JP2011229167A - Surface-mount piezoelectric device - Google Patents

Surface-mount piezoelectric device Download PDF

Info

Publication number
JP2011229167A
JP2011229167A JP2011129920A JP2011129920A JP2011229167A JP 2011229167 A JP2011229167 A JP 2011229167A JP 2011129920 A JP2011129920 A JP 2011129920A JP 2011129920 A JP2011129920 A JP 2011129920A JP 2011229167 A JP2011229167 A JP 2011229167A
Authority
JP
Japan
Prior art keywords
pad electrodes
pad
vibration element
piezoelectric
piezoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011129920A
Other languages
Japanese (ja)
Other versions
JP4935945B2 (en
Inventor
Ryoichi Yasuike
亮一 安池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011129920A priority Critical patent/JP4935945B2/en
Publication of JP2011229167A publication Critical patent/JP2011229167A/en
Application granted granted Critical
Publication of JP4935945B2 publication Critical patent/JP4935945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-mount piezoelectric device (oscillator, filter) which solves the deterioration of various characteristics attributed to the occurence of thermal stress even when a piezoelectric vibration element is connected to an inner bottom surface of a ceramic package with a solid conductive adhesive.SOLUTION: In the piezoelectric device, a piezoelectric vibration element is electrically and mechanically connected to be open-sided and held in a surface-mounted package. Each of pad electrodes on one surface of the piezoelectric vibration element is connected to a corresponding conductive pad on an inner bottom surface of the surface-mount package with a solid conductive adhesive. The piezoelectric device is configured such that the main vibration part of the piezoelectric vibration element is positioned on an extended line connecting the spots of the conductive adhesive applied on the pad electrodes.

Description

本発明は、振動子やフィルタ等として使用される表面実装型圧電デバイスに関し、特に圧電振動素子をパッケージ内に接続する手段として導電性接着剤を用いた場合に発生する種々の不具合を解決した表面実装型圧電デバイスに関する。   The present invention relates to a surface-mounted piezoelectric device used as a vibrator, a filter, or the like, and in particular, a surface that solves various problems that occur when a conductive adhesive is used as a means for connecting a piezoelectric vibration element in a package. The present invention relates to a mounting type piezoelectric device.

近年、携帯電話機等の移動体通信機器は、小型化、軽量化が進む一方で、高機能化についても強く求められており、高機能化に伴う部品点数の増加と小型化という相反する2つの要求を同時に満たす為に、電装部を構成するプリント基板の小面積化と、搭載部品等の高密度化による基板面積の有効利用が重要視されるようになっている。
移動体通信機器や伝送通信機器において周波数制御デバイスとして用いられる水晶共振子(振動子、フィルタ)についても小型化等が強く求められており、高密度実装化に対応するためにデバイスのパッケージ構造としては表面実装型が主流となっており、併せて高周波化の要求が強くなっている。
図10は高周波化を目的とした超薄肉部を有するATカット水晶振動素子の斜視図であり、この水晶振動素子1はATカット水晶基板の基本波厚みすべり振動波を利用した振動子であって、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、水晶振動素子1を構成する水晶基板の一方の主面をエッチングによって凹陥せしめ、該凹陥部13の底面を超薄肉の振動部13aとするとともに、振動部13aの外周を全周に亙って支持する厚肉の環状囲繞部14を一体的に形成する。更に、金のマスク蒸着、又はフォトリソグラフィにより水晶基板の一方の主面上には励振電極を構成する主面電極11と、これより延出するリード電極15及びパッド電極16に加えて、パッド電極17を形成する。なお、パッド電極17は、他方の主面上に同様に形成した励振電極を構成する裏面電極12から延出したリード電極18の端部に位置しており、水晶基板の側面を通る等してリード電極18と導通している。
このタイプの水晶振動素子1にあっては、2つのパッド電極16、17は、幅方向に沿って間隔dを隔てて配置されている。
In recent years, mobile communication devices such as mobile phones have been reduced in size and weight, and there has also been a strong demand for higher functionality, and there are two conflicts between the increase in the number of parts and the reduction in size associated with higher functionality. In order to satisfy the requirements at the same time, it is important to reduce the area of the printed circuit board constituting the electrical component and to effectively use the board area by increasing the density of mounted components.
Quartz resonators (vibrators, filters) used as frequency control devices in mobile communication devices and transmission communication devices are also strongly required to be miniaturized. As a device package structure to support high-density mounting, Surface mount type is the mainstream, and the demand for higher frequency is increasing.
FIG. 10 is a perspective view of an AT-cut quartz crystal resonator element having an ultra-thin portion for the purpose of increasing the frequency. This crystal resonator element 1 is a vibrator using the fundamental thickness shear vibration wave of an AT-cut crystal substrate. Since the resonance frequency is inversely proportional to the plate thickness, in order to increase the frequency while maintaining the mechanical strength, one main surface of the crystal substrate constituting the crystal resonator element 1 is recessed by etching, and the recess The bottom surface of 13 is an ultrathin vibrating portion 13a, and a thick annular surrounding portion 14 that supports the outer periphery of the vibrating portion 13a over the entire circumference is integrally formed. Furthermore, in addition to the main surface electrode 11 constituting the excitation electrode, the lead electrode 15 and the pad electrode 16 extending from the main surface electrode 11 on one main surface of the quartz substrate by gold mask vapor deposition or photolithography, a pad electrode 17 is formed. The pad electrode 17 is located at the end of the lead electrode 18 extending from the back electrode 12 constituting the excitation electrode similarly formed on the other main surface, and passes through the side surface of the quartz substrate. The lead electrode 18 is electrically connected.
In this type of crystal resonator element 1, the two pad electrodes 16 and 17 are arranged at a distance d along the width direction.

