JP2000278079A - Piezoelectric device - Google Patents

Piezoelectric device

Info

Publication number
JP2000278079A
JP2000278079A JP11080511A JP8051199A JP2000278079A JP 2000278079 A JP2000278079 A JP 2000278079A JP 11080511 A JP11080511 A JP 11080511A JP 8051199 A JP8051199 A JP 8051199A JP 2000278079 A JP2000278079 A JP 2000278079A
Authority
JP
Japan
Prior art keywords
piezoelectric
crystal
plate
conductive adhesive
inner bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080511A
Other languages
Japanese (ja)
Inventor
Heiji Takatsuchi
平治 高土
Hiroaki Furukawa
弘明 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP11080511A priority Critical patent/JP2000278079A/en
Publication of JP2000278079A publication Critical patent/JP2000278079A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric device wherein any outer force such as vibration or an impact or the deterioration of frequency stability due to the fluctuation of a use environment condition is prevented by reducing the influence of a thermal stress generated due to the difference of the thermal expansion ratios of the surface mounted container or the conductive adhesive and a crystal base plate to the minimum, with respect to a piezoelectric device having such a structure that a crystal vibrating element is supported in a cantilever state by using conductive adhesive in a surface mounted container. SOLUTION: This piezoelectric device is provided with a piezoelectric vibrating element equipped with a piezoelectric base plate having a superthin vibrating part on the inner bottom face of a recessed part 3 formed on one face, and a thick circular surrounding part 5 at the periphery of the recessed part and electrode films 6 formed on the both faces of the piezoelectric base plate, and a surface mounted container 10 for housing the piezoelectric vibrating element. In this case, one end of the piezoelectric vibrating element is connected and fixed through conductive adhesive 22 on a piezoelectric element piece fixed to the inner bottom face of the surface mounted container 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は表面実装型圧電デバ
イスの高周波化技術に関し、特に、矩形もしくは短冊状
圧電素板の平面の一部を薄く加工してなる圧電振動素子
について、熱的、機械的応力変化に伴い周波数安定性が
低下するという不具合を解消した圧電デバイスに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for increasing the frequency of a surface mount type piezoelectric device, and more particularly, to a thermal or mechanical method for a piezoelectric vibrating element formed by thinning a part of the plane of a rectangular or strip-shaped piezoelectric element plate. The present invention relates to a piezoelectric device that has solved the problem that the frequency stability is reduced due to a change in mechanical stress.

【0002】[0002]

【従来の技術】水晶によって代表される圧電振動素子を
用いた圧電振動子等の圧電デバイスは、圧電発振器や、
共振器、或はフィルタとして、各種電子機器、とりわけ
通信機器においては不可欠の主要パーツとして使用され
ている。近年では、高周波化の要求を満たす為に、圧電
素板を超薄型化する一方で、超薄型化することによって
低下する機械的強度を補う為の配慮がなされた圧電振動
素子が種々提案されている。図5(a)及び(b)は従
来の水晶振動子のパッケージ構造を示す平面図、及び縦
断面図であり、この水晶振動子は、ATカット水晶材料
を矩形または短冊状に形成して成る水晶振動素子1の一
端を、セラミック等から成る表面実装容器10の内底面
に導電性接着剤11を用いて片持ち状態で固着接続した
構成を備えている。なお、表面実装容器の内底面に突起
状の段差を設けておき、該段差上に導電性接着剤を用い
て水晶振動素子を片持ち状態で支持するタイプも知られ
ている。また、基本波振動での高周波化を実現する為に
は水晶素板2を薄く加工する必要があるが、素板全体を
フィルム状に薄く加工することは機械加工技術から限界
があり、仮にフィルム状の素板を製造したとしても機械
的強度が著しく低下し破損し易くなるため、取り扱いな
どの作業性が極端に悪くなる。このため、図示したよう
に水晶振動素子1を構成する水晶素板2の片面の一部を
化学エッチングなどにより任意の形状に凹陥せしめて、
該凹陥部3の内底面に薄板領域(振動部)4を形成し、
凹陥部3を包囲する外周部を厚肉の補強部(環状囲繞
部)5としている。
2. Description of the Related Art Piezoelectric devices such as a piezoelectric vibrator using a piezoelectric vibrating element typified by a quartz crystal include a piezoelectric oscillator,
It is used as an indispensable main part in various electronic devices, especially in communication devices, as a resonator or a filter. In recent years, various types of piezoelectric vibrating elements have been proposed in order to satisfy the demand for higher frequency, while making the piezoelectric element plate ultra-thin, while taking into account the mechanical strength that is reduced by making it ultra-thin. Have been. 5 (a) and 5 (b) are a plan view and a longitudinal sectional view showing a package structure of a conventional crystal unit. This crystal unit is formed by forming an AT-cut crystal material into a rectangular or strip shape. A structure is provided in which one end of the crystal resonator element 1 is fixedly connected to the inner bottom surface of a surface mounting container 10 made of ceramic or the like in a cantilever state using a conductive adhesive 11. There is also known a type in which a protruding step is provided on the inner bottom surface of the surface mount container, and the quartz vibrating element is supported in a cantilever state using a conductive adhesive on the step. Further, in order to realize a high frequency by the fundamental wave vibration, it is necessary to make the quartz crystal plate 2 thin. However, there is a limit from machining technology to make the whole plate thin in a film shape. Even if a plate-shaped base plate is manufactured, the mechanical strength is remarkably reduced and the plate is easily broken, so that workability such as handling is extremely deteriorated. For this reason, as shown in the drawing, a part of one surface of the crystal element plate 2 constituting the crystal resonator element 1 is recessed into an arbitrary shape by chemical etching or the like.
A thin plate region (vibrating portion) 4 is formed on the inner bottom surface of the concave portion 3,
An outer peripheral portion surrounding the concave portion 3 is a thick reinforcing portion (annular surrounding portion) 5.

