JP5354367B2 - Cooling device and image forming apparatus - Google Patents

Cooling device and image forming apparatus Download PDF

Info

Publication number
JP5354367B2
JP5354367B2 JP2009182899A JP2009182899A JP5354367B2 JP 5354367 B2 JP5354367 B2 JP 5354367B2 JP 2009182899 A JP2009182899 A JP 2009182899A JP 2009182899 A JP2009182899 A JP 2009182899A JP 5354367 B2 JP5354367 B2 JP 5354367B2
Authority
JP
Japan
Prior art keywords
cooling
path
cooling roller
roller
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009182899A
Other languages
Japanese (ja)
Other versions
JP2011034008A (en
Inventor
伸五 鈴木
覚 岡野
政範 斉藤
友康 平澤
賢一 竹原
泰明 飯嶋
博充 藤谷
和之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009182899A priority Critical patent/JP5354367B2/en
Priority to US12/844,384 priority patent/US8606138B2/en
Priority to CN201010247336XA priority patent/CN101995809B/en
Publication of JP2011034008A publication Critical patent/JP2011034008A/en
Priority to US14/075,850 priority patent/US9400485B2/en
Application granted granted Critical
Publication of JP5354367B2 publication Critical patent/JP5354367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device that reduces temperature difference of a cooling roller in its longitudinal direction, and to provide an image forming apparatus that has the cooling device. <P>SOLUTION: The cooling device has a cooling roller for cooling a sheet-like member. The cooling roller has a double-pipe structure including: an inner pipe incorporated in the outer pipe; an outer flow path where a cooling medium flows through a gap between the outer and the inner pipes; and an inner flow path where a cooling medium flows in the inner pipe. An opening for communicating the outer and the inner flow paths is provided in a certain part of the inner pipe in the longitudinal direction of the cooling roller. The cooling roller includes: a first route along which a cooling medium supplied by a cooling medium supply collection means flows in the inner flow path, and further flows into the outer flow path through the opening, toward at least the one end of the cooling roller; and a second route along which the cooling medium supplied by the cooling medium supply collection means flows in the inner flow path, and further flows into the outer flow path through the opening, toward at least the other end of the cooling roller. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、プリンタ、ファクシミリ、複写機などの画像形成装置に用いられる、シート状部材を冷却する冷却装置、及び、その冷却装置を備えた画像形成装置に関するものである。   The present invention relates to a cooling device for cooling a sheet-like member used in an image forming apparatus such as a printer, a facsimile machine, and a copying machine, and an image forming apparatus provided with the cooling device.

画像形成装置としては、電子写真技術を用いてシート状媒体である用紙上にトナー画像を形成し、熱定着装置を通過させることでトナーを溶融し融着させるものが知られている。一般に熱定着装置の温度は、トナーや用紙の種類、用紙搬送スピードなどによって異なるが180℃〜200℃程度の温度に設定され制御されて、トナーを瞬時に融着させる。熱定着装置を通過した直後の用紙の表面温度は、用紙の熱容量(比熱、密度など)に左右されるが例えば100℃〜130℃程度の高い温度となっている。トナーの溶融温度はもっと低いので、熱定着装置通過直後の時点ではトナーは少し軟らかいままであり、用紙が冷えるまでは、しばらく粘着状態にある。そのため、連続的に画像出力動作が繰り返され熱定着装置通過後の用紙が排紙収容部に積載される場合、用紙上のトナーが十分に硬化できず軟化状態にあると、用紙上のトナーが別の用紙に貼り付く、所謂、ブロッキング現象を起こり画像品質が著しく低下することがある。   As an image forming apparatus, an apparatus that forms a toner image on a sheet, which is a sheet-like medium, using electrophotographic technology, and melts and fuses the toner by passing through a thermal fixing device is known. In general, the temperature of the heat fixing device varies depending on the type of toner and paper, the paper conveyance speed, and the like, but is set and controlled at a temperature of about 180 ° C. to 200 ° C. to fuse the toner instantaneously. The surface temperature of the paper immediately after passing through the heat fixing device is a high temperature of about 100 ° C. to 130 ° C., for example, although it depends on the heat capacity (specific heat, density, etc.) of the paper. Since the melting temperature of the toner is lower, the toner is slightly soft at the time immediately after passing through the heat fixing device, and remains in a sticky state for a while until the paper cools down. Therefore, when the image output operation is repeated continuously and the paper after passing through the heat fixing device is stacked in the paper discharge container, if the toner on the paper cannot be sufficiently cured and is in a soft state, the toner on the paper A so-called blocking phenomenon that sticks to another sheet may occur and the image quality may be significantly reduced.

特許文献1に記載の画像形成装置では、熱定着装置よりも用紙搬送方向下流側に、用紙に接触して用紙を搬送しつつ冷却する冷却ローラを備えた冷却装置が設けられている。熱定着装置通過後の用紙が冷却装置の冷却ローラによって冷却されることで、用紙上のトナーも冷やされ硬化し、上記ブロッキング現象が起こるのを抑えることができる。また、冷却ローラは管状構造であり、冷却ローラ長手方向一端側から他端側に向かって冷却ローラ内に冷却液が流され、用紙から熱を奪うことで温度が上昇した冷却ローラが冷却液により冷却される。   In the image forming apparatus described in Patent Document 1, a cooling device including a cooling roller that cools while contacting a sheet and conveying the sheet is provided on the downstream side in the sheet conveying direction from the thermal fixing device. The paper after passing through the heat fixing device is cooled by the cooling roller of the cooling device, so that the toner on the paper is cooled and hardened, and the occurrence of the blocking phenomenon can be suppressed. In addition, the cooling roller has a tubular structure, and the cooling liquid flows into the cooling roller from one end side to the other end side in the longitudinal direction of the cooling roller. To be cooled.

しかしながら、冷却ローラ長手方向一端側から他端側に向かって一方向に一つの経路で冷却ローラ内に冷却液が流されるので、前記一端側では冷却液の温度が最も低く、前記他端側に行くほど用紙から冷却ローラが吸熱した熱により冷却液の温度が高くなる。そのため、冷却ローラの長手方向の温度差により冷却効率に差が生じるといった問題が生じる。   However, since the coolant flows through the cooling roller in one direction from one end side to the other end side in the longitudinal direction of the cooling roller, the temperature of the coolant is lowest on the one end side, and on the other end side. The temperature of the coolant increases due to the heat absorbed by the cooling roller from the paper. Therefore, there arises a problem that a difference in cooling efficiency occurs due to a temperature difference in the longitudinal direction of the cooling roller.

本発明は以上の問題点に鑑みなされたものであり、その目的は、冷却ローラの長手方向の温度差を低減することができる冷却装置、及び、その冷却装置を備えた画像形成装置を提供することである。   SUMMARY An advantage of some aspects of the invention is that it provides a cooling device capable of reducing a temperature difference in the longitudinal direction of a cooling roller, and an image forming apparatus including the cooling device. That is.

上記目的を達成するために、請求項1の発明は、シート状部材に接することでシート状部材を冷却する冷却ローラと、該冷却ローラに設けられた供給口から冷却ローラ内に冷却媒体を供給し、該冷却ローラに設けられた排出口から冷却ローラ外に排出された冷却媒体を回収する冷却媒体供給回収手段と、を備えた冷却装置において、前記冷却ローラは、外管内に内管を内包し、該外管と該内管との隙間を冷却媒体が流れる外側流路、及び、該内管内を冷却媒体が流れる内側流路を有する二重管構造であり、前記内管の冷却ローラ長手方向途中に前記外側流路と前記内側流路とを連通する開口を設けており、前記冷却媒体供給回収手段によって供給された冷却媒体が前記内側流路を流れ前記開口を通って前記外側流路に流れ込み少なくとも前記冷却ローラの一端側に向かって流れる第1の経路と、前記冷却媒体供給回収手段によって供給された冷却媒体が前記内側流路を流れ前記開口を通って前記外側流路に流れ込み少なくとも前記冷却ローラの他端側に向かって流れる第2の経路とが形成されるように構成し、前記冷却ローラの両端それぞれに、前記外管を回転可能に支持し、前記内管を固定支持する支持手段を設けたことを特徴とするものである。
また、請求項2の発明は、請求項1の冷却装置において、上記開口が上記内管の冷却ローラ長手方向の略中央部に形成されており、上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第1の排出口とを設け、前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第2の排出口とを設けており、前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出され、前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出されることを特徴とするものである。
また、請求項3の発明は、請求項1の冷却装置において、上記開口が上記内管の冷却ローラ長手方向の略中央部に形成されており、上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口を設け、前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口を設け、上記冷却ローラの一端側と他端側とのどちらか一方に、前記冷却ローラ内から冷却ローラ外に上記冷却媒体を排出する排出口を設けており、前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出され、前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出されることを特徴とするものである。
また、請求項4の発明は、請求項1の冷却装置において、上記冷却ローラ内を冷却ローラ長手方向途中で2つの領域に仕切る仕切り壁を有し、上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第1の排出口とを設け、前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第2の排出口とを設けており、前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記仕切り壁で折り返されて前記仕切り壁よりも前記一端側にある前記外側流路に流れ込み前記第1の排出口から排出され、前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記仕切り壁で折り返されて前記仕切り壁よりも前記他端側にある前記外側流路に流れ込み前記第2の排出口から排出されることを特徴とするものである。
また、請求項5の発明は、請求項4の冷却装置において、上記第1の経路と上記第2の経路との冷却ローラ長手方向途中で上記仕切り壁によって折り返される位置が、前記冷却ローラの周方向で段階的または連続的にことなることを特徴とするものである。
また、請求項の発明は、請求項2または3の冷却装置において、前記開口の近傍に前記内側流路から前記開口を通して前記外側流路に冷却媒体を導くガイド壁を設けたことを特徴とするものである。
また、請求項の発明は、請求項2または3の冷却装置において、上記開口を上記内管の長手方向で異なる位置に複数形成したことを特徴とするものである。
また、請求項の発明は、請求項1、2、3、4、5、6またはの冷却装置において、シート状部材の冷却ローラ長手方向に直交する方向の幅の略中央が、上記第1の経路で前記内側流路から前記外側流路に冷却媒体が流れ込む位置、及び、上記第2の経路で前記内側流路から前記外側流路に冷却媒体が流れ込む位置、の近傍を通ることを特徴とするものである。
また、請求項の発明は、請求項1、2、3、4、5、6またはの冷却装置において、シート状部材の冷却ローラ長手方向に直交する方向の幅が、上記第1の経路の前記外側流路と上記第2の経路の前記外側流路とのどちらかの冷却ローラ長手方向の幅よりも狭い場合には、シート状部材の前記幅よりも前記冷却ローラ長手方向の幅が広い上記第1の経路上または上記第2の経路上でシート状部材が搬送され、シート状部材が搬送される側の流路にのみ冷却媒体を流すことを特徴とするものである。
また、請求項10の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、上記第1の経路及び上記第2の経路に流す冷却媒体の送液を1つの送液手段で行うことを特徴とするものである。
また、請求項11の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、上記第1の経路に流す冷却媒体と上記第2の経路に流す冷却媒体とを別個の送液手段で行うことを特徴とするものである。
また、請求項12の発明は、請求項1、2、3、4、5、6、7またはの冷却装置において、上記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段を有しており、前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを同一にすることを特徴とするものである。
また、請求項13の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、上記前記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段と、上記第1の経路及び上記第2の経路を流れる冷却媒体の温度を検知する温度検知手段とを有し、前記温度検知手段によって前記検知した冷却媒体の温度に基づいて、前記第1の経路上及び前期第2の経路上の冷却効率が同一になるように、前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを調整することを特徴とするものである。
また、請求項14の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、冷却媒体の熱を外部に放熱する放熱手段と、該放熱手段に送風する冷却ファンと、該冷却ファンの風量を制御する風量制御手段と、上記第1の経路及び上記第2の経路を流れる冷却媒体の温度を検知する温度検知手段とを有し、前記温度検知手段によって検知した冷却媒体の温度に基づいて、前記第1の経路及び前記第2の経路を流れる冷却媒体の温度が同一になるように、前記風量制御手段によって前記冷却ファンの風量を制御することを特徴とするものである。
また、請求項15の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、上記前記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段と、上記第1の経路上及び上記第2の経路上における冷却ローラ表面近傍の温度を検知する温度検知手段とを有し、前記温度検知手段によって検知した冷却ローラ表面近傍の温度に基づいて、前記第1の経路上及び前記第2の経路上の冷却ローラ表面近傍の温度が同一になるように、前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを調整することを特徴とするものである。
また、請求項16の発明は、請求項1、2、3、4、5、6、7、8またはの冷却装置において、冷却媒体の熱を外部に放熱する放熱手段と、該放熱手段に送風する冷却ファンと、該冷却ファンの風量を制御する風量制御手段と、上記第1の経路上及び上記第2の経路上における冷却ローラ表面近傍の温度を検知する温度検知手段とを有し、前記温度検知手段によって検知した冷却ローラ表面近傍の温度に基づいて、前記第1の経路上及び前記第2の経路上の冷却ローラ表面近傍の温度が同一になるように、前記風量制御手段によって前記冷却ファンの風量を制御することを特徴とするものである。
また、請求項17の発明は、シート状部材上にトナー像を形成するトナー像形成手段と、該シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、該熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15または16の冷却装置を用いることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 provides a cooling roller that cools the sheet-like member by contacting the sheet-like member, and supplies a cooling medium into the cooling roller from a supply port provided in the cooling roller. And a cooling medium supply and recovery means for recovering the cooling medium discharged outside the cooling roller from the discharge port provided in the cooling roller, wherein the cooling roller includes the inner pipe in the outer pipe. And a double pipe structure having an outer flow path through which a cooling medium flows through the gap between the outer pipe and the inner pipe, and an inner flow path through which the cooling medium flows through the inner pipe. An opening communicating the outer channel and the inner channel is provided midway in the direction, and the cooling medium supplied by the cooling medium supply and recovery means flows through the inner channel and passes through the opening. Flow into at least the above A first path that flows toward one end of the rejection roller, and a cooling medium supplied by the cooling medium supply / recovery means flows through the inner flow path and flows into the outer flow path through the opening. A second path that flows toward the other end side is formed, and support means for rotatably supporting the outer tube and fixing and supporting the inner tube are provided at both ends of the cooling roller, respectively. it is characterized in that the.
According to a second aspect of the present invention, in the cooling device of the first aspect, the opening is formed at a substantially central portion of the inner tube in the longitudinal direction of the cooling roller, Provided with a first supply port for supplying the cooling medium and a first discharge port for discharging the cooling medium from the inside of the cooling roller to the outside of the cooling roller, and the cooling roller at the other end of the cooling roller. A second supply port for supplying the cooling medium therein and a second discharge port for discharging the cooling medium from the inside of the cooling roller to the outside of the cooling roller, and are supplied from the first supply port. The cooling medium flows through the inner flow path in the first path, flows into the outer flow path through the opening, flows toward at least one of the one end side and the other end side, and the first discharge port. Discharge from at least one of the second discharge ports The cooling medium supplied from the second supply port flows through the inner flow path through the second path, flows into the outer flow path through the opening, and is at least one of the one end side and the other end side. It is discharged from at least one of the first discharge port and the second discharge port.
According to a third aspect of the present invention, in the cooling device according to the first aspect, the opening is formed at a substantially central portion of the inner tube in the longitudinal direction of the cooling roller, and the cooling roller is provided at one end side of the cooling roller. Provided with a first supply port for supplying the cooling medium, and provided with a second supply port for supplying the cooling medium into the cooling roller on the other end side of the cooling roller, A discharge port for discharging the cooling medium from the inside of the cooling roller to the outside of the cooling roller is provided on one of the other end side, and the cooling medium supplied from the first supply port is in the first path. The cooling medium supplied from the second supply port is flown through the inner flow path, flows into the outer flow path through the opening, flows toward the one end side or the other end side, and is discharged from the discharge port. Flowing through the inner flow path in the second path Is characterized in that the discharged said toward the end flows into the outside flow passage side or the other end through the mouth from the flow the discharge port.
According to a fourth aspect of the present invention, in the cooling device of the first aspect, the cooling roller has a partition wall that divides the inside of the cooling roller into two regions in the longitudinal direction of the cooling roller, and the cooling roller is provided at one end side of the cooling roller. A first supply port for supplying the cooling medium and a first discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller, and the cooling roller is provided at the other end of the cooling roller. A second supply port for supplying the cooling medium into the roller and a second discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller are provided, and the supply from the first supply port The cooled cooling medium flows through the inner flow path in the first path, is folded back by the partition wall, flows into the outer flow path on the one end side of the partition wall, and is discharged from the first discharge port. Supplied from the second supply port The reject medium flows through the inner flow path in the second path, is folded back by the partition wall, flows into the outer flow path on the other end side than the partition wall, and is discharged from the second discharge port. It is characterized by.
According to a fifth aspect of the present invention, there is provided the cooling device according to the fourth aspect, wherein a position of the first path and the second path folded back by the partition wall in the longitudinal direction of the cooling roller is a circumference of the cooling roller. It is characterized by being stepwise or continuous in direction.
The invention of claim 6 is characterized in that, in the cooling device of claim 2 or 3, a guide wall for guiding a cooling medium from the inner flow path to the outer flow path through the opening is provided in the vicinity of the opening. To do.
According to a seventh aspect of the invention, in the cooling device of the second or third aspect, a plurality of the openings are formed at different positions in the longitudinal direction of the inner tube.
The invention of claim 8, claim 1, 2, 3, 4, in the 7 cooling device was 6 or a substantially center of the width in the direction orthogonal to the cooling roller longitudinal direction of the sheet-shaped member, Passes near the position where the cooling medium flows from the inner flow path to the outer flow path in the first path, and the position where the cooling medium flows from the inner flow path to the outer flow path in the second path. It is characterized by this.
The invention of claim 9, claim 1,2,3,4,5, in the 7 cooling device was 6 or the width in the direction orthogonal to the cooling roller longitudinal direction of the sheet-shaped member, said first When the width of the cooling roller in the longitudinal direction is narrower than the width of the cooling channel in the longitudinal direction of either of the outer flow path of the second path and the outer flow path of the second path, The sheet-like member is conveyed on the first path or the second path having a large width, and the cooling medium is allowed to flow only in the flow path on the side where the sheet-shaped member is conveyed.
The invention of claim 10, claim 1,2,3,4,5,6,7, in the cooling system 9 was 8 or, the first path and the cooling medium flowing in the second path The liquid feeding is performed by one liquid feeding means.
The invention of claim 11, claim 1,2,3,4,5,6,7, in the cooling system 9 was 8 or the cooling medium and the second path passing to said first path The cooling medium to be flowed into the tank is performed by a separate liquid feeding means.
The invention of claim 12, in the cooling device according to claim 1,2,3,4,5,6, 7 or 8, of the first path and the second cooling medium flowing in the path And a flow rate adjusting means for adjusting a flow rate, wherein the flow rate of the cooling medium flowing through the first path and the flow rate of the cooling medium flowing through the second path are made equal by the flow rate adjusting means. To do.
The invention of claim 13, claim 1,2,3,4,5,6,7, in the cooling system 9 was 8 or flows to the said first path and said second path A flow rate adjusting means for adjusting a flow rate of the cooling medium; and a temperature detecting means for detecting a temperature of the cooling medium flowing through the first path and the second path, the cooling medium detected by the temperature detecting means. The flow rate of the cooling medium flowing through the first path by the flow rate adjusting unit and the second flow rate are adjusted so that the cooling efficiency on the first path and the second path in the previous period are the same based on the temperature of the second path. The flow rate of the cooling medium flowing in the path is adjusted.
The invention of claim 14, in claim 1, 2, 3, 4, the cooling device 9 was 8 or, a radiation means for radiating heat of the cooling medium to the outside, heat radiation A cooling fan for blowing air to the means, an air volume control means for controlling the air volume of the cooling fan, and a temperature detection means for detecting the temperature of the cooling medium flowing through the first path and the second path, Based on the temperature of the cooling medium detected by the temperature detection means, the air volume control means controls the air volume of the cooling fan so that the temperature of the cooling medium flowing through the first path and the second path becomes the same. It is characterized by doing.
The invention of claim 15, claim 1,2,3,4,5,6,7, in the cooling system 9 was 8 or flows to the said first path and said second path A flow rate adjusting means for adjusting a flow rate of the cooling medium; and a temperature detecting means for detecting a temperature in the vicinity of the surface of the cooling roller on the first path and the second path, and the temperature detecting means detects the temperature. Cooling that flows through the first path by the flow rate adjusting means so that the temperatures in the vicinity of the surface of the cooling roller on the first path and the second path are the same based on the temperature in the vicinity of the surface of the cooling roller. The flow rate of the medium and the flow rate of the cooling medium flowing through the second path are adjusted.
The invention of claim 16, in claim 1, 2, 3, 4, the cooling device 9 was 8 or, a radiation means for radiating heat of the cooling medium to the outside, heat radiation A cooling fan for blowing air to the means, an air volume control means for controlling the air volume of the cooling fan, and a temperature detection means for detecting the temperature in the vicinity of the surface of the cooling roller on the first path and the second path. Then, based on the temperature in the vicinity of the surface of the cooling roller detected by the temperature detecting means, the air volume control means so that the temperatures in the vicinity of the surface of the cooling roller on the first path and the second path are the same. To control the air volume of the cooling fan.
According to a seventeenth aspect of the present invention, there is provided a toner image forming means for forming a toner image on a sheet-like member, and a heat fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member by at least heat. And a cooling unit that cools the sheet-like member on which the toner image has been fixed by the thermal fixing unit, wherein the cooling unit is the claim 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,14,1 5 or is characterized in the use of 16 of the cooling device.

本発明においては、上記第1の経路で内側流路を流れ内管の冷却ローラ長手方向途中に形成された開口から外側流路に流れ込み前記開口から冷却ローラの一端側に向かって流れる冷却媒体と、上記第2の経路で内側流路を流れ内管の冷却ローラ長手方向途中に形成された開口から外側流路に流れ込み前記開口から冷却ローラの他端側に向かって流れる冷却媒体とにより、冷却ローラが冷却される。これにより、第1の経路の外側流路を流れる冷却媒体と第2の経路の外側流路を流れる冷却媒体それぞれが冷却ローラから受熱する熱量は、冷却ローラの長手方向で冷却媒体を一端側から他端側へ一方向に一つの経路で行う構成よりも少なくなる。よって、その分、第1の経路の外側流路を流れる冷却媒体と第2の経路の外側流路を流れる冷却媒体それぞれの温度上昇が抑えられるので、冷却ローラの長手方向で冷却媒体を一端側から他端側へ一方向に一つの経路で行う構成よりも、冷却ローラの長手方向の温度差を低減することができる。   In the present invention, the cooling medium flows through the inner channel in the first path from the opening formed in the middle of the cooling roller in the longitudinal direction of the inner tube to the outer channel, and flows from the opening toward one end of the cooling roller. The cooling medium flows through the inner passage in the second path and flows into the outer passage from the opening formed in the longitudinal direction of the cooling roller of the inner tube, and is cooled by the cooling medium flowing from the opening toward the other end of the cooling roller. The roller is cooled. As a result, the amount of heat received from the cooling roller by each of the cooling medium flowing through the outer flow path of the first path and the cooling medium flowing through the outer flow path of the second path is determined from the one end side in the longitudinal direction of the cooling roller. This is less than the configuration in which one path is provided in one direction toward the other end. Therefore, the temperature rise of the cooling medium flowing through the outer flow path of the first path and the cooling medium flowing through the outer flow path of the second path can be suppressed accordingly, so that the cooling medium is disposed at one end side in the longitudinal direction of the cooling roller. The temperature difference in the longitudinal direction of the cooling roller can be reduced as compared with the configuration in which one path from one side to the other end side is performed.

以上、本発明によれば、冷却ローラの長手方向の温度差を低減することができるという優れた効果がある。   As mentioned above, according to this invention, there exists the outstanding effect that the temperature difference of the longitudinal direction of a cooling roller can be reduced.

冷却ローラを備えた冷却装置の一例の概略図。Schematic of an example of a cooling device provided with a cooling roller. 一般に用いられている回転管継手手段を取り付けた冷却ローラの概略断面図。The schematic sectional drawing of the cooling roller which attached the rotation pipe joint means generally used. 構成例1に係る冷却ローラの概略構成図。2 is a schematic configuration diagram of a cooling roller according to Configuration Example 1. FIG. 構成例1に係る冷却ローラの概略断面図。2 is a schematic cross-sectional view of a cooling roller according to Configuration Example 1. FIG. 構成例1に係る他の冷却ローラの概略断面図。FIG. 5 is a schematic cross-sectional view of another cooling roller according to Configuration Example 1. (a)構成例2に係る冷却ローラの概略断面図。(b)構成例2に係る冷却ローラの内管の拡大図。(A) The schematic sectional drawing of the cooling roller which concerns on the example 2 of a structure. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 2 of a structure. (a)構成例3に係る冷却ローラの概略断面図。(b)構成例3に係る冷却ローラの内管の拡大図。(A) The schematic sectional drawing of the cooling roller which concerns on the example 3 of a structure. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 3 of a structure. 構成例2の変形例に係る冷却ローラの概略断面図。FIG. 6 is a schematic cross-sectional view of a cooling roller according to a modification example of configuration example 2. (a)構成例4に係る冷却ローラの概略断面図。(b)構成例4に係る冷却ローラの内管の拡大図。(A) Schematic sectional drawing of the cooling roller which concerns on the structural example 4. FIG. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 4 of a structure. (a)構成例5に係る冷却ローラの概略断面図。(b)構成例5に係る冷却ローラの内管の拡大図。(A) Schematic sectional drawing of the cooling roller which concerns on the structural example 5. FIG. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 5 of a structure. (a)構成例6に係る冷却ローラの概略断面図。(b)構成例6に係る冷却ローラの内管の拡大図。(A) Schematic sectional view of a cooling roller according to Configuration Example 6. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the structural example 6. FIG. 構成例6に係る冷却ローラの長手方向から見た断面図。Sectional drawing seen from the longitudinal direction of the cooling roller which concerns on the structural example 6. FIG. (a)構成例7に係る冷却ローラの概略断面図。(b)構成例7に係る冷却ローラの内管の拡大図。(A) Schematic sectional drawing of the cooling roller which concerns on the structural example 7. FIG. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 7 of a structure. 構成例7に係る他の冷却ローラの概略断面図。10 is a schematic cross-sectional view of another cooling roller according to Configuration Example 7. FIG. (a)構成例8に係る冷却ローラの概略断面図。(b)構成例8に係る冷却ローラの内管の拡大図。(A) Schematic sectional drawing of the cooling roller which concerns on the structural example 8. FIG. (B) The enlarged view of the inner pipe | tube of the cooling roller which concerns on the example 8 of a structure. 構成例9に係る冷却ローラの概略断面図。10 is a schematic cross-sectional view of a cooling roller according to Configuration Example 9. FIG. 冷却ローラに対する用紙の通紙位置の説明に用いる図。The figure used for description of the paper passing position of the paper with respect to the cooling roller. 1つの送液手段で冷却液を送液する場合の冷却循環装置の模式図。The schematic diagram of the cooling circulation apparatus in the case of sending a cooling liquid with one liquid sending means. 2つの送液手段で冷却液を送液する場合の冷却循環装置の模式図。The schematic diagram of the cooling circulation apparatus in the case of sending a cooling liquid with two liquid feeding means. タンク内に冷却液の温度を検知する温度検知手段を設けた冷却循環装置の模式図。The schematic diagram of the cooling circulation apparatus which provided the temperature detection means which detects the temperature of a cooling fluid in a tank. 外管内部に冷却ローラの表面近傍の温度を検知する温度検知手段が設けられた冷却ローラの概略断面図。The schematic sectional drawing of the cooling roller in which the temperature detection means which detects the temperature of the surface vicinity of a cooling roller was provided in the outer tube | pipe. 本実施形態に係る画像形成装置の概略構成図。1 is a schematic configuration diagram of an image forming apparatus according to an embodiment. 一端側にだけ回転管継手手段11を取り付けた冷却ローラの概略断面図。The schematic sectional drawing of the cooling roller which attached the rotary pipe joint means 11 only to the one end side.