図11は水晶振動素子1を用いた表面実装型水晶振動子のパッケージ構造を示す縦断面図である。この水晶振動子は、図10に示した水晶振動素子1をセラミックパッケージ2内に収納してから、セラミックパッケージ2の上面開口を金属の上蓋により気密封止した構造を備える。
セラミックパッケージ2は、底部を構成するセラミック基板21と、セラミック基板21の上面外周に一体化されたセラミック製の環状の枠体22と、上蓋3をシーム溶接するために枠体22の上面に環状に固定されたシームリング23と、からなり、上面中央に水晶振動素子1を収納するための凹所24を有した箱形状を呈している。セラミック基板21の上面、即ち凹所24の内底面には金メタライズにより形成された内部端子(導通パッド)25、26が露出しており、それぞれパッケージ下面等に設けた図示しない外部端子と接続されている。
水晶振動子1のパッド電極16、17を内部端子25、26上に一対一で対応させた上で導電性接着剤4を用いて両者を接続固定する。
このようなタイプの水晶振動子の構造においては、水晶振動素子1をセラミックパッケージ2に対して電気的機械的に接続する為の手法を如何に選択するかが、周波数の安定化を図る上で重要であり、従来は軟質のシリコーン系導電性接着剤4を用いてセラミックパッケージ2内底面の2つの内部端子(導通パッド)25、26と、水晶振動素子1側の2つのパッド電極16、17とを一対一で接続していた。
シリコーン系導電性接着剤は、軟質であるため、熱歪みを吸収するという利点を有する。しかし、シリコーン系導電性接着剤を用いた場合、接着強度が弱いので、衝撃等のショックにより剥離が発生し易く、また、接着剤から発生するアウトガスによる振動素子面の汚染、導通劣化が発生する等の不具合があり、水晶振動素子の諸特性、例えば周波数温度特性、信頼性、例えばエージング特性を著しく損ねる結果をもたらす。特に、携帯電話機に使用される水晶振動子にあっては、衝撃に対する仕様が厳しいため、接着強度の弱い軟質の接着剤は不向きであった。
特に図10に示したタイプの超薄肉振動部を有する水晶振動素子1にあっては、軟質の接着剤を用いることにより発生する前記不具合による悪影響は深刻であり、高周波化するために超薄肉振動部の厚みを更に薄くすると悪影響が更に深刻となる。
一方、シリコーン系導電性接着剤と比較して、硬質のエポキシ系、ポリイミド系接着剤は、加熱された導電性接着剤により水晶振動子1内に熱応力が発生したり、接着剤が硬化する時に水晶振動素子1内に内部応力が発生する等、熱歪みに対する吸収性の点で問題があるが、耐衝撃性に優れるため、この点については携帯電話機等には適した接着剤である。
FIG. 11 is a longitudinal sectional view showing a package structure of a surface-mount type crystal resonator using the crystal resonator element 1. This crystal resonator has a structure in which the crystal resonator element 1 shown in FIG. 10 is housed in the ceramic package 2 and then the upper surface opening of the ceramic package 2 is hermetically sealed with a metal upper lid.
The ceramic package 2 includes a ceramic substrate 21 constituting the bottom, an annular frame 22 made of ceramic integrated on the outer periphery of the upper surface of the ceramic substrate 21, and an annular shape on the upper surface of the frame 22 for seam welding the upper lid 3. And has a box shape having a recess 24 for housing the crystal resonator element 1 at the center of the upper surface. Internal terminals (conductive pads) 25 and 26 formed by gold metallization are exposed on the upper surface of the ceramic substrate 21, that is, the inner bottom surface of the recess 24, and are connected to external terminals (not shown) provided on the lower surface of the package. ing.
The pad electrodes 16 and 17 of the crystal unit 1 are made to correspond to the internal terminals 25 and 26 on a one-to-one basis, and then both are connected and fixed using the conductive adhesive 4.
In the structure of such a type of crystal resonator, how to select the method for electrically and mechanically connecting the crystal resonator element 1 to the ceramic package 2 is to stabilize the frequency. It is important, and conventionally, using a soft silicone-based conductive adhesive 4, two internal terminals (conductive pads) 25 and 26 on the inner bottom surface of the ceramic package 2 and two pad electrodes 16 and 17 on the side of the crystal resonator element 1 are used. And one-to-one connection.
Since the silicone-based conductive adhesive is soft, it has an advantage of absorbing thermal strain. However, when a silicone-based conductive adhesive is used, the adhesive strength is weak, so that peeling is likely to occur due to shocks such as impact, and contamination of the vibration element surface due to outgas generated from the adhesive and conduction deterioration occur. And the like, resulting in significant deterioration of various characteristics of the crystal resonator element, such as frequency temperature characteristics and reliability, for example, aging characteristics. In particular, in the case of a crystal resonator used in a cellular phone, a soft adhesive having a low adhesive strength is unsuitable because specifications for impact are severe.
In particular, in the crystal resonator element 1 having the ultrathin vibrating portion of the type shown in FIG. 10, the adverse effect due to the above-mentioned problem caused by using a soft adhesive is serious, and the ultrathin film is used to increase the frequency. If the thickness of the meat vibration part is further reduced, the adverse effect becomes more serious.
On the other hand, compared with a silicone-based conductive adhesive, a hard epoxy-based or polyimide-based adhesive generates thermal stress in the crystal unit 1 or is cured by the heated conductive adhesive. Although there are problems in terms of absorbability against thermal distortion, such as the occurrence of internal stress in the quartz resonator element 1 sometimes, it is excellent in impact resistance, and in this respect, it is an adhesive suitable for mobile phones and the like.

ところで、図10、図11に示した導電性接着剤4として、硬質のエポキシ系、ポリイミド系接着剤を使用した場合、硬質の導電性接着剤4による2か所の固定部を結ぶ直線に対して直交する方向(側方)に水晶振動素子1の主振動部13aが位置することになる。この構造は、一見すると、主振動部が固定部から離間しているために理想的とも思えるが、実際には硬質の導電性接着剤4によってパッケージ内底面と水晶振動素子1とが固定されるため、導電性接着剤4間に熱膨張率差による応力歪みが加わり、これが主振動部13aにも影響し、水晶振動素子の安定性を損ねている。
これを更に詳述すると、硬質の導電性接着剤4による水晶振動素子の支持拘束力は大きいため、温度変化に起因した水晶振動素子1の膨張、収縮を硬質の導電性接着剤が妨げて、温度変化に起因して発生する熱応力が無視できない程度に達し、水晶振動素子の諸特性に悪影響を与えるという問題が生じていた。
因に、硬質の導電性接着剤4による拘束部に発生する応力は、矢印Aにて示す方向へ向うため、パッド電極16と17との間に歪が生じ、また、主面電極11に対しては、点線Bを作用軸として矢印C方向へ向けて股裂き又は鋏の如き応力が加わることとなり、水晶振動素子1のエージング特性及び周波数温度特性等の周波数特性を悪化させる場合があった。
このことは、水晶振動子、フィルタ等の水晶共振子のみならず、圧電共振子一般に共通した問題でもあった。
By the way, when a hard epoxy adhesive or a polyimide adhesive is used as the conductive adhesive 4 shown in FIGS. 10 and 11, a straight line connecting two fixed portions by the hard conductive adhesive 4 is used. Thus, the main vibration portion 13a of the crystal resonator element 1 is positioned in a direction (side) orthogonal to the other. At first glance, this structure seems to be ideal because the main vibration part is separated from the fixing part, but in actuality, the inner bottom surface of the package and the crystal vibration element 1 are fixed by the hard conductive adhesive 4. Therefore, stress distortion due to the difference in thermal expansion coefficient is applied between the conductive adhesives 4, which also affects the main vibration portion 13 a and impairs the stability of the crystal resonator element.
More specifically, since the support restraining force of the quartz vibrating element by the hard conductive adhesive 4 is large, the hard conductive adhesive hinders the expansion and contraction of the quartz vibrating element 1 due to the temperature change, The thermal stress generated due to the temperature change has reached a level that cannot be ignored, and there has been a problem that the various characteristics of the crystal resonator element are adversely affected.
Incidentally, since the stress generated in the constrained portion by the hard conductive adhesive 4 is directed in the direction indicated by the arrow A, distortion occurs between the pad electrodes 16 and 17, and the main surface electrode 11 is deformed. As a result, stress such as crotch tears or wrinkles is applied in the direction of arrow C with the dotted line B as the action axis, and the frequency characteristics such as aging characteristics and frequency temperature characteristics of the crystal resonator element 1 may be degraded.
This is a problem not only for crystal resonators such as crystal resonators and filters, but also for piezoelectric resonators in general.

本発明が解消しようとする課題は、硬質の導電性接着剤を用いたリジッドな支持部により圧電振動素子をセラミックパッケージ内底面に接続したとしても、温度変化に起因して発生する熱応力による諸特性の劣化を解決することができる表面実装型圧電デバイス(振動子、フィルタ)を提供することにある。   The problem to be solved by the present invention is that even if the piezoelectric vibration element is connected to the inner bottom surface of the ceramic package by a rigid support portion using a hard conductive adhesive, various problems caused by thermal stress caused by a temperature change. An object of the present invention is to provide a surface-mount type piezoelectric device (vibrator, filter) capable of solving the deterioration of characteristics.