【0003】水晶素板2の薄板領域4の上下面には、夫
々任意の形状で圧電振動励起用の電極膜6を形成してい
る。しかしながら、容器10の内底面にこの水晶振動素
子1を直接実装する際に、容器10と、導電性接着剤1
1と、水晶素板2との各物理定数(特に熱膨脹係数)の
違いにより、例えば導電性接着剤をキュア(熱硬化)し
て常温に戻す際に応力が発生する。これらの応力が水晶
素板2に直接伝播することにより周波数変動をもたら
す。またこれらの蓄積された応力は、振動・衝撃・使用
環境条件などの影響により開放され易く、結果的に水晶
素板の周波数変動となって出現し、短期的および長期的
な周波数安定性が劣化する不具合をもたらしていた。特
に、高周波出力を水晶素板の基本波振動により得ようと
する場合、例えば156MHzを得ようとする場合には
水晶素板2の薄板領域4の厚さは約10μmとなり、更
に高周波化を図る場合には薄板領域4は更に一層薄くな
る。このように水晶素板の薄板領域4が薄くなるのに伴
って、前記応力は薄板領域4に集中して大きくなり、周
波数変動の幅もこれに比例して極めて大きくなるという
欠点があった。
On the upper and lower surfaces of the thin plate region 4 of the quartz crystal plate 2, an electrode film 6 for exciting piezoelectric vibration is formed in an arbitrary shape. However, when the crystal resonator element 1 is directly mounted on the inner bottom surface of the container 10, the container 10 and the conductive adhesive 1
Due to the difference between the respective physical constants (particularly the coefficient of thermal expansion) of the crystal element 1 and the quartz crystal plate 2, stress is generated when, for example, the conductive adhesive is cured (heat-cured) and returned to room temperature. These stresses propagate directly to the quartz crystal plate 2 to cause frequency fluctuation. In addition, these accumulated stresses are easily released due to the effects of vibration, shock, operating environment, etc., and consequently appear as frequency fluctuations of the quartz plate, degrading short- and long-term frequency stability. Was causing a malfunction. In particular, when a high-frequency output is to be obtained by the fundamental wave vibration of the crystal element plate, for example, when 156 MHz is to be obtained, the thickness of the thin plate region 4 of the crystal element plate 2 is about 10 μm, and the frequency is further increased. In that case, the thin plate area 4 becomes even thinner. As described above, as the thin plate region 4 of the quartz crystal plate becomes thinner, the stress concentrates on the thin plate region 4 and becomes large, and the width of the frequency fluctuation becomes extremely large in proportion thereto.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、水晶振動素子を表面実装容器内に導電性接
着剤を用いて片持ち状態で支持した構造の圧電デバイス
において、表面実装容器や導電性接着剤と水晶素板の熱
膨張率の差から生じる熱応力の影響を最小に止めて、振
動や衝撃等の外力や、使用環境条件の変動に起因した周
波数安定性の低下を防止した圧電デバイスを提供するこ
とにある。
An object of the present invention is to provide a piezoelectric device having a structure in which a quartz-crystal vibrating element is supported in a cantilevered state by using a conductive adhesive in a surface-mounted container. Of the thermal stress caused by the difference in the thermal expansion coefficient between the crystal expansion plate and the conductive adhesive and the quartz plate to minimize the frequency stability caused by external forces such as vibration and shock, and fluctuations in the operating environment It is an object of the present invention to provide an improved piezoelectric device.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為、
請求項1の発明は、片面に形成した凹陥部の内底面に超
薄肉の振動部を有すると共に、凹陥部外周に厚肉の環状
囲繞部を有する圧電素板と、該圧電素板の両面に夫々形
成した電極膜と、を備えた圧電振動素子と、該圧電振動
素子を収容する表面実装容器と、を備えた圧電デバイス
において、表面実装容器の内底面に固定した圧電素片上
に上記圧電振動素子の一端を導電性接着剤により接続固
定したことを特徴とする。請求項2の発明は、上記圧電
素板は水晶素板であり、上記圧電素片は当該水晶素板と
同等の結晶切断方位を有した水晶素片であることを特徴
とする。請求項3の発明は、上記圧電素片の角隅部の上
下面及び側面にかけてメタライズ部を形成し、上記圧電
素板の両電極膜から延びるリード電極を各メタライズ部
上に重ねた状態で導電性接着剤により固定したことを特
徴とする。請求項4の発明は、上記表面実装容器の内底
面に設けたキャビティ内に上記圧電素片を嵌合収納し、
表面実装容器の内底面から突出した圧電素片の上面に圧
電振動素子の一端を導電性接着剤により接続したことを
特徴とする。請求項5の発明は、上記圧電素片の結晶切
断方位と上記圧電素板の結晶切断方位が一致するように
両者を重ね合わせて導電性接着剤により固定することを
特徴とする。請求項6の発明は、上記圧電素板として、
平板状の素板を用いたことを特徴とする。
In order to solve the above-mentioned problems,
According to the first aspect of the present invention, there is provided a piezoelectric element plate having an ultra-thin vibrating portion on the inner bottom surface of a concave portion formed on one surface and a thick annular surrounding portion on the outer periphery of the concave portion, and both surfaces of the piezoelectric element plate. A piezoelectric vibrating element having an electrode film formed thereon, and a surface mount container accommodating the piezoelectric vibrating element, wherein the piezoelectric element is fixed on a piezoelectric element fixed to the inner bottom surface of the surface mount container. One end of the vibration element is connected and fixed by a conductive adhesive. The invention according to claim 2 is characterized in that the piezoelectric element is a crystal element, and the piezoelectric element is a crystal element having a crystal cutting orientation equivalent to that of the crystal element. According to a third aspect of the present invention, a metallized portion is formed on the upper and lower surfaces and side surfaces of the corners of the piezoelectric element, and a lead electrode extending from both electrode films of the piezoelectric element is electrically conductive in a state of being superposed on each metallized portion. It is characterized by being fixed with a conductive adhesive. The invention according to claim 4 is such that the piezoelectric element is fitted and housed in a cavity provided on an inner bottom surface of the surface mount container,
One end of the piezoelectric vibrating element is connected to the upper surface of the piezoelectric element projecting from the inner bottom surface of the surface mount container by a conductive adhesive. The invention according to claim 5 is characterized in that the piezoelectric element pieces are superimposed and fixed with a conductive adhesive so that the crystal cutting directions of the piezoelectric element plate and the piezoelectric element plate coincide with each other. The invention according to claim 6 is that, as the piezoelectric element plate,
It is characterized by using a flat base plate.

