JP2011228536A - 反射光学部材、光学系、露光装置及びデバイスの製造方法 - Google Patents

反射光学部材、光学系、露光装置及びデバイスの製造方法 Download PDF

Info

Publication number
JP2011228536A
JP2011228536A JP2010098064A JP2010098064A JP2011228536A JP 2011228536 A JP2011228536 A JP 2011228536A JP 2010098064 A JP2010098064 A JP 2010098064A JP 2010098064 A JP2010098064 A JP 2010098064A JP 2011228536 A JP2011228536 A JP 2011228536A
Authority
JP
Japan
Prior art keywords
mirror
block
elements
exit
mirror element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010098064A
Other languages
English (en)
Inventor
Shunsuke Furuya
俊輔 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010098064A priority Critical patent/JP2011228536A/ja
Publication of JP2011228536A publication Critical patent/JP2011228536A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】放射ビームの反射効率を向上させることができる反射光学部材、光学系、露光装置及びデバイスの製造方法を提供する。
【解決手段】射出側フライアイミラーは、射出側ミラー要素MA1,MA2,MA3を有するミラーブロック50Aと、射出側ミラー要素MB1を有するミラーブロック50Bと、射出側ミラー要素MC1,ME1を有するミラーブロック50C,50Eと、射出側ミラー要素MD1,MD2を有するミラーブロック50Dとを備えている。
【選択図】図7

Description

本発明の態様は、複数のミラー要素を有する反射光学部材、該反射光学部材を備える光学系、該光学系を備える露光装置及び該露光装置を用いるデバイスの製造方法に関するものである。
従来、半導体素子や液晶表示素子等の各種デバイスを製造するためのリソグラフィ工程において、レチクルまたはフォトマスクに形成されたデバイス用の回路パターンに露光光を照射し、感光性材料(レジスト)が塗布された基板(ウエハまたはガラスプレート等)に露光する露光装置が使用されている。露光装置の一例として、一括露光型の投影露光装置(ステッパー)や走査露光型の投影露光装置(スキャニングステッパー)が知られている。
近年、より集積度の高いデバイスを製造するために、より高精細な回路パターンを基板に形成する露光技術が求められている。この回路パターンを高精細化する手段の一つとして、より波長の短い露光光を用いた投影露光装置の開発が進められている。その一例として、波長5〜20nmの極端紫外(EUV:Extreme Ultra-Violet)光を露光光に用いたEUV露光装置が挙げられる。このようなEUV露光装置では、EUV光に対して高い透過率を示す硝材が限られることから、照明光学系及び投影光学系は、例えばモリブデン(Mo)とケイ素(Si)の多層膜が反射面に形成された反射光学部材によって構成される。
このようなEUV露光装置の照明光学系は、オプティカルインテグレータとして、複数のミラー要素によって構成される入射側フライアイミラーと射出側フライアイミラーとを備えている。これらの入射側フライアイミラー及び射出側フライアイミラーは、照明光学系の照明瞳に形成される光強度分布が均一でかつ回転対称なものとなるように、入射側ミラー要素の反射面の形状や向き、及び射出側ミラー要素の反射面の形状や向きがそれぞれ調整されている。(特許文献1参照)
米国特許出願公開第2007/0273859A1号明細書
ところで、一般に、フライアイミラーは、反射面が形成された複数のミラー要素と、該複数のミラー要素が設置されるベース部材とを備えている。任意数のミラー要素を組み合わせることによって、一つのミラーブロックが構成される。そして、複数のミラー要素に反射面を形成する際には、ミラーブロック毎に製膜を行っている。
しかしながら、1つのミラーブロック内で互いに隣り合うミラー要素間の境界部には、隣り合うミラー要素の反射面の形状や向きなどによって、設置面に直交する方向における差分(以下、段差と呼ぶ。)が生じることがある。こうした段差が大きい場合には、段差の影響によって、反射面に形成する多層膜が適切に製膜できない部分(以下、「非製膜部分」ともいう。)が生じる虞がある。こうした非製膜部分の反射効率は、反射膜が適切に製膜された部分の反射効率よりも低下してしまう。
本発明の態様は、このような事情に鑑みてなされたものであり、その目的は、放射ビームの反射効率を向上させることができる反射光学部材、光学系、露光装置及びデバイスの製造方法を提供することにある。
上記の課題を解決するため、本発明の態様は、実施形態に示す図1〜図15に対応付けした以下の構成を採用している。
本発明の態様は、所定面(45a)内に配置された複数のミラー要素(M)を有する反射光学部材において、前記複数のミラー要素(M)のうち、第1のミラー要素(MA1、MG1、ML1、MM1)、第2のミラー要素(MA2、MG2、ML2、MM2)及び第3のミラー要素(MA3、MG3、ML3、MM3)を有し、前記所定面(45a)内における第1方向に関して前記第1のミラー要素(MA1、MG1、ML1、MM1)と前記第2のミラー要素(MA2、MG2、ML2、MM2)とが連結され、前記所定面(45a)において前記第1方向と交差する第2方向に関して前記第1のミラー要素(MA1、MG1、ML1、MM1)と前記第3のミラー要素(MA3、MG3、ML3、MM3)とが連結された第1ミラーブロック(50A、50G、50L、50M)と、前記複数のミラー要素(M)のうち、前記第2方向に関して前記第2のミラー要素(MA2、MG2、ML2、MM2)に隣接し、且つ前記第1方向に関して前記第3のミラー要素(MA3、MG3、ML3、MM3)に隣接する第4のミラー要素(MB1、MI1、MM2、ML2)を有する第2ミラーブロック(50B、50I、50M、50L)と、前記複数のミラー要素(M)のうち、前記第2方向に関して前記第1及び第2のミラー要素(MA1,MA2、MG1,MG2、ML1,ML2、MM1,MM2)の何れか一方に隣接する第5のミラー要素(MC1,ME1、MD1,MD2、MJ2,MJ3、ML5)を有し、該第5のミラー要素(MC1,ME1、MD1,MD2、MJ2,MJ3、ML5)が前記第1及び第2のミラー要素(MA1,MA2、MG1,MG2、ML1,ML2、MM1,MM2)を基準として前記第2方向に関して前記第3及び第4のミラー要素(MA3,MB1、MG3,MI1、ML3,MM2、MM3,ML2)の反対側に配置される第3ミラーブロック(50C,50E、50D、50J、50L)と、前記複数のミラー要素(M)のうち、前記第1方向に関して前記第1及び第3のミラー要素(MA1,MA3、MG1,MG3、ML1,ML3、MM1,MM3)の何れか一方に隣接する第6のミラー要素(MD1,MD2、MH1、MG5,MK1、MP1,MP2)を有し、該第6のミラー要素(MD1,MD2、MH1、MG5,MK1、MP1,MP2)が前記第1及び第3のミラー要素(MA1,MA3、MG1,MG3、ML1,ML3、MM1,MM3)を基準として前記第1方向に関して前記第2及び第4のミラー要素(MA2,MB1、MG2,MI1、ML2,MM2、MM2,ML2)の反対側に配置される第4ミラーブロック(50D、50H、50G,50K、50P)と、を備えることを要旨とする。
なお、本発明の態様をわかりやすく説明するために実施形態を示す図面の符号に対応づけて説明したが、本発明の態様が実施形態に限定されるものではないことは言うまでもない。
本発明の態様によれば、放射ビームの反射効率を向上させることができる。