前記課題を解決するため、本発明の係る第1の実施形態は、励振電極を備えた圧電振動素子を表面実装型パッケージの内底面に設けた導通パッド上に片持ち状態にて電気的機械的に接続保持した圧電デバイスであって、前記圧電振動素子の片面上の2つのパッド電極と前記表面実装型パッケージ内底面上の2つの導通パッドとの一対一の接続を、夫々導電性接着剤を用いて行ったものにおいて、前記2つのパッド電極上の前記各導電性接着剤を結んだ線分の延長上に、前記励振電極を配置したことを特徴とした。
本発明の係る第2の実施形態は、励振電極を備えた圧電振動素子を表面実装型パッケージの内底面に設けた導通パッド上に片持ち状態にて電気的機械的に接続保持した圧電デバイスであって、前記圧電振動素子に設けた3つのパッド電極と前記表面実装型パッケージ内の3つの導通パッドとを一対一にて接続する際に、少なくとも2組のパッド電極と導通パッド間を夫々導電性接着剤を用いて行ったものにおいて、前記2つのパッド電極上の前記各導電性接着剤を結んだ線分の延長上に、前記励振電極を配置したことを特徴とした。
本発明の係る第3の実施形態は、前記圧電振動素子が前記2つのパッド電極の中間に該2つのパッド電極を結ぶ延長線と交わる方向に延長した溝を有したものであることを特徴とする。
本発明の係る第4の実施形態は、前記圧電振動素子が前記2つのパッド電極のうち前記励振電極に近い方のパッド電極と前記励振電極との中間に前記パッド電極と前記励振電極とを結ぶ延長線と交わる方向に延長した溝を有したものであることを特徴とする。
本発明の係る第5の実施形態は、前記2つのパッド電極間の間隔を500μm以下としたことを特徴とした。
本発明の係る第6の実施形態は、前記圧電振動素子を構成する圧電基板としてATカット水晶基板を用い、前記2つのパッド電極を該ATカット水晶基板の結晶軸X軸に対して60度若しくは120度の角度を有した前記線分に沿って隣接配置したことを特徴とした。
本発明の係る第7の実施形態は、前記2つのパッド電極上に固定される前記各導電性接着剤を前記線分に沿って一直線状に配列したことを特徴とした。
本発明の係る第8の実施形態は、前記圧電振動素子を構成する圧電基板として、超薄肉の振動部と、該振動部の外周を支持する厚肉の環状囲繞部とを一体的に構成した圧電基板を用いたことを特徴とした。
In order to solve the above-mentioned problem, a first embodiment of the present invention is an electromechanical device in a cantilever state on a conductive pad provided on the inner bottom surface of a surface mount package with a piezoelectric vibration element having an excitation electrode. A piezoelectric device held in contact with each other, wherein a one-to-one connection between two pad electrodes on one side of the piezoelectric vibration element and two conductive pads on the bottom surface of the surface mount type package is made using a conductive adhesive, respectively. What was used was that the excitation electrode was arranged on an extension of a line segment connecting the conductive adhesives on the two pad electrodes.
The second embodiment of the present invention is a piezoelectric device in which a piezoelectric vibration element having an excitation electrode is electrically and mechanically connected and held in a cantilever manner on a conduction pad provided on the inner bottom surface of a surface mount package. When the three pad electrodes provided on the piezoelectric vibration element and the three conductive pads in the surface mount package are connected in a one-to-one relationship, at least two sets of pad electrodes and the conductive pads are electrically connected. What was performed using the adhesive agent WHEREIN: The said excitation electrode was arrange | positioned on the extension of the line segment which connected each said conductive adhesive agent on the said two pad electrodes, It was characterized by the above-mentioned.
A third embodiment of the present invention is characterized in that the piezoelectric vibration element has a groove extending in a direction intersecting with an extension line connecting the two pad electrodes in the middle of the two pad electrodes. To do.
According to a fourth embodiment of the present invention, the piezoelectric vibration element connects the pad electrode and the excitation electrode between the excitation electrode and the pad electrode closer to the excitation electrode of the two pad electrodes. It has the groove | channel extended in the direction which cross | intersects an extension line, It is characterized by the above-mentioned.
The fifth embodiment of the present invention is characterized in that the distance between the two pad electrodes is 500 μm or less.
In a sixth embodiment of the present invention, an AT-cut quartz crystal substrate is used as the piezoelectric substrate constituting the piezoelectric vibration element, and the two pad electrodes are set at 60 degrees with respect to the crystal axis X-axis of the AT-cut quartz crystal substrate. It is characterized by being adjacently disposed along the line segment having an angle of 120 degrees.
The seventh embodiment of the present invention is characterized in that the conductive adhesives fixed on the two pad electrodes are arranged in a straight line along the line segment.
In an eighth embodiment of the present invention, as a piezoelectric substrate constituting the piezoelectric vibration element, an ultrathin vibrating portion and a thick annular surrounding portion that supports the outer periphery of the vibrating portion are integrally configured. It is characterized by using a piezoelectric substrate.

以上のように本発明によれば、圧電振動素子に設ける2つのパッド電極を僅かなギャップを隔てて隣接配置するとともに、各パッド電極上に固定する導電性接着剤を一直線状に配列した上で、導電性接着剤を介して圧電振動素子をセラミックパッケージ内底面に接続したので、導電性接着剤固着部の支持拘束力が圧電振動素子の温度変化に付随した膨張、収縮を妨げることを防止し、熱応力の発生を抑制し、諸特性の劣化を防止することができる。
このように本発明では、直線状に配列された導電性接着剤を介して、圧電振動素子の片側端部をパッケージ内底面が固定的に支持することとなり、圧電振動素子の温度変化に付随する膨張、収縮を妨げることなく、熱応力の発生を抑制することができる。特に、熱ヒステリシスの小さい極めて安定した特性を得ることができ、更に、その他の信頼性、例えばエージング持性やリフロー特性においても熱応力を抑制し、特性劣化を回避できることが明らかである。
更に、本発明によれば、圧電振動素子が2つのパッド電極の中間に2つのパッド電極を結ぶ延長線と交わる方向に延長した溝を有した構造としたのでパッド電極間に発生した応力が溝によって緩和・吸収されるので振動部へ伝達される応力の絶対的値を更に小さくすることができる。
そして更に、本発明によれば、圧電振動素子が2つのパッド電極のうち励振電極に近い方のパッド電極と励振電極との中間にパッド電極と励振電極とを結ぶ延長線と交わる方向に延長した溝を有したものであるのでパッド電極間に発生した応力が溝によって緩和・吸収されるので振動部へ伝達される応力の絶対的値を更に小さくすることができる。
As described above, according to the present invention, the two pad electrodes provided on the piezoelectric vibration element are arranged adjacent to each other with a slight gap, and the conductive adhesives fixed on the pad electrodes are arranged in a straight line. Since the piezoelectric vibration element is connected to the inner bottom surface of the ceramic package via the conductive adhesive, the support restraining force of the conductive adhesive fixing portion is prevented from preventing the expansion and contraction accompanying the temperature change of the piezoelectric vibration element. In addition, the generation of thermal stress can be suppressed, and deterioration of various characteristics can be prevented.
As described above, in the present invention, the bottom surface of the package fixedly supports the one end of the piezoelectric vibration element via the linearly arranged conductive adhesives, which accompanies the temperature change of the piezoelectric vibration element. Generation of thermal stress can be suppressed without hindering expansion and contraction. In particular, it is apparent that extremely stable characteristics with small thermal hysteresis can be obtained, and further, thermal stress can be suppressed and characteristic deterioration can be avoided in other reliability such as aging property and reflow characteristics.
Furthermore, according to the present invention, since the piezoelectric vibration element has a structure extending in the direction intersecting with the extension line connecting the two pad electrodes in the middle of the two pad electrodes, the stress generated between the pad electrodes is transferred to the groove. Therefore, the absolute value of the stress transmitted to the vibrating part can be further reduced.
Further, according to the present invention, the piezoelectric vibration element extends in a direction intersecting with an extension line connecting the pad electrode and the excitation electrode between the pad electrode closer to the excitation electrode of the two pad electrodes and the excitation electrode. Since the groove is provided, the stress generated between the pad electrodes is relaxed and absorbed by the groove, so that the absolute value of the stress transmitted to the vibrating portion can be further reduced.

本究明の一実施の形態例としてのATカット水晶振動子の斜視図。The perspective view of the AT cut quartz crystal resonator as one example of embodiment of this study. 本発明の一実施の形態例としての圧電デバイスのパッケージ構造を示す断面図。Sectional drawing which shows the package structure of the piezoelectric device as one embodiment of this invention. 本発明の実施の形態例を用いた場合の改善効果を示す図。The figure which shows the improvement effect at the time of using the embodiment of this invention. 本発明の原理を説明する図。The figure explaining the principle of this invention. (a)及び(b)は本発明の他の実施形態の水晶振動素子の構成説明図。(A) And (b) is a structure explanatory drawing of the crystal oscillation element of other embodiment of this invention. (a)及び(b)は本発明の他の実施形態の水晶振動素子の構成説明図。(A) And (b) is a structure explanatory drawing of the crystal oscillation element of other embodiment of this invention. 本発明の他の実施形態の水晶振動素子の構成説明図。The structure explanatory view of the crystal oscillation element of other embodiments of the present invention. 本発明の他の実施形態の水晶振動素子の構成説明図。The structure explanatory view of the crystal oscillation element of other embodiments of the present invention. (a)は本発明の他の実施形態の説明図、(b)は従来例の説明図。(A) is explanatory drawing of other embodiment of this invention, (b) is explanatory drawing of a prior art example. 従来のATカット水晶振動子の斜視図。The perspective view of the conventional AT cut crystal oscillator. 従来の圧電デバイスのパッケージ構造を示す断面図。Sectional drawing which shows the package structure of the conventional piezoelectric device.