【0006】[0006]

【発明の実施の形態】以下、本発明を図面に示した実施
例により詳細に説明する。図1(a)及び(b)は、本
発明における第一の実施形態に係る圧電デバイスの要部
平面図、及びA−A断面図である。なお、図5に示した
圧電デバイスと同一部分には同一符号を付して説明す
る。また、本実施の形態では、圧電振動素子の一例とし
て水晶振動素子を用いて説明する。この圧電デバイス
(水晶振動子)は、セラミックパッケージ等の表面実装
容器10の内底面に水晶振動素子1を片持ち状態で支持
すると共に、表面実装容器10の開口を図示しない金属
蓋により気密封止した構成を備えている。この実施の形
態の水晶振動子が従来のものと異なる点は、表面実装容
器10の内底面に直接水晶振動素子1を接着するのでは
なく、予め内底面に固定した水晶素片20上に水晶振動
素子1を片持ち状態で接続固定した点にある。以下、本
実施の形態を詳細に説明する。ATカット水晶板から成
る水晶素板2の表面上の任意の位置には、任意の形状で
凹陥部3が形成されており、凹陥部3の内底面は薄板領
域(振動部)4となっている。また、薄板領域4の外周
の厚肉部は、補強部(環状囲繞部)5となっている。こ
の薄板領域4の上下面には、夫々厚みすべり振動励起用
の電極膜6が形成されている。各電極膜6からは夫々リ
ード電極6aが引き出され、各リード電極6aは水晶素
板2の2つの角隈部にて終端している。この例では、水
晶素板2の凹陥部3が上向きとなるように水晶振動素子
1を支持した例を示したが、これは一例であり、凹陥部
を下向きにしてもよいし、凹陥部を有しない従来からの
板状素板を用いた水晶振動素子を用いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIGS. 1A and 1B are a plan view of a main part of a piezoelectric device according to a first embodiment of the present invention and a cross-sectional view taken along line AA. The same parts as those of the piezoelectric device shown in FIG. Further, in the present embodiment, a description will be given using a quartz vibrating element as an example of the piezoelectric vibrating element. This piezoelectric device (quartz oscillator) supports the crystal vibrating element 1 in a cantilever state on the inner bottom surface of a surface mounting container 10 such as a ceramic package, and hermetically seals an opening of the surface mounting container 10 with a metal cover (not shown). It has the following configuration. The point that the crystal unit of this embodiment is different from the conventional one is that the crystal unit 1 is not directly adhered to the inner bottom surface of the surface mount container 10 but the crystal unit 20 is fixed on the crystal element piece 20 fixed to the inner bottom surface in advance. The point is that the vibration element 1 is connected and fixed in a cantilever state. Hereinafter, the present embodiment will be described in detail. A concave portion 3 having an arbitrary shape is formed at an arbitrary position on the surface of a quartz crystal plate 2 made of an AT-cut quartz plate, and an inner bottom surface of the concave portion 3 is a thin plate region (vibrating portion) 4. I have. The thick portion on the outer periphery of the thin plate region 4 is a reinforcing portion (annular surrounding portion) 5. On the upper and lower surfaces of the thin plate region 4, electrode films 6 for exciting thickness-shear vibration are formed. Lead electrodes 6 a are drawn out from the respective electrode films 6, and each lead electrode 6 a terminates at two corners of the quartz crystal plate 2. In this example, an example is shown in which the crystal vibrating element 1 is supported such that the concave portion 3 of the quartz crystal plate 2 faces upward. However, this is merely an example, and the concave portion may be directed downward, or the concave portion may be directed downward. It is also possible to use a conventional quartz-crystal vibrating element using a plate-shaped elementary plate that does not have the same.

【0007】表面実装容器10は、例えば外枠上面にシ
ームリング12を備えたセラミック素材で構成されてい
る。水晶素片20は、水晶素板2と同等の結晶切断方位
を有した任意の形状を有しており、水晶素片20の一辺
の両角隅部の各上下面から側面にかけては蒸着やスパッ
タリングによりメタライズ部21が形成されている。こ
の例では、水晶素片20は水晶素板2と同等の面積か、
水晶素板よりも大きい面積となっているが、後述するよ
うにこれは一例に過ぎない。なお、表面実装容器10の
材質は、セラミック以外の材質、例えば、樹脂、ガラス
であってもよい。水晶素片20は、表面実装容器10の
内底面に形成した図示しないメタライズパターン上に塗
布した導電性接着剤22上に、水晶素片20のメタライ
ズ部21を位置決め載置して接着させることにより容器
内底面に固定される。図示するように水晶素片20は、
容器内底面に片持ち状態で固定することが好ましい。な
お、必要に応じて水晶素片のメタライズ部21の側面及
び上面にかけて導電性接着剤22を塗布してもよい。次
いで、水晶素片20の両角隅部上面に露出した各メタラ
イズ部21上に導電性接着剤11を塗布してから、水晶
振動素子1の各電極膜6から夫々引き出されたリード電
極6aの終端部を重ね合わせて接着する。この水晶振動
素子1は水晶素片20上で片持ち状態で支持される。ま
た、図示のように水晶振動素子1の各角隅部の側面から
上面にかけても導電性接着剤11を塗布する。なお、水
晶素片20上に水晶振動素子1を接続する際に、両者の
結晶切断方位が同等となるように、予め水晶素片20の
結晶切断方向を設定しておく。このようにして水晶振動
素子1の実装が終了した後に、図示しない金属蓋を容器
開口に固定することにより容器内を気密封止する。この
形態例では、水晶振動素子1は熱膨張係数の異なる表面
実装容器10の内底面と固定されている訳ではなく、水
晶素片20を介して固定されているので、温度環境の変
動や、振動、衝撃等の外力等に起因して発生する表面実
装容器10からの応力が水晶素片20により吸収緩和さ
れ、しかも水晶素片20は水晶振動素子1と同等の熱膨
張係数を有しているので、水晶素片20と水晶振動素子
1との間に熱ひずみが発生せずその結果周波数の変動が
防止される。
The surface mounting container 10 is made of, for example, a ceramic material having a seam ring 12 on the upper surface of an outer frame. The crystal element 20 has an arbitrary shape having a crystal cutting direction equivalent to that of the crystal element plate 2, and is formed by vapor deposition or sputtering from the upper and lower surfaces to the side surfaces at both corners of one side of the crystal element 20. A metallized portion 21 is formed. In this example, the crystal element piece 20 has the same area as the crystal element plate 2,
Although the area is larger than the quartz crystal plate, this is only an example as described later. The material of the surface mount container 10 may be a material other than ceramic, for example, resin or glass. The crystal element 20 is formed by positioning and mounting the metallized portion 21 of the crystal element 20 on a conductive adhesive 22 applied on a metallization pattern (not shown) formed on the inner bottom surface of the surface mount container 10. It is fixed to the bottom inside the container. As shown in FIG.
It is preferable to fix the cantilever to the inner bottom surface of the container. If necessary, the conductive adhesive 22 may be applied to the side and upper surfaces of the metallized portion 21 of the crystal element. Next, a conductive adhesive 11 is applied on each metallized portion 21 exposed on the upper surface of both corners of the crystal element piece 20, and then the terminal ends of the lead electrodes 6 a pulled out from the respective electrode films 6 of the crystal vibrating element 1. The parts are overlapped and glued. The crystal vibrating element 1 is supported on the crystal element piece 20 in a cantilever state. Further, as shown in the figure, the conductive adhesive 11 is applied also from the side surface to the upper surface of each corner of the crystal resonator element 1. When the crystal resonator element 1 is connected to the crystal element 20, the crystal cutting direction of the crystal element 20 is set in advance so that the crystal cutting directions of the two are the same. After the mounting of the crystal resonator element 1 in this manner, the inside of the container is hermetically sealed by fixing a metal cover (not shown) to the opening of the container. In this embodiment, the quartz vibrating element 1 is not fixed to the inner bottom surface of the surface mount container 10 having a different coefficient of thermal expansion, but is fixed via the crystal element 20. Stress from the surface mount container 10 generated due to external force such as vibration and shock is absorbed and reduced by the crystal element 20, and the crystal element 20 has the same thermal expansion coefficient as the crystal vibrating element 1. As a result, thermal distortion does not occur between the crystal element 20 and the crystal vibrating element 1, and as a result, frequency fluctuation is prevented.