本実施形態における露光装置を示す概略構成図。 (a)(b)はフライアイミラーを模式的に示す平面図。 (a)は本実施形態の射出側フライアイミラーの要部を模式的に示す平面図、(b)は射出側フライアイミラーの要部を模式的に示す側断面図。 (a)従来のフライアイミラーの一部を模式的に示す平面図、(b)は従来のミラーブロックを模式的に示す側断面図、(c)は図4(b)の一部を拡大した側断面図。 射出側フライアイミラーを設計する際の手順を説明するフローチャート。 (a)は射出側フライアイミラーの一部を模式的に示す側断面図、(b)は疑似ブロックを設計する際の様子を説明する模式図。 (a)は一つのミラーブロックを模式的に示す斜視図、(b)は図7(a)に示すミラーブロックを含む複数のミラーブロックを模式的に示す平面図。 (a)は一つのミラーブロックを模式的に示す斜視図、(b)は図7(a)に示すミラーブロックを含む複数のミラーブロックを模式的に示す平面図。 (a)は一つのミラーブロックを模式的に示す斜視図、(b)は図7(a)に示すミラーブロックを含む複数のミラーブロックを模式的に示す平面図。 (a)は一つのミラーブロックを模式的に示す斜視図、(b)は一つのミラーブロックを模式的に示す斜視図。 (a)は図7(a)に示すミラーブロックを模式的に示す平面図、(b)は図11(a)の11−11線矢視断面図。 ミラーブロックに反射膜が製膜される様子を説明する模式図。 別の実施形態における射出側フライアイミラーの一部を模式的に示す平面図。 デバイスの製造例のフローチャート。 半導体デバイスの場合の基板処理に関する詳細なフローチャート。
以下に、本発明の態様を具体化した一実施形態について図1〜図12に基づき説明する。なお、本実施形態では、投影光学系の光軸に平行な方向をZ軸方向とし、Z軸方向に垂直な平面内で走査露光時のレチクルR及びウエハWの走査方向をY軸方向とし、その走査方向に直交する非走査方向をX軸方向として説明する。また、X軸、Y軸、Z軸の周りの回転方向をθx方向、θy方向、θz方向ともいう。
図1に示すように、本実施形態の露光装置11は、光源装置12から射出される、波長が100nm程度以下の軟X線領域である極端紫外光、即ちEUV(Extreme Ultraviolet )光を露光光ELとして用いるEUV露光装置である。こうした露光装置11は、内部が大気よりも低圧の真空雰囲気に設定されるチャンバ13(図1では二点鎖線で囲まれた部分)を備えている。このチャンバ13内には、光源装置12からチャンバ13内に供給された露光光ELで所定のパターンが形成された反射型のレチクルRを照明する照明光学系14と、パターンの形成されたパターン形成面Raが−Z方向側(図1では下側)に位置するようにレチクルRを保持するレチクルステージ15とが設けられている。また、チャンバ13内には、レチクルRを介した露光光ELでレジストなどの感光性材料が塗布されたウエハWを照射する投影光学系16と、露光面(感光性材料が塗布されたウエハ表面)Waが+Z方向側(図1では上側)に位置するようにウエハWを保持するウエハステージ17とが設けられている。
光源装置12は、波長が5〜20nmのEUV光を露光光ELとして出力する装置であって、図示しないレーザ励起プラズマ光源を備えている。このレーザ励起プラズマ光源では、例えば半導体レーザ励起を利用したYAGレーザやエキシマレーザなどの高出力レーザで高密度のEUV光発生物質(ターゲット)を照射することによりプラズマが発生され、該プラズマからEUV光が露光光ELとして放射される。こうした露光光ELは、図示しない集光光学系によって集光されてチャンバ13内に出力される。
照明光学系14は、チャンバ13の内部と同様に、内部が真空雰囲気に設定される筐体18(図1では一点鎖線で囲まれた部分)を備えている。この筐体18内には、光源装置12から出力された露光光ELを集光するコリメート用ミラー19が設けられており、該コリメート用ミラー19は、入射した露光光ELを略平行に変換してオプティカルインテグレータの一種であるフライアイ光学系20(図1では破線で囲まれた部分)に向けて射出する。このフライアイ光学系20は、一対のフライアイミラー(反射光学部材)21,22を備えており、該各フライアイミラー21,22のうち入射側に配置される入射側フライアイミラー21は、レチクルRのパターン形成面Raと光学的に共役となる位置に配置されている。こうした入射側フライアイミラー21で反射された露光光ELは、射出側に配置される射出側フライアイミラー22に入射する。なお、各フライアイミラー21,22については、後述する。
また、照明光学系14には、射出側フライアイミラー22から射出された露光光ELを筐体18外に射出するコンデンサミラー23が設けられている。そして、コンデンサミラー23から射出された露光光ELは、後述する鏡筒27内に設置された折り返し用の反射ミラー24により、レチクルステージ15に保持されるレチクルRに導かれる。
レチクルステージ15は、投影光学系16の物体面側に配置されており、レチクルRを静電吸着するための第1静電吸着保持装置25を備えている。この第1静電吸着保持装置25は、誘電性材料で形成され且つ吸着面26aを有する基体26と、該基体26内に配置される図示しない複数の電極部とを備えている。そして、図示しない電圧印加部から電圧が各電極部にそれぞれ印加された場合、基体26から発生されるクーロン力により、吸着面26aにレチクルRが静電吸着される。
また、レチクルステージ15は、図示しないレチクルステージ駆動部の駆動によって、Y軸方向(図1における左右方向)に移動可能である。すなわち、レチクルステージ駆動部は、第1静電吸着保持装置25に保持されるレチクルRをY軸方向に所定ストロークで移動させる。また、レチクルステージ駆動部は、レチクルRをX軸方向(図1において紙面と直交する方向)、Z軸方向及びθz方向にも移動させることが可能である。なお、レチクルRのパターン形成面Raが露光光ELで照明される場合、該パターン形成面Raの一部には、X軸方向に延びる略円弧状の照明領域が形成される。
投影光学系16は、露光光ELでレチクルRのパターン形成面Raを照明することにより形成されたパターンの像を所定の縮小倍率(例えば1/4倍)に縮小させる光学系であって、チャンバ13の内部と同様に、内部が真空雰囲気に設定される鏡筒27を備えている。この鏡筒27内には、複数枚(本実施形態では6枚)の反射型のミラー28,29,30,31,32,33が収容されている。これら各ミラー28〜33は、図示しないミラー保持装置を介して鏡筒27にそれぞれ保持されている。そして、物体面側であるレチクルR側から導かれた露光光ELは、第1ミラー28、第2ミラー29、第3ミラー30、第4ミラー31、第5ミラー32、第6ミラー33の順に反射され、ウエハステージ17に保持されるウエハWの露光面Waに導かれる。
照明光学系14及び投影光学系16が備える各ミラー19,21〜24,28〜33のミラー面には、露光光ELを反射する反射層がそれぞれ形成されている。これら各反射層は、モリブデン(Mo)とシリコン(Si)を交互に積層した多層膜をそれぞれ有している。
ウエハステージ17は、ウエハWを静電吸着するための第2静電吸着保持装置34を備え、該第2静電吸着保持装置34は、誘電性材料で形成され且つ吸着面35aを有する基体35と、該基体35内に配置される図示しない複数の電極部とを備えている。そして、図示しない電圧印加部から電圧が各電極部にそれぞれ印加された場合、基体35から発生されるクーロン力により、吸着面35aにウエハWが静電吸着される。また、ウエハステージ17には、第2静電吸着保持装置34を保持する図示しないウエハホルダと、該ウエハホルダのZ軸方向(図1では上下方向)における位置及びX軸周り、Y軸周りの傾斜角を調整する図示しないZレベリング機構とが組み込まれている。
こうしたウエハステージ17は、図示しないウエハステージ駆動部によって、Y軸方向に移動可能である。すなわち、ウエハステージ駆動部は、第2静電吸着保持装置34に保持されるウエハWをY軸方向に所定ストロークで移動させる。また、ウエハステージ駆動部は、第2静電吸着保持装置34に保持されるウエハWをX軸方向に所定ストロークで移動させることが可能であるとともに、Z軸方向にも移動させることが可能となるように構成されている。
そして、ウエハWの一つのショット領域にレチクルRのパターンを形成する場合、照明光学系14によって照明領域をレチクルRに形成した状態で、レチクルステージ駆動部の駆動によって、レチクルRをY軸方向(例えば、+Y方向側から−Y方向側)に所定ストローク毎に移動させる。また同時に、ウエハステージ駆動部の駆動によって、ウエハWをレチクルRのY軸方向に沿った移動に対して投影光学系16の縮小倍率に応じた速度比でY軸方向(例えば、−Y方向側から+Y方向側)に同期して移動させる。そして、一つのショット領域へのパターンの形成が終了した場合、ウエハWの他のショット領域に対するパターンの形成が連続して行われる。
次に、各フライアイミラー21,22について、図2(a)(b)に基づき説明する。なお、本実施形態では、図2(a)(b)における左右方向、上下方向及び紙面と直交する方向を、A方向、B方向及びC方向というものとする。
図2(a)に示すように、入射側フライアイミラー21は、インバーなどの低熱膨張鋼又は合金製の厚板から構成される入射側設置台40を備えており、該入射側設置台40は、平面度が高くなるように研磨などの加工が施された入射側設置面40aを有している。この入射側設置面40aには、反射膜が製膜された略円弧状のミラー面41aを有する複数の入射側ミラー要素41が配置されている。具体的には、入射側フライアイミラー21は、入射側設置面40aに沿うB方向に沿って配置される複数の入射側ミラー要素41から構成されるミラー列が、入射側設置面40a内においてB方向とほぼ直交するA方向に沿って複数配置された構成である。そして、入射側フライアイミラー21に入射した露光光ELの光束は、入射側ミラー要素41のミラー面41a毎に波面分割され、波面分割された多数の光束は、射出側フライアイミラー22に入射する。
図2(b)に示すように、射出側フライアイミラー22は、インバーなどの低熱膨張鋼又は合金製の厚板から構成される射出側設置台45を備えており、該射出側設置台45は、平面度が高くなるように研磨などの加工が施された射出側設置面45aを有している。この射出側設置面45aは、A方向に延びる図示しない直線及びB方向に延びる図示しない直線と平行であると共に、C方向に延びる図示しない直線と直交する平面である。こうした射出側設置面45aには、反射膜が製膜されたミラー面46を有する複数の射出側ミラー要素Mが二次元的に配置されている。すなわち、各ミラー面46は、C方向から見た場合に平面視略矩形状をなすようにそれぞれ形成されており、各射出側ミラー要素Mは、それらのミラー面46の対角線がA方向及びB方向と交差するように、それぞれ配置されている。
また、各射出側ミラー要素Mのミラー面46は、個別対応する各入射側ミラー要素41のミラー面41aと同一の焦点距離をそれぞれ有している。そのため、射出側ミラー要素Mのミラー面46には、該ミラー面46に個別対応する入射側ミラー要素41のミラー面41aから射出された光束が入射する。すなわち、射出側フライアイミラー22近傍には、多数の光源像(二次光源ともいう。)が形成される。そして、射出側フライアイミラー22から射出された多数の光束がレチクルRのパターン形成面Ra上で重畳することにより、レチクルR上での高照度均一性が確保される。
本実施形態の射出側フライアイミラー22は、図3(a)に示すように、複数の射出側ミラー要素Mを有する複数のミラーブロック50を備えている。これら各ミラーブロック50は、図3(b)に示すように、位置決め機構51によって、射出側設置台45に位置決めされた状態でそれぞれ固定されている。位置決め機構51は、ミラーブロック50のミラー面46の反対側に設けられ、ミラーブロック50の長手方向における両端側に形成された係合穴52と、射出側設置台45に設けられ、係合穴52に対応する位置に形成された貫通孔53と、貫通孔53を介して、係合穴52に螺合するねじ54とを備えている。
貫通孔53は、ミラーブロック50の厚み方向(C方向)のうち、−C方向側(図3(b)では下側)に位置する大径部、及びミラーブロック50の厚み方向のうち、+C方向側(図3(b)では上側)に位置する小径部をそれぞれ有している。ねじ54は、先端部が射出側設置面45aから+C方向側に突出するように貫通孔53内に設けられている。そして、ねじ54の先端がミラーブロック50の係合穴52に螺合されることにより、ミラーブロック50は、射出側設置台45に位置決めされた状態となる。また、ねじ54の側壁には雄ねじ加工が施されており、係合穴52および貫通孔53の小径部の側壁にはねじ54の雄ねじ加工に対応した雌ねじ加工が施されている。その結果、ねじ54がミラーブロック50の係合穴52に螺合されることによって、ミラーブロック50が射出側設置台45に固定される。つまり、位置決め機構51は、ねじ54と係合穴52とを有する固定機構を兼ねることになる。
なお、位置決め機構51は、ミラーブロック50を射出側設置台45に固定する固定機構を兼ねる必要はなく、位置決め機構51と固定機構とを個別に設けてよい。例えば、固定機構は、位置決め機構51とは異なる場所で、ミラーブロック50を固定する構成が挙げられる。この場合、ねじ54の雄ねじ加工および係合穴52と貫通孔53の雌ねじ加工は必要なく、例えば、円筒もしくは段付円筒形状を有する平行ピン等を用いて、係合穴52と貫通孔53とを嵌め合わせることで、ミラーブロック50が射出側設置台45上で位置決めされる。位置決めされたミラーブロック50は、位置決め機構51と異なる場所で、固定機構により射出側設置台45に固定される。これによって、位置決め機構51に比べて固定機構をより多く設けることができるため、ミラーブロック50を射出側設置台45により強く固定することができる。なお、固定機構は、ねじ54と係合穴52とを螺合する構成に限らず、ミラーブロック50または射出側フライアイミラー22を囲むフレームを用いて固定すること等が挙げられる。
ところで、射出側フライアイミラーは、複数の射出側ミラー要素を有する複数のミラーブロックを組み合わせて構成することが一般的である。そこで、従来の射出側フライアイミラーについて、図4(a)(b)(c)に基づき説明する。
図4(a)に示すように、従来の射出側フライアイミラー60は、複数のミラーブロック61を備えており、該各ミラーブロック61は、A方向に沿って配置される複数(図4(a)では4つ)の射出側ミラー要素62をそれぞれ有している。図4(b)に示すように、一つのミラーブロック61において、互いに隣り合う各射出側ミラー要素62の境界部分の各々には、C方向における差分(以下、段差ともいう。)ΔDがそれぞれ形成される。そして、各射出側ミラー要素62のミラー面には、ミラーブロック61単位で反射膜がそれぞれ製膜される。そのため、一つのミラーブロック61において、互いに隣り合う各射出側ミラー要素62の境界部分に形成される段差ΔDが小さい場合、各射出側ミラー要素62のミラー面には、全面に亘ってほぼ均一な反射膜を製膜することができる。
しかし、図4(b)(c)に示すように、一つのミラーブロック61において、互いに隣り合う各射出側ミラー要素62の境界部分に形成される段差ΔDが大きい場合、互いに隣り合う各ミラー面の境界部分近傍には、適切な膜厚(具体的には、膜の積層数)を有する反射膜を製膜できない。反射膜が適切に形成されない部分における露光光ELの反射率は、反射膜が適切に形成された部分における露光光ELの反射率よりも低い。そのため、このように反射膜を適切に製膜できない部分が多い従来の射出側フライアイミラー60では、入射する露光光ELの反射効率が低下してしまう。
したがって、露光光ELの反射効率の向上を図るためには、反射膜を適切に製膜できない部分を低減できるように、射出側フライアイミラーを設計する必要がある。具体的には、複数のミラーブロックの組み合わせで構成される射出側フライアイミラーでは、ミラーブロック内において、互いに隣り合う各射出側ミラー要素Mの境界部分に形成される段差ΔDを極力小さくすることが望ましい。
そこで次に、本実施形態の射出側フライアイミラー22の設計方法について、図5に示すフローチャート、及び図6に示す図面に基づき説明する。
ステップS10は、射出側フライアイミラー22を設計するステップである。このステップS10では、射出側フライアイミラー22として所望する特性を得ることができるように、射出側フライアイミラー22が設計される。ここでは、各射出側ミラー要素Mのミラー面46の形状及びミラー面46の水平面に対する傾斜角などが、個別に設計される。例えば、射出側フライアイミラー22近傍の照明瞳面に、輪帯状の二次光源を形成するための射出側フライアイミラーを設計する場合、該射出側フライアイミラーを構成する各射出側ミラー要素Mのミラー面46の形状や向きは、輪帯状の二次光源を形成できるように個別に設計される。