以下、本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1は高周波化を目的とした超薄肉部を有するATカット水晶振動素子の斜視図であり、この水晶振動素子1はATカット水晶基板の基本波厚みすべり振動波を利用した振動子であって、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、水晶振動素子1を構成する水晶基板の一方の主面をエッチングによって凹陥せしめて凹陥部13とした構成を有する。従って、この水晶基板は、該凹陥部13の底面を超薄肉の振動部13aとするとともに、振動部13aの外周を全周に亙って厚肉の環状囲繞部14により一体的に支持した構成となっている。更に、マスクを用いて金を蒸着するか、又はフォトリソグラフィにより水晶基板の一方の主面(振動部13a)上には励振電極を構成する主面電極11と、これより延出するリード電極15及びパッド電極16に加えて、パッド電極17を形成する。なお、パッド電極17は、他方の主面上に同様に形成した励振電極を構成する裏面電極12から延出したリード電極18を水晶基板の側端面を通って表面側に引き出すことによりリード電極18と導通している。
なお、この水晶基板は例えば縦横寸法が夫々3mm、肉厚が80μm、振動部13aの肉厚が10μm前後の寸法を有するものとして説明する。この振動部13aによれば100MHzを越える共振周波数を得ることができる。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a perspective view of an AT-cut quartz crystal resonator element having an ultra-thin portion for the purpose of increasing the frequency. Since the resonance frequency is inversely proportional to the plate thickness, in order to increase the frequency while maintaining the mechanical strength, one main surface of the crystal substrate constituting the crystal resonator element 1 is recessed by etching to form the recessed portion 13. The configuration is as follows. Therefore, in this quartz crystal substrate, the bottom surface of the recess 13 is an ultrathin vibrating portion 13a, and the outer periphery of the vibrating portion 13a is integrally supported by the thick annular surrounding portion 14 over the entire circumference. It has a configuration. Further, gold is deposited using a mask, or a main surface electrode 11 constituting an excitation electrode is formed on one main surface (vibrating portion 13a) of the quartz substrate by photolithography, and a lead electrode 15 extending therefrom. In addition to the pad electrode 16, the pad electrode 17 is formed. Note that the pad electrode 17 is formed by drawing a lead electrode 18 extending from the back electrode 12 constituting the excitation electrode similarly formed on the other main surface to the surface side through the side end surface of the quartz substrate. And continuity.
In the following description, it is assumed that the quartz substrate has dimensions of 3 mm in length and width, a thickness of 80 μm, and a thickness of the vibrating portion 13 a of about 10 μm. According to the vibrating portion 13a, a resonance frequency exceeding 100 MHz can be obtained.

図2は前記水晶振動素子1を用いた圧電デバイスの一例としての表面実装型水晶振動子の構造を示す断面図である。なお、セラミックパッケージ自体の構造は図11に示したものと同様であり、同一箇所には同一符号を付して説明する。
この図1に示した水晶振動素子1をセラミックパッケージ2内に収納してから、セラミックパッケージ2の凹所24の上面開口を金属の上蓋3により気密封止した構造を備える。
セラミックパッケージ2は、底部を構成するセラミック基板21と、セラミック基板21の上面外周に立設一体化されたセラミック製の環状の枠体22と、上蓋3をシーム溶接するために枠体22の上端面に環状に固定されたシームリング23と、からなり、全体として中央に水晶振動素子1を収納するための凹所24を有し、外周に環状部を有した箱形状を呈している。セラミック基板21の上面には金メタライズにより形成された内部端子(導通パッド)25、26が露出しており、それぞれパッケージ底面等に設けた図示しない外部端子と接続されている。内部端子25、26は、水晶振動子側のパッド電極16、17と対応する位置関係、間隔にて配置されている。
水晶振動素子1をセラミックパッケージ2内に片持ち接続する際には、水晶振動素子1のパッド電極16、17とセラミックパッケージの入出力用内部端子25、26とを一対一の対応関係で対向させた上で、所要量の硬質の導電性接着剤(エポキシ系、ポリイミド系接着剤)4を介した固定が行われる。
FIG. 2 is a cross-sectional view showing the structure of a surface-mounted crystal resonator as an example of a piezoelectric device using the crystal resonator element 1. The structure of the ceramic package itself is the same as that shown in FIG. 11, and the same portions will be described with the same reference numerals.
The quartz resonator element 1 shown in FIG. 1 is housed in the ceramic package 2, and the upper surface opening of the recess 24 of the ceramic package 2 is hermetically sealed by the metal upper lid 3.
The ceramic package 2 includes a ceramic substrate 21 constituting a bottom portion, a ceramic annular frame 22 standing and integrated on the outer periphery of the upper surface of the ceramic substrate 21, and a top of the frame 22 for seam welding the upper lid 3. It has a seam ring 23 that is annularly fixed to the end face, and has a recess 24 for accommodating the crystal resonator element 1 at the center as a whole, and has a box shape with an annular portion on the outer periphery. Internal terminals (conductive pads) 25 and 26 formed by gold metallization are exposed on the upper surface of the ceramic substrate 21, and are connected to external terminals (not shown) provided on the bottom surface of the package. The internal terminals 25 and 26 are arranged at a positional relationship and an interval corresponding to the pad electrodes 16 and 17 on the crystal resonator side.
When the crystal resonator element 1 is cantilevered in the ceramic package 2, the pad electrodes 16 and 17 of the crystal resonator element 1 and the input / output internal terminals 25 and 26 of the ceramic package are opposed to each other in a one-to-one correspondence. After that, fixing is performed through a required amount of hard conductive adhesive (epoxy-based or polyimide-based adhesive) 4.

図10に示した水晶振動素子にあっては、2つのパッド電極16、17を水晶振動素子の幅方向(ATカット水晶の場合Z軸方向)両端部に距離dだけ離間させて配置したが、この実施形態の水晶振動素子においては2つのパッド電極16、17は幅方向に離間しておらず、むしろ各パッド電極の幅方向内側端部16a、17aが幅方向に一部オーバーラップするように近接している。このオーバーラップした各パッド電極の内側端部16a、17aは幅方向と直交する方向(ATカット水晶の場合X軸方向)に所定のギャップd1を隔てて離間配置されている。ここで、水晶振動素子1のパッド電極16と17との間のギャップd1は、500μm以下の近接した値とし、導電性接着剤4は各パッド電極16、17のオーバーラップ部上に配置する。この実施形態では各パッド電極16、17上の各導電性接着剤4の幅方向位置は一致しており、励振電極としての主面電極11の中心部から延びるX軸線に沿ってずれがない状態で直線状に配置されている。
また、硬質の導電性接着剤4を介して各パッド電極16、17と一対一で接続されるセラミックパッケージ2内の内部端子25、26の配置も、各パッド電極16、17と対向するように配慮する。つまり、内部端子25、26は幅方向と直交する方向に500μm以下のギャップを隔てて対向配置される。
前記のように硬質の導電性接着剤4が水晶振動素子を支持拘束する力は軟質のシリコーン系導電性接着剤に比して相当大きいが、この実施形態のようにパッド電極16と17の一部を幅方向にずらすと共に各パッド電極のオーバーラップ部上に夫々硬質の導電性接着剤4を一列(一直線状)に配置したので、各導電性接着剤は水晶振動素子1の一端縁中央部をリジッドに支持することとなる。各導電性接着剤4が水晶振動子の一端縁中央部に一列に配置されているため、導電性接着剤4の配列と直交する方向については温度変化に起因した水晶振動素子1の膨張、収縮を導電性接着剤が妨げることがなくなり、更に、導電性接着剤にて固定したことにより水晶振動子1に生じる応力は、パッド電極16と17との間でとどまることになるので、温度変化に起因して発生する熱応力によって振動部13aに歪みが生じることなく、水晶振動素子の諸特性に悪影響を与えるという不具合もなくなる。例えば、図3は周波数温度特性についてのヒステリシス特性の一例を示す表であり、この表から明らかなように熱ヒステリシスの小さい極めて安定した特性を得ることができた。更に、その他の信頼性、例えばエージング持性やリフロー特性においても熱応力を抑制し、特性劣化を回避できることが明らかである。
また、パッド電極及び導電性接着剤4は必ずしもX軸に沿って配列する必要はなく、励振電極を中心として放射線状に延びる直線の一本に沿って配列すれば良いのである。
In the crystal oscillating device shown in FIG. 10, the two pad electrodes 16 and 17 are disposed at both ends in the width direction of the crystal oscillating device (in the Z-axis direction in the case of AT-cut crystal) by a distance d. In the crystal resonator element of this embodiment, the two pad electrodes 16 and 17 are not separated in the width direction, but rather the width direction inner ends 16a and 17a of the pad electrodes partially overlap in the width direction. It is close. The inner end portions 16a and 17a of the overlapped pad electrodes are spaced apart from each other with a predetermined gap d1 in a direction orthogonal to the width direction (X-axis direction in the case of AT cut quartz). Here, the gap d1 between the pad electrodes 16 and 17 of the crystal resonator element 1 is set to a close value of 500 μm or less, and the conductive adhesive 4 is disposed on the overlap portion of the pad electrodes 16 and 17. In this embodiment, the positions in the width direction of the conductive adhesives 4 on the pad electrodes 16 and 17 are the same, and there is no deviation along the X-axis extending from the center of the main surface electrode 11 as the excitation electrode. It is arranged in a straight line.
In addition, the internal terminals 25 and 26 in the ceramic package 2 that are connected to the pad electrodes 16 and 17 on a one-to-one basis through the hard conductive adhesive 4 also face the pad electrodes 16 and 17. consider. That is, the internal terminals 25 and 26 are arranged to face each other with a gap of 500 μm or less in a direction orthogonal to the width direction.
As described above, the force with which the hard conductive adhesive 4 supports and restrains the crystal resonator element is considerably larger than that of the soft silicone-based conductive adhesive. Since the hard conductive adhesives 4 are arranged in a row (in a straight line) on the overlap portions of the pad electrodes, the conductive adhesives are arranged at the center of one end edge of the crystal resonator element 1. Will be supported rigidly. Since each conductive adhesive 4 is arranged in a row at the center of one end edge of the crystal resonator, expansion and contraction of the crystal resonator element 1 due to a temperature change in the direction orthogonal to the arrangement of the conductive adhesive 4. Is not hindered by the conductive adhesive, and the stress generated in the crystal unit 1 due to the fixing with the conductive adhesive remains between the pad electrodes 16 and 17. Due to the thermal stress generated, the vibration part 13a is not distorted, and the problem of adversely affecting various characteristics of the crystal resonator element is eliminated. For example, FIG. 3 is a table showing an example of the hysteresis characteristic with respect to the frequency-temperature characteristic. As is clear from this table, an extremely stable characteristic with a small thermal hysteresis could be obtained. Further, it is clear that thermal stress can be suppressed and characteristic deterioration can be avoided also in other reliability such as aging property and reflow characteristic.
Further, the pad electrode and the conductive adhesive 4 do not necessarily have to be arranged along the X axis, and may be arranged along one straight line extending radially from the excitation electrode.