【0008】次いで、図2(a)及び(b)は本発明の
他の実施の形態例の要部平面図、及びB−B断面図であ
り、この形態例は、水晶素片20の長さを水晶素板2よ
りも大幅に短くした構成と、水晶素片にメタライズ部を
形成せずに導電性接着剤25を用いて水晶素片20と水
晶振動素子1を容器内底面に一括して固定した構成が上
記形態例の構成と異なっている。即ち、この実施の形態
では、水晶素板2よりも幅が広く、短尺な水晶素片20
を表面実装容器10の内底面に設けた図示しないメタラ
イズパターンの上面を隠蔽しないように水晶素片20を
載置してから、この水晶素片20の両角隅部上に導電性
接着剤11を塗布し、更に片持ち状態となるように水晶
振動素子1を水晶素片20上に接着する。その後、水晶
素片20及び水晶振動素子1が容器内底面上と接着し、
かつ水晶振動素子のリード電極6aがメタライズパター
ンと導通するように導電性接着剤11を更に塗布する。
その後、容器開口に図示しない金属蓋を固定することに
より、容器を気密封止する。以上のように上記各実施の
形態は、水晶振動素子を直接表面実装容器の内底面に固
定するのではなく、水晶素片を介して水晶振動素子を容
器内底面上に接着実装している為に、容器と水晶素板と
の間に熱膨脹率差があったとしても、間に介在する水晶
素片と導電性接着剤との相乗効果により、発生する応力
を吸収し、水晶振動素子への波及が抑制される。このた
め、水晶振動素子の周波数変動が抑制され、信頼性を高
めることができる。特に、容器の熱膨張による伸び縮み
に起因して発生し伝播する応力は、水晶素片と容器との
間に介在する導電性接着剤により吸収され、さらに水晶
素片と水晶素板は結晶切断方位を一致させているために
熱膨張による伸び縮みが同等になり材料の物性差から発
生する応力が押さえられる。更に、水晶素片と水晶素板
の間に介在する導電性接着剤により応力がさらに吸収さ
れて大幅に緩和される。このようにして応力が順次減少
する結果、振動、衝撃、環境変動などに伴う応力開放よ
る周波数変動を少なくする効果を得ることができる。ま
た、上記圧電素片の結晶切断方位と上記圧電素板の結晶
切断方位が一致するように両者を重ね合わせて導電性接
着剤により固定したので、圧電素片が圧電振動素子の振
動を抑制する要因となることがなくなる。本発明では、
表面実装容器の材質としてセラミックを例示したが、そ
の他の材質(例えば、樹脂やガラス)であっても良い。
FIGS. 2A and 2B are a plan view and a sectional view taken along line B--B of another embodiment of the present invention. The crystal element 20 and the crystal vibrating element 1 are collectively formed on the inner bottom surface of the container by using a conductive adhesive 25 without forming a metallized portion on the crystal element. The configuration fixed in this way is different from the configuration of the above embodiment. That is, in this embodiment, the width of the quartz crystal plate 2 is wider than that of the quartz
Is placed on the inner bottom surface of the surface mounting container 10 so as not to cover the upper surface of a metallized pattern (not shown), and then the conductive adhesive 11 is applied on both corners of the quartz element 20. Then, the crystal vibrating element 1 is adhered onto the crystal element piece 20 so as to be in a cantilever state. Thereafter, the crystal element 20 and the crystal vibrating element 1 adhere to the inner bottom surface of the container,
Further, a conductive adhesive 11 is further applied so that the lead electrode 6a of the crystal resonator element is electrically connected to the metallized pattern.
Thereafter, the container is hermetically sealed by fixing a metal lid (not shown) to the container opening. As described above, in each of the above embodiments, the quartz vibrating element is not directly fixed to the inner bottom surface of the surface mount container, but the quartz vibrating element is bonded and mounted on the inner bottom surface of the container via a crystal element. Even if there is a difference in thermal expansion coefficient between the container and the quartz crystal plate, the generated stress is absorbed by the synergistic effect of the interposed quartz crystal piece and the conductive adhesive, and the Ripple is suppressed. For this reason, the frequency fluctuation of the crystal vibrating element is suppressed, and the reliability can be improved. In particular, the stress generated and propagated due to expansion and contraction due to the thermal expansion of the container is absorbed by the conductive adhesive interposed between the crystal element and the container, and the crystal element and the crystal plate are cut. Since the orientations are matched, the expansion and contraction due to thermal expansion become equal, and the stress generated due to the difference in physical properties of the materials is suppressed. Further, the stress is further absorbed by the conductive adhesive interposed between the crystal element and the crystal element plate, and is greatly reduced. As a result of the successive reduction of the stress in this manner, it is possible to obtain the effect of reducing the frequency fluctuation due to the release of the stress due to vibration, impact, environmental fluctuation, and the like. Also, since the crystal cutting direction of the piezoelectric element and the crystal cutting direction of the piezoelectric element plate are overlapped and fixed with a conductive adhesive, the piezoelectric element suppresses vibration of the piezoelectric vibration element. No longer a factor. In the present invention,
Although the ceramic is exemplified as the material of the surface mount container, another material (for example, resin or glass) may be used.