ステップS11は、互いに隣接する各射出側ミラー要素M間の段差ΔDを検出するステップである。このステップS11では、A方向及びB方向において互いに隣り合う各射出側ミラー要素Mの境界部分に形成される段差ΔDの各々が取得される(図6(a)参照)。
ステップS12は、段差ΔDが基準距離KD以上となる部分を境界とする複数の疑似ブロック55を設計するステップである。このステップS12では、A方向及びB方向において互いに隣り合う各射出側ミラー要素Mの境界部分のうち、段差ΔDが予め設定された基準距離KD以上となる境界部分が検出される。ここで、上述したように、一つのミラーブロック50内で段差ΔDの大きい部分は、他の部分と比較して反射膜を製膜し難い。そこで、本実施形態では、反射膜を製膜にしにくい部分を検出するための基準値として、基準距離KDが予め設定される。本実施形態において、基準距離KDは、ミラー要素の反射面を矩形形状とした場合に、ミラー要素の反射面の1辺の長さ以下の長さで設定される。例えば、基準距離KDは、ミラー要素の反射面の1辺の長さの2分の1に設定される。しかしながら、この基準距離KDは、ミラー要素に形成する反射膜をより均一に製膜するために、2分の1より小さく設定してもよい。また、基準長さKLについて判定するステップ14を説明する際に詳述するが、全てのミラーブロックにおいてミラーブロックの長さLが基準長さKL以上となる条件を満たすために、基準距離KDは、ミラー要素の反射面の1辺の長さの2分の1より大きく設定してもよい。
図6(a)に示すように、各射出側ミラー要素Mのうち、図6(a)で最も左側に位置する射出側ミラー要素M1と該射出側ミラー要素M1に隣接する射出側ミラー要素M2との境界部分における段差ΔDは、基準距離KD未満である。また、射出側ミラー要素M2と該射出側ミラー要素M2の図6(a)における右側で隣接する射出側ミラー要素M3との境界部分における段差ΔDは、基準距離KD以上である。また、射出側ミラー要素M3と該射出側ミラー要素M3の図6(a)における右側で隣接する射出側ミラー要素M4との境界部分における段差ΔDは、基準距離KD未満である。また、射出側ミラー要素M4と該射出側ミラー要素M4の図6(a)における右側で隣接する射出側ミラー要素M5との境界部分における段差ΔDは、基準距離KD未満である。そして、射出側ミラー要素M5と該射出側ミラー要素M5の図6(a)における右側で隣接する射出側ミラー要素M6との境界部分における段差ΔDは、基準距離KD以上である。
そして、図6(b)に示すように、ステップS10で設計した射出側フライアイミラー22を、段差ΔDが基準距離KD以上となる境界部分を含む複数箇所で切断することにより、複数の疑似ブロック55が形成される。なお、疑似ブロック55は、所望の射出側フライアイミラー22を設計するために、一時的に形成される設計データ上のミラーブロックである。
図5に戻り、ステップS13は、各疑似ブロック55の長さLを検出するステップである。このステップS13では、ステップS12で形成された各疑似ブロック55の長さLが検出される。ここでいう長さLは、疑似ブロック55で最も長い方向における長さである。そのため、一の疑似ブロック55では、A方向における長さが長さLとして検出される一方で、他の疑似ブロック55では、A方向と交差する方向(例えばB方向)における長さが長さLとして検出されることもある。
ステップS14は、疑似ブロック55の長さLが基準長さKL以上であるか否かを判定するステップである。このステップS14では、各疑似ブロック55のうち、ステップS13で検出された長さLが予め設定された基準長さKL未満となる疑似ブロック55が有るか否かが判定される。上述したように、ミラーブロック50は、その長手方向における両端側で射出側設置台45に位置決めされた状態で固定される(図3(b)参照)。そして、位置決め機構51による位置決めの精度は、長さLが長いほど位置決め機構51の間隔を広くすることができるため、高くなる。そのため、長さLが短すぎる場合には、位置決め機構51による位置決めの精度が低くなり、射出側設置台45において各射出側ミラー要素Mを適切に配置できなくなったり、互いに隣り合う各射出側ミラー要素M間の間隔が適切な間隔と大きく異なったりすること等が考えられる。また、これによって、射出側フライアイミラー22で反射する露光光ELの反射方向が変わってしまい、レチクルRのパターン形成面Raに照明される露光光ELの照明領域内の照度分布にムラが生じる等の影響が考えられる。そこで、本実施形態では、射出側フライアイミラー22における露光光ELの反射方向が変わる影響や、レチクルRのパターン形成面Raに照明される露光光ELの照明領域内の照度分布にムラが生じる影響を抑制するための基準値として、基準長さKLが設定される。この基準長さKLは、射出側フライアイミラー22の直径の長さ以下の長さで設定される。例えば、基準長さKLは、射出側フライアイミラー22の直径の長さの5分の1に設定される。しかしながら、この基準長さKLは、ミラーブロック50の位置決め精度を高めるために、射出側フライアイミラー22の直径の長さの5分の1より大きく設定してもよい。また、全てのミラーブロックにおける全ての段差が基準距離KD未満となる条件を満たすために、射出側フライアイミラー22の直径の長さの5分の1より小さく設定してもよい。
そして、ステップS14の判定結果が肯定判定(YES)である場合、長さLが基準長さKL未満となる疑似ブロック55が有るため、ステップS15が実行される。一方、ステップS14の判定結果が否定判定(NO)である場合、長さLが基準長さKL未満となる疑似ブロック55がないため、ステップS16が実行される。
ステップS15は、長さLが基準長さKL以上となるように疑似ブロック55の一部を再設定するステップである。このステップS15では、各疑似ブロック55の中から、長さLが基準長さKL未満となる疑似ブロック55が抽出される。そして、抽出した疑似ブロック55を、該疑似ブロック55に隣接する他の疑似ブロック55に連結することにより、新たな疑似ブロック55が設計される。すなわち、一部の疑似ブロック55が再設計される。このとき、抽出した疑似ブロック55は、隣接する複数の疑似ブロック55のうち、連結部分での段差ΔDが最小となる他の疑似ブロック55に連結される。その後、ステップS16が実行される。
ステップS16は、各疑似ブロック55を各ミラーブロックとするステップである。このステップS16では、各疑似ブロック55がミラーブロック50とみなされる。すなわち、射出側フライアイミラー22を構成する各ミラーブロック50の形状が、決定される。その結果、射出側フライアイミラー22は、射出側ミラー要素Mの数や各射出側ミラー要素Mの配置態様の異なる複数のミラーブロック50で構成される(図3(a)参照)。
各ミラーブロック50において、互いに連結される各射出側ミラー要素Mの境界部分に形成される段差ΔDを小さくした場合、射出側フライアイミラー22は、射出側ミラー要素Mの配置態様の異なる複数種類のミラーブロック50で構成されることになる。この場合、複数のミラーブロック50の中には、第1のミラー要素と、第1方向に沿って第1のミラー要素に並置される第2のミラー要素と、第2方向に沿って第1のミラー要素に並置される第3のミラー要素とを有する第1ミラーブロックが必ず含まれる。また、第1ミラーブロックは、第4のミラー要素を含む複数のミラー要素を有する第2ミラーブロックと、第5のミラー要素を含む複数のミラー要素を有する第3ミラーブロックと、第6のミラー要素を含む複数のミラー要素を有する第4ミラーブロックと隣接することになる。射出側フライアイミラー22は、第1〜第4ミラーブロックを含む複数のミラーブロック50で構成することができる。これにより、反射光学部材に入射する放射ビームの反射効率が向上する。
次に、射出側フライアイミラー22を構成する各ミラーブロック50のうち、代表的なミラーブロックについて説明する。
まず、ミラーブロック50Aについて、図7(a)(b)に基づき説明する。
図7(a)(b)に示すように、ミラーブロック50Aは、5つの射出側ミラー要素MA1,MA2,MA3,MA4,MA5を備えている。射出側ミラー要素MA1の+B方向側(図7(b)では上側)には、射出側ミラー要素MA2が連結されており、射出側ミラー要素MA1の+A方向側(図7(b)では右側)には、射出側ミラー要素MA3が連結されている。また、射出側ミラー要素MA3の+A方向側には、射出側ミラー要素MA4が連結されており、該射出側ミラー要素MA4の+A方向側には、射出側ミラー要素MA5が連結されている。すなわち、射出側ミラー要素MA1〜MA5のうち、射出側ミラー要素MA1は、A方向及びB方向に関して、ミラーブロック50Aを構成する他の射出側ミラー要素(この場合、射出側ミラー要素MA2,MA3)に連結される。一方、射出側ミラー要素MA2〜MA5は、A方向又はB方向に関して、ミラーブロック50Aを構成する他の射出側ミラー要素に連結される。
また、各射出側ミラー要素MA1〜MA5は、図7(b)に示すように、A方向及びB方向の少なくとも一方に関して、他のミラーブロックを構成する射出側ミラー要素Mにそれぞれ隣接している。すなわち、射出側ミラー要素MA2は、+A方向側において、ミラーブロック50Bを構成する射出側ミラー要素MB1に隣接している。また、射出側ミラー要素MA2は、−A方向側(図7では左側)において、ミラーブロック50Cの射出側ミラー要素MC1に隣接すると共に、+B方向側において、ミラーブロック50Cの射出側ミラー要素MC2に隣接している。また、射出側ミラー要素MA1,MA3〜MA5は、−B方向側(図7では下側)において、A方向に延びるミラーブロック50Dの射出側ミラー要素MD1,MD2,MD3,MD4に隣接している。また、射出側ミラー要素MA1は、−A方向側において、ミラーブロック50Eを構成する射出側ミラー要素ME1に隣接しており、射出側ミラー要素MA5は、+A方向側において、ミラーブロック50Fを構成する射出側ミラー要素MF1に隣接している。そして、射出側ミラー要素MA3,MA4,MA5は、+B方向側において、ミラーブロック50Bを構成する射出側ミラー要素MB1,MB2,MB3に隣接している。
次に、ミラーブロック50Gについて、図8(a)(b)に基づき説明する。
図8(a)(b)に示すように、ミラーブロック50Gは、5つの射出側ミラー要素MG1,MG2,MG3,MG4,MG5を備えている。射出側ミラー要素MG1の−A方向側には、射出側ミラー要素MG2が連結されており、射出側ミラー要素MG1の−B方向側には、射出側ミラー要素MG3が連結されている。また、射出側ミラー要素MG3の+A方向側には、射出側ミラー要素MG4が連結されており、該射出側ミラー要素MG4の+A方向側には、射出側ミラー要素MG5が連結されている。すなわち、射出側ミラー要素MG1〜MG5のうち、射出側ミラー要素MG1,MG3は、A方向及びB方向に関して、ミラーブロック50Gを構成する他の射出側ミラー要素に連結される。一方、射出側ミラー要素MG2,MG4,MG5は、A方向又はB方向に関して、ミラーブロック50Gを構成する他の射出側ミラー要素に連結される。
射出側ミラー要素MG1,MG2は、図8(b)に示すように、+B方向側において、ミラーブロック50Dの射出側ミラー要素MD2,MD1に隣接している。また、射出側ミラー要素MG1は、+A方向側において、ミラーブロック50Hの射出側ミラー要素MH1に隣接している。また、射出側ミラー要素MG2は、−A方向側において、ミラーブロック50Eを構成する射出側ミラー要素ME2に隣接すると共に、−B方向側において、ミラーブロック50Iの射出側ミラー要素MI1に隣接している。また、射出側ミラー要素MG3は、−A方向側において、ミラーブロック50Iの射出側ミラー要素MI1に隣接している。また、射出側ミラー要素MG3,MG4は、−B方向側において、ミラーブロック50Jの射出側ミラー要素MJ1,MJ2に隣接すると共に、射出側ミラー要素MG4,MG5は、+B方向側において、ミラーブロック50Hの射出側ミラー要素MH1,MH2に隣接している。また、射出側ミラー要素MG5は、+A方向側において、ミラーブロック50Kの射出側ミラー要素MK1に隣接すると共に、−B方向側において、ミラーブロック50Lの射出側ミラー要素ML1に隣接している。
次に、ミラーブロック50Lについて、図9(a)(b)に基づき説明する。
図9(a)(b)に示すように、ミラーブロック50Lは、6つの射出側ミラー要素ML1,ML2,ML3,ML4,ML5,ML6を備えている。射出側ミラー要素ML1の−B方向側には、射出側ミラー要素ML2が連結されており、射出側ミラー要素ML1の+A方向側には、射出側ミラー要素ML3が連結されている。また、射出側ミラー要素ML3の+A方向側には、射出側ミラー要素ML4が連結されており、該射出側ミラー要素ML4の−B方向側には、射出側ミラー要素ML5が連結されている。そして、射出側ミラー要素ML5の+A方向側には、射出側ミラー要素ML6が連結されている。すなわち、射出側ミラー要素ML1〜ML5のうち、射出側ミラー要素ML1,ML4,ML5は、A方向及びB方向に関して、ミラーブロック50Lを構成する他の射出側ミラー要素に連結される。一方、射出側ミラー要素ML2,ML3,ML6は、A方向又はB方向に関して、ミラーブロック50Lを構成する他の射出側ミラー要素に連結される。
射出側ミラー要素ML1は、図9(b)に示すように、+B方向側において、ミラーブロック50Gの射出側ミラー要素MG5に隣接すると共に、射出側ミラー要素ML1,ML2は、−A方向側において、ミラーブロック50Jの射出側ミラー要素MJ2,MJ3に隣接している。また、射出側ミラー要素ML2は、−B方向側において、ミラーブロック50Mの射出側ミラー要素MM3に隣接すると共に、+A方向側において、ミラーブロック50Mの射出側ミラー要素MM2に隣接している。また、射出側ミラー要素ML3は、+B方向側において、ミラーブロック50Kの射出側ミラー要素MK1に隣接すると共に、−B方向側において、ミラーブロック50Mの射出側ミラー要素MM2に隣接している。また、射出側ミラー要素ML4は、+B方向側において、ミラーブロック50Kの射出側ミラー要素MK2に隣接すると共に、+A方向側において、ミラーブロック50Kの射出側ミラー要素MM3に隣接している。また、射出側ミラー要素ML5は、−A方向側において、ミラーブロック50Mの射出側ミラー要素MM2に隣接すると共に、−B方向側において、ミラーブロック50Mの射出側ミラー要素MM4に隣接している。また、射出側ミラー要素ML6は、+B方向側において、ミラーブロック50Kの射出側ミラー要素MK3に隣接すると共に、−B方向側において、ミラーブロック50Mの射出側ミラー要素MM5に隣接している。そして、射出側ミラー要素ML6は、+A方向側において、ミラーブロック50Nの射出側ミラー要素MN1に隣接している。
次に、ミラーブロック50Mについて、図9(b)及び図10(a)に基づき説明する。
図9(b)及び図10(a)に示すように、ミラーブロック50Mは、5つの射出側ミラー要素MM1,MM2,MM3,MM4,MM5を備えている。射出側ミラー要素MM1の+B方向側には、射出側ミラー要素MM2が連結されており、射出側ミラー要素MM1の−A方向側には、射出側ミラー要素MM3が連結されている。また、射出側ミラー要素MM1の+A方向側には、射出側ミラー要素MM4が連結されており、該射出側ミラー要素MM4の+A方向側には、射出側ミラー要素MM5が連結されている。すなわち、射出側ミラー要素MM1〜MM5のうち、射出側ミラー要素MM1は、A方向及びB方向に関して、ミラーブロック50Mを構成する他の射出側ミラー要素(この場合、射出側ミラー要素MM2,MM3,MM4)に連結される。一方、射出側ミラー要素MM2〜MM5は、A方向又はB方向に関して、ミラーブロック50Mを構成する他の射出側ミラー要素に連結される。
射出側ミラー要素MM3,MM2,MM4,MM5は、図9(b)に示すように、+B方向側において、ミラーブロック50Lの射出側ミラー要素ML2,ML3,ML5,ML6に隣接すると共に、射出側ミラー要素MM1,MM3,MM4,MM5は、−B方向側において、ミラーブロック50Pの射出側ミラー要素MP1,MP2,MP3,MP4に隣接している。また、射出側ミラー要素MM2は、−A方向側において、ミラーブロック50Lの射出側ミラー要素ML2に隣接すると共に、+A方向側において、ミラーブロック50Lの射出側ミラー要素ML5に隣接している。また、射出側ミラー要素MM3は、−A方向側において、ミラーブロック50Jの射出側ミラー要素MJ4に隣接すると共に、射出側ミラー要素MM5は、+A方向側において、ミラーブロック50Qの射出側ミラー要素MQ1に隣接している。
次に、ミラーブロック50Bの+B方向側に位置するミラーブロック50Rについて、図10(b)に基づき説明する。
図10(b)に示すように、ミラーブロック50Rは、9つの射出側ミラー要素MR1,MR2,MR3,MR4,MR5,MR6,MR7,MR8,MR9を備えている。射出側ミラー要素MR1の−A方向側には、射出側ミラー要素MR2が連結されており、射出側ミラー要素MR1の−B方向側には、射出側ミラー要素MR3が連結されている。また、射出側ミラー要素MR3の−B方向側には、射出側ミラー要素MR4が連結されており、該射出側ミラー要素MR4の+A方向側には、射出側ミラー要素MR5が連結されている。また、射出側ミラー要素MR5の+A方向側には、射出側ミラー要素MR6が連結されており、該射出側ミラー要素MR6の+B方向側には、射出側ミラー要素MR7が連結されている。そして、射出側ミラー要素MR7の+B方向側には、射出側ミラー要素MR8が連結されており、該射出側ミラー要素MR8の+A方向側には、射出側ミラー要素MR9が連結されている。すなわち、射出側ミラー要素MR1〜MR9のうち、射出側ミラー要素MR1,MR4、MR6、MR8は、A方向及びB方向に関して、ミラーブロック50Rを構成する他の射出側ミラー要素に連結される。一方、射出側ミラー要素MR2,MR3,MR5,MR7,MR9は、A方向又はB方向に関して、ミラーブロック50Rを構成する他の射出側ミラー要素に連結される。
次に、ミラーブロック50の製造手順について、図11及び図12に基づき説明する。
まず始めに、ミラーブロック50Aは、低熱膨張ガラスに切削などの加工処理が施されることにより生成される。そして、ミラーブロック50Aのミラー面46の反対側の裏面には、射出側設置台45の射出側設置面45aとの密着性を高めるように研磨処理が施される。続いて、ミラーブロック50Aの裏面において長手方向における両端側には、図11(a)(b)に示すように、係合穴52をそれぞれ形成すると共に、該各係合穴52の側壁には、雌ねじ加工が施される。
そして、ミラーブロック50Aを構成する各射出側ミラー要素MA1〜MA5のミラー面46は、塵や埃などの異物を除去するための洗浄処理が行なわれる。続いて、各射出側ミラー要素MA1〜MA5のミラー面46には、図12に示すように、反射膜がそれぞれ製膜される。このとき、ミラーブロック50Aにおいて互いに隣り合う各射出側ミラー要素MA1〜MA5の境界部分の段差ΔDの各々は、全て基準距離KD未満である。そのため、本実施形態のミラーブロック50Aにおいて反射膜を適切に形成しにくい部分は、従来のミラーブロックと比較して少なくなる。すなわち、各射出側ミラー要素MA1〜MA5において有効反射領域は、広くなる。
ミラーブロック50A以外の他のミラーブロック50もまた、ミラーブロック50Aと同様の手順で製造される。そして、射出側設置台45の射出側設置面45aに、各ミラーブロック50をそれぞれ適切な位置に設置することにより、射出側フライアイミラー22が完成する。
上述した過程を得て製造された各ミラーブロック50は、基準距離KD未満の段差ΔDのみを有するミラーブロックである。なお、射出側フライアイミラー22の全体を構成する際に、1つのミラー要素のみを有するミラーブロックを含む場合や、基準距離KDおよび基準長さKLの条件を満たさないミラーブロックを含んでもよい。このとき、例えば、1つのミラー要素のみを個別に製膜したり、基準距離KDおよび基準長さKLの条件を満たさないミラーブロックをさらに分割して、1つのミラー要素毎に個別に製膜したりすればよい。
また、射出側フライアイミラー22は、上述したミラーブロック50A〜50Rを全て含むとは限らない。すなわち、所望される射出側フライアイミラー22の特性によって、該射出側フライアイミラー22を構成する各ミラーブロック50の形状は異なる。そのため、所望する特性に応じた各ミラーブロック50を設計することにより、射出側フライアイミラー22の露光光ELの反射効率が向上することになる。
したがって、本実施形態では、以下に示す効果を得ることができる。
(1)射出側フライアイミラー22を構成するミラーブロック50は、互いに連結される各射出側ミラー要素Mの境界部分の段差ΔDが基準距離KDを極力超えないように設計される。そのため、各ミラーブロック50において反射膜を適切に製膜できない部分を少なくできる。こうした各ミラーブロック50を組み合わせて射出側フライアイミラー22を製造することにより、該射出側フライアイミラー22の露光光ELの反射効率を向上させることができる。
(2)本実施形態では、互いに隣り合う各射出側ミラー要素Mの境界部分に形成される段差ΔDに基づき、各ミラーブロック50の形状が個別に特定される。そのため、射出側フライアイミラー22は、射出側ミラー要素Mの数や各射出側ミラー要素Mの配置態様などが異なる複数種類のミラーブロック50で構成される。また、各ミラーブロック50は、ブロック単位で反射膜の製膜処理が行なわれる。したがって、射出側フライアイミラー22の露光光ELの反射効率を向上させることができる。
(3)さらに、本実施形態では、互いに隣り合う各射出側ミラー要素Mの境界部分に形成される段差ΔDだけではなく、長さLをも考慮して、各ミラーブロック50の形状が個別に特定される。すなわち、各ミラーブロック50の中に、基準長さKL未満の長さLを有するミラーブロックが含まれることはない。こうした各ミラーブロック50は、それらの長手方向における両端に設けられる位置決め機構51によって位置決めされる。したがって、各ミラーブロック50を、射出側設置台45の所定位置に適切に設置でき、ひいては、射出側フライアイミラー22の露光光ELの反射効率を向上させ、さらに、露光光ELの正しい光路からのずれを抑制することができる。
なお、基準距離KDは、反射面に多層膜の製膜を行う製膜装置の製膜精度によって、その数値を変えてもよい。製膜装置の製膜精度としては、例えば、製膜装置の表面粗さの許容値(表面に凹凸がある場合でも表面を均一に製膜することができる凹凸の大きさの許容値)が挙げられる。製膜装置の表面粗さの許容値がより大きくなれば、段差ΔDが大きい場合であっても反射面への製膜を均一に行うことができるため、基準距離KDもより大きく設定することができる。
なお、上記実施形態は以下のような別の実施形態に変更してもよい。
・実施形態において、射出側フライアイミラー22は、各ミラーブロック50A〜50Rのうち少なくとも一つのミラーブロックを備えた構成でもよい。つまり、射出側フライアイミラーを構成する各ミラーブロック50の形状は、射出側フライアイミラー22の特性によって変更される。
・実施形態において、射出側フライアイミラー22は、四角形以外の他の任意の形状のミラー面を有する射出側ミラー要素を複数備えた構成であってもよい。例えば、図13に示すように、射出側フライアイミラー22を構成する各ミラーブロック70は、平面六角形状のミラー面71を有する射出側ミラー要素72を複数備えた構成であってもよい。この場合であっても、各ミラーブロック70には、射出側ミラー要素72の数や各射出側ミラー要素72の配置態様の異なる複数種類のミラーブロック70を組み合わせることにより構成される。
・実施形態において、射出側フライアイミラー22に代えて、入射側フライアイミラー21に、本発明の態様を適用してもよい。例えば、図2(a)に示すように、入射側フライアイミラー21を構成する各ミラーブロックは、円弧形状のミラー面41aを複数有する入射側ミラー要素41を複数備えた構成であってもよい。この場合であっても、各ミラーブロックには、入射側ミラー要素41の数や各入射側ミラー要素41の配置態様の異なる複数種類のミラーブロックを組み合わせることにより構成される。
・実施形態において、射出側フライアイミラー22は、射出側設置台45を備えない構成でもよい。この場合、互いに隣り合うミラーブロック50同士は、ねじやフレームなどによって、接続されることになる。
・実施形態において、位置決め機構51は、上述した構成に限定されない。例えば、位置決め機構51は、射出側フライアイミラー22の反射面の反対側に設けられる係合部と、射出側設置台45に設けられる突起部を備え、係合部に突起部を嵌め合わせることで、所望の位置に位置合わせするように構成してもよい。また、位置決め機構51は、射出側設置台45に設けられた突起部または誘導部に、射出側フライアイミラー22を合わせることで、所望の位置に位置合わせする構成としてもよい。
・実施形態において、露光装置11は、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクルまたはマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハなどへ回路パターンを転写する露光装置であってもよい。また、露光装置11は、液晶表示素子(LCD)などを含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッド等の製造に用いられて、デバイスパターンをセラミックウエハ等へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置などであってもよい。
・実施形態において、光源装置12で用いられるEUV光発生物質は、気体状の錫(Sn)でもよいし、液体状又は固体状の錫でもよい。また、EUV光発生物質として、キセノン(Xe)を用いてもよい。
・実施形態において、光源装置12は、放電型プラズマ光源を有する装置でもよい。
・実施形態において、露光装置11を、ステップ・アンド・リピート方式の装置に具体化してもよい。
・本発明の態様の反射光学部材を備える光学系は、露光装置以外の他の装置(例えば、プロジェクタ)などに搭載してもよい。
次に、本発明の態様の露光装置11によるデバイスの製造方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図14は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
まず、ステップS101(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS102(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクルRなど)を製作する。一方、ステップS103(基板製造ステップ)において、シリコン、ガラス、セラミックス等の材料を用いて基板(シリコン材料を用いた場合にはウエハWとなる。)を製造する。
次に、ステップS104(基板処理ステップ)において、ステップS101〜ステップS104で用意したマスクと基板を使用して、後述するように、リソグラフィ技術等によって基板上に実際の回路等を形成する。次いで、ステップS105(デバイス組立ステップ)において、ステップS104で処理された基板を用いてデバイス組立を行う。このステップS105には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS106(検査ステップ)において、ステップS105で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
図15は、半導体デバイスの場合におけるステップS104の詳細工程の一例を示す図である。
ステップS111(酸化ステップ)においては、基板の表面を酸化させる。ステップS112(CVDステップ)においては、基板表面に絶縁膜を形成する。ステップS113(電極形成ステップ)においては、基板上に電極を蒸着によって形成する。ステップS114(イオン打込みステップ)においては、基板にイオンを打ち込む。以上のステップS111〜ステップS114のそれぞれは、基板処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
基板プロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS115(レジスト形成ステップ)において、基板に感光性材料を塗布する。引き続き、ステップS116(露光ステップ)において、上で説明したリソグラフィシステム(露光装置11)によってマスクの回路パターンを基板に転写する。次に、ステップS117(現像ステップ)において、ステップS116にて露光された基板を現像して、基板の表面に回路パターンからなるマスク層を形成する。さらに続いて、ステップS118(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS119(レジスト除去ステップ)において、エッチングが済んで不要となった感光性材料を取り除く。すなわち、ステップS118及びステップS119において、マスク層を介して基板の表面を加工する。これらの前処理工程と後処理工程とを繰り返し行うことによって、基板上に多重に回路パターンが形成される。
11…露光装置、14…照明光学系、20…フライアイ光学系、22,23…反射光学部材としてのフライアイミラー、41…入射側ミラー要素、41a,46,71…ミラー面、45…ベース部材としての射出側設置台、45a…所定面としての射出側設置面、50,50A〜50N,50P〜50R,70…ミラーブロック、51…位置決め部としての位置決め機構、52…被係合部としての係合穴、54…係合部としてのねじ、EL…放射ビームとしての露光光、M,MA1〜MA5,MB1〜MB3,MC1,MC2,MD1〜MD4,ME1,ME2,MF1,MG1〜MG5,MH1,MH2,MI11,MJ1〜MJ4,MK1〜MK3,ML1〜ML6,MM1〜MM5,MN1,MP1〜MP4,MQ1,MR1〜MR9…射出側ミラー要素、R…マスクとしてのレチクル、W…基板としてのウエハ。

Claims (13)

  1. 所定面内に配置された複数のミラー要素を有する反射光学部材において、
    前記複数のミラー要素のうち、第1のミラー要素、第2のミラー要素及び第3のミラー要素を有し、前記所定面内における第1方向に関して前記第1のミラー要素と前記第2のミラー要素とが連結され、前記所定面において前記第1方向と交差する第2方向に関して前記第1のミラー要素と前記第3のミラー要素とが連結された第1ミラーブロックと、
    前記複数のミラー要素のうち、前記第2方向に関して前記第2のミラー要素に隣接し、且つ前記第1方向に関して前記第3のミラー要素に隣接する第4のミラー要素を有する第2ミラーブロックと、
    前記複数のミラー要素のうち、前記第2方向に関して前記第1及び第2のミラー要素の何れか一方に隣接する第5のミラー要素を有し、該第5のミラー要素が前記第1及び第2のミラー要素を基準として前記第2方向に関して前記第3及び第4のミラー要素の反対側に配置される第3ミラーブロックと、
    前記複数のミラー要素のうち、前記第1方向に関して前記第1及び第3のミラー要素の何れか一方に隣接する第6のミラー要素を有し、該第6のミラー要素が前記第1及び第3のミラー要素を基準として前記第1方向に関して前記第2及び第4のミラー要素の反対側に配置される第4ミラーブロックと、を備えることを特徴とする反射光学部材。
  2. 前記複数のミラー要素のうち、前記第2方向に関して前記第1のミラー要素及び前記第2のミラー要素の何れか他方に隣接する第7のミラー要素を有する第5ミラーブロックをさらに備えることを特徴とする請求項1に記載の反射光学部材。
  3. 前記複数のミラー要素のうち、前記第1方向に関して前記第1のミラー要素及び前記第3のミラー要素の何れか他方に隣接する第8のミラー要素を有する第6ミラーブロックをさらに備えることを特徴とする請求項1に記載の反射光学部材。
  4. 前記第1ミラーブロックと前記第2ミラーブロックとが対向する部分の間の前記所定面に垂直な第3方向に関する差分、
    前記第1ミラーブロックと前記第3ミラーブロックとが対向する部分の間の前記第3方向に関する差分及び
    前記第1ミラーブロックと前記第4ミラーブロックとが対向する部分の間の前記第3方向に関する差分の少なくとも一つの差分は、基準距離以上であることを特徴とする請求項1〜請求項3のうち何れか一項に記載の反射光学部材。
  5. 前記第1ミラーブロックにおいて、第1のミラー要素と第2のミラー要素とが対向する部分における前記所定面に垂直な第3方向の差分と、第1のミラー要素と第3のミラー要素とが対向する部分における前記第3方向の差分とは、前記基準距離未満であることを特徴とする請求項4に記載の反射光学部材。