つまり、図4に示すように励振電極としての主面電極11(又は裏面電極12)の中心点を通って放射状に延びる直線Lの内のいずれか一本に沿って励振電極及び導電性接着剤4が配列されるように構成することにより、応力は、当該直線に沿ったパッド電極16と17との間の当該直線と直交する矢印方向にのみ発生する。また、僅かに振動部13aに伝播する応力に対しては、励振電極11、12をパッド電極16の位置から例えば遠避けることにより回避すればよい。
但し、このように僅かでも周波数に影響が及ぶ事態を回避することが求められる場合には、次のように特定の角度を備えた放射線にほぼ沿って励振電極及び導電性接着剤4を直線状に配列することが有効である。
即ち、例えば、ATカット水晶基板を用いた場合、パッド電極16、17及び導電性接着剤4の各々を水晶結晶軸X軸に対し、60度若しくは120度の角度を有する直線に沿って近接配置すれば、圧縮(引張り)応力感度が零となるため、更に熱応力の発生を抑制することができる。つまり、上記いずれかの直線に沿ってパッド電極及び導電性接着剤を配置すれば、導電性接着剤の拘束力に起因した応力が発生したとしても、この直線上に沿った部分はそもそも応力によって周波数変動が発生しない特異な角度領域である為、周波数の変化はほとんど生じない。
That is, as shown in FIG. 4, the excitation electrode and the conductive adhesive along any one of the straight lines L extending radially through the center point of the main surface electrode 11 (or the back electrode 12) as the excitation electrode. 4 is arranged, the stress is generated only in the arrow direction perpendicular to the straight line between the pad electrodes 16 and 17 along the straight line. Further, the stress that is slightly propagated to the vibrating portion 13a may be avoided by avoiding the excitation electrodes 11 and 12 away from the position of the pad electrode 16, for example.
However, when it is required to avoid such a situation that affects the frequency even slightly, the excitation electrode and the conductive adhesive 4 are linearly arranged almost along the radiation having a specific angle as follows. It is effective to arrange in
That is, for example, when an AT-cut quartz substrate is used, the pad electrodes 16 and 17 and the conductive adhesive 4 are arranged close to each other along a straight line having an angle of 60 degrees or 120 degrees with respect to the quartz crystal axis X axis. In this case, since the compressive (tensile) stress sensitivity becomes zero, the generation of thermal stress can be further suppressed. In other words, if the pad electrode and the conductive adhesive are arranged along any one of the straight lines, even if a stress due to the binding force of the conductive adhesive is generated, the portion along the straight line is originally caused by the stress. Since this is a unique angular region in which no frequency fluctuation occurs, there is almost no change in frequency.

即ち、図5(a)は各パッド電極を水晶結晶軸X軸に対して60度もしくは120度の角度を有した直線に沿って近接配置させると共に、各パッド電極上に一直線状に導電性接着剤を配置する場合の各パッド電極の配置例を示す図であり、(b)はX軸に対して60度の位置に沿って各パッド電極を配置した水晶振動素子の平面図を示している。
図5(a)に示すように各パッド電極16、17を水晶結晶軸X軸に対して60度もしくは120度の角度を有した直線に沿って近接配置(d2≦500μm)し、各パッド電極16、17と夫々対向する内部端子25、26とを硬質の導電性接着剤4を介してリジッドに固着したことにより、この固着部での支持拘束力に起因した応力が発生したとしても、この水晶振動素子の周波数特性に悪影響が発生することがなくなる。しかも、この実施形態では、各線に沿って配置された2つのパッド電極16、17上の硬質の導電性接着剤4が直線状に配列されているため、配列方向と直交する向きの応力が発生しにくい状態となっている。つまり、温度変化に起因した水晶振動素子1の膨張、収縮を硬質の導電性接着剤が妨げることがなくなり、温度変化に起因して発生する熱応力によって水晶振動素子の諸特性に悪影響を与えるという不具合もなくなるので、水晶振動素子の特性を安定させることができる。
図5(b)はX軸に対して60度の角度を有した直線に沿って2つのパッド電極を近接配置した場合の水晶振動素子の具体的構成例を示しており、各リード電極15、18は例えば図示のような経路にて配線する。そして、図示しないパッケージの内底面に設けた内部端子25、26に対して導電性接着剤4を介して各パッド電極16、17を接続固定することにより、片持ち支持構造を実現することができる。
That is, FIG. 5 (a) shows that each pad electrode is closely arranged along a straight line having an angle of 60 degrees or 120 degrees with respect to the X-axis of the crystal crystal axis, and conductive bonding is linearly formed on each pad electrode. It is a figure which shows the example of arrangement | positioning of each pad electrode in the case of arrange | positioning an agent, (b) has shown the top view of the crystal oscillation element which has arrange | positioned each pad electrode along the position of 60 degree | times with respect to the X-axis. .
As shown in FIG. 5A, the pad electrodes 16 and 17 are arranged close to each other (d2 ≦ 500 μm) along a straight line having an angle of 60 degrees or 120 degrees with respect to the X-axis of the crystal crystal axis. Even if the stress caused by the supporting restraint force at the fixing portion is generated by fixing the internal terminals 25 and 26 facing the pins 16 and 17 to the rigid through the hard conductive adhesive 4, There is no adverse effect on the frequency characteristics of the crystal resonator element. In addition, in this embodiment, since the hard conductive adhesives 4 on the two pad electrodes 16 and 17 arranged along each line are arranged linearly, a stress in a direction perpendicular to the arrangement direction is generated. It is difficult to do. That is, the hard conductive adhesive does not hinder the expansion and contraction of the crystal resonator element 1 due to the temperature change, and the thermal stress generated due to the temperature change adversely affects various characteristics of the crystal resonator element. Since there is no problem, the characteristics of the crystal resonator element can be stabilized.
FIG. 5B shows a specific configuration example of the crystal resonator element when two pad electrodes are arranged close to each other along a straight line having an angle of 60 degrees with respect to the X axis. For example, 18 is wired by a route as shown. A cantilever support structure can be realized by connecting and fixing the pad electrodes 16 and 17 to the internal terminals 25 and 26 provided on the inner bottom surface of the package (not shown) via the conductive adhesive 4. .