【0009】次に、図3は本発明の他の実施の形態に係
る圧電デバイスの要部平面図、及びC−C断面図であ
り、圧電振動素子1の構成は上記各実施の形態と同様で
あるが、表面実装容器10の構成が異なっている。即
ち、この表面実装容器10は例えばセラミックス素材か
ら成り、平板状の底板30と、底板30上に積層された
中板31と、中板31の上面外周に沿って立設されたシ
ームリング32とから一体構成されている。中板31の
適所にはキャビティ31aが形成されている。キャビテ
ィ31aの内底面には通電用の電極を形成し、この通電
用の電極は容器底面に設けた図示しない外部電極と接続
される。次いで、キャビティ31a内には、水晶素板2
と同等の結晶切断方位をもった角棒状の水晶素片35を
嵌合して収容し導電性接着剤36をキャビティ31a内
に充填して水晶素片35を固定する。水晶素片35はそ
の上面が少し中板31上面よりも突出するようにその高
さ寸法を予め設定する。なお、この際、キャビティ内底
面に設けた電極と導電性接着剤36とが十分に導通する
ように配慮する。その後、水晶素片35の上面に、水晶
素板2の結晶切断方位と合致するように方位を合わせて
水晶素板2を重ねて導電性接着剤37にて硬化させる。
なお、必要に応じて水晶振動素子1の上面のリード電極
6aと導通接続するように導電性接着剤37を上塗りし
ても良い。各リード電極6aは、導電性接着剤37及び
導電性接着剤36を介してキャビティ内底面の電極と接
続される。本発明では、表面実装容器の材質としてセラ
ミックスを例示したが、その他の材質(例えば、樹脂や
ガラス)であっても艮い。なお、容器の中板の肉厚(キ
ャビティの深さ)に対する水晶素片の厚みを任意に選択
することにより、水晶素板2と中板上面(容器内底面)
との間に生じる空隙を自由にコントロールすることが可
能となり、耐落下特性を大幅に改善する効果を得ること
ができる。
Next, FIG. 3 is a plan view of a main part of a piezoelectric device according to another embodiment of the present invention and a cross-sectional view taken along the line CC. The configuration of the piezoelectric vibrating element 1 is the same as that of each of the above embodiments. However, the configuration of the surface mount container 10 is different. That is, the surface mount container 10 is made of, for example, a ceramic material, and has a flat bottom plate 30, a middle plate 31 laminated on the bottom plate 30, and a seam ring 32 erected along the outer periphery of the upper surface of the middle plate 31. From one. A cavity 31a is formed at an appropriate position on the middle plate 31. A current-carrying electrode is formed on the inner bottom surface of the cavity 31a, and the current-carrying electrode is connected to an external electrode (not shown) provided on the container bottom surface. Next, the quartz crystal plate 2 is placed in the cavity 31a.
A rectangular rod-shaped crystal element 35 having the same crystal cutting direction as that described above is fitted and accommodated, and the conductive adhesive 36 is filled in the cavity 31a to fix the crystal element 35. The height of the crystal element 35 is set in advance so that the upper surface thereof slightly protrudes from the upper surface of the middle plate 31. At this time, care is taken so that the electrode provided on the inner bottom surface of the cavity and the conductive adhesive 36 are sufficiently conducted. Thereafter, the crystal plate 2 is superposed on the upper surface of the crystal element piece 35 so as to be aligned with the crystal cutting direction of the crystal plate 2 and cured with the conductive adhesive 37.
If necessary, the conductive adhesive 37 may be overcoated so as to be electrically connected to the lead electrode 6a on the upper surface of the crystal resonator element 1. Each lead electrode 6a is connected to an electrode on the bottom surface in the cavity via a conductive adhesive 37 and a conductive adhesive. In the present invention, ceramics is exemplified as the material of the surface mount container, but other materials (for example, resin and glass) may be used. In addition, by arbitrarily selecting the thickness of the crystal element piece with respect to the thickness of the middle plate (depth of the cavity) of the container, the quartz crystal plate 2 and the top surface of the middle plate (bottom surface in the container) are selected.
Can be freely controlled, and an effect of greatly improving the drop resistance characteristics can be obtained.

【0010】図4は、図3の変形例であり、水晶振動素
子1を構成する水晶素板2として平板状のものを用いた
点が異なっている。水晶素板が矩形の平板状である点を
除けば、図3の形態例と変わるところがない。なお、本
発明の水晶振動素子に使用する水晶素板は、べベル形状
や、コンベックス(蒲鉾状)形状であっても良い。以上
のように図3、図4の実施の形態は、表面実装容器の内
底面にキャビティを設け、且つ、このキャビティ内に水
晶素片を導電性接着剤で固定し、容器内底面から突出し
た水晶素片上面に水晶振動素子を固定したので、容器と
水晶素板との間の熱膨張率に差があったとしても、間に
介在する水晶素片と導電性接着剤の相乗効果により発生
する応力が吸収され、水晶振動素子への波及が抑制され
る。このため、水晶振動素子の周波数変動が抑制され、
信頼性を高めることができる。特に、容器の熱膨張によ
る伸び縮みに起因して発生し伝播する応力は、水晶素片
と容器との間に介在する導電性接着剤により吸収され、
さらに水晶素片と水晶素板は結晶切断方位を一致させて
いるために熱膨張による伸び縮みが同等になり材料の物
性差から発生する応力が押さえられる。更に、水晶素片
と水晶素板の間に介在する導電性接着剤により応力がさ
らに吸収されて大幅に緩和される。また、上記圧電素片
の結晶切断方位と上記圧電素板の結晶切断方位が一致す
るように両者を重ね合わせて導電性接着剤により固定し
たので、圧電素片が圧電振動素子の振動を抑制する要因
となることがなくなる。なお、本発明は水晶振動子等の
圧電振動子のみならず水晶発振器等の圧電発振器、その
他の圧電デバイス一般に適用することができる。
FIG. 4 is a modification of FIG. 3, which is different from the first embodiment in that a flat plate is used as the quartz plate 2 constituting the quartz vibrating element 1. Except that the quartz crystal plate is a rectangular flat plate, there is no difference from the embodiment of FIG. In addition, the quartz crystal plate used for the quartz-crystal vibrating element of the present invention may have a bevel shape or a convex shape. As described above, in the embodiment of FIGS. 3 and 4, a cavity is provided on the inner bottom surface of the surface mount container, and a crystal element is fixed in the cavity with a conductive adhesive, and protruded from the inner bottom surface of the container. Since the crystal resonator element is fixed on the upper surface of the crystal element, even if there is a difference in the coefficient of thermal expansion between the container and the crystal element, it is generated by the synergistic effect of the interposed crystal element and the conductive adhesive. The resulting stress is absorbed, and the ripple to the quartz vibrating element is suppressed. For this reason, the frequency fluctuation of the crystal vibrating element is suppressed,
Reliability can be improved. In particular, the stress generated and propagated due to expansion and contraction due to thermal expansion of the container is absorbed by the conductive adhesive interposed between the crystal element and the container,
Further, since the crystal element and the crystal plate have the same crystal cutting direction, the expansion and contraction due to thermal expansion become equal, and the stress generated due to the difference in physical properties of the materials is suppressed. Further, the stress is further absorbed by the conductive adhesive interposed between the crystal element and the crystal element plate, and is greatly reduced. Also, since the crystal cutting direction of the piezoelectric element and the crystal cutting direction of the piezoelectric element plate are overlapped and fixed with a conductive adhesive, the piezoelectric element suppresses vibration of the piezoelectric vibration element. No longer a factor. The present invention can be applied not only to a piezoelectric vibrator such as a quartz oscillator but also to a piezoelectric oscillator such as a crystal oscillator and other piezoelectric devices in general.