本発明の冷却ローラおよび冷却装置を、熱定着手段によって用紙上のトナーを定着させる画像形成装置を用いて説明する。しかし、本発明の冷却ローラおよび冷却装置はそれに限定されることなく、シート媒体の冷却が必要な装置であれば適応可能である。   The cooling roller and the cooling device of the present invention will be described using an image forming apparatus in which toner on a sheet is fixed by heat fixing means. However, the cooling roller and the cooling device of the present invention are not limited thereto, and can be applied to any device that requires cooling of the sheet medium.

冷却手段としての冷却ローラは、管状構造であり、内部に冷却液を流し循環させることで冷却ローラ表面を冷却するようにしたものである。この冷却ローラを有する冷却装置を熱定着手段直後の用紙搬送経路中に配置し、冷却ローラによって用紙を搬送させると同時に、接触させることで用紙から熱を除去し冷却する。   The cooling roller as a cooling means has a tubular structure, and the surface of the cooling roller is cooled by flowing and circulating a cooling liquid therein. A cooling device having this cooling roller is arranged in the paper transport path immediately after the heat fixing means, and the paper is transported by the cooling roller and simultaneously brought into contact with it to remove heat from the paper and cool it.

図1は、用紙搬送の働きをも担う本発明の冷却ローラ10を備えた冷却装置100の一例の概略図である。冷却装置100には用紙Pの搬送方向(左右方向)に間隔をおいて配列されたローラ2とローラ3が設けられて、用紙搬送の搬送ベルト4を展張している。そして用紙搬送方向下流側のローラ2を駆動ローラ(図示しない駆動源と連結)として、搬送ベルト4を反時計回り方向に回転させ、用紙を図中右側から左側へ搬送する。   FIG. 1 is a schematic view of an example of a cooling device 100 including a cooling roller 10 according to the present invention that also functions as a sheet conveyance. The cooling device 100 is provided with rollers 2 and 3 arranged at intervals in the conveyance direction (left-right direction) of the paper P, and the conveyance belt 4 for paper conveyance is extended. Then, using the roller 2 on the downstream side in the paper transport direction as a driving roller (connected to a drive source not shown), the transport belt 4 is rotated counterclockwise to transport the paper from the right side to the left side in the figure.

冷却装置100よりも用紙搬送方向上流側には熱定着手段7が配置されており、冷却装置100よりも用紙搬送方向下流側には排紙収容部8があり、ローラ3の上方には熱定着手段7から搬送されてきた用紙Pをガイドする上ガイド5が設けられている。また、ローラ2とローラ3との中間位置には、搬送ベルト4に食い込むように上から冷却ローラ10が圧接されており、冷却ローラ10は搬送ベルト4の搬送力を利用した連れ回りで回転するようになっている。図中の符号6は冷却装置100本体を構成するブラケットであり、ローラ2、ローラ3、冷却ローラ10、及び、上ガイド5などの構成部品を固定または回転自在に支持する部材である。冷却装置100はこのブラケット6によりユニット化され、画像形成装置本体に組み込まれる。   A heat fixing unit 7 is disposed upstream of the cooling device 100 in the paper conveyance direction, a paper discharge accommodating portion 8 is provided downstream of the cooling device 100 in the paper conveyance direction, and heat fixing is performed above the rollers 3. An upper guide 5 for guiding the paper P conveyed from the means 7 is provided. In addition, a cooling roller 10 is pressed from above at an intermediate position between the roller 2 and the roller 3 so as to bite into the conveyance belt 4, and the cooling roller 10 rotates in association with the conveyance force of the conveyance belt 4. It is like that. Reference numeral 6 in the drawing is a bracket that constitutes the main body of the cooling device 100, and is a member that supports components such as the roller 2, the roller 3, the cooling roller 10, and the upper guide 5 in a fixed or rotatable manner. The cooling device 100 is unitized by the bracket 6 and incorporated into the image forming apparatus main body.

熱定着手段7で熱せられ高温となった用紙Pは、排紙収容部8に排出される前に冷却装置100を通過する。詳細には、熱定着手段7を通って高温となった用紙Pが、冷却装置100の上ガイド5とローラ3との間に入り込み、その後、冷却ローラ10と搬送ベルト4とで形成されるニップ領域部を通過して排紙収容部8に排出される。冷却ローラ10の内部は管構造になっており、外部で十分に冷却された冷却液が冷却ローラ10内に供給され冷却ローラ10内を循環した後に冷却液が冷却ローラ10内から排出される。用紙Pは、冷却ローラ10と搬送ベルト4とが接することで形成されるニップ領域で冷却ローラ10に密着し接触しながら通過されるので、その際に用紙Pの熱は冷却ローラ10に吸熱され用紙Pが十分に冷却される。例えば、熱定着手段7の通過直後の用紙Pの表面温度が100℃程度のときに用紙Pを冷却装置100に通過させることで、用紙Pを50〜60℃程度まで冷却することができる。   The paper P heated to a high temperature by the heat fixing unit 7 passes through the cooling device 100 before being discharged to the paper discharge storage unit 8. More specifically, the sheet P that has reached a high temperature through the heat fixing unit 7 enters between the upper guide 5 and the roller 3 of the cooling device 100, and then the nip formed by the cooling roller 10 and the conveying belt 4. The paper passes through the area portion and is discharged to the paper discharge storage portion 8. The inside of the cooling roller 10 has a tube structure, and the cooling liquid sufficiently cooled outside is supplied into the cooling roller 10 and circulated through the cooling roller 10, and then the cooling liquid is discharged from the cooling roller 10. Since the sheet P passes through the nip region formed by the contact between the cooling roller 10 and the conveying belt 4 while being in close contact with the cooling roller 10, the heat of the sheet P is absorbed by the cooling roller 10 at that time. The sheet P is sufficiently cooled. For example, the paper P can be cooled to about 50 to 60 ° C. by passing the paper P through the cooling device 100 when the surface temperature of the paper P immediately after passing through the heat fixing unit 7 is about 100 ° C.

なお後述するが、冷却ローラ10は、回転管継手手段11を介してタンク51、ポンプ52、冷却ファン53を装着したラジエータ54などの冷却液循環手段と送液チューブ55により連通/連結され、封入した冷却液が冷却ローラ10内を流れることで冷却ローラ10が冷却される。   As will be described later, the cooling roller 10 is communicated / connected with a coolant circulation means such as a radiator 54 equipped with a tank 51, a pump 52, and a cooling fan 53 via a rotary fitting means 11 and a liquid supply tube 55. The cooled liquid flows through the cooling roller 10 to cool the cooling roller 10.

次に図2を用いて、本発明の基本構成となる一般に用いられている回転管継手手段11(ロータリージョイント)を取り付けた冷却ローラ10の概略断面図の一例について説明する。   Next, an example of a schematic cross-sectional view of the cooling roller 10 to which a commonly used rotary pipe joint means 11 (rotary joint) serving as a basic configuration of the present invention is attached will be described with reference to FIG.

図2に示すように冷却ローラ10は外管14と内管15から成る中空の管構造で、少なくとも外管14が回転する。外管14は、軸付のフランジ10cと、軸受け10gを嵌合圧入したフランジ10dで両端が構成されており、両フランジに漏洩防止のOリング10eを入れ込んでネジ10fでそれぞれのフランジを外管14に取り付けている。このとき、両フランジとも、外管14に嵌合関係で挿入して取り付け、外管14との同軸度を出している。冷却ローラ10は、フランジ10cの軸と、フランジ10dの軸受け10gを用いて冷却装置100のブラケット6に対して両端を回転自在に支持される。   As shown in FIG. 2, the cooling roller 10 has a hollow tube structure including an outer tube 14 and an inner tube 15, and at least the outer tube 14 rotates. Both ends of the outer tube 14 are composed of a flange 10c with a shaft and a flange 10d in which a bearing 10g is fitted and press-fitted, and an O-ring 10e for preventing leakage is inserted into both flanges, and each flange is removed by a screw 10f. It is attached to the tube 14. At this time, both flanges are inserted and attached to the outer tube 14 in a fitting relationship, and the coaxiality with the outer tube 14 is obtained. The cooling roller 10 is rotatably supported at both ends with respect to the bracket 6 of the cooling device 100 by using the shaft of the flange 10c and the bearing 10g of the flange 10d.

また、フランジ10dには平行ネジ部10hと嵌合部10iから成る結合部が形成されており、フランジ10dには、その結合部と相対するように形成した平行ネジ部11kと嵌合部11cとを有するロータ11jが取り付けられる。フランジ10dとロータ11jそれぞれの平行ネジ部10h,11kは外管14の回転方向(用紙Pの搬送方向)に対して締まり勝手となるような方向にネジ加工されている。   Further, the flange 10d is formed with a coupling portion including a parallel screw portion 10h and a fitting portion 10i. The flange 10d has a parallel screw portion 11k and a fitting portion 11c formed so as to face the coupling portion. Is attached. The parallel threaded portions 10h and 11k of the flange 10d and the rotor 11j are threaded in a direction that can be tightened with respect to the rotation direction of the outer tube 14 (the conveyance direction of the paper P).

ロータ11jは回転管継手手段11の構成部品であり、間隔をおいて設けた2箇の軸受け11dとの嵌合関係で回転自在に回転管継手手段11のケーシング11eに支持されている。   The rotor 11j is a component part of the rotary pipe coupling means 11, and is supported by the casing 11e of the rotary pipe coupling means 11 so as to be rotatable in a fitting relationship with two bearings 11d provided at intervals.

ロータ11jとフランジ10dとの取り付けは、上記したように嵌合関係による挿入/取り付けであるため、ロータ11jとフランジ10dとの同軸度が出される。このことから、外管14は、それぞれ嵌合関係で取り付けられたロータ11j及びフランジ10dを介して、回転管継手手段11のケーシング35eに対して軸が合わされた状態となっており、高精度な回転ができるようになっている。なお、ロータ11jにはフランジ10dとの隙間から冷却液の漏洩を防ぐOリング11gを入れ込んでいる。   Since the attachment of the rotor 11j and the flange 10d is the insertion / attachment by the fitting relationship as described above, the coaxiality between the rotor 11j and the flange 10d is obtained. From this, the outer pipe 14 is in a state in which the shaft is aligned with the casing 35e of the rotary pipe joint means 11 via the rotor 11j and the flange 10d, which are respectively attached in a fitting relationship. It can be rotated. Note that an O-ring 11g that prevents leakage of coolant from the gap with the flange 10d is inserted into the rotor 11j.

冷却ローラ10は、外管14が回転し内管15は固定(非回転)されている構成と、外管14が回転し外管14と共に内管15も回転する構成が考えられる。ここでは、外管14が回転し内管15は固定(非回転)されている構成の冷却ローラ10について説明する。   The cooling roller 10 may have a configuration in which the outer tube 14 rotates and the inner tube 15 is fixed (non-rotated), or a configuration in which the outer tube 14 rotates and the inner tube 15 rotates together with the outer tube 14. Here, the cooling roller 10 having a configuration in which the outer tube 14 is rotated and the inner tube 15 is fixed (non-rotated) will be described.

図2に示すように、内管15の回転管継手手段11側の一端側を回転しないように回転管継手手段11で固定支持し、他端側を外管14のフランジ10cに回転自在に支持させる。内管15の回転管継手手段11への取り付けは、ケーシング11eに取り付けられるフランジ11fに内管15の一端側を圧入することで内管15がフランジ11fに固定支持される。また、ケーシング11e、フランジ11f、及び、内管15は互いに嵌合関係で挿入され取り付けられるので、ケーシング11eに対して内管15の同軸度は出された状態となっている。なお、フランジ11fは漏洩防止のOリング11iを入れ込んで、ネジ11hでケーシング11eに取り付けられる。また、内管15はフランジ10cに軸受け10jを介して内管15の他端側が取り付けられ、回転自在に支持される。また、フランジ10c、軸受け10j、及び、内管15は互いに嵌合関係で挿入され取り付けられるので、フランジ10cに対して内管15の同軸度も出された状態となっている。   As shown in FIG. 2, one end side of the inner pipe 15 on the rotary pipe joint means 11 side is fixedly supported by the rotary pipe joint means 11 so as not to rotate, and the other end side is rotatably supported by the flange 10c of the outer pipe 14. Let The inner pipe 15 is fixedly supported on the flange 11f by press-fitting one end side of the inner pipe 15 into the flange 11f attached to the casing 11e. Moreover, since the casing 11e, the flange 11f, and the inner tube 15 are inserted and attached in a fitting relationship with each other, the coaxiality of the inner tube 15 is extended with respect to the casing 11e. In addition, the flange 11f inserts an O-ring 11i for preventing leakage, and is attached to the casing 11e with a screw 11h. The inner tube 15 is rotatably supported by the other end of the inner tube 15 being attached to the flange 10c via a bearing 10j. Further, since the flange 10c, the bearing 10j, and the inner tube 15 are inserted and attached in a fitting relationship with each other, the coaxiality of the inner tube 15 with respect to the flange 10c is also provided.

以上の構成により、冷却ローラ10の一端側では、回転管継手手段11のケーシング11eを基準にして外管14と内管15との同軸度が出され、そして回転管継手手段11のケーシング11eに対して外管14は回転自在に支持され、内管15はケーシング11eに対して回転しないよう固定支持されるようになっている。冷却ローラ10の他端側は、フランジ10cを介して外管14と内管15との同軸度が出され、そして外管14に対して内管15が回転自在となるように支持されている。   With the above configuration, on one end side of the cooling roller 10, the coaxiality of the outer tube 14 and the inner tube 15 is obtained with reference to the casing 11 e of the rotary pipe joint means 11, and the casing 11 e of the rotary pipe joint means 11 is provided. On the other hand, the outer tube 14 is rotatably supported, and the inner tube 15 is fixedly supported so as not to rotate with respect to the casing 11e. The other end side of the cooling roller 10 is supported so that the outer tube 14 and the inner tube 15 are coaxial with each other via the flange 10 c and the inner tube 15 is rotatable with respect to the outer tube 14. .

内管15のフランジ10c側の外周壁には開口孔10kが形成されおり、内管15の回転管継手手段11側の端面には断面孔10mが形成されている。回転管継手手段11の給水口19から内管15の断面孔10mを通って内管15内に供給された冷却液は、開口孔10kを通って外管14と内管15との間の隙間に流れ込み、回転管継手手段11内を通って排水口13から外部に排出される。   An opening hole 10k is formed in the outer peripheral wall of the inner pipe 15 on the flange 10c side, and a cross-sectional hole 10m is formed on the end face of the inner pipe 15 on the rotary fitting means 11 side. The coolant supplied from the water supply port 19 of the rotary pipe coupling means 11 through the cross-sectional hole 10m of the inner pipe 15 into the inner pipe 15 passes through the opening hole 10k, and the clearance between the outer pipe 14 and the inner pipe 15 is reached. , And passes through the rotary joint means 11 and is discharged from the drain port 13 to the outside.

冷却液の流路は矢印で示すように、先ず回転管継手手段11内に供給された冷却液は、内管15内を軸方向に流れ、内管15の軸方向フランジ10c側端部まで行く。なお、図2においては、回転管継手手段11の給水口19から内管15の軸方向フランジ10c側端部までの冷却液の流路を往流路とする。そして、内管15の軸方向フランジ10c側端部まで行った冷却液は、Uターンをするように開口孔10kを通って外管14と内管15との間の隙間で形成される外側流路に流れ込み、内管15とロータ11jの狭小間隙を通り、外管14と内管15とで形成される広い間隙を軸方向フランジ10c側に向かって流れ、このとき冷却液によって外管14が冷却される。そして、回転管継手手段11のケーシング11eに形成された排水口13から回転管継手手段11の外部に冷却液が排出される。なお、図2においては、開口孔10kから上記外側流路を通って排水口13までの冷却液の流路を復流路とする。   As indicated by the arrows in the flow path of the cooling liquid, first, the cooling liquid supplied into the rotary fitting means 11 flows in the inner pipe 15 in the axial direction and reaches the end of the inner pipe 15 on the axial flange 10c side. . In FIG. 2, the flow path of the coolant from the water supply port 19 of the rotary pipe joint means 11 to the axial flange 10c side end of the inner pipe 15 is defined as the forward flow path. Then, the coolant that has flowed up to the axial flange 10c side end portion of the inner tube 15 passes through the opening hole 10k so as to make a U-turn, and is formed in the outer flow formed by the gap between the outer tube 14 and the inner tube 15. Flows into the passage, passes through a narrow gap between the inner tube 15 and the rotor 11j, and flows toward the axial flange 10c through a wide gap formed by the outer tube 14 and the inner tube 15, and at this time, the outer tube 14 is cooled by the coolant. To be cooled. Then, the cooling liquid is discharged from the drain port 13 formed in the casing 11 e of the rotary pipe joint means 11 to the outside of the rotary pipe joint means 11. In FIG. 2, the flow path of the coolant from the opening hole 10k to the drain port 13 through the outer flow path is defined as a return flow path.

このように冷却ローラ10は内部に冷却液が流れる往復循環する流路を有し、回転管継手手段11を介して後述する冷却液循環手段と閉ループの流路を形成して冷却液を循環させる。   Thus, the cooling roller 10 has a reciprocating flow path through which the cooling liquid flows, and forms a closed-loop flow path with a cooling liquid circulating means (to be described later) via the rotary fitting 11 to circulate the cooling liquid. .

[構成例1]
次に、構成例1に係る冷却ローラ10を図3に示す。図3は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、冷却ローラ10の軸方向で2つの独立した経路12を設けた冷却ローラ10の概略断面図である。
[Configuration example 1]
Next, the cooling roller 10 according to the configuration example 1 is shown in FIG. FIG. 3 is a schematic cross-sectional view of the cooling roller 10 in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction and two independent paths 12 are provided in the axial direction of the cooling roller 10.

以下、第1の回転管継手手段11aおよび経路12a側を指すときは図番の後ろにaを付し、第2の回転管継手手段11bおよび経路12b側を指すときは図番の後ろにbを付して区別する。   Hereinafter, when referring to the first rotary joint means 11a and the path 12a side, a is added to the back of the figure number, and when referring to the second rotary joint means 11b and the path 12b side, b is attached behind the figure number. To distinguish.

図4において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10に供給され、内管15a内の内側流路18a(復流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bを分離する流路壁17で折り返されて、外管14と内管15aの間隙である外側流路16a(往流路)を通り、第1の回転管継手手段11aの排水口13aから排出される。   In FIG. 4, the cooling liquid is supplied to the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, passes through the inner flow path 18a (return flow path) in the inner pipe 15a, and the longitudinal direction of the cooling roller 10 The first rotary fitting means is folded at the flow path wall 17 separating the path 12a and the path 12b in the middle and passes through the outer flow path 16a (outward flow path) which is the gap between the outer pipe 14 and the inner pipe 15a. It is discharged from the drain port 13a of 11a.

同様に、冷却液は第2の回転管継手手段11bの給水口19bから冷却ローラ10に供給され、内管15b内の内側流路18b(復流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bを分離する流路壁17で折り返されて、外管14と内管15bの間隙である外側流路16b(往流路)を通り、第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the coolant is supplied to the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b (return flow path) in the inner pipe 15b, and is in the middle of the cooling roller 10 in the longitudinal direction. The second rotary pipe joint means 11b is folded back by the flow path wall 17 separating the path 12a and the path 12b in the second path and passes through the outer flow path 16b (outward flow path) which is a gap between the outer pipe 14 and the inner pipe 15b. Is discharged from the drain outlet 13b.

このように冷却ローラ10は内部に往復循環する2つの独立した経路12a、12bを有することにより冷却ローラ10の長手方向で冷却領域を分割し、回転管継手手段11a、11bを介して後述する図18、図19及び図20などに示すような冷却液循環手段と閉ループの流路を形成して冷却液を循環させる。   As described above, the cooling roller 10 has two independent paths 12a and 12b that reciprocately circulate therein, thereby dividing the cooling region in the longitudinal direction of the cooling roller 10, and will be described later through the rotary joint means 11a and 11b. 18, a coolant circulating means and a closed loop channel as shown in FIGS. 19, 19 and 20 are formed to circulate the coolant.

次に、図2と図4とを用いて冷却ローラ10の冷却効率について説明する。
図2に示す冷却ローラ10には、図18、図19及び図20に示すような冷却液循環手段によって冷却された冷却液が回転管継手手段11の給水口19から供給され、内管15の断面孔10bを通って内管15内に流れ込んだ冷却液が内管15内の内側流路18(往流路)を通り、開口孔10k(通水口)を経由して、外管14と内管15の間隙である外側流路16(復流路)を通り、回転管継手手段11の排水口13aから排出される。このとき、外側流路16を流れる冷却液によって外管14が冷却される。
Next, the cooling efficiency of the cooling roller 10 will be described with reference to FIGS.
The coolant cooled by the coolant circulating means as shown in FIGS. 18, 19 and 20 is supplied to the cooling roller 10 shown in FIG. The coolant that has flowed into the inner pipe 15 through the cross-sectional hole 10b passes through the inner flow path 18 (outward flow path) in the inner pipe 15 and passes through the opening hole 10k (water flow opening) to the inner pipe 15 and the inner pipe 15. It passes through the outer flow path 16 (return flow path), which is a gap between the pipes 15, and is discharged from the drain port 13 a of the rotary fitting means 11. At this time, the outer tube 14 is cooled by the coolant flowing through the outer flow path 16.

ここで、開口孔10kを通って内側流路18から外側流路16に冷却液が流れ込む位置(図2の外側流路16のフランジ10c側端部)では、冷却液の温度は低い状態であるが、冷却ローラ10の表面上を図1に示す熱定着手段7を通り加熱された用紙Pが密着し接触しながら通過するので、外側流路16の回転管継手手段11側に行くほど冷却液の温度は上昇する。したがって、冷却ローラ10(外管14)の表面温度は冷却ローラ長手方向フランジ10c側端部で最も低く、冷却ローラ長手方向回転管継手手段11側端部で最も高くなる。   Here, the temperature of the coolant is low at the position where the coolant flows from the inner channel 18 to the outer channel 16 through the opening 10k (the end of the outer channel 16 on the flange 10c side in FIG. 2). However, since the sheet P heated through the heat fixing means 7 shown in FIG. 1 passes through the surface of the cooling roller 10 while being in close contact with the surface, the coolant flows toward the rotary joint means 11 side of the outer flow path 16. Temperature rises. Accordingly, the surface temperature of the cooling roller 10 (outer tube 14) is the lowest at the end on the cooling roller longitudinal flange 10c side and the highest at the end on the cooling roller longitudinal rotating joint means 11 side.

よって、冷却効率は、冷却ローラ長手方向フランジ10c側端部で最も高く、冷却ローラ長手方向回転管継手手段11側端部で最も低くなり、冷却ローラ10の長手方向の全幅で温度勾配を持ち、温度差および冷却効率差も大きくなる。   Therefore, the cooling efficiency is highest at the end on the cooling roller longitudinal flange 10c side, lowest at the end on the cooling roller longitudinal rotating joint means 11, and has a temperature gradient over the entire width in the longitudinal direction of the cooling roller 10, The temperature difference and the cooling efficiency difference also increase.

図4に示す構成例1に係る冷却ローラ10には、図18、図19及び図20に示すような冷却液循環手段によって冷却された冷却液が第1の回転管継手手段11aの給水口19aから供給され、内管15a内の内側流路18a(往流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bを分離する流路壁17で折り返されて、外管14と内管15aとの間隙である外側流路16a(第1の復流路)を通り、第1の回転管継手手段11aの排水口13aから排出される。このとき、外側流路16aを流れる冷却液によって流路壁17より左側の外管14が冷却される。   In the cooling roller 10 according to the configuration example 1 shown in FIG. 4, the coolant cooled by the coolant circulating means as shown in FIGS. 18, 19 and 20 is supplied with the water supply port 19a of the first rotary joint means 11a. , And passes through the inner flow path 18a (outward flow path) in the inner pipe 15a and is folded back by the flow path wall 17 separating the path 12a and the path 12b in the middle of the cooling roller 10 in the longitudinal direction. It passes through the outer flow path 16a (first return flow path) that is a gap between the first rotary pipe coupling means 11a and is discharged from the drain port 13a. At this time, the outer pipe 14 on the left side of the channel wall 17 is cooled by the coolant flowing through the outer channel 16a.

同様に、冷却ローラ10には、図18、図19及び図20に示すような冷却液循環手段によって冷却された冷却液が第2の回転管継手手段11bの給水口19bから供給され、内管15b内の内側流路18b(往流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bを分離する流路壁17で折り返されて、外管14と内管15bの間隙である外側流路16b(第2の復流路)を通り、第2の回転管継手手段11bの排水口13bから排出される。このとき、外側流路16bを流れる冷却液によって流路壁17より右側の外管14が冷却される。   Similarly, the cooling liquid cooled by the cooling liquid circulating means as shown in FIGS. 18, 19 and 20 is supplied to the cooling roller 10 from the water supply port 19b of the second rotary joint means 11b, and the inner pipe 15b passes through the inner flow path 18b (outward flow path) in 15b and is folded back by the flow path wall 17 separating the path 12a and the path 12b in the middle of the cooling roller 10 in the longitudinal direction, and the gap between the outer pipe 14 and the inner pipe 15b. It passes through the outer flow path 16b (second return flow path), and is discharged from the drain port 13b of the second rotary fitting means 11b. At this time, the outer pipe 14 on the right side of the flow path wall 17 is cooled by the coolant flowing through the outer flow path 16b.

ここで、流路壁17で折り返されて内側流路18a、18bから外側流路16a、16bに冷却液が流れ込む位置では、冷却液の温度は低い状態であるが、冷却ローラ10の表面上を図1に示す熱定着手段7を通り加熱された用紙Pが密着し接触しながら通過するので、外側流路16aの第1の回転管継手手段11a側、及び、外側流路16bの第2の回転管継手手段11b側に行くほど冷却液の温度は上昇する。したがって、冷却ローラ10(外管14)の表面温度は図2の流路壁17側で最も低く、第1の回転管継手手段11a側及び第2の回転管継手手段11b側で最も高くなる。   Here, at the position where the cooling liquid flows back from the inner flow paths 18 a and 18 b to the outer flow paths 16 a and 16 b by the flow path wall 17, the temperature of the cooling liquid is low, but on the surface of the cooling roller 10. Since the heated paper P passes through the heat fixing means 7 shown in FIG. 1 while being in close contact with each other, it passes through the first rotary fitting means 11a side of the outer flow path 16a and the second of the outer flow path 16b. The temperature of the coolant rises toward the rotary pipe joint means 11b side. Therefore, the surface temperature of the cooling roller 10 (outer pipe 14) is the lowest on the flow path wall 17 side in FIG. 2, and the highest on the first rotary pipe joint means 11a side and the second rotary pipe joint means 11b side.

よって、冷却効率は、図4の流路壁17付近で最も高く、第1の回転管継手手段11a側及び第2の回転管継手手段11b側で最も低くなり、冷却ローラ10の流路壁17を境にして対称の温度勾配を持つと共に、冷却ローラ10の幅方向の温度差を小さくすることができる。   Therefore, the cooling efficiency is the highest in the vicinity of the flow path wall 17 in FIG. 4 and the lowest on the first rotary pipe joint means 11a side and the second rotary pipe joint means 11b side, and the flow path wall 17 of the cooling roller 10 is. As a result, the temperature difference in the width direction of the cooling roller 10 can be reduced.

また、流路壁17を境にして経路12a(第1の復流路)と経路12b(第2の復流路)に分割しているので、それぞれの外側流路16a及び外側流路16bで用紙Pの熱を受熱する量は約半分となるため、冷却液の温度上昇は低く抑えることができ、その結果、冷却効率は高くなり、また、冷却ローラ10の長手方向の冷却効率差は小さくなる。   Further, since the channel wall 17 is divided into a channel 12a (first return channel) and a channel 12b (second return channel), the outer channel 16a and the outer channel 16b are respectively divided. Since the amount of heat received by the sheet P is about half, the temperature rise of the cooling liquid can be suppressed low. As a result, the cooling efficiency is increased, and the difference in cooling efficiency in the longitudinal direction of the cooling roller 10 is small. Become.

更に、一般に用紙の印字率の高い画像中央部を効率良く冷却することができるので、排紙後に積載されたときに蓄熱し易い用紙中央部のブロッキング現象をより抑制することができる。   In addition, since the central portion of the image with a high sheet printing rate can be cooled efficiently, the blocking phenomenon at the central portion of the paper that is likely to store heat when stacked after paper discharge can be further suppressed.

次に図5は、図4に示した冷却ローラ10に対して、冷却液を内側流路18から外側流路16に流れ易くするように改良を加えた冷却ローラ10の概略断面図である。   Next, FIG. 5 is a schematic cross-sectional view of the cooling roller 10 in which the cooling roller 10 shown in FIG. 4 is improved so that the coolant can easily flow from the inner channel 18 to the outer channel 16.

図4に示した冷却ローラ10では、内側流路18を流れてきた冷却液は流路壁17に衝突し、外側流路16に流れ込みにくく、流路壁17近傍で対流が起こることがある。そこで、流路壁17に図5に示すような内側流路18から外側流路16の方向に冷却液の流れが導かれるような角度をもった流路補助壁23a、23bを設けている。また、同様の理由により図示していないが、流路壁17の形状を曲率をつけた形状にしてもよい。流路壁17に流路補助壁23a、23bを設けることにより、内側流路18から外側流路16への冷却液の流れがスムーズになり、冷却効率を上げることができる。   In the cooling roller 10 shown in FIG. 4, the cooling liquid flowing through the inner flow path 18 collides with the flow path wall 17 and hardly flows into the outer flow path 16, and convection may occur near the flow path wall 17. Therefore, the channel wall 17 is provided with channel auxiliary walls 23a and 23b having such an angle that the flow of the coolant is guided from the inner channel 18 to the outer channel 16 as shown in FIG. Although not shown for the same reason, the shape of the flow path wall 17 may be a curved shape. By providing the channel auxiliary walls 23a and 23b on the channel wall 17, the flow of the cooling liquid from the inner channel 18 to the outer channel 16 becomes smooth, and the cooling efficiency can be increased.

[構成例2]
次に、構成例2に係る冷却ローラ10を図6に示す。図6(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、経路12aと経路12bが通水口20を介して繋がっている構造の冷却ローラ10の概略断面図である。図6(b)は、図6(a)に示した冷却ローラ10を図中矢印X6から見た場合の内管15の拡大図である。
[Configuration example 2]
Next, the cooling roller 10 which concerns on the structural example 2 is shown in FIG. FIG. 6A is a schematic cross-sectional view of the cooling roller 10 having a structure in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and the path 12a and the path 12b are connected via the water flow port 20. is there. FIG. 6B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 6A is viewed from the arrow X6 in the drawing.

図6において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15内の内側流路18a(往流路)を通り、外管14と内管15との間隙である外側流路16a(復流路))や外側流路16b(復流路)を通り、冷却ローラ10の長手方向途中にある通水口20を通って、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   In FIG. 6, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, passes through the inner flow path 18a (outward flow path) in the inner pipe 15, and the outer pipe 14 and the inner pipe. The first rotation passes through the outer flow path 16a (return flow path)) and the outer flow path 16b (return flow path), which are gaps with the pipe 15, through the water passage 20 in the middle of the cooling roller 10 in the longitudinal direction. The water is discharged from the drain port 13a of the pipe joint means 11a and the drain port 13b of the second rotary pipe joint means 11b.

同様に、冷却液は、第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、内管15内の内側流路18b(往流路)を通り、外管14と内管15との間隙である外側流路16a(復流路)や外側流路16b(復流路)を通り、冷却ローラ10の長手方向途中にある通水口20を通って、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the coolant is supplied into the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b (outward flow path) in the inner pipe 15, and the inner pipe 15 and the inner pipe. The first rotary pipe passes through the outer flow path 16a (return flow path) and the outer flow path 16b (return flow path), which are gaps with the pipe 15, and through the water passage 20 in the middle of the cooling roller 10 in the longitudinal direction. It is discharged from the drain port 13a of the joint means 11a and the drain port 13b of the second rotary pipe joint means 11b.

このように冷却ローラ10は内部に通水口20を介して冷却液が流れる2つの経路12a、12bを有することにより冷却ローラ10の長手方向で冷却領域を分割し、第1の回転管継手手段11a及び第2の回転管継手手段11bを介して後述する冷却液循環手段と閉ループの流路を形成して冷却液を循環させる。内管15をこのような簡素化した形状にすることにより、低コスト化を図ることができる。   In this way, the cooling roller 10 has two paths 12a and 12b through which the cooling liquid flows through the water passage 20, so that the cooling region is divided in the longitudinal direction of the cooling roller 10, and the first rotary pipe coupling means 11a. And the cooling liquid circulation means and the closed loop channel which will be described later are formed through the second rotary pipe coupling means 11b to circulate the cooling liquid. By making the inner tube 15 into such a simplified shape, the cost can be reduced.

冷却効果は、流路壁17と通水口20の折り返し及び合流から分岐の構造の違いで若干の冷却液の流れ方に差が生じる場合も考えられるが、ほぼ構成例1の冷却ローラ10と同様の効果が得られる。   Although the cooling effect may be caused by a difference in the flow of the cooling liquid due to the difference in the structure of branching from the folding and joining of the flow path wall 17 and the water flow port 20, it is almost the same as the cooling roller 10 of the configuration example 1. The effect is obtained.