更に、図6は、本発明に基づく水晶振動素子の他の実施形態の構成図を示すものである。
同図(a)に示す水晶振動素子1の構成が図1の水晶振動素子1の構成と異なる点は、パッド電極16とパッド電極17とのオーバーラップ部のギャップd1の中間に幅方向に延長するよう溝を形成したところにあり、このような溝は、例えば凹陥部13を形成する際のエッチング加工の際に同じに形成することができる。
そして、同図(b)に示すようにこのような構成の水晶振動素子1をセラミックパッケージ2内に収納する際には、水晶振動素子1を凹陥部13がセラミック基板21側と対面するような配置状態となるようパッド端子16、17と内部端子25、26とを導電性接着剤4にて接着する。
尚、溝19と凹陥部13とを同主面側に形成した水晶振動素子1を用いて説明したが、溝19を凹陥部13とは異なる一方の主面に形成したものでも良く、この場合、水晶振動素子1のセラミックパッケージ2内での搭載状態は図2に示した状態と同じように、凹陥部13が上蓋3側を向くよう搭載することが望ましい。
そして、このような構成の水晶振動素子1は、パッド電極16、17の間に発生した応力が溝19によって緩和(吸収)されるので、振動部13aへ伝達される応力の絶対的値を更に小さくすることができる。
Further, FIG. 6 shows a configuration diagram of another embodiment of the crystal resonator element according to the present invention.
The configuration of the crystal resonator element 1 shown in FIG. 1A is different from the configuration of the crystal resonator element 1 of FIG. 1 in that it extends in the width direction in the middle of the gap d1 of the overlap portion between the pad electrode 16 and the pad electrode 17. For example, such a groove can be formed in the same etching process when the recess 13 is formed.
Then, when the crystal resonator element 1 having such a configuration is housed in the ceramic package 2 as shown in FIG. 5B, the crystal resonator element 1 is arranged such that the recessed portion 13 faces the ceramic substrate 21 side. The pad terminals 16 and 17 and the internal terminals 25 and 26 are bonded with the conductive adhesive 4 so as to be in the arrangement state.
In addition, although it demonstrated using the crystal vibrating element 1 which formed the groove | channel 19 and the recessed part 13 in the same main surface side, what formed the groove | channel 19 in one main surface different from the recessed part 13 may be sufficient. The mounting state of the crystal resonator element 1 in the ceramic package 2 is desirably mounted so that the recessed portion 13 faces the upper lid 3 side, as in the state shown in FIG.
In the crystal resonator element 1 having such a configuration, since the stress generated between the pad electrodes 16 and 17 is relaxed (absorbed) by the groove 19, the absolute value of the stress transmitted to the vibrating portion 13a is further increased. Can be small.

更に、図7は本発明に基づく水晶振動素子の他の実施形態の構成図を示すものである。
同図に示す水晶振動素子1の構成が特徴とする点は、パッド電極16と凹陥部13との中間に幅方向に延長するよう溝20を形成した所にある。
そしてこのような構成の水晶振動素子1は、導電性接着剤4を用いてパッド電極16、17とセラミックパッケージ2の内部端子25、26とを接着されるが、この構成に伴ってギャップd1間に発生した応力の一部が振動部13aに伝達しようとしても、溝20が応力の伝達経路を遮断、及び、伝達する応力を緩和するよう機能するので、振動部13aへ応力が伝達されるのを抑圧することができる。
Further, FIG. 7 shows a configuration diagram of another embodiment of the crystal resonator element according to the present invention.
A feature of the configuration of the crystal resonator element 1 shown in the figure is that a groove 20 is formed in the middle of the pad electrode 16 and the recessed portion 13 so as to extend in the width direction.
In the crystal resonator element 1 having such a configuration, the pad electrodes 16 and 17 are bonded to the internal terminals 25 and 26 of the ceramic package 2 by using the conductive adhesive 4. Even if a part of the stress generated in the step is transmitted to the vibration part 13a, the groove 20 functions to block the stress transmission path and relieve the transmitted stress, so that the stress is transmitted to the vibration part 13a. Can be suppressed.

更に、図6に示した水晶振動素子の特徴と図7に示した水晶振動素子との特徴とを足し合わせたものとして図8に示すような水晶振動素子であっても良い。
即ち、図8は、本発明に基づく水晶振動素子の他の実施形態の構成図を示すものである。
同図に示す水晶振動素子1が特徴とする点は、ギャップd1の中間に幅方向に延長した溝19を形成すると共に、パッド電極16と振動部13aとの中間に幅方向に延長した溝20を形成したところにある。
このような構成の水晶振動素子1は、図6に示した水晶振動素子の機能と図7に示した水晶振動子の機能とを併せ持った機能が得られる為、より効果的に振動部13aへ応力が伝達するのを遮断することが可能である。
なお、前記実施形態では、超薄肉の振動部13aの外周を厚肉の環状囲繞部14により包囲一体化した構成の圧電振動素子をパッケージ内に片持ち支持する例を示したが、これは一例に過ぎず、本発明は平板、コンベックス、ベベル加工板等のあらゆる種類、形状の圧電基板を用いた圧電振動素子、フィルタについても適用することができ、前記実施形態と同様の効果を得ることができる。
Further, the crystal resonator element shown in FIG. 8 may be obtained by adding the features of the crystal resonator element shown in FIG. 6 and the features of the crystal resonator element shown in FIG.
That is, FIG. 8 shows a configuration diagram of another embodiment of the crystal resonator element according to the present invention.
The feature of the crystal resonator element 1 shown in the figure is that a groove 19 extending in the width direction is formed in the middle of the gap d1, and a groove 20 extending in the width direction in the middle of the pad electrode 16 and the vibrating portion 13a. Is where it was formed.
The crystal resonator element 1 having such a configuration can obtain a function having both the function of the crystal resonator element shown in FIG. 6 and the function of the crystal resonator shown in FIG. It is possible to block the transmission of stress.
In the above-described embodiment, an example in which the piezoelectric vibration element having a configuration in which the outer periphery of the ultrathin vibrating portion 13a is integrally surrounded by the thick annular surrounding portion 14 is cantilevered in the package is shown. The present invention is merely an example, and the present invention can also be applied to piezoelectric vibration elements and filters using piezoelectric substrates of all types and shapes such as flat plates, convexes, beveled plates, etc., and obtain the same effects as the above embodiment. Can do.