【0011】[0011]

【発明の効果】以上のように本発明によれば、水晶振動
素子を表面実装容器内に導電性接着剤を用いて片持ち状
態で支持した構造の圧電デバイスにおいて、表面実装容
器や導電性接着剤と水晶素板の熱膨張率の差から生じる
熱応力の影響を最小に止めて、振動や衝撃等の外力や、
使用環境条件の変動に起因した周波数安定性の低下を防
止することができる。即ち、請求項1の発明は、表面実
装容器の内底面に固定した圧電素片上に上記圧電振動素
子の一端を導電性接着剤により接続固定したので、圧電
振動素子は圧電素片と導電性接着剤を介して異材質の容
器と接することとなり、外力、温度環境の変化等に起因
して容器から伝播する応力を未然に解消して、圧電振動
素子の周波数変動を抑制することができる。本発明は、
特に凹陥部と、凹陥部の内底面に設けた超薄肉振動部と
を有したタイプの圧電素板を用いた圧電振動素子に適用
した場合に、外部応力、熱応力に起因した周波数の変動
を有効に防止することが可能となる。なお、本発明は圧
電振動子、圧電発振器等の圧電デバイス一般に適用する
ことができる。請求項2の発明は、上記圧電素板として
水晶素板を用い、上記圧電素片として当該水晶素板と同
等の結晶切断方位を有した水晶素片を用いたので、請求
項1に記載の効果を水晶振動子において発揮させること
ができる。請求項3の発明は、上記圧電素片の角隅部の
上下面及び側面にかけてメタライズ部を形成し、上記圧
電素板の両電極膜から延びるリード電極を各メタライズ
部上に重ねた状態で導電性接着剤により固定したので、
表面実装容器の内底面に形成した電極と電極膜との導通
を容易に確保することができる。請求項4の発明は、上
記表面実装容器の内底面に設けたキャビティ内に上記圧
電素片を嵌合収納し、表面実装容器の内底面から突出し
た圧電素片の上面に圧電振動素子の一端を導電性接着剤
により接続したので、請求項1、2と同等の周波数変動
防止効果を発揮できるのみならず、容器の中板の肉厚
(キャビティの深さ)に対する水晶素片の厚みを任意に
選択することにより、水晶素板と中板上面(容器内底
面)との間に生じる空隙を自由にコントロールすること
が可能となり、耐落下特性を大幅に改善する効果を得る
ことができる。請求項5の発明は、上記圧電素片の結晶
切断方位と上記圧電素板の結晶切断方位が一致するよう
に両者を重ね合わせて導電性接着剤により固定したの
で、圧電素片が圧電振動素子の振動を抑制する要因とな
ることがなくなる。請求項6の発明は、上記圧電素板と
して、平板状の素板を用いた。つまり、本発明において
使用する圧電振動素子を構成する圧電素板の形状、種類
はどのようなタイプであってもよい。
As described above, according to the present invention, in a piezoelectric device having a structure in which a quartz-crystal vibrating element is supported in a cantilever state by using a conductive adhesive in a surface mount container, the surface mount container and the conductive adhesive The effect of thermal stress caused by the difference between the thermal expansion coefficient of the agent and the quartz plate is minimized, and external forces such as vibration and impact,
It is possible to prevent a decrease in frequency stability due to a change in use environment conditions. That is, according to the first aspect of the present invention, one end of the piezoelectric vibrating element is connected and fixed to the piezoelectric element fixed to the inner bottom surface of the surface mount container by a conductive adhesive. It comes into contact with a container made of a different material via the agent, so that the stress transmitted from the container due to an external force, a change in the temperature environment, or the like can be eliminated beforehand, and the frequency fluctuation of the piezoelectric vibration element can be suppressed. The present invention
In particular, when applied to a piezoelectric vibrating element using a piezoelectric element of a type having a concave portion and an ultra-thin vibrating portion provided on the inner bottom surface of the concave portion, frequency fluctuation due to external stress and thermal stress Can be effectively prevented. The present invention can be generally applied to piezoelectric devices such as a piezoelectric vibrator and a piezoelectric oscillator. According to a second aspect of the present invention, a crystal element is used as the piezoelectric element, and a crystal element having a crystal cutting direction equivalent to that of the crystal element is used as the piezoelectric element. The effect can be exhibited in the crystal resonator. According to a third aspect of the present invention, a metallized portion is formed on the upper and lower surfaces and side surfaces of the corners of the piezoelectric element, and a lead electrode extending from both electrode films of the piezoelectric element is electrically conductive in a state of being superposed on each metallized portion. Since it was fixed with a conductive adhesive,
The continuity between the electrode formed on the inner bottom surface of the surface mount container and the electrode film can be easily secured. According to a fourth aspect of the present invention, the piezoelectric element is fitted and housed in a cavity provided on an inner bottom surface of the surface mount container, and one end of the piezoelectric vibrating element is provided on an upper surface of the piezoelectric element protruding from the inner bottom surface of the surface mount container. Are connected by a conductive adhesive, so that not only the same frequency fluctuation preventing effect as in claims 1 and 2 can be exerted, but also the thickness of the crystal element piece with respect to the thickness of the middle plate of the container (depth of the cavity) is arbitrary. In this case, it is possible to freely control the gap generated between the quartz crystal plate and the upper surface of the middle plate (the inner bottom surface of the container), and it is possible to obtain an effect of greatly improving the drop resistance. According to a fifth aspect of the present invention, the piezoelectric element is overlaid and fixed with a conductive adhesive so that the crystal cutting direction of the piezoelectric element coincides with the crystal cutting direction of the piezoelectric element. It does not become a factor that suppresses the vibration of the motor. In the invention according to claim 6, a flat plate is used as the piezoelectric plate. That is, the shape and type of the piezoelectric element constituting the piezoelectric vibration element used in the present invention may be of any type.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は本発明における第一の実施
形態に係る圧電デバイスの要部平面図、及びA‐A断面
図。
FIGS. 1A and 1B are a plan view and a cross-sectional view taken along line AA of a main part of a piezoelectric device according to a first embodiment of the present invention.