  6. 前記所定面に、前記複数のミラー要素が設置される設置面を有するベース部材をさらに備えることを特徴とする請求項1〜請求項5のうち何れか一項に記載の反射光学部材。
  7. 前記ミラーブロックは、前記設置面内に沿う一方向への長さが予め設定された基準長さ以上となるように、前記複数のミラー要素が配置された構成であることを特徴とする請求項6に記載の反射光学部材。
  8. 前記ベース部材の前記設置面で前記ミラーブロックの位置決めを行なうための位置決め部をさらに備え、
    前記位置決め部は、
    前記ベース部材側に設けられ、且つ前記ミラーブロックの前記設置面内に沿う一方向における両端側に対応する位置に形成される係合部と、
    前記ミラーブロックの前記一方向における両端側に形成され、且つ前記係合部に係合される被係合部とを有することを特徴とする請求項6又は請求項7に記載の反射光学部材。
  9. 前記複数のミラー要素は、四角形状のミラー面をそれぞれ有しており、
    前記複数のミラーブロックにおいて、前記複数のミラー要素は、前記ミラー面の対角線が前記第1及び第2の各方向と交差するようにそれぞれ配置されていることを特徴とする請求項1〜請求項8の何れか一項に記載の反射光学部材。
  10. 前記複数のミラー要素の配置態様が互いに異なる複数のミラーブロックを備えることを特徴とする請求項1〜請求項9のうち何れか一項に記載の反射光学部材。
  11. 複数のミラー要素を有する一対の反射光学部材を備え、
    前記一対の反射光学部材のうち少なくとも一方は、請求項1〜請求項10のうち何れか一項に記載の反射光学部材であることを特徴とする光学系。
  12. 所定のパターンが形成されたマスクを照明光学系から射出される放射ビームで照明することにより形成されたパターンの像を基板に投影する露光装置において、
    前記照明光学系は、請求項11に記載の光学系を有することを特徴とする露光装置。
  13. リソグラフィ工程を含むデバイスの製造方法において、
    前記リソグラフィ工程は、請求項12に記載の露光装置を用いることを特徴とするデバイスの製造方法。
JP2010098064A 2010-04-21 2010-04-21 反射光学部材、光学系、露光装置及びデバイスの製造方法 Pending JP2011228536A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098064A JP2011228536A (ja) 2010-04-21 2010-04-21 反射光学部材、光学系、露光装置及びデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098064A JP2011228536A (ja) 2010-04-21 2010-04-21 反射光学部材、光学系、露光装置及びデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2011228536A true JP2011228536A (ja) 2011-11-10

Family

ID=45043549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098064A Pending JP2011228536A (ja) 2010-04-21 2010-04-21 反射光学部材、光学系、露光装置及びデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2011228536A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040160A1 (en) * 2013-09-23 2015-03-26 Carl Zeiss Smt Gmbh Facet mirror for a projection exposure apparatus
US10976669B2 (en) 2012-02-06 2021-04-13 Nikon Corporation Reflective image-forming optical system, exposure apparatus, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976669B2 (en) 2012-02-06 2021-04-13 Nikon Corporation Reflective image-forming optical system, exposure apparatus, and device manufacturing method
WO2015040160A1 (en) * 2013-09-23 2015-03-26 Carl Zeiss Smt Gmbh Facet mirror for a projection exposure apparatus
TWI563347B (en) * 2013-09-23 2016-12-21 Zeiss Carl Smt Gmbh Facet mirror for a projection exposure apparatus
US9823577B2 (en) 2013-09-23 2017-11-21 Carl Zeiss Smt Gmbh Facet mirror for a projection exposure apparatus

Similar Documents

Publication Publication Date Title
US6867843B2 (en) Debris removing system for use in X-ray light source
KR100563102B1 (ko) 표면들로부터 입자들을 제거함으로써 세정하는 방법,세정장치 및 리소그래피투영장치
JP2003249542A (ja) 基板保持装置、露光装置及びデバイス製造方法
KR20060049138A (ko) 기판을 지지하거나 및/또는 열적으로 콘디셔닝하는 장치,방법, 지지테이블 및 척
US7050152B2 (en) Exposure apparatus
JP2010161319A (ja) 静電吸着保持装置、露光装置及びデバイスの製造方法
JP4970846B2 (ja) リソグラフィ装置及びデバイス製造方法
JP4621586B2 (ja) リソグラフィ装置及びデバイス製造方法
US6641981B1 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2009266886A (ja) マスク、マスク保持装置、露光装置及びデバイスの製造方法
JP2010182866A (ja) 静電吸着保持装置、露光装置、露光方法及びデバイスの製造方法
KR100614295B1 (ko) 디바이스 제조방법, 그 디바이스 및 그를 위한 리소그래피장치
JP2000286191A (ja) 露光装置および露光方法ならびにデバイス製造方法
JP2010141071A (ja) 光学部材冷却装置、光学系、露光装置及びデバイスの製造方法
US7170579B2 (en) Light source unit, exposure apparatus, and device manufacturing method
KR102073504B1 (ko) 반송 장치
JP2011228536A (ja) 反射光学部材、光学系、露光装置及びデバイスの製造方法
JP5644416B2 (ja) 光学ユニット、光学系、露光装置、及びデバイスの製造方法
JP5428375B2 (ja) 保持装置、光学系、露光装置及びデバイスの製造方法
US7274429B2 (en) Integrated lithographic fabrication cluster
US9477156B2 (en) Reflecting optical member, optical system, exposure apparatus, and device manufacturing method
JP2009177126A (ja) マスクブランクス、マスク、マスク保持装置、露光装置及びデバイスの製造方法
JP2005116849A (ja) 静電吸着装置及び方法、露光装置、デバイスの製造方法
JP2004022945A (ja) 露光装置及び方法
JP2011204864A (ja) 反射型マスク、露光装置、露光方法及びデバイス製造方法