次に、本発明の圧電振動素子の支持構造は、モノリシック多重モードフィルタにも適用可能である。即ち、図9(b)は従来のモノリシック多重モードフィルタに用いるフィルタ素子30の平面図であり、平板状の圧電基板31の主振動部32の片面には電極33、34が、他面には電極35が夫々形成され、各電極33、34、35から基板の一端縁に向けて延びたリード電極33a、34a、35aの端部にはパッド電極33b、34b、35bが配置されている。このフィルタ素子30は、図示しない表面実装用のセラミックパッケージ内に封止されるが、その際にパッケージ内底面に設けた内部端子に対して少なくとも2つのパッド電極、この例ではパッド電極33b、34bが導電性接着剤により固定される。
この導電性接着剤として硬質の導電性接着剤を使用した場合には、上記従来例にて述べた水晶振動子の場合と同様に、温度変化に起因して発生する熱応力による諸特性の劣化を回避することができない。
そこで、本実施形態では、図9(a)に示した如く、少なくとも2つのパッド電極33b、34bを直線状に配列すると共に、該直線の延長上に主振動部32が位置するように構成した。
このように、本実施形態では、2つのパッド電極33b、34b上の硬質の導
電性接着剤4が直線状に配列されているため、配列方向と直交する向きの応力が発生しにくい状態となっている。つまり、温度変化に起因したフィルタ素子30の膨張、収縮を硬質の導電性接着剤4が妨げることがなくなり、温度変化に起因して発生する熱応力によってフィルタ素子の諸特性に悪影響を与えるという不具合もなくなるので、フィルタ素子の特性を安定させることができる。
なお、上記実施形態では、フィルタ素子として平板状の圧電基板を使用した例を示したが、これは一例であり、超薄肉の振動部の外周を厚肉の環状囲繞部により包囲一体化した構成の圧電基板を用いてもよい。
Next, the support structure of the piezoelectric vibration element of the present invention can also be applied to a monolithic multimode filter. That is, FIG. 9B is a plan view of a filter element 30 used in a conventional monolithic multimode filter. Electrodes 33 and 34 are provided on one side of the main vibration portion 32 of the plate-like piezoelectric substrate 31 and on the other side. Electrodes 35 are respectively formed, and pad electrodes 33b, 34b, and 35b are disposed at end portions of the lead electrodes 33a, 34a, and 35a extending from the electrodes 33, 34, and 35 toward one end edge of the substrate. The filter element 30 is sealed in a ceramic package for surface mounting (not shown). At this time, at least two pad electrodes, in this example, pad electrodes 33b and 34b, are provided with respect to the internal terminals provided on the bottom surface of the package. Is fixed by a conductive adhesive.
When a hard conductive adhesive is used as this conductive adhesive, as in the case of the quartz crystal resonator described in the above-mentioned conventional example, various characteristics are deteriorated due to the thermal stress generated due to the temperature change. Cannot be avoided.
Therefore, in the present embodiment, as shown in FIG. 9A, at least two pad electrodes 33b and 34b are arranged in a straight line, and the main vibration part 32 is positioned on the extension of the straight line. .
As described above, in the present embodiment, since the hard conductive adhesives 4 on the two pad electrodes 33b and 34b are linearly arranged, it is difficult to generate stress in a direction orthogonal to the arrangement direction. ing. That is, the hard conductive adhesive 4 does not hinder the expansion and contraction of the filter element 30 due to the temperature change, and the thermal stress generated due to the temperature change adversely affects various characteristics of the filter element. Therefore, the characteristics of the filter element can be stabilized.
In the above embodiment, an example in which a flat piezoelectric substrate is used as the filter element is shown. However, this is an example, and the outer periphery of the ultrathin vibrating portion is surrounded and integrated by a thick annular surrounding portion. A piezoelectric substrate having a configuration may be used.

1 水晶振動素子、2 セラミックパッケージ、3 上蓋、4 硬質の導電性接着剤、11 主面電極、12 裏面電極、13 凹陥部、13a 振動部、14 環状囲繞部、15 リード電極、16、17 パッド電極、18 リード電極、19、20 溝、21 セラミック基板、22 環状枠体、23 シームリング、24 凹所、25、26 内部端子、30 フィルタ素子、31 圧電基板、32 主振動部、33、34 電極、35 電極、33a、34a、35a リード電極、33b、34b、35b パッド電極。 DESCRIPTION OF SYMBOLS 1 Quartz vibration element, 2 Ceramic package, 3 Top cover, 4 Hard conductive adhesive, 11 Main surface electrode, 12 Back surface electrode, 13 Recessed part, 13a Vibration part, 14 Annular surrounding part, 15 Lead electrode, 16, 17 Pad Electrode, 18 lead electrode, 19, 20 groove, 21 ceramic substrate, 22 annular frame, 23 seam ring, 24 recess, 25, 26 internal terminal, 30 filter element, 31 piezoelectric substrate, 32 main vibration part, 33, 34 Electrode, 35 electrode, 33a, 34a, 35a Lead electrode, 33b, 34b, 35b Pad electrode.

Claims (8)

励振電極を備えた圧電振動素子を表面実装型パッケージの内底面に設けた導通パッド上に片持ち状態にて電気的機械的に接続保持した圧電デバイスであって、前記圧電振動素子の片面上の2つのパッド電極と前記表面実装型パッケージ内底面上の2つの導通パッドとの一対一の接続を、夫々導電性接着剤を用いて行ったものにおいて、
前記2つのパッド電極上の前記各導電性接着剤を結んだ線分の延長上に、前記励振電極を配置したことを特徴とする表面実装型圧電デバイス。
A piezoelectric device in which a piezoelectric vibration element including an excitation electrode is electrically and mechanically connected and held in a cantilever manner on a conduction pad provided on an inner bottom surface of a surface mount package, the piezoelectric vibration element on one side of the piezoelectric vibration element In one-to-one connection between two pad electrodes and two conductive pads on the inner bottom surface of the surface mount package, each using a conductive adhesive,
A surface-mount type piezoelectric device, wherein the excitation electrode is disposed on an extension of a line connecting the conductive adhesives on the two pad electrodes.
励振電極を備えた圧電振動素子を表面実装型パッケージの内底面に設けた導通パッド上に片持ち状態にて電気的機械的に接続保持した圧電デバイスであって、前記圧電振動素子に設けた3つのパッド電極と前記表面実装型パッケージ内の3つの導通パッドとを一対一にて接続する際に、少なくとも2組のパッド電極と導通パッド間を夫々導電性接着剤を用いて行ったものにおいて、
前記2つのパッド電極上の前記各導電性接着剤を結んだ線分の延長上に、前記励振電極を配置したことを特徴とする表面実装型圧電デバイス。
A piezoelectric device in which a piezoelectric vibration element including an excitation electrode is electrically and mechanically connected and held in a cantilever manner on a conduction pad provided on an inner bottom surface of a surface-mount package, and is provided on the piezoelectric vibration element. In one-to-one connection between one pad electrode and three conductive pads in the surface-mount package, at least two sets of pad electrodes and conductive pads were each formed using a conductive adhesive,
A surface-mount type piezoelectric device, wherein the excitation electrode is disposed on an extension of a line connecting the conductive adhesives on the two pad electrodes.
前記圧電振動素子が前記2つのパッド電極の中間に該2つのパッド電極を結ぶ延長線と交わる方向に延長した溝を有したものであることを特徴とする請求項1または2記載の表面実装型圧電デバイス。   3. The surface mounting type according to claim 1, wherein the piezoelectric vibration element has a groove extending in a direction intersecting with an extension line connecting the two pad electrodes in the middle of the two pad electrodes. Piezoelectric device. 前記圧電振動素子が前記2つのパッド電極のうち前記励振電極に近い方のパッド電極と前記励振電極との中間に前記パッド電極と前記励振電極とを結ぶ延長線と交わる方向に延長した溝を有したものであることを特徴とする請求項1乃至3記載の表面実装型圧電デバイス。   The piezoelectric vibration element has a groove extending in a direction intersecting with an extension line connecting the pad electrode and the excitation electrode between the excitation electrode and the pad electrode closer to the excitation electrode of the two pad electrodes. 4. The surface-mount type piezoelectric device according to claim 1, wherein the surface-mount type piezoelectric device is formed. 前記2つのパッド電極間の間隔を500μm以下としたことを特徴とする請求項1乃至4記載の表面実装型圧電デバイス。   5. The surface-mount type piezoelectric device according to claim 1, wherein a distance between the two pad electrodes is 500 μm or less. 前記圧電振動素子を構成する圧電基板としてATカット水晶基板を用い、前記2つのパッド電極を該ATカット水晶基板の結晶軸X軸に対して60度若しくは120度の角度を有した前記線分に沿って隣接配置したことを特徴とする請求項1乃至5記載の表面実装型圧電デバイス。   An AT-cut quartz crystal substrate is used as the piezoelectric substrate constituting the piezoelectric vibration element, and the two pad electrodes are arranged on the line segment having an angle of 60 degrees or 120 degrees with respect to the crystal axis X axis of the AT-cut quartz crystal substrate. 6. The surface-mount type piezoelectric device according to claim 1, wherein the surface-mount type piezoelectric device is disposed adjacently along the surface. 前記2つのパッド電極上に固定される前記各導電性接着剤を前記線分に沿って一直線状に配列したことを特徴とする請求項1乃至6記載の表面実装型圧電デバイス。   7. The surface mount type piezoelectric device according to claim 1, wherein the conductive adhesives fixed on the two pad electrodes are arranged in a straight line along the line segment. 前記圧電振動素子を構成する圧電基板として、超薄肉の振動部と、該振動部の外周を支持する厚肉の環状囲繞部とを一体的に構成した圧電基板を用いたことを特徴とする請求項1乃至7記載の表面実装型圧電デバイス。   As the piezoelectric substrate constituting the piezoelectric vibration element, a piezoelectric substrate in which an ultra-thin vibrating portion and a thick annular surrounding portion supporting the outer periphery of the vibrating portion are integrally formed is used. The surface-mount type piezoelectric device according to claim 1.
JP2011129920A 2000-12-12 2011-06-10 Surface mount type piezoelectric device Expired - Fee Related JP4935945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129920A JP4935945B2 (en) 2000-12-12 2011-06-10 Surface mount type piezoelectric device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000377901 2000-12-12
JP2000377901 2000-12-12
JP2011129920A JP4935945B2 (en) 2000-12-12 2011-06-10 Surface mount type piezoelectric device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010282885A Division JP5218543B2 (en) 2000-12-12 2010-12-20 Piezoelectric device

