the δ phase.

これに対して、図2の結果に示されたとおり、SUS310鋼では、液相から直接γ相が生成し凝固する。γ相中の窒素溶解度は、液相中の窒素溶解度に比較して低いが、凝固開始直後では1900ppm程度である。したがって、鋼中には1000ppm程度の窒素を含有するものの、窒素溶解度を超えることはなく、ピンホールやビレット表面疵の問題が発生することはない。   On the other hand, as shown in the results of FIG. 2, in SUS310 steel, a γ phase is generated directly from the liquid phase and solidifies. The nitrogen solubility in the γ phase is lower than the nitrogen solubility in the liquid phase, but is about 1900 ppm immediately after the start of solidification. Therefore, although steel contains about 1000 ppm of nitrogen, the nitrogen solubility is not exceeded, and the problem of pinhole and billet surface flaws does not occur.

また、窒素溶解度は、特にCr含有率の差異など、鋼種の差異により大きく影響を受けて変化するのに対して、水素溶解度には大きな差は認められない。種々の鋼種で同様の検討を行った結果、高い割合で表面疵が発生する鋼種は、いずれも凝固過程で一旦δ相が生成する鋼種であり、かつδ相における窒素溶解度を超える窒素含有率を有することが判明した。   Nitrogen solubility is greatly affected and changed by differences in steel types such as Cr content, but no significant difference is observed in hydrogen solubility. As a result of similar investigations with various steel types, all of the steel types where surface defects occur at a high rate are those in which the δ phase is once generated during the solidification process, and have a nitrogen content exceeding the nitrogen solubility in the δ phase. It turned out to have.

(2)表面疵発生低減のための水素および硫黄の適正含有率
ビレットの表面疵の発生に及ぼす窒素、水素および硫黄含有率の影響を調査した。図3は、9%Cr含有鋼の連続鋳造鋳片から製造した分塊圧延ビレットの表面疵発生状況と鋼中の窒素含有率および水素含有率との関係を示す図である。ビレットの表面疵発生状況は、ビレット毎に、無手入れの場合を0、軽手入れの場合を1、重手入れの場合を2、手入れ不可能な場合を3とし、これらの値を鋳造のヒート毎に平均化することにより、「ビレット平均表面疵指標」として指標化し、同図中に示した。
(2) Appropriate content of hydrogen and sulfur for reducing surface soot generation The effect of nitrogen, hydrogen and sulfur content on the generation of billet surface soot was investigated. FIG. 3 is a diagram showing the relationship between the surface flaw occurrence state of a partially rolled billet produced from a continuous cast slab of 9% Cr-containing steel and the nitrogen content and hydrogen content in the steel. The billet surface flaw occurrence status is 0 for no-care, 1 for light-care, 2 for heavy-care, and 3 for non-care, for each billet. Are averaged as “Billette average surface wrinkle index” and shown in the figure.

同図の結果によれば、鋼中の窒素含有率は、前述のとおり、成分規格によりδ相の窒素溶解度を超えているものと超えていないものとに大別され、窒素含有率が420〜520ppm程度であり、δ相の窒素溶解度(290ppm程度)を超えている鋼種であって、かつ水素含有率の高い鋼種の場合に、疵発生率が増加している。すなわち、一旦δ相が生成する鋼種であって、かつ窒素含有率がδ相における窒素溶解度を超える鋼種であっても、ビレット表面疵が発生する場合と発生しない場合とがあり、その原因は、水素含有率にあることが判明した。   According to the results of the figure, as described above, the nitrogen content in the steel is roughly classified into those exceeding the nitrogen solubility of the δ phase and those not exceeding according to the component specifications, and the nitrogen content is 420 to In the case of a steel type that is about 520 ppm and exceeds the δ-phase nitrogen solubility (about 290 ppm) and has a high hydrogen content, the soot generation rate is increased. That is, even if it is a steel type once the δ phase is generated and the nitrogen content exceeds the nitrogen solubility in the δ phase, billet surface flaws may or may not occur. It was found to be in the hydrogen content.

前述のように、水素含有率を10ppm未満に低下させることにより、鋳片段階でのピンホールの生成を防止でき、ビレット表面疵も大幅に低減できる。さらに、水素含有率を8ppm未満に低下させれば、より確実にピンホールおよびビレット表面疵の発生を防止できる。   As described above, by reducing the hydrogen content to less than 10 ppm, the generation of pinholes at the slab stage can be prevented, and the billet surface flaw can be greatly reduced. Furthermore, if the hydrogen content is reduced to less than 8 ppm, the generation of pinholes and billet surface flaws can be prevented more reliably.

上記のように、窒素含有率がδ相における窒素溶解度を超える鋼種であっても、水素含有率を低減させることにより、ビレット表面疵の発生を低減できる理由は、下記のように推察される。   As described above, the reason why the generation of billet surface flaws can be reduced by reducing the hydrogen content even if the steel content exceeds the nitrogen solubility in the δ phase is presumed as follows.

すなわち、鋼中の窒素や水素の含有率がそれらの溶解度を超えた際には、窒素に比べて水素の方が容易に気泡を形成しやすいと考えられる。凝固過程でδ相が生成し、水素含有率がその溶解度を超えると、水素の気泡が発生する。既に水素気泡の存在する状況下では、窒素もこの水素気泡の内部に容易に放出され、凝固の進行にともない針状に成長しやすい。これに対して、窒素のみがδ相における溶解度を超えて含有されても、窒素ガスの放出を受け入れる空間(気泡)がないため、ピンホールは容易には形成されず、したがって、表面疵の発生には至らない。また、窒素含有率の低い鋼種で水素のみが高濃度で含有されても、水素の含有率は元来10ppm前後と低いことから、問題となるような大きさのピンホールにまで成長しない。   That is, when the content of nitrogen or hydrogen in steel exceeds their solubility, hydrogen is considered to form bubbles more easily than nitrogen. When a δ phase is generated during the solidification process and the hydrogen content exceeds its solubility, hydrogen bubbles are generated. Under the situation where hydrogen bubbles already exist, nitrogen is easily released into the hydrogen bubbles and easily grows in a needle shape as the solidification progresses. On the other hand, even if only nitrogen exceeds the solubility in the δ phase, there is no space (bubbles) for accepting the release of nitrogen gas, so pinholes are not easily formed, and therefore surface flaws are generated. It does not lead to. Further, even if only a high concentration of hydrogen is contained in a steel type having a low nitrogen content, the hydrogen content is originally as low as about 10 ppm, so that it does not grow into a pinhole having a problem size.

上記の理由により、水素含有率が10ppm未満の場合には、窒素ガスが容易に放出される空間(気泡)が少ないため、ピンホールの生成が抑制され、その結果、ビレット表面疵も低減されるものと推察される。   For the above reason, when the hydrogen content is less than 10 ppm, since there are few spaces (bubbles) from which nitrogen gas is easily released, the generation of pinholes is suppressed, and as a result, billet surface wrinkles are also reduced. Inferred.

窒素含有率は、420〜520ppmの範囲でばらついているが、この範囲内における窒素含有率とビレット表面疵の発生状況との間には、特に相関は認められなかった。   The nitrogen content varies in the range of 420 to 520 ppm, but no particular correlation was observed between the nitrogen content in this range and the occurrence of billet surface flaws.

鋼中の水素含有率は、真空処理により低下させることができるが、真空度の強化や真空処理時間の延長を必要とし、これらは生産性阻害の要因となる。したがって、これらよりはむしろ、鋼中の水素の発生源となる石灰などのフラックス原料、タンディッシュパウダー、モールドパウダーなどの水分管理、タンディッシュやレードルなどの耐火物施工時に使用する水分の充分な乾燥除去、耐火物施工法の改良、そして、施工直後の新品の耐火物を内張りしたタンディッシュなどにピンホールの発生が懸念される鋼種を注入することを回避する操業管理など、種々の精錬または鋳造条件を水素濃度低減のために最適化する方法を採用するのが現実的であり、これらの方法により溶鋼中の水素含有率を8ppm未満とすることができる。   Although the hydrogen content in steel can be reduced by vacuum treatment, it requires strengthening of the degree of vacuum and extension of the vacuum treatment time, which are factors in inhibiting productivity. Therefore, rather than these, flux materials such as lime, which is a source of hydrogen in steel, moisture management of tundish powder, mold powder, etc., sufficient drying of moisture used in refractory construction such as tundish and ladle Various refining or casting such as removal, improvement of refractory construction method, and operation management to avoid injecting steel grades that are likely to cause pinholes into tundish lined with new refractory immediately after construction It is practical to adopt methods for optimizing the conditions for reducing the hydrogen concentration, and these methods can reduce the hydrogen content in the molten steel to less than 8 ppm.

上記のとおり、鋼中の水素含有率を低減することによりビレット表面疵は大幅に低減されたが、手入れの程度には、なお、ばらつきがあったので、この点についてさらに詳細に調査を行った。ビレットの表面疵の発生率に対して、鋼の成分組成や鋳造条件、分塊圧延条件などの種々の因子を統計的に処理し、それぞれの影響を検討した結果、鋼中の硫黄含有率の関与が大きいことが判明した。   As described above, billet surface defects were greatly reduced by reducing the hydrogen content in the steel, but the degree of care still varied, so this point was investigated in more detail. . As a result of statistically treating various factors such as the composition of steel, casting conditions, and ingot rolling conditions on the occurrence rate of billet surface flaws, and examining the effects of each, the results of the sulfur content in steel The involvement was found to be significant.

図4は、9%Cr含有鋼の連続鋳造鋳片を用いて製造した分塊圧延ビレットの表面疵発生率に及ぼす鋼中の水素含有率および硫黄含有率の影響を示す図である。   FIG. 4 is a diagram showing the influence of the hydrogen content and the sulfur content in steel on the surface flaw generation rate of a block-rolled billet manufactured using a continuous cast slab of 9% Cr-containing steel.

同図の結果から、水素含有率を10ppm未満とすることにより表面疵発生率を低下させることができ、さらに硫黄含有率を20ppm未満とすることにより、一層、表面疵発生率を低下させ、より確実にビレット表面品質を向上させることができることが判明した。すなわち、鋼中の硫黄濃度を低下させることにより、より確実に線状疵の生成を防止することができる。これは、表面活性作用を有する硫黄の含有率を低下させることにより、溶鋼の表面張力が増加し、気泡が発生しにくくなることによると考えられる。   From the results shown in the figure, the surface soot generation rate can be reduced by setting the hydrogen content to less than 10 ppm, and further the surface soot generation rate can be further reduced by making the sulfur content less than 20 ppm. It has been found that the billet surface quality can be improved reliably. That is, by reducing the sulfur concentration in the steel, it is possible to more reliably prevent the formation of linear soot. This is considered to be due to the fact that the surface tension of the molten steel is increased and bubbles are less likely to be generated by reducing the content of sulfur having a surface active action.

本発明のCrおよびNiを含有する合金鋼の表面疵防止方法は、ビレットの表面疵に対してのみではなく、板材や形鋼など他の形状の鋼材に対しても高い効果を示す。
The method for preventing surface flaws of alloy steels containing Cr and Ni according to the present invention is highly effective not only for the surface flaws of billets but also for steel materials of other shapes such as plate materials and shaped steels.

本発明のCrおよびNiを含有する合金鋼の鋳造方法の効果を確認するため、下記の試験を行ってその結果を評価した。
In order to confirm the effect of the casting method of the alloy steel containing Cr and Ni of the present invention, the following test was conducted and the result was evaluated.

(1)試験方法
スクラップなどを原料として80トン電気炉を用いて溶解するかまたは高炉溶銑を転炉により吹練して得た溶鋼を、AODおよびVODにより脱ガス処理し、さらに一部の鋼種ではワイヤ供給による合金成分添加やガスバブリング処理を行う取鍋精錬法を用いた二次精錬を行って、5種類の基本鋼種の母溶鋼を溶製した。
(1) Test method Molten steel obtained by melting scrap or the like using an 80-ton electric furnace or blowing blast furnace hot metal with a converter is degassed with AOD and VOD, and some steel types Then, secondary refining was performed using the ladle refining method in which alloy components were added by wire supply and gas bubbling was performed, and the mother molten steel of five basic steel types was melted.

上記の溶鋼を垂直型連続鋳造機に供給し、鋳造速度0.4m/分で鋳造することにより、厚さ280mm、幅600mmの鋳片を製造した。この鋳片を分塊工場に搬送し、均熱炉により1200℃程度まで加熱した後、分塊圧延を行って直径190〜300mmの丸ビレットとし、そのビレット表面の疵の発生状況を目視により調査した。なお、一部の鋼種では、湾曲型連続鋳造機を用いて、鋳造速度0.4m/分で鋳造することにより、厚さ390mm、幅700mmの鋳片を製造した後、同様に分塊圧延を行ったが、連続鋳造機の形式の差によるビレット表面疵の発生状況への影響は特に認められなかった。   The molten steel was supplied to a vertical continuous casting machine and cast at a casting speed of 0.4 m / min to produce a slab having a thickness of 280 mm and a width of 600 mm. This slab is transported to a lump factory, heated to about 1200 ° C in a soaking furnace, then rolled into a round billet with a diameter of 190 to 300 mm, and the occurrence of wrinkles on the billet surface is visually examined. did. For some steel types, a slab having a thickness of 390 mm and a width of 700 mm is manufactured by casting at a casting speed of 0.4 m / min using a curved continuous casting machine, and then, similarly, the block rolling is performed. However, there was no particular effect on billet surface flaws due to differences in the type of continuous casting machine.

表2に、調査を行った5種類の基本鋼種の主な成分組成、凝固形態、熱力学的平衡計算により求めた凝固過程での窒素溶解度、同水素溶解度の最小値を示した。   Table 2 shows the main component composition, solidification morphology, nitrogen solubility in the solidification process determined by thermodynamic equilibrium calculation, and the minimum value of the hydrogen solubility of the five basic steel types examined.

Figure 0005063024
Figure 0005063024

熱力学的平衡計算には、前記の市販の計算プログラムを使用した。1.013×105Pa(1気圧)の雰囲気で凝固過程を含む1200〜1600℃の温度範囲において各温度における平衡計算を行い、各相における窒素溶解度および水素溶解度を求めた。 The commercially available calculation program was used for the thermodynamic equilibrium calculation. Equilibrium calculation at each temperature was performed in a temperature range of 1200 to 1600 ° C. including the solidification process in an atmosphere of 1.013 × 10 5 Pa (1 atm) to obtain nitrogen solubility and hydrogen solubility in each phase.

また、表2には、通常の操業過程におけるビレットの表面疵発生問題の有無を併せて示した。なお、同表中の成分の他にAl、Ti、Ca、V、Bなどを含有する鋼種もあるが、ピンホールに起因するビレット表面疵の発生状況に影響を及ぼさないことから、記載を省略した。   Table 2 also shows the presence / absence of billet surface flaws in the normal operation process. There are also steel types that contain Al, Ti, Ca, V, B, etc. in addition to the components in the table, but they are omitted because they do not affect the occurrence of billet surface flaws due to pinholes. did.

(2)表面疵発生に及ぼすδ相中窒素溶解度および溶鋼中窒素含有率の効果確認試験
前記のとおり、9%Cr含有鋼には用途に応じて400〜500ppm程度の窒素を含有する鋼種番号1の鋼種と、200ppm程度の窒素を含有する鋼種番号2の鋼種がある。基本成分系がほぼ同一であることから、いずれも凝固過程では一旦δ相が生成し、窒素溶解度は290ppm程度となる。しかし、400〜500ppm程度の窒素を含有する鋼種番号1の鋼種でのみピンホールやビレット表面疵の問題が発生する。
(2) Effect Confirmation Test of Nitrogen Solubility in δ Phase and Nitrogen Content in Molten Steel on Surface Flaw Generation As described above, steel type number 1 containing about 400 to 500 ppm of nitrogen in 9% Cr-containing steel depending on the application And a steel type No. 2 containing about 200 ppm of nitrogen. Since the basic component systems are almost the same, a δ phase is once generated in the solidification process, and the nitrogen solubility is about 290 ppm. However, the problem of pinholes and billet surface flaws occurs only in the steel type No. 1 containing about 400 to 500 ppm of nitrogen.

そこで、鋳片の表層部からピンホール発生部分の試料を採取してその断面を観察した結果、ピンホールは、直径数百μm程度で、鋳片表面にほぼ垂直方向に長さが20〜30mm程度にまで長く伸びていることが判明した。前述のとおり、一般に溶鋼中に存在する気泡が凝固シェルに捕捉されることにより生成するピンホールは、球状または球状に近い形状となる。これに対して、上記観察結果のように長く伸びた針状のピンホールは、凝固の進行にともなって飽和溶解度を超えた鋼中の溶存ガスが液相側に排出されて気泡を形成し、凝固界面の進行にともなってその気泡が細長く成長し、これが固相に捕捉されながら針状形状を形成したことを示すものである。   Therefore, as a result of taking a sample of the pinhole generating portion from the surface layer portion of the slab and observing the cross section, the pinhole has a diameter of about several hundred μm and a length of 20 to 30 mm in a direction substantially perpendicular to the slab surface. It has been found that it has grown to a long extent. As described above, generally, a pinhole generated by trapping bubbles present in molten steel in a solidified shell has a spherical shape or a nearly spherical shape. On the other hand, the needle-like pinhole extended long as in the above observation results, the dissolved gas in the steel exceeding the saturation solubility with the progress of solidification is discharged to the liquid phase side to form bubbles, As the solidification interface progresses, the bubbles grow into an elongated shape, which indicates that they have formed a needle shape while being trapped by the solid phase.

また、鋼種番号3の鋼種も凝固過程で一旦δ相が生成し、鋼中の窒素含有率はδ相の窒素溶解度を超える。本鋼種においても鋼種番号1と類似形状のピンホールが生成し、ビレット表面疵が発生することがある。   Further, in the steel type No. 3, the δ phase once forms during the solidification process, and the nitrogen content in the steel exceeds the nitrogen solubility of the δ phase. Also in this steel type, pinholes having a shape similar to that of steel type number 1 may be generated, and billet surface defects may occur.

これに対して、Cr当量をNi当量により除した値が1.5程度以下の鋼種番号4および鋼種番号5の鋼種は、いずれも液相から直接γ相が生成し、凝固過程でδ相を生成しない。このため、鋼中の窒素濃度は高いものの、凝固過程で窒素の溶解度を超えることはなく、ピンホールやビレット表面疵が発生することはない。   On the other hand, the steel grades Nos. 4 and 5 having a value obtained by dividing the Cr equivalent by the Ni equivalent of about 1.5 or less both generate a γ phase directly from the liquid phase, and the δ phase in the solidification process. Do not generate. For this reason, although the nitrogen concentration in steel is high, the solubility of nitrogen is not exceeded during the solidification process, and pinholes and billet surface flaws are not generated.

他にも、CrおよびNiを含有する合金鋼として、種々のステンレス鋼および高合金鋼について同様の鋳造試験を行ったが、表面疵が発生する鋼種は、いずれも凝固過程で一旦δ相が生成する鋼種であり、かつ窒素含有率がδ相における窒素溶解度を超える鋼種であった。上記の結果に基づき、本発明では、凝固過程で一旦δ相を生成し、そのδ相における窒素溶解度を超える窒素含有率を有するCrおよびNiを含有する合金鋼を対象とした。
In addition, the same casting test was performed on various stainless steels and high alloy steels as alloy steels containing Cr and Ni . However, in all steel types where surface defects occur, a δ phase is once generated during the solidification process. And the nitrogen content exceeds the nitrogen solubility in the δ phase. Based on the above results, the present invention is directed to alloy steels containing Cr and Ni that once generate a δ phase in the solidification process and have a nitrogen content exceeding the nitrogen solubility in the δ phase.

(3)水素含有率および硫黄含有率の効果確認試験
前記表2に示した鋼種番号1および鋼種番号3の鋼種について、溶鋼の成分組成と疵発生状況との関係をさらに詳細に調査する試験を行った。
(3) Effect confirmation test of hydrogen content rate and sulfur content rate For the steel type No. 1 and No. 3 steel types shown in Table 2 above, a test to investigate in more detail the relationship between the composition of molten steel and the state of occurrence of soot went.

表3に、鋼種番号1および鋼種番号3の鋼種における水素、窒素および硫黄の含有率ならびに鋳片表面のピンホール生成状況およびビレット表面疵発生状況の調査結果を示す。   Table 3 shows the results of investigation of the content of hydrogen, nitrogen and sulfur in the steel types No. 1 and No. 3 and the pinhole generation status on the slab surface and the billet surface flaw generation status.

Figure 0005063024
Figure 0005063024

ここで、鋼種番号1および鋼種番号3の鋼種における水素、窒素および硫黄の含有率は下記の方法により調整した。すなわち、水素は、精錬時に投入するCaO源中に含まれる水分量の低減や、タンディッシュに使用する耐火物吹き付け材の十分な乾燥など、溶鋼に接触する耐火物やフラックスの水分管理を強化することにより低減させた。また、窒素は、取鍋精錬における窒素ガス吹込量により、そして、硫黄は、AODやVODにおける精錬条件の制御により、それぞれ変化させた。   Here, the contents of hydrogen, nitrogen and sulfur in the steel types No. 1 and No. 3 were adjusted by the following method. That is, hydrogen strengthens the moisture management of refractories and fluxes that come into contact with molten steel, such as reducing the amount of moisture contained in the CaO source input during refining, and sufficiently drying the refractory spray material used for tundish. Was reduced. Nitrogen was changed by the amount of nitrogen gas blown in ladle refining, and sulfur was changed by controlling the refining conditions in AOD and VOD.

また、同表において、ピンホールは、鋳片の表面を鋳片長手方向に約1mの長さにわたりグラインダーにより研削し、スケールを除去した後、目視によりその有無を調査した。評価欄の「なし」とは、上記の研削範囲にピンホールが認められなかったことを意味し、「小数」とは、同範囲にピンホールが10個未満存在したことを意味し、そして、「多数」とは同範囲に10個以上存在したことを意味する。   Further, in the same table, the pinhole was ground with a grinder for about 1 m in the longitudinal direction of the slab, and the scale was removed. “None” in the evaluation column means that no pinhole was found in the above grinding range, “decimal” means that there were less than 10 pinholes in the same range, and “Many” means that 10 or more existed in the same range.

ビレット表面疵指標欄の数値は、ビレット毎に、無手入れを0、軽手入れを1、重手入れを2、手入れ不可能を3とし、これらの値を鋳造のヒート毎に平均化することにより指標化した値を意味する。   The value in the billet surface defect index column is 0 for each billet, 1 for light care, 2 for heavy care, 3 for non-care, and averaging these values for each heat of casting. Means a normalized value.

試験番号1〜5は、鋼種番号1の鋼種、すなわち最低窒素溶解度が前記表2に示したとおり290ppm程度であり、かつ窒素含有率が最低窒素溶解度を超えている鋼種を用い、溶鋼中の水素含有率が10ppm未満の溶鋼を使用した本発明の参考例についての試験であり、また、試験番号6および7は、溶鋼中の水素含有率が10ppmを超える溶鋼を用いた比較例についての試験である。
Test Nos. 1 to 5 use the steel type No. 1 steel type, that is, the steel type whose minimum nitrogen solubility is about 290 ppm as shown in Table 2 and whose nitrogen content exceeds the minimum nitrogen solubility, and hydrogen in the molten steel. This is a test for a reference example of the present invention using a molten steel having a content of less than 10 ppm, and test numbers 6 and 7 are tests for a comparative example using a molten steel having a hydrogen content of more than 10 ppm in the molten steel. is there.

水素含有率を10ppm未満とした本発明の参考例の試験番号1〜5では、いずれもピンホールの発生が低減し、ビレット表面疵は改善されて、ビレット表面疵指標は低い値を示した。また、本発明の参考例の試験番号1〜5のうち、さらに硫黄含有率を20ppm未満とした試験番号1〜3では、一層、表面疵が改善されている。特に、水素含有率を8ppm未満まで低減した試験番号1では、ほぼ手入れの必要がない程度にまで表面疵の状況が改善された。
In test numbers 1 to 5 of the reference examples of the present invention in which the hydrogen content was less than 10 ppm, the occurrence of pinholes was reduced, billet surface wrinkles were improved, and the billet surface wrinkle index showed a low value. In addition, among the test numbers 1 to 5 of the reference example of the present invention , in test numbers 1 to 3 in which the sulfur content is less than 20 ppm, the surface defects are further improved. In particular, in test number 1 in which the hydrogen content was reduced to less than 8 ppm, the condition of surface flaws was improved to such an extent that almost no maintenance was required.

これに対して、鋼種番号1の鋼種であり、かつ溶鋼中の水素含有率が10ppmを超える溶鋼を用いた比較例についての試験である試験番号6および7では、ピンホールが多数発生した。その結果、ビレットは表面疵の多数存在する劣悪な表面性状となり、20%を超える大量の手入れ不可能材が発生した。   On the other hand, in test numbers 6 and 7, which are tests for a comparative example using a steel type of steel type No. 1 and a molten steel having a hydrogen content in the molten steel exceeding 10 ppm, many pinholes were generated. As a result, the billet was inferior surface properties with a large number of surface defects, and a large amount of uncareable material exceeding 20% was generated.

試験番号8および9は、鋼種番号3の鋼種、すなわち最低窒素溶解度が前記表2に示したとおり1000ppm程度であり、かつ窒素含有率が最低窒素溶解度を大幅に超えている鋼種を用い、溶鋼中の水素含有率が10ppm未満の溶鋼を使用した本発明例についての試験であり、また、試験番号10は、溶鋼中の水素含有率が10ppmを超える溶鋼を用いた比較例についての試験である。   Test Nos. 8 and 9 use the steel type No. 3, ie, the steel type whose minimum nitrogen solubility is about 1000 ppm as shown in Table 2 above and whose nitrogen content greatly exceeds the minimum nitrogen solubility. This is a test for an example of the present invention using a molten steel having a hydrogen content of less than 10 ppm, and test number 10 is a test for a comparative example using a molten steel having a hydrogen content in the molten steel exceeding 10 ppm.

本発明例である試験番号8および9では、鋼中の窒素含有率が2600〜2900ppmであり、δ相における最低窒素溶解度を大幅に超えているが、水素含有率を10ppm未満としたことにより、いずれもピンホールの発生が低減し、ビレット表面疵は大幅に改善されている。一方、水素含有率が10ppmを超える溶鋼を用いた試験番号10では、ピンホールが多数発生し、ビレットは表面疵の多数存在する劣悪な表面性状のものとなった。   In test numbers 8 and 9, which are examples of the present invention, the nitrogen content in the steel is 2600-2900 ppm, which greatly exceeds the minimum nitrogen solubility in the δ phase, but the hydrogen content is less than 10 ppm, In both cases, the occurrence of pinholes is reduced, and the billet surface wrinkles are greatly improved. On the other hand, in test number 10 using molten steel having a hydrogen content of more than 10 ppm, a large number of pinholes were generated, and the billet had an inferior surface property with many surface defects.

本発明の方法によれば、凝固過程で一旦δ相を生成し、そのδ相における窒素溶解度を超える窒素含有率を有する、CrおよびNiを含有する合金鋼の溶鋼中の水素含有率を10ppm未満として鋳造することにより、鋳片表層部に発生しやすいピンホールの生成を防止することができる。さらに、ピンホールの生成に起因して圧延または鍛造などの加工時にビレット表面などに発生しやすい線状疵の生成をも低減することができる。加えて、硫黄含有率を20ppm未満とすることにより、表面疵の発生を一段と低減し、表面品質を一層向上させることができる。したがって、本発明の鋳造方法は、分塊工程での手入れコストを低減するとともに、ビレットなどの品質および歩留まりを向上させることができる鋳造方法として、ステンレス鋼または高合金鋼などのCrおよびNiを含有する合金鋼の鋳造分野において広範に適用できる技術である。
According to the method of the present invention, the hydrogen content in the molten steel of the alloy steel containing Cr and Ni having a nitrogen content exceeding the nitrogen solubility in the δ phase once generated in the solidification process is less than 10 ppm. As a result, it is possible to prevent the generation of pinholes that are likely to occur in the slab surface layer. Furthermore, it is possible to reduce the generation of linear wrinkles that are likely to occur on the billet surface during processing such as rolling or forging due to the generation of pinholes. In addition, by making the sulfur content less than 20 ppm, the generation of surface defects can be further reduced, and the surface quality can be further improved. Therefore, the casting method of the present invention contains Cr and Ni such as stainless steel or high alloy steel as a casting method that can reduce the maintenance cost in the lump process and improve the quality and yield of billets and the like. This technology can be widely applied in the field of casting of alloy steel .

9%Cr含有鋼の凝固過程での相変態挙動、ならびに窒素および水素の溶解度の計算結果を示す図であり、同図(a)は温度と各相の存在割合との関係を、同図(b)は温度と各相における窒素溶解度との関係を、同図(c)は温度と各相における水素溶解度との関係をそれぞれ表す。It is a figure which shows the phase transformation behavior in the solidification process of 9% Cr containing steel, and the calculation result of the solubility of nitrogen and hydrogen, The figure (a) shows the relationship between temperature and the abundance ratio of each phase. b) shows the relationship between temperature and nitrogen solubility in each phase, and FIG. 10 (c) shows the relationship between temperature and hydrogen solubility in each phase. SUS310鋼の凝固過程での相変態挙動、ならびに窒素および水素の溶解度の計算結果を示す図であり、同図(a)は温度と各相の存在割合との関係を、同図(b)は温度と各相における窒素溶解度との関係を、同図(c)は温度と各相における水素溶解度との関係をそれぞれ表す。It is a figure which shows the phase transformation behavior in the solidification process of SUS310 steel, and the calculation result of the solubility of nitrogen and hydrogen, The figure (a) shows the relationship between temperature and the presence rate of each phase, The figure (b) FIG. 4C shows the relationship between temperature and nitrogen solubility in each phase, and FIG. 5C shows the relationship between temperature and hydrogen solubility in each phase. 9%Cr含有鋼の連続鋳造鋳片から製造した分塊圧延ビレットの表面疵発生状況と鋼中の窒素含有率および水素含有率との関係を示す図である。It is a figure which shows the relationship between the surface flaw generation | occurrence | production state of the split rolling billet manufactured from the continuous casting slab of 9% Cr containing steel, and the nitrogen content rate and hydrogen content rate in steel. 9%Cr含有鋼の連続鋳造鋳片から製造した分塊圧延ビレットの表面疵発生率と鋼中の水素含有率および硫黄含有率との関係を示す図である。It is a figure which shows the relationship between the surface flaw occurrence rate of the partial rolling billet manufactured from the continuous casting slab of 9% Cr containing steel, and the hydrogen content rate and sulfur content rate in steel.

Claims (2)

CrおよびNiを含有し、質量%で、下記(1)式で表されるCr当量を下記(2)式で表されるNi当量により除した値が1.5以上であり、凝固過程で一旦δ相を生成し、該δ相における窒素溶解度を超える窒素含有率を有する合金鋼を鋳造する方法であって、
溶鋼中の水素含有率を10ppm未満とし、さらに、溶鋼中の硫黄含有率を7ppm以下とし
表面にほぼ垂直に10mm以上伸びたピンホールが生成していない鋳片を製造することを特徴とするCrおよびNiを含有する合金鋼の鋳造方法。
Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti・・・(1)
Ni当量=Ni+22×C+0.31×Mn+14.2×N+Cu ・・・・(2)
ここで、(1)式および(2)式中の元素記号は、鋼中における各元素の含有率(質量%)を表す。
The value obtained by dividing Cr equivalent expressed by the following formula (1) by the Ni equivalent expressed by the following formula (2) is 1.5 or more and contains Cr and Ni and is once in the solidification process. It generates a δ phase, a method of casting an alloy steel having a nitrogen content of greater than nitrogen solubility in the δ phase,
The hydrogen content in the molten steel is less than 10 ppm, and the sulfur content in the molten steel is 7 ppm or less ,
A method for casting an alloy steel containing Cr and Ni, comprising producing a slab in which a pinhole extending approximately 10 mm or more substantially perpendicular to the surface is not formed.
Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti (1)
Ni equivalent = Ni + 22 × C + 0.31 × Mn + 14.2 × N + Cu (2)
Here, the element symbols in the formulas (1) and (2) represent the content (mass%) of each element in the steel.
前記鋳造方法が連続鋳造方法であることを特徴とする請求項1に記載のCrおよびNiを含有する合金鋼の鋳造方法。 Casting method of alloy steel containing Cr and Ni as defined in claim 1, wherein the casting method is a continuous casting method.
JP2006101841A 2006-04-03 2006-04-03 Method of casting alloy steel containing Cr and Ni Active JP5063024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101841A JP5063024B2 (en) 2006-04-03 2006-04-03 Method of casting alloy steel containing Cr and Ni

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101841A JP5063024B2 (en) 2006-04-03 2006-04-03 Method of casting alloy steel containing Cr and Ni

Publications (2)