【図2】(a)及び(b)は本発明の他の実施の形態例
の要部平面図、及びB−B断面図。
FIGS. 2A and 2B are a plan view and a BB cross-sectional view of a main part of another embodiment of the present invention.

【図3】(a)及び(b)は本発明の他の実施の形態に
係る圧電デバイスの要部平面図、及びC−C断面図。
FIGS. 3A and 3B are a plan view and a CC sectional view of a main part of a piezoelectric device according to another embodiment of the present invention.

【図4】(a)及び(b)は図3の変形例を示す図。4A and 4B are views showing a modification of FIG. 3;

【図5】(a)及び(b)は従来の水晶振動子のパッケ
ージ構造を示す平面図、及び縦断面図。
FIGS. 5A and 5B are a plan view and a longitudinal sectional view showing a package structure of a conventional crystal unit.

【符号の説明】[Explanation of symbols]

1 水晶振動素子、2 水晶素板、3 凹陥部、4 薄
板領域(振動部)、5補強部(環状囲繞部)、6 電極
膜、6a リード電極、10 表面実装容器、11 導
電性接着剤、12 シームリング、20 水晶素片、2
1 メタライズ部、22 導電性接着剤、25 導電性
接着剤、30 底板、31 中板、31a キャビテ
ィ、35 水晶素片、36 導電性接着剤、37 導電
性接着剤。
DESCRIPTION OF SYMBOLS 1 Quartz vibrating element, 2 quartz crystal plate, 3 concave part, 4 thin plate area (vibrating part), 5 reinforcing part (annular surrounding part), 6 electrode film, 6a lead electrode, 10 surface mount container, 11 conductive adhesive, 12 seam rings, 20 crystal pieces, 2
Reference Signs List 1 metallized portion, 22 conductive adhesive, 25 conductive adhesive, 30 bottom plate, 31 middle plate, 31a cavity, 35 crystal element, 36 conductive adhesive, 37 conductive adhesive.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 片面に形成した凹陥部の内底面に超薄肉
の振動部を有すると共に、凹陥部外周に厚肉の環状囲繞
部を有する圧電素板と、該圧電素板の両面に夫々形成し
た電極膜と、を備えた圧電振動素子と、 該圧電振動素子を収容する表面実装容器と、 を備えた圧電デバイスにおいて、 表面実装容器の内底面に固定した圧電素片上に上記圧電
振動素子の一端を導電性接着剤により接続固定したこと
を特徴とする圧電デバイス。
1. A piezoelectric plate having an ultra-thin vibrating portion on the inner bottom surface of a concave portion formed on one side and a thick annular surrounding portion on the outer periphery of the concave portion, and a piezoelectric plate on both surfaces of the piezoelectric plate, respectively. A piezoelectric vibrating element comprising: a formed electrode film; and a surface mount container accommodating the piezoelectric vibratory element. The piezoelectric device comprising: a piezoelectric element fixed on an inner bottom surface of the surface mount container; A piezoelectric device having one end connected and fixed by a conductive adhesive.
【請求項2】 上記圧電素板は水晶素板であり、上記圧
電素片は当該水晶素板と同等の結晶切断方位を有した水
晶素片であることを特徴とする請求項1記載の圧電デバ
イス。
2. The piezoelectric element according to claim 1, wherein said piezoelectric element is a crystal element, and said piezoelectric element is a crystal element having a crystal cutting direction equivalent to that of said crystal element. device.
【請求項3】 上記圧電素片の角隅部の上下面及び側面
にかけてメタライズ部を形成し、上記圧電素板の両電極
膜から延びるリード電極を各メタライズ部上に重ねた状
態で導電性接着剤により固定したことを特徴とする請求
項1又は2記載の圧電デバイス。
3. A metallized portion is formed on the upper and lower surfaces and the side surfaces of the corners of the piezoelectric element, and a lead electrode extending from both electrode films of the piezoelectric element is conductively bonded in a state of being superposed on each metallized portion. 3. The piezoelectric device according to claim 1, wherein the piezoelectric device is fixed by an agent.
【請求項4】 上記表面実装容器の内底面に設けたキャ
ビティ内に上記圧電素片を嵌合収納し、表面実装容器の
内底面から突出した圧電素片の上面に圧電振動素子の一
端を導電性接着剤により接続したことを特徴とする請求
項1、又は2記載の圧電デバイス。
4. The piezoelectric element is fitted and accommodated in a cavity provided on the inner bottom surface of the surface mount container, and one end of the piezoelectric vibrating element is electrically connected to the upper surface of the piezoelectric element protruding from the inner bottom surface of the surface mount container. The piezoelectric device according to claim 1, wherein the piezoelectric device is connected by a conductive adhesive.
【請求項5】 上記圧電素片の結晶切断方位と上記圧電
素板の結晶切断方位が一致するように両者を重ね合わせ
て導電性接着剤により固定することを特徴とする請求項
1、2、3又は4記載の圧電デバイス。
5. The piezoelectric element according to claim 1, wherein the crystal cutting direction of the piezoelectric element and the crystal cutting direction of the piezoelectric element plate coincide with each other and are fixed by a conductive adhesive. 5. The piezoelectric device according to 3 or 4.
【請求項6】 上記圧電素板として、平板状の素板を用
いたことを特徴とする請求項1、2、3、4又は5記載
の圧電デバイス。
6. The piezoelectric device according to claim 1, wherein a flat plate is used as the piezoelectric plate.
JP11080511A 1999-03-24 1999-03-24 Piezoelectric device Pending JP2000278079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080511A JP2000278079A (en) 1999-03-24 1999-03-24 Piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080511A JP2000278079A (en) 1999-03-24 1999-03-24 Piezoelectric device

Publications (1)

Publication Number Publication Date
JP2000278079A true JP2000278079A (en) 2000-10-06

Family

ID=13720352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080511A Pending JP2000278079A (en) 1999-03-24 1999-03-24 Piezoelectric device

Country Status (1)

Country Link
JP (1) JP2000278079A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262100A (en) * 2005-03-17 2006-09-28 Daishinku Corp Piezoelectric vibrator
JP2006325051A (en) * 2005-05-20 2006-11-30 Seiko Epson Corp Surface acoustic wave device and electronic apparatus
KR100693062B1 (en) * 2005-02-28 2007-03-12 세이코 엡슨 가부시키가이샤 Piezoelectric resonator element and piezoelectric resonator
WO2007072668A1 (en) * 2005-12-21 2007-06-28 Daishinku Corporation Piezoelectric vibration piece and piezoelectric vibration device
JP2007174230A (en) * 2005-12-21 2007-07-05 Daishinku Corp Piezoelectric vibrating reed, and piezoelectric vibrator
JP2009253883A (en) * 2008-04-10 2009-10-29 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating device
JP2010166626A (en) * 2010-04-30 2010-07-29 Epson Toyocom Corp Piezoelectric device
JP2013098678A (en) * 2011-10-31 2013-05-20 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2016015757A (en) * 2013-07-19 2016-01-28 日本電波工業株式会社 Surface-mounted crystal device
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
CN105811916A (en) * 2016-05-06 2016-07-27 唐山国芯晶源电子有限公司 Vibration-proof quartz crystal oscillator and processing method thereof
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693062B1 (en) * 2005-02-28 2007-03-12 세이코 엡슨 가부시키가이샤 Piezoelectric resonator element and piezoelectric resonator
JP2006262100A (en) * 2005-03-17 2006-09-28 Daishinku Corp Piezoelectric vibrator
JP4715252B2 (en) * 2005-03-17 2011-07-06 株式会社大真空 Piezoelectric vibrator
JP2006325051A (en) * 2005-05-20 2006-11-30 Seiko Epson Corp Surface acoustic wave device and electronic apparatus
US7948156B2 (en) 2005-12-21 2011-05-24 Daishinku Corporation Piezoelectric resonator plate, and piezoelectric resonator device
US8174172B2 (en) * 2005-12-21 2012-05-08 Daishinku Corporation Piezoelectric resonator plate, and piezoelectric resonator device
JP2007195138A (en) * 2005-12-21 2007-08-02 Daishinku Corp Piezoelectric vibration device
CN101331681B (en) * 2005-12-21 2012-04-18 株式会社大真空 Piezoelectric vibration piece and piezoelectric vibration device
JP4529894B2 (en) * 2005-12-21 2010-08-25 株式会社大真空 Piezoelectric vibrating piece and piezoelectric vibrating device
JP4552916B2 (en) * 2005-12-21 2010-09-29 株式会社大真空 Piezoelectric vibration device
JP2007174230A (en) * 2005-12-21 2007-07-05 Daishinku Corp Piezoelectric vibrating reed, and piezoelectric vibrator
WO2007072668A1 (en) * 2005-12-21 2007-06-28 Daishinku Corporation Piezoelectric vibration piece and piezoelectric vibration device
JP2009253883A (en) * 2008-04-10 2009-10-29 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating device
JP2010166626A (en) * 2010-04-30 2010-07-29 Epson Toyocom Corp Piezoelectric device
JP2013098678A (en) * 2011-10-31 2013-05-20 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2016015757A (en) * 2013-07-19 2016-01-28 日本電波工業株式会社 Surface-mounted crystal device
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object
CN105811916A (en) * 2016-05-06 2016-07-27 唐山国芯晶源电子有限公司 Vibration-proof quartz crystal oscillator and processing method thereof
CN105811916B (en) * 2016-05-06 2018-12-21 唐山国芯晶源电子有限公司 Antivibration quartz oscillator and its processing method

Similar Documents

Publication Publication Date Title
KR20120135058A (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric vibrator, electronic device and electronic apparatus
EP0468052B1 (en) Structure for holding ultrathin plate piezoelectric resonator in package
JPH08242026A (en) Piezoelectric oscillator and piezoelectric oscillator device provided therewith and circuit device provided with same device
JP2000278079A (en) Piezoelectric device
WO2011010521A1 (en) Surface mount crystal oscillator
JP2008131549A (en) Quartz oscillation device
JP2001144578A (en) Piezoelectric vibrator
JP2000278080A (en) Piezoelectric device
JP2014068098A (en) Vibration piece, vibration device, electronic apparatus and moving body
US7126260B2 (en) Surface mount crystal unit
CN113765494B (en) Vibrator and oscillator
JP2003258589A (en) Piezoelectric device, radio watch utilizing the piezoelectric device, mobile phone utilizing the piezoelectric device, and electronic device utilizing the piezoelectric device
JP3102869B2 (en) Structure of ultra-thin piezoelectric resonator
JP4310838B2 (en) Piezoelectric device
JP2008278110A (en) Piezoelectric oscillator
JP2000332571A (en) Piezoelectric device
JP2014050067A (en) Vibration device, electronic equipment, and mobile device
JP2012090083A (en) Vibration device and electronic apparatus
CN114208027A (en) Piezoelectric vibrating plate, piezoelectric vibrating device, and method for manufacturing piezoelectric vibrating device
JP2010268439A (en) Surface mounting crystal vibrator
JP2004328028A (en) Piezoelectric device and manufacturing method therefor
JPH10284975A (en) Package of surface mounting-type piezoelectric device
JP4938366B2 (en) Piezoelectric vibrator
JP2006279777A (en) Surface acoustic wave device and electronic device
JP2005033294A (en) Crystal oscillation element