Publications (2)

Publication Number Publication Date
JP2011229167A true JP2011229167A (en) 2011-11-10
JP4935945B2 JP4935945B2 (en) 2012-05-23

Family

ID=44232598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010282885A Expired - Fee Related JP5218543B2 (en) 2000-12-12 2010-12-20 Piezoelectric device
JP2011129920A Expired - Fee Related JP4935945B2 (en) 2000-12-12 2011-06-10 Surface mount type piezoelectric device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010282885A Expired - Fee Related JP5218543B2 (en) 2000-12-12 2010-12-20 Piezoelectric device

Country Status (1)

Country Link
JP (2) JP5218543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123881A (en) * 2019-01-31 2020-08-13 セイコーエプソン株式会社 Vibration device, vibration module, electronic apparatus, and movable body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201251157A (en) 2011-06-03 2012-12-16 Seiko Epson Corp Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP2013258452A (en) * 2012-06-11 2013-12-26 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element
JP5824967B2 (en) * 2011-08-24 2015-12-02 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
JP5824958B2 (en) * 2011-08-18 2015-12-02 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
JP2013042440A (en) * 2011-08-19 2013-02-28 Seiko Epson Corp Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2014007693A (en) * 2012-06-27 2014-01-16 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile body
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
JP5942590B2 (en) * 2012-05-23 2016-06-29 セイコーエプソン株式会社 Force detection element, force detection module, force detection unit and robot
JP7404760B2 (en) * 2019-10-18 2023-12-26 セイコーエプソン株式会社 Oscillators, electronic equipment, and moving objects

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266027A (en) * 1988-08-30 1990-03-06 Shin Meiwa Ind Co Ltd Cargo conveyance system
JPH02261210A (en) * 1989-03-31 1990-10-24 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JPH03151707A (en) * 1989-11-08 1991-06-27 Seiko Electronic Components Ltd Surface mounting type crystal resonator
JPH0461413A (en) * 1990-06-29 1992-02-27 Nec Corp Thickness-shear piezoelectric vibrator
JPH0548370A (en) * 1991-08-09 1993-02-26 Seiko Epson Corp Crystal filter element
JPH08204489A (en) * 1995-01-30 1996-08-09 Kinseki Ltd Piezoelectric vibrator
JPH09284092A (en) * 1996-04-18 1997-10-31 Toyo Commun Equip Co Ltd Super-thin plate multimode piezoelectric filter element
JPH09326667A (en) * 1996-06-05 1997-12-16 Toyo Commun Equip Co Ltd Piezoelectric vibrator element piece
JPH10284975A (en) * 1997-03-31 1998-10-23 Toyo Commun Equip Co Ltd Package of surface mounting-type piezoelectric device
JPH1188104A (en) * 1997-09-10 1999-03-30 Meidensha Corp At cut crystal vibrator
JPH11136074A (en) * 1997-10-28 1999-05-21 Kyocera Corp Laminated piezo-electric resonator and ladder filter
JP2000114911A (en) * 1998-10-02 2000-04-21 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000278080A (en) * 1999-03-24 2000-10-06 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000295064A (en) * 1999-04-01 2000-10-20 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000332572A (en) * 1999-05-25 2000-11-30 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000332571A (en) * 1999-05-24 2000-11-30 Toyo Commun Equip Co Ltd Piezoelectric device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085966A (en) * 1999-09-10 2001-03-30 Toyo Commun Equip Co Ltd Surface mount piezoelectric device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266027A (en) * 1988-08-30 1990-03-06 Shin Meiwa Ind Co Ltd Cargo conveyance system
JPH02261210A (en) * 1989-03-31 1990-10-24 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JPH03151707A (en) * 1989-11-08 1991-06-27 Seiko Electronic Components Ltd Surface mounting type crystal resonator
JPH0461413A (en) * 1990-06-29 1992-02-27 Nec Corp Thickness-shear piezoelectric vibrator
JPH0548370A (en) * 1991-08-09 1993-02-26 Seiko Epson Corp Crystal filter element
JPH08204489A (en) * 1995-01-30 1996-08-09 Kinseki Ltd Piezoelectric vibrator
JPH09284092A (en) * 1996-04-18 1997-10-31 Toyo Commun Equip Co Ltd Super-thin plate multimode piezoelectric filter element
JPH09326667A (en) * 1996-06-05 1997-12-16 Toyo Commun Equip Co Ltd Piezoelectric vibrator element piece
JPH10284975A (en) * 1997-03-31 1998-10-23 Toyo Commun Equip Co Ltd Package of surface mounting-type piezoelectric device
JPH1188104A (en) * 1997-09-10 1999-03-30 Meidensha Corp At cut crystal vibrator
JPH11136074A (en) * 1997-10-28 1999-05-21 Kyocera Corp Laminated piezo-electric resonator and ladder filter
JP2000114911A (en) * 1998-10-02 2000-04-21 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000278080A (en) * 1999-03-24 2000-10-06 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000295064A (en) * 1999-04-01 2000-10-20 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000332571A (en) * 1999-05-24 2000-11-30 Toyo Commun Equip Co Ltd Piezoelectric device
JP2000332572A (en) * 1999-05-25 2000-11-30 Toyo Commun Equip Co Ltd Piezoelectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123881A (en) * 2019-01-31 2020-08-13 セイコーエプソン株式会社 Vibration device, vibration module, electronic apparatus, and movable body
US11569795B2 (en) 2019-01-31 2023-01-31 Seiko Epson Corporation Resonator device, resonator module, electronic apparatus, and vehicle

Also Published As

Publication number Publication date
JP5218543B2 (en) 2013-06-26
JP4935945B2 (en) 2012-05-23
JP2011109681A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4935945B2 (en) Surface mount type piezoelectric device
JP4701536B2 (en) Surface mount type piezoelectric device
US11515857B2 (en) Piezoelectric resonator device
US8247953B2 (en) Piezoelectric oscillator part
JP5168003B2 (en) Piezoelectric vibrating piece and piezoelectric device
KR20120135058A (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric vibrator, electronic device and electronic apparatus
JPH09326667A (en) Piezoelectric vibrator element piece
JP2000278079A (en) Piezoelectric device
JP2005033293A (en) Piezoelectric device
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
KR100699586B1 (en) Crystal Oscillator
CN113243082B (en) Piezoelectric vibration device
CN113765494A (en) Vibrator and oscillator
JP2001085966A (en) Surface mount piezoelectric device
JP2014050067A (en) Vibration device, electronic equipment, and mobile device
JP2002280865A (en) Piezoelectric device
JP2005039435A (en) Surface-mounted piezoelectric oscillator
CN114208027A (en) Piezoelectric vibrating plate, piezoelectric vibrating device, and method for manufacturing piezoelectric vibrating device
JP2005033294A (en) Crystal oscillation element
JP2015186196A (en) Piezoelectric vibration piece and piezoelectric device
JP2012175405A (en) Piezoelectric vibrating element, piezoelectric vibrator, piezoelectric oscillator, and electronic equipment
WO2024154718A1 (en) Tuning-fork-type piezoelectric vibrating piece, tuning-fork-type piezoelectric vibrating element, and tuning-fork-type piezoelectric oscillator
JP4373309B2 (en) Package for electronic components
WO2024176856A1 (en) Doubly rotated quartz diaphragm
JP2011155339A (en) Piezoelectric device, electronic apparatus, and method of manufacturing piezoelectric device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees