JP2011227315A5 - - Google Patents

Download PDF

Info

Publication number
JP2011227315A5
JP2011227315A5 JP2010097534A JP2010097534A JP2011227315A5 JP 2011227315 A5 JP2011227315 A5 JP 2011227315A5 JP 2010097534 A JP2010097534 A JP 2010097534A JP 2010097534 A JP2010097534 A JP 2010097534A JP 2011227315 A5 JP2011227315 A5 JP 2011227315A5
Authority
JP
Japan
Prior art keywords
cooling
cooling device
outer tube
wall
turbulent flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097534A
Other languages
Japanese (ja)
Other versions
JP2011227315A (en
JP5578415B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010097534A priority Critical patent/JP5578415B2/en
Priority claimed from JP2010097534A external-priority patent/JP5578415B2/en
Publication of JP2011227315A publication Critical patent/JP2011227315A/en
Publication of JP2011227315A5 publication Critical patent/JP2011227315A5/ja
Application granted granted Critical
Publication of JP5578415B2 publication Critical patent/JP5578415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記目的を達成するために、請求項1の発明は、中空状の管状部材からなる冷却ローラと、前記管状部材内に冷却媒体を搬送する冷却媒体搬送手段と、を備え、前記冷却ローラにシート状部材を接触させてシート状部材を冷却する冷却装置において、冷却媒体に乱流を発生させる乱流発生手段を前記管状部材の内壁に設けており、前記乱流発生手段は、前記管状部材の内壁に設けた螺旋形状の突起または溝であり、前記管状部材の回転に伴う冷却媒体の流れ方向とは逆向きの送りが発生するように前記突起または前記溝の螺旋巻き方向を設定したことを特徴とするものである。
また、請求項の発明は、請求項1の冷却装置において、上記乱流発生手段は、上記管状部材の内壁に設けた穴であることを特徴とするものである。
また、請求項の発明は、請求項1の冷却装置において、上記乱流発生手段は、上記管状部材の内壁に設けた凹凸面であることを特徴とするものである。
また、請求項の発明は、請求項1、2または冷却装置において、上記冷却ローラは上記管状部材である外管と、該外管内に内包する内包部材とから成る管構造であり、上記乱流発生手段を設けた前記外管の内壁と前記内包部材の外壁とで形成される間隙に冷却媒体が流れる流路を有することを特徴とするものである。
また、請求項の発明は、請求項の冷却装置において、上記内包部材はコア部材であり、上記乱流発生手段を設けた上記外管と前記コア部材の外壁とで形成される間隙に冷却媒体が流れる流路を有することを特徴とするものである。
また、請求項の発明は、請求項の冷却装置において、上記内包部材は、上記外管よりも細管構造の内管であり、該外管と該内管との間を冷却媒体が流れる外側流路、及び、該内管内を冷却媒体が流れる内側流路を有する二重管構造であることを特徴とするものである。
また、請求項の発明は、請求項の冷却装置において、上記外管の中空内部で、上記内管よりも外径の大きいシリンダを該内管を内包するように取り付けたことを特徴とするものである。
また、請求項の発明は、請求項の冷却装置において、上記コア部材が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項の発明は、請求項の冷却装置において、上記内管が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項10の発明は、請求項の冷却装置において、上記シリンダが、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項11の発明は、請求項1、2、3、4、5、6、7、8、9または0の冷却装置において、上記乱流発生手段を上記管状部材が接触することで冷却するシート状部材と略同幅の領域に設けることを特徴とするものである。
また、請求項12の発明は、シート状部材上にトナー像を形成するトナー像形成手段と、前記シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、前記熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10または1の冷却装置を用いることを特徴とするものである。
In order to achieve the above object, the invention of claim 1 comprises a cooling roller made of a hollow tubular member, and a cooling medium conveying means for conveying the cooling medium into the tubular member, and a sheet is provided on the cooling roller. In the cooling device for cooling the sheet-like member by contacting the sheet-like member, turbulent flow generating means for generating turbulent flow in the cooling medium is provided on the inner wall of the tubular member, and the turbulent flow generating means is A spiral-shaped projection or groove provided on the inner wall, wherein the spiral winding direction of the projection or the groove is set so that feeding in the direction opposite to the flow direction of the cooling medium accompanying the rotation of the tubular member occurs. It is a feature.
According to a second aspect of the present invention, in the cooling device according to the first aspect, the turbulent flow generating means is a hole provided in an inner wall of the tubular member.
According to a third aspect of the present invention, in the cooling device of the first aspect, the turbulent flow generating means is an uneven surface provided on the inner wall of the tubular member.
The invention of claim 4 is the cooling device of claim 1, 2 or 3 , wherein the cooling roller is a tube structure comprising an outer tube which is the tubular member and an inner member which is enclosed in the outer tube, A flow path through which a cooling medium flows is formed in a gap formed by the inner wall of the outer tube provided with the turbulent flow generation means and the outer wall of the inner packaging member.
According to a fifth aspect of the present invention, in the cooling device of the fourth aspect , the inner member is a core member, and a gap formed between the outer tube provided with the turbulent flow generating means and the outer wall of the core member. It has a flow path through which a cooling medium flows.
According to a sixth aspect of the present invention, in the cooling device of the fourth aspect , the inner member is an inner tube having a narrower tube structure than the outer tube, and a cooling medium flows between the outer tube and the inner tube. It is a double pipe structure having an outer flow path and an inner flow path through which a cooling medium flows in the inner pipe.
The invention of claim 7 is characterized in that, in the cooling device of claim 6, a cylinder having an outer diameter larger than that of the inner tube is attached inside the hollow of the outer tube so as to enclose the inner tube. To do.
The invention according to claim 8 is the cooling device according to claim 5 , wherein the core member can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, and in a direction opposite to the rotation direction of the outer tube. It is provided in a rotatable or fixed state.
The invention according to claim 9 is the cooling device according to claim 6 , wherein the inner tube is rotatable at a different rotational speed in the same direction as the rotation direction of the outer tube, and is opposite to the rotation direction of the outer tube. It is provided in a rotatable or fixed state.
The invention according to claim 10 is the cooling device according to claim 7 , wherein the cylinder is rotatable at a different rotational speed in the same direction as the rotation direction of the outer tube, and is rotated in a direction opposite to the rotation direction of the outer tube. It is possible or is provided in a fixed state.
The invention of claim 11 is the cooling device of claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the tubular member contacts the turbulent flow generating means. It is provided in a region having the same width as that of the sheet-like member to be cooled.
According to a twelfth aspect of the present invention, there is provided a toner image forming means for forming a toner image on a sheet-like member, and a heat fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member by at least heat. An image forming apparatus comprising: a cooling unit that cools a sheet-like member on which a toner image is fixed by the thermal fixing unit. The cooling unit includes: 1, 2, 3, 4, 5, 6, 7, The cooling device of 8, 9, 10 or 11 is used.

以上、本実施形態によれば、中空状の管状部材であるスリーブ1からなる冷却ローラ22と、スリーブ1内に冷却媒体である冷却液を搬送する冷却媒体搬送手段であるポンプ100と、を備え、冷却ローラ22にシート状部材である用紙Pを接触させて用紙Pを冷却する冷却装置18において、冷却液に乱流を発生させる乱流発生手段をスリーブ1の内壁に設けた。本実施形態においては、スリーブ1の内壁に設けた乱流発生手段によりスリーブ1の内壁近傍で冷却液の流れは乱流となる。これにより、前記内壁近傍にある温度の高い冷却液と前記内壁から離れた位置にある温度の低い冷却液との入れ替えが盛んに行われる。よって、乱流発生手段を前記内壁に設けない場合よりも前記内壁近傍の冷却液の温度を低くすることができるので、その分、冷却液によってスリーブ1を効果的に冷やすことができる。したがって、スリーブ1からなる冷却ローラ22による用紙Pの冷却効率を向上させることができる。
また、本実施形態によれば、上記乱流発生手段は、スリーブ1の内壁に設けた螺旋形状の突起62または溝63であり、スリーブ1の回転に伴う冷却液の流れ方向とは逆向きの送りが発生するように突起62または溝63の螺旋巻き方向を設定した。これにより、スリーブ1の内壁近傍において、冷却液流れ方向上流側から下流側に向かう冷却液の流れに対して突起62または溝63による冷却液を逆向きに送ろうとする流れ(力)がぶつかることになるので、より大きな、そしてより複雑でランダムな乱流が発生する。このような大きくて複雑な乱流が発生すればスリーブ1内を流れる冷却液を撹拌する攪拌力は増加し、スリーブ1の内壁近傍を流れる冷却液と、スリーブ1の中央を流れる冷却液とがより混ぜ合わされるようになり、その結果、スリーブ1の内壁から冷却液への熱伝達効率が格段に向上する。
また、本実施形態によれば、上記乱流発生手段は、スリーブ1の内壁に設けた穴64であることで、スリーブ1の内壁の全域(スリーブ1の円周方向および軸方向)にわたって略均等に同じ大きさの乱流を発生させることができるので、スリーブ1の内壁温度を均一にすることができ、流体抵抗を抑えると共に熱流束Wを上げかつ均一性を確保することができる。
また、本実施形態によれば、上記乱流発生手段は、スリーブ1の内壁に設けた凹凸面65であることで、乱流発生手段としてスリーブ1の内壁に穴64を設ける場合よりも微細に形成することができる。よって、乱流発生手段としてスリーブ1の内壁に穴64を設ける場合よりも、スリーブ1の内壁の全域(スリーブ1の円周方向および軸方向)にわたって略均等に同じ大きさの乱流を発生させることができ、スリーブ1の内壁温度の均一化をより図れ、流体抵抗を抑えると共に熱流束Wを上げかつ均一性を確保することができる。
また、本実施形態によれば、冷却ローラ22は管状部材であり外管であるスリーブ1と、スリーブ1内に内包する内包部材とから成る管構造であり、上記乱流発生手段を設けたスリーブ1の内壁と内包部材の外壁とで形成される間隙に冷却媒体が流れる流路を有する。これにより、スリーブ1と内包部材とで形成される狭い間隙の流路による高流速効果と乱流発生手段による乱流効果とで、スリーブ1内に内包部材を内包しない場合に比べて、スリーブ1の内壁から冷却液への熱伝達率がより向上し、冷却ローラ22による用紙Pの冷却性能を格段に向上させることができる。
また、本実施形態によれば、上記内包部材はコア部材であるコア5であり、上記乱流発生手段を設けたスリーブ1とコア5の外壁とで形成される間隙に冷却液が流れる流路を有する。これにより、スリーブ1とコア5とで形成される狭い間隙の流路による高流速効果と乱流発生手段による乱流効果とで、スリーブ1内にコア5を内包しない場合に比べて、スリーブ1の内壁から冷却液への熱伝達率がより向上し、冷却ローラ22による用紙Pの冷却性能を格段に向上させることができる。
また、本実施形態によれば、コア5が、スリーブ1の回転方向と同一方向に異なる回転数で回転可能、スリーブ1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、冷却液の旋回速度成分はスリーブ1の内壁近傍とコア5の外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。さらに、スリーブ1の内壁に設けた乱流発生手段によりスリーブ1の内壁近傍で乱流が増幅されるので、格段の乱流効果が期待できるとともに、スリーブ1とコア5とで形成される狭い間隙の流路による高流速効果が加わるので、さらに熱伝達率が向上する。
また、本実施形態によれば、上記内包部材は、スリーブ1よりも細管構造の内管6であり、冷却ローラ22がスリーブ1と内管6との間を冷却液が流れる外側流路、及び、内管6内を冷却液が流れる内側流路を有する二重管構造である。これにより、スリーブ1と内管6とで形成される狭い間隙の流路による高流速効果と乱流発生手段による乱流効果とで、スリーブ1内に内管6を内包しない場合に比べて、スリーブ1の内壁から冷却液への熱伝達率がより向上し、冷却ローラ22による用紙Pの冷却性能を格段に向上させることができる。さらに、冷却ローラ22の片方の端部のみに回転管継ぎ手手段であるロータリージョイント35を設ければ良いので、冷却ローラ22の他方の端部側に空スペースが生まれ、画像形成装置などの装置の小型化に寄与し、また冷却ローラ22を冷却装置18へ組み付ける際に冷却液のチューブや配管が邪魔にならず、作業性が向上する。
また、本実施形態によれば、内管6が、スリーブ1の回転方向と同一方向に異なる回転数で回転可能、スリーブ1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、冷却液の旋回速度成分はスリーブ1の内壁近傍と内管6の外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。さらに、スリーブ1の内壁に設けた乱流発生手段によりスリーブ1の内壁近傍で乱流が増幅されるので、格段の乱流効果が期待できる。
また、本実施形態によれば、スリーブ1の中空内部で、内管6よりも外径の大きいシリンダ7を内管6を内包するように取り付けたことで、スリーブ1とシリンダ7とで形成される狭い間隙の流路による高流速効果と乱流発生手段による乱流効果とで、スリーブ1内にシリンダ7を内包しない場合に比べて、スリーブ1の内壁から冷却液への熱伝達率がより向上し、冷却ローラ22による用紙Pの冷却性能を格段に向上させることができる。さらに、冷却ローラ22の片方の端部のみに回転管継ぎ手手段であるロータリージョイント35を設ければ良いので、冷却ローラ22の他方の端部側に空スペースが生まれ、画像形成装置などの装置の小型化に寄与し、また冷却ローラ22を冷却装置18へ組み付ける際に冷却液のチューブや配管が邪魔にならず、作業性が向上する。
また、本実施形態によれば、シリンダ7が、スリーブ1の回転方向と同一方向に異なる回転数で回転可能、スリーブ1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、冷却液の旋回速度成分はスリーブ1の内壁近傍とシリンダ7の外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。さらに、スリーブ1の内壁に設けた乱流発生手段によりスリーブ1の内壁近傍で乱流が増幅されるので、格段の乱流効果が期待できるとともに、スリーブ1とシリンダ7とで形成される狭い間隙の流路による高流速効果が加わるので、さらに熱伝達率が向上する。
また、本実施形態によれば、上記乱流発生手段をスリーブ1が接触することで冷却する用紙Pと略同幅の領域に設けることで、スリーブ1の内壁の乱流発生手段が設けられていない、その他の部分では、スリーブ1内を流れる冷却液に対して乱流発生手段による流体抵抗が発生しない。これにより、冷却液を冷却ローラ22内に送り込むポンプ100の負荷は小さく消費電力を下げられ且つ耐久性も向上する。また、スリーブ1の内壁全域にわたって乱流発生手段を設ける場合よりも一ランク下の送液性能のポンプ100で済み、低コスト化を図ることができる。
また、本実施形態によれば、シート状部材である用紙P上にトナー像を形成する画像形成ユニット54などのトナー像形成手段と、用紙P上に形成されたトナー像を少なくとも熱によって用紙Pに定着させる熱定着手段である熱定着装置16と、熱定着装置16によってトナー像が定着された用紙Pを冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、本発明の冷却ローラ22を有する冷却装置18を用いることにより、熱定着装置16による熱定着後の用紙Pの冷却効率を向上させることができる。
As described above, according to the present embodiment, the cooling roller 22 including the sleeve 1 that is a hollow tubular member, and the pump 100 that is a cooling medium conveying unit that conveys the cooling liquid that is the cooling medium into the sleeve 1 are provided. In the cooling device 18 that cools the sheet P by bringing the sheet P, which is a sheet-like member, into contact with the cooling roller 22, turbulent flow generating means for generating turbulent flow in the coolant is provided on the inner wall of the sleeve 1. In the present embodiment, the flow of the coolant becomes turbulent in the vicinity of the inner wall of the sleeve 1 by the turbulent flow generating means provided on the inner wall of the sleeve 1. Thereby, replacement of the coolant having a high temperature in the vicinity of the inner wall and the coolant having a low temperature at a position away from the inner wall is actively performed. Therefore, since the temperature of the coolant near the inner wall can be made lower than when no turbulent flow generating means is provided on the inner wall, the sleeve 1 can be effectively cooled by the coolant. Therefore, the cooling efficiency of the paper P by the cooling roller 22 formed of the sleeve 1 can be improved.
Further, according to the present embodiment, the turbulent flow generating means is the spiral protrusion 62 or groove 63 provided on the inner wall of the sleeve 1, and is in a direction opposite to the flow direction of the coolant accompanying the rotation of the sleeve 1. The spiral winding direction of the protrusion 62 or the groove 63 was set so that the feeding occurred. As a result, in the vicinity of the inner wall of the sleeve 1, a flow (force) that tries to send the coolant through the protrusions 62 or the grooves 63 in the opposite direction against the coolant flow from the upstream side to the downstream side in the coolant flow direction is collided. As a result, larger, more complex and random turbulence occurs. When such a large and complicated turbulent flow occurs, the stirring force for stirring the coolant flowing in the sleeve 1 increases, and the coolant flowing in the vicinity of the inner wall of the sleeve 1 and the coolant flowing in the center of the sleeve 1 are separated. As a result, the heat transfer efficiency from the inner wall of the sleeve 1 to the coolant is significantly improved.
Further, according to the present embodiment, the turbulent flow generating means is the hole 64 provided in the inner wall of the sleeve 1, so that it is substantially uniform over the entire area of the inner wall of the sleeve 1 (circumferential direction and axial direction of the sleeve 1). Therefore, the inner wall temperature of the sleeve 1 can be made uniform, the fluid resistance can be suppressed, the heat flux W can be increased, and the uniformity can be ensured.
Further, according to this embodiment, the turbulence generating means, by an uneven surface 6 5 provided on the inner wall of the sleeve 1, finer than the case of providing the hole 64 on the inner wall of the sleeve 1 as turbulence generating means Can be formed. Therefore, the turbulent flow of the same size is generated substantially uniformly over the entire inner wall of the sleeve 1 (circumferential direction and axial direction) as compared with the case where the hole 64 is provided in the inner wall of the sleeve 1 as the turbulent flow generating means. Therefore, the inner wall temperature of the sleeve 1 can be made more uniform, the fluid resistance can be suppressed, the heat flux W can be increased, and the uniformity can be ensured.
Further, according to the present embodiment, the cooling roller 22 is a tubular structure including a sleeve 1 that is a tubular member and an outer tube, and an inner member that is included in the sleeve 1, and the sleeve provided with the turbulent flow generation means. There is a flow path through which the cooling medium flows in a gap formed by the inner wall of 1 and the outer wall of the inner member. As a result, the sleeve 1 has a high flow velocity effect due to the narrow gap flow path formed by the sleeve 1 and the inclusion member and a turbulence effect due to the turbulence generating means, as compared with the case where the inclusion member is not included in the sleeve 1. The heat transfer rate from the inner wall to the cooling liquid is further improved, and the cooling performance of the paper P by the cooling roller 22 can be remarkably improved.
Further, according to the present embodiment, the inner member is the core 5 that is a core member, and the flow path through which the coolant flows in the gap formed by the sleeve 1 provided with the turbulent flow generating means and the outer wall of the core 5. Have As a result, the sleeve 1 has a high flow velocity effect due to the narrow gap flow path formed by the sleeve 1 and the core 5 and a turbulent flow effect due to the turbulence generating means, as compared with the case where the core 5 is not included in the sleeve 1. The heat transfer rate from the inner wall to the cooling liquid is further improved, and the cooling performance of the paper P by the cooling roller 22 can be remarkably improved.
Further, according to the present embodiment, the core 5 can be rotated at a different rotational speed in the same direction as the rotation direction of the sleeve 1, can be rotated in a direction opposite to the rotation direction of the sleeve 1, or is provided in a fixed state. As a result, the swirl speed component of the coolant is greatly different between the vicinity of the inner wall of the sleeve 1 and the vicinity of the outer wall of the core 5, which promotes the generation of turbulent flow and further improves the heat transfer coefficient. Further, since the turbulent flow is amplified in the vicinity of the inner wall of the sleeve 1 by the turbulent flow generating means provided on the inner wall of the sleeve 1, a remarkable turbulent effect can be expected, and a narrow gap formed between the sleeve 1 and the core 5 is expected. Since the high flow rate effect by the flow path is added, the heat transfer coefficient is further improved.
In addition, according to the present embodiment, the inner member is the inner tube 6 having a narrower tube structure than the sleeve 1, and the cooling roller 22 has an outer flow path through which a coolant flows between the sleeve 1 and the inner tube 6, and The double pipe structure has an inner flow path through which the coolant flows in the inner pipe 6. Thereby, compared with the case where the inner tube 6 is not included in the sleeve 1 due to the high flow velocity effect by the narrow gap flow path formed by the sleeve 1 and the inner tube 6 and the turbulent flow effect by the turbulent flow generating means, The heat transfer rate from the inner wall of the sleeve 1 to the coolant is further improved, and the cooling performance of the paper P by the cooling roller 22 can be significantly improved. Furthermore, it is only necessary to provide the rotary joint 35 as a rotary pipe joint means only at one end of the cooling roller 22, so that an empty space is created on the other end side of the cooling roller 22, and the image forming apparatus or the like This contributes to downsizing, and when the cooling roller 22 is assembled to the cooling device 18, the tube and piping of the cooling liquid do not get in the way and workability is improved.
Further, according to the present embodiment, the inner tube 6 can be rotated at a different number of rotations in the same direction as the rotation direction of the sleeve 1, can be rotated in the direction opposite to the rotation direction of the sleeve 1, or is provided in a fixed state. As a result, the swirl velocity component of the coolant is greatly different between the vicinity of the inner wall of the sleeve 1 and the vicinity of the outer wall of the inner tube 6, which promotes the generation of turbulent flow and further improves the heat transfer coefficient. Furthermore, since the turbulent flow is amplified in the vicinity of the inner wall of the sleeve 1 by the turbulent flow generating means provided on the inner wall of the sleeve 1, a remarkable turbulent flow effect can be expected.
Further, according to the present embodiment, the sleeve 1 and the cylinder 7 are formed by attaching the cylinder 7 having a larger outer diameter than the inner tube 6 so as to enclose the inner tube 6 inside the hollow of the sleeve 1. Compared with the case where the cylinder 7 is not included in the sleeve 1, the heat transfer rate from the inner wall of the sleeve 1 to the coolant is higher due to the high flow velocity effect due to the narrow gap flow path and the turbulence effect due to the turbulence generating means. The cooling performance of the paper P by the cooling roller 22 can be significantly improved. Furthermore, it is only necessary to provide the rotary joint 35 as a rotary pipe joint means only at one end of the cooling roller 22, so that an empty space is created on the other end side of the cooling roller 22, and the image forming apparatus or the like This contributes to downsizing, and when the cooling roller 22 is assembled to the cooling device 18, the tube and piping of the cooling liquid do not get in the way and workability is improved.
Further, according to the present embodiment, the cylinder 7 can be rotated at a different rotational speed in the same direction as the rotation direction of the sleeve 1, can be rotated in a direction opposite to the rotation direction of the sleeve 1, or is provided in a fixed state. As a result, the swirl speed component of the coolant is greatly different between the vicinity of the inner wall of the sleeve 1 and the vicinity of the outer wall of the cylinder 7, which promotes the generation of turbulent flow and further improves the heat transfer coefficient. Further, since the turbulent flow is amplified in the vicinity of the inner wall of the sleeve 1 by the turbulent flow generating means provided on the inner wall of the sleeve 1, a remarkable turbulent flow effect can be expected, and a narrow gap formed between the sleeve 1 and the cylinder 7 can be expected. Since the high flow rate effect by the flow path is added, the heat transfer coefficient is further improved.
Further, according to the present embodiment, the turbulent flow generating means is provided in an area substantially the same width as the sheet P to be cooled by contact with the sleeve 1, thereby providing the turbulent flow generating means on the inner wall of the sleeve 1. Otherwise, no fluid resistance is generated by the turbulent flow generating means with respect to the coolant flowing in the sleeve 1. As a result, the load on the pump 100 that feeds the coolant into the cooling roller 22 is small, so that the power consumption can be reduced and the durability can be improved. Further, the pump 100 having a liquid feeding performance that is one rank lower than the case where the turbulent flow generating means is provided over the entire inner wall of the sleeve 1 can be used, and the cost can be reduced.
Further, according to the present embodiment, the toner image forming unit such as the image forming unit 54 that forms a toner image on the sheet P, which is a sheet-like member, and the toner image formed on the sheet P at least by heat. In the image forming apparatus including the heat fixing device 16 that is a heat fixing means for fixing the toner image on the paper P and the cooling means for cooling the paper P on which the toner image is fixed by the heat fixing device 16, the cooling of the present invention is used as the cooling means. By using the cooling device 18 having the roller 22, the cooling efficiency of the paper P after the heat fixing by the heat fixing device 16 can be improved.

Claims (12)

中空状の管状部材からなる冷却ローラと、
前記管状部材内に冷却媒体を搬送する冷却媒体搬送手段と、を備え、
前記冷却ローラにシート状部材を接触させてシート状部材を冷却する冷却装置において、
冷却媒体に乱流を発生させる乱流発生手段を前記管状部材の内壁に設けており、
前記乱流発生手段は、前記管状部材の内壁に設けた螺旋形状の突起または溝であり、
前記管状部材の回転に伴う冷却媒体の流れ方向とは逆向きの送りが発生するように前記突起または前記溝の螺旋巻き方向を設定したことを特徴とする冷却装置。
A cooling roller made of a hollow tubular member;
Cooling medium conveying means for conveying the cooling medium into the tubular member,
In the cooling device that cools the sheet-like member by bringing the sheet-like member into contact with the cooling roller,
Turbulent flow generating means for generating turbulent flow in the cooling medium is provided on the inner wall of the tubular member ,
The turbulent flow generation means is a spiral projection or groove provided on the inner wall of the tubular member,
A cooling device, wherein the spiral winding direction of the protrusion or the groove is set so that a feed in a direction opposite to a flow direction of the cooling medium accompanying the rotation of the tubular member is generated .
請求項1の冷却装置において、
上記乱流発生手段は、上記管状部材の内壁に設けた穴であることを特徴とする冷却装置。
The cooling device of claim 1.
The turbulent flow generating means is a hole provided in an inner wall of the tubular member.
請求項1の冷却装置において、
上記乱流発生手段は、上記管状部材の内壁に設けた凹凸面であることを特徴とする冷却装置。
The cooling device of claim 1.
The cooling device according to claim 1, wherein the turbulent flow generating means is an uneven surface provided on an inner wall of the tubular member.
請求項1、2または冷却装置において、
上記冷却ローラは上記管状部材である外管と、該外管内に内包する内包部材とから成る管構造であり、上記乱流発生手段を設けた前記外管の内壁と前記内包部材の外壁とで形成される間隙に冷却媒体が流れる流路を有することを特徴とする冷却装置。
The cooling device according to claim 1, 2 or 3,
The cooling roller has a tube structure including an outer tube as the tubular member and an inner member included in the outer tube, and includes an inner wall of the outer tube provided with the turbulent flow generation means and an outer wall of the inner member. A cooling device comprising a flow path through which a cooling medium flows in a gap formed.
請求項の冷却装置において、
上記内包部材はコア部材であり、上記乱流発生手段を設けた上記外管と前記コア部材の外壁とで形成される間隙に冷却媒体が流れる流路を有することを特徴とする冷却装置。
The cooling device according to claim 4 .
The cooling device, wherein the inner member is a core member, and has a flow path through which a cooling medium flows in a gap formed by the outer tube provided with the turbulent flow generation means and an outer wall of the core member.
請求項の冷却装置において、
上記内包部材は、上記外管よりも細管構造の内管であり、該外管と該内管との間を冷却媒体が流れる外側流路、及び、該内管内を冷却媒体が流れる内側流路を有する二重管構造であることを特徴とする冷却装置。
The cooling device according to claim 4 .
The inner member is an inner tube having a narrower tube structure than the outer tube, an outer channel through which a cooling medium flows between the outer tube and the inner tube, and an inner channel through which the cooling medium flows through the inner tube A cooling device characterized by having a double-pipe structure.
請求項の冷却装置において、
上記外管の中空内部で、上記内管よりも外径の大きいシリンダを該内管を内包するように取り付けたことを特徴とする冷却装置。
The cooling device according to claim 6 .
A cooling device, wherein a cylinder having an outer diameter larger than that of the inner tube is attached inside the hollow of the outer tube so as to enclose the inner tube.
請求項の冷却装置において、
上記コア部材が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device of claim 5 ,
The core member can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. Cooling system.
請求項の冷却装置において、
上記内管が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device according to claim 6 .
The inner tube can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. Cooling system.
請求項の冷却装置において、
上記シリンダが、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device according to claim 7 , wherein
The cooling is characterized in that the cylinder can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. apparatus.
請求項1、2、3、4、5、6、7、8、9または0の冷却装置において、
上記乱流発生手段を上記管状部材が接触することで冷却するシート状部材と略同幅の領域に設けることを特徴とする冷却装置。
The cooling device according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10,
The cooling device according to claim 1, wherein the turbulent flow generating means is provided in a region having substantially the same width as that of the sheet-like member that is cooled by contact of the tubular member.
シート状部材上にトナー像を形成するトナー像形成手段と、
前記シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、
前記熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、
前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10または1の冷却装置を用いることを特徴とする画像形成装置。
Toner image forming means for forming a toner image on a sheet-like member;
Thermal fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member by at least heat;
An image forming apparatus comprising: a cooling unit that cools the sheet-like member on which the toner image is fixed by the heat fixing unit;
As the cooling means, the image forming apparatus characterized by using a cooling apparatus according to claim 7, 8, 9, 10 or 1 1.
JP2010097534A 2010-04-21 2010-04-21 Cooling device and image forming apparatus Expired - Fee Related JP5578415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097534A JP5578415B2 (en) 2010-04-21 2010-04-21 Cooling device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097534A JP5578415B2 (en) 2010-04-21 2010-04-21 Cooling device and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2011227315A JP2011227315A (en) 2011-11-10
JP2011227315A5 true JP2011227315A5 (en) 2013-03-21
JP5578415B2 JP5578415B2 (en) 2014-08-27

Family

ID=45042705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097534A Expired - Fee Related JP5578415B2 (en) 2010-04-21 2010-04-21 Cooling device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5578415B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557098B2 (en) * 2010-07-07 2014-07-23 株式会社リコー Cooling device and image forming apparatus
JP6256788B2 (en) 2012-03-27 2018-01-10 株式会社リコー Cooling device and image forming apparatus
JP5850877B2 (en) * 2013-04-25 2016-02-03 京セラドキュメントソリューションズ株式会社 Image forming apparatus
US9904247B2 (en) 2015-10-30 2018-02-27 Ricoh Company, Ltd. Cooling device and image forming apparatus incorporating the cooling device
US10353342B2 (en) 2017-09-21 2019-07-16 Fuji Xerox Co., Ltd. Medium cooling apparatus and medium cooling member
JP7275704B2 (en) * 2019-03-19 2023-05-18 株式会社リコー Conveyance control device and image reading device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238153Y2 (en) * 1979-05-09 1987-09-29
DE2927198A1 (en) * 1979-07-05 1981-01-15 Maschf Augsburg Nuernberg Ag COOLING ROLLER WITH AN OUTER ROLL COVER AND AN INNER BODY
JPS5883189A (en) * 1981-11-12 1983-05-18 Furukawa Electric Co Ltd:The Heat-transmitting pipe
JPH0645829Y2 (en) * 1988-11-29 1994-11-24 川崎製鉄株式会社 Cylindrical rotator for powder and granular material treatment
JP3138010B2 (en) * 1991-07-09 2001-02-26 三洋電機株式会社 Absorption refrigerator
JPH0658687A (en) * 1992-08-05 1994-03-04 Mitsui Eng & Shipbuild Co Ltd Discharge method for metallic hydride and metallic hydride container
JPH06101985A (en) * 1992-09-17 1994-04-12 Mitsubishi Shindoh Co Ltd Heat exchanger tube with grooved internal wall
JPH0630674U (en) * 1992-09-22 1994-04-22 東海ゴム工業株式会社 Heat storage device
JPH0834395A (en) * 1994-07-20 1996-02-06 Mitsubishi Heavy Ind Ltd Smoke stack for ship
JPH08338890A (en) * 1995-06-13 1996-12-24 Toshiba Corp High heat load cooling pipe
JPH09318286A (en) * 1996-03-28 1997-12-12 Furukawa Electric Co Ltd:The Heat transfer pipe
JPH11337285A (en) * 1998-05-21 1999-12-10 Mitsubishi Shindoh Co Ltd Both-side grooved pipe and heat exchanger
GB9828696D0 (en) * 1998-12-29 1999-02-17 Houston J G Blood-flow tubing
JP2002341636A (en) * 2001-05-11 2002-11-29 Ricoh Co Ltd Toner bottle and image forming apparatus using it
JP4445336B2 (en) * 2004-06-21 2010-04-07 株式会社リコー Cooling device, image forming apparatus
JP2008002453A (en) * 2006-05-22 2008-01-10 Nidec Sankyo Corp Mixing pump device and fuel cell
JP3133987U (en) * 2007-04-12 2007-08-02 隆雄 岩田 Shock wave dryer for treatment of sludge and food residue and liquid waste
JP5495534B2 (en) * 2008-11-11 2014-05-21 日新製鋼株式会社 Impeller for stirring desulfurization equipment
JP5483174B2 (en) * 2009-11-11 2014-05-07 株式会社リコー Cooling device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2011227315A5 (en)
TWI477039B (en) Cooling jacket
US9207022B2 (en) Cooling jacket
US20140064775A1 (en) Cooling device having a turbulence generating unit
CN102121800A (en) Heat exchanger
JP2013542707A5 (en)
JP5483174B2 (en) Cooling device and image forming apparatus
US10498199B2 (en) Rotary electric machine
JPWO2007094350A1 (en) Cooling structure of rotating electric machine
JP2008193756A (en) Rotary apparatus
JP5578415B2 (en) Cooling device and image forming apparatus
JP5339204B2 (en) Cooling device and image forming apparatus
JP4982153B2 (en) Cooling device and image forming apparatus
JP2011145365A (en) Cooling device and image forming apparatus
JP6251584B2 (en) Exhaust heat recovery unit
JP5557098B2 (en) Cooling device and image forming apparatus
JP2012168216A5 (en)
CN201772797U (en) Heat exchange pipe with double medium channels
JP5354367B2 (en) Cooling device and image forming apparatus
JP2009128845A (en) Moving medium cooling device, and image forming device equipped therewith
JP2007316550A (en) Fixing device
JP2016205764A (en) Heat exchanger and heat pump water heater using the same
KR101230499B1 (en) Heat transfer pipe having fin with closed cross section
JP2012154580A (en) Heat exchanger
JP2017146014A (en) Storage electric water heater