Publication Number Publication Date
JP2007275903A JP2007275903A (en) 2007-10-25
JP5063024B2 true JP5063024B2 (en) 2012-10-31

Family

ID=38677943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101841A Active JP5063024B2 (en) 2006-04-03 2006-04-03 Method of casting alloy steel containing Cr and Ni

Country Status (1)

Country Link
JP (1) JP5063024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344902B1 (en) 2012-02-29 2014-01-22 현대제철 주식회사 Control method for quality of steel
KR101400047B1 (en) 2012-04-26 2014-05-27 현대제철 주식회사 Control method for casting of ultra low carbon steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206239B2 (en) * 2008-08-29 2013-06-12 新日鐵住金株式会社 Continuous casting method of high N content duplex stainless steel
JP5397784B2 (en) * 2011-01-31 2014-01-22 新日鐵住金株式会社 Steel grade judgment method
KR101755777B1 (en) 2014-12-26 2017-07-20 주식회사 포스코 Manufacturing method for lean duplex stainless steel and equipment for manufacturing the same
JP7180645B2 (en) * 2019-09-19 2022-11-30 Jfeスチール株式会社 Method for estimating hydrogen concentration in molten steel and vacuum degassing refining method for molten steel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152351A (en) * 1984-08-20 1986-03-15 Nippon Steel Corp Structural austenitic stainless steel having superior yield strength and toughness at very low temperature
JPH0830253B2 (en) * 1991-04-26 1996-03-27 新日本製鐵株式会社 Precipitation hardening type martensitic stainless steel with excellent workability
JPH06293942A (en) * 1993-04-07 1994-10-21 Sanyo Special Steel Co Ltd High nitrogen stainless steel having high strength and high corrosion resistance and excellent in hot workability
JPH0790471A (en) * 1993-09-17 1995-04-04 Nippon Steel Corp High mn and high n austenitic stainless steel cast slab and its production
JPH08143957A (en) * 1994-11-24 1996-06-04 Sumitomo Metal Ind Ltd Production of thick plate of n-containing austenitic stainless steel
JP4123528B2 (en) * 1995-10-11 2008-07-23 住友金属工業株式会社 Manufacturing method of martensitic stainless steel oil well pipe
JPH11350088A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Ind Ltd Ferritic stainless steel material and its production
JP2000219919A (en) * 1999-01-28 2000-08-08 Taiheiyo Kinzoku Kk Production of austenitic stainless thin sheet
JP2000226641A (en) * 1999-02-05 2000-08-15 Nsk Ltd Rolling device
JP3680764B2 (en) * 2001-05-22 2005-08-10 住友金属工業株式会社 Method for producing martensitic stainless steel pipe
JP3671868B2 (en) * 2001-06-07 2005-07-13 住友金属工業株式会社 Method for casting high Cr steel
JP2003010946A (en) * 2001-06-27 2003-01-15 Sumitomo Metal Ind Ltd MANUFACTURING METHOD FOR Ni-CONTAINING STAINLESS STEEL PLATE
JP2006007289A (en) * 2004-06-28 2006-01-12 Daido Steel Co Ltd Method for producing high nitrogen steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344902B1 (en) 2012-02-29 2014-01-22 현대제철 주식회사 Control method for quality of steel
KR101400047B1 (en) 2012-04-26 2014-05-27 현대제철 주식회사 Control method for casting of ultra low carbon steel

Also Published As

Publication number Publication date
JP2007275903A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
US11118250B2 (en) Fe—Cr—Ni alloy and method for production thereof
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP5063024B2 (en) Method of casting alloy steel containing Cr and Ni
JP6066412B2 (en) Fe-Ni-Cr alloy having excellent surface properties and method for producing the same
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
WO2010008019A1 (en) Continuously cast slab and process for production of same
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6951060B2 (en) Manufacturing method of slabs
JP6116286B2 (en) Ferritic stainless steel with less heat generation
CN106011688A (en) Fe-Cr-Ni alloy with high Mn content and manufacturing method of Fe-Cr-Ni alloy
JP2005298909A (en) Cast slab having reduced surface crack
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP6245139B2 (en) Thick steel plate for sour welded steel pipe excellent in scale peel resistance, method for producing the same, and welded steel pipe
JP2015093278A (en) CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL
JP2018099704A (en) Continuous casting method for steel
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP4542079B2 (en) Casting method of Ti-containing Fe-Cr-Ni steel with excellent surface properties
JPH0790504A (en) Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab
JP7563626B2 (en) Steel slab, continuous casting method, and method for manufacturing steel slab
KR101677353B1 (en) Lean duplex stainless steel manufacturing method
JP4466335B2 (en) Steel continuous casting method
JP6245138B2 (en) Thick steel plate for welded steel pipe excellent in scale peeling resistance and material uniformity, manufacturing method thereof, and welded steel pipe
JP4655127B2 (en) Method for producing austenitic stainless steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110627

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350