[構成例3]
次に、構成例3に係る冷却ローラ10を図7に示す。図7(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、経路12aと経路12bは通水口20を介して繋がっており、内管15内の内側流路18および給水口19を第1の回転管継手手段11aと第2の回転管継手手段11bとのどちらか一方の回転管継手手段11側にのみ有する構造の冷却ローラ10の概略断面図である。図7(b)は、図7(a)に示した冷却ローラ10を図中矢印X7から見た場合の内管15の拡大図である。
[Configuration example 3]
Next, the cooling roller 10 which concerns on the structural example 3 is shown in FIG. In FIG. 7A, the rotary pipe joint means 11 is attached to both ends in the axial direction of the cooling roller 10, and the path 12 a and the path 12 b are connected via the water inlet 20, and the inner flow path 18 in the inner pipe 15. 2 is a schematic cross-sectional view of the cooling roller 10 having a structure having a water supply port 19 only on one of the first rotary pipe joint means 11a and the second rotary pipe joint means 11b. FIG. 7B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 7A is viewed from the arrow X7 in the drawing.

図7において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15内の内側流路18a(復流路)を通り、冷却ローラ10の長手方向途中にある通水口20を通って、外管14と内管15との間隙である外側流路16a(往流路)や外側流路16bを通り、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   In FIG. 7, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19 a of the first rotary pipe joint means 11 a, passes through the inner flow path 18 a (return flow path) in the inner pipe 15, and the length of the cooling roller 10. Through the water passage 20 in the middle of the direction, the water passes through the outer flow path 16a (outward flow path) or the outer flow path 16b, which is the gap between the outer pipe 14 and the inner pipe 15, and drains the first rotary joint means 11a. It is discharged from the outlet 13a and the drainage port 13b of the second rotary pipe joint means 11b.

このように冷却ローラ10は内部に通水口20を介して冷却液が流れる経路12aと経路12bを有し、外側流路16a及び外側流路16bにより冷却ローラ10の長手方向で冷却領域を分割し、第1の回転管継手手段11a及び第2の回転管継手手段11bを介して後述する冷却液循環手段と閉ループの流路を形成して冷却液を循環させる。   As described above, the cooling roller 10 has a path 12a and a path 12b through which the cooling liquid flows through the water passage 20, and a cooling region is divided in the longitudinal direction of the cooling roller 10 by the outer channel 16a and the outer channel 16b. Then, the coolant is circulated by forming a closed-loop flow path with a coolant circulating means, which will be described later, via the first rotary joint means 11a and the second rotary joint means 11b.

また、給水口19を第1の回転管継手手段11aと第2の回転管継手手段11bとのどちらか一方に設けることで、冷却装置100の後述する送液チューブ55(図18などを参照)の取り回しが簡素化できる。   Further, by providing the water supply port 19 in one of the first rotary pipe joint means 11a and the second rotary pipe joint means 11b, a liquid feed tube 55 (see FIG. 18 and the like) of the cooling device 100 which will be described later. Can be simplified.

冷却効果は、流路壁17と通水口20の折り返し及び分岐の構造の違いで若干の冷却液の流れ方に差が生じる場合も考えられるが、ほぼ構成例1や構成例2の冷却ローラ10と同様の効果が得られる。   Although the cooling effect may be caused by a difference in the flow of the cooling liquid due to the difference between the folding and branching structures of the flow path wall 17 and the water flow port 20, the cooling roller 10 of the configuration example 1 or the configuration example 2 is almost used. The same effect can be obtained.

また、図8に示すように、通水口20を通って内側流路18aから流れ込んできた冷却液を外側流路16aや外側流路16bへ導く流路補助壁24を内管15bの通水口20側端部に設けることで、内側流路18aを流れてきた冷却液を通水口20を通って外側流路16aや外側流路16bに流れ込み易くすることができる。   Further, as shown in FIG. 8, a flow passage auxiliary wall 24 that guides the cooling liquid flowing from the inner flow passage 18a through the water flow passage 20 to the outer flow passage 16a and the outer flow passage 16b is connected to the water flow passage 20 of the inner tube 15b. By providing at the side end portion, the coolant that has flowed through the inner flow path 18a can easily flow into the outer flow path 16a and the outer flow path 16b through the water inlet 20.

[構成例4]
次に、構成例4に係る冷却ローラ10を図9に示す。図9(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、2つの独立した経路12を設けたもので、冷却ローラ10の長手方向で折り返す位置が周方向で異なる構造の冷却ローラ10の概略断面図である。図9(b)は、図9(a)に示した冷却ローラ10を紙面真上から見た場合の内管15の拡大図である。
[Configuration Example 4]
Next, the cooling roller 10 which concerns on the structural example 4 is shown in FIG. In FIG. 9A, the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and two independent paths 12 are provided. The position where the cooling roller 10 is folded back in the longitudinal direction is the circumferential direction. It is a schematic sectional drawing of the cooling roller 10 of a different structure. FIG. 9B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 9A is viewed from directly above the paper surface.

図9(a)において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15a内の内側流路18a(往流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bとを分離する流路壁17で折り返されて、外管14と内管15aとの間隙である外側流路16a(復流路)を通り、第1の回転管継手手段11aの排水口13aから排出される。   In FIG. 9 (a), the cooling liquid is supplied into the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, passes through the inner flow path 18a (forward flow path) in the inner pipe 15a, and passes through the cooling roller. 10 is folded at a flow path wall 17 that separates the path 12a and the path 12b in the middle of the longitudinal direction 10 and passes through an outer flow path 16a (return flow path) that is a gap between the outer pipe 14 and the inner pipe 15a. 1 is discharged from the drain port 13a of the rotary joint means 11a.

同様に、冷却液は、第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、内管15b内の内側流路18b(往流路)を通り、冷却ローラ10の長手方向途中にある経路12aと経路12bとを分離する流路壁17で折り返されて、外管14と内管15bとの間隙である外側流路16b(復流路)を通り、第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b (outward flow path) in the inner pipe 15b, and the longitudinal direction of the cooling roller 10. Folded by the flow path wall 17 that separates the path 12a and the path 12b in the middle of the direction, and passes through the outer flow path 16b (return flow path) that is the gap between the outer pipe 14 and the inner pipe 15b, the second rotation It is discharged from the drain port 13b of the pipe joint means 11b.

ここで、流路壁17は外側流路16に通水されないことで周方向1周にわたり局所的に冷却できない箇所がないように冷却ローラ10の長手方向に対して斜めに配置されている。内管15aと内管15bとは周方向で折り返し位置が異なるように断面が斜めになっており、また、冷却ローラ10の長手方向で互い違いになるように配置されている。   Here, the flow path wall 17 is disposed obliquely with respect to the longitudinal direction of the cooling roller 10 so that there is no portion that cannot be locally cooled over one circumference in the circumferential direction because water is not passed through the outer flow path 16. The inner tube 15a and the inner tube 15b are oblique in cross section so that the folding positions are different in the circumferential direction, and are arranged so as to be alternated in the longitudinal direction of the cooling roller 10.

本構成例において、図9(a)に示す冷却ローラ10の周方向の位置C1では外側流路16a(第1の復流路)を流れる冷却液により冷却ローラ10が冷却され、冷却ローラ10が回転して冷却ローラ10の周方向の位置C2では外側流路16b(第2の復流路)を流れる冷却液により冷却ローラ10が冷却される。したがって、冷却液が流路壁17で折り返される近傍において、冷却ローラ10の周方向1周にわたり外側流路16a、16bを冷却液が循環しない箇所をなくすことができるため、局所的に冷却効率が低下する箇所をなくすことができる。   In this configuration example, at the circumferential position C1 of the cooling roller 10 shown in FIG. 9A, the cooling roller 10 is cooled by the coolant flowing through the outer flow path 16a (first return flow path), and the cooling roller 10 The cooling roller 10 is cooled by the coolant flowing through the outer flow path 16b (second return flow path) at the circumferential position C2 of the cooling roller 10. Therefore, in the vicinity where the cooling liquid is folded at the flow path wall 17, it is possible to eliminate a portion where the cooling liquid does not circulate through the outer flow paths 16 a and 16 b over one circumferential direction of the cooling roller 10. The part which falls can be eliminated.

図9(b)に示す例では、内管15a、15bの断面が斜めになっているが、内管15a、15bの断面が斜めの構造に限定されるものではなく、冷却ローラ10の周方向1周にわたり局所的に外側流路16に冷却液が流れない構造であれば良く、また、冷却液の流れに支障が無ければ良い。   In the example shown in FIG. 9B, the cross sections of the inner pipes 15a and 15b are slanted, but the cross section of the inner pipes 15a and 15b is not limited to the slanted structure, and the circumferential direction of the cooling roller 10 Any structure that does not allow the coolant to flow locally in the outer flow path 16 over the entire circumference may be used, and it is sufficient that there is no problem with the flow of the coolant.

このように冷却ローラ10は内部に往復循環する2つの独立した経路12a、12bを有することにより冷却ローラ10の長手方向で冷却領域を分割し、第1の回転管継手手段11a及び第2の回転管継手手段11bを介して後述する冷却液循環手段と閉ループの流路を形成して冷却液を循環させる。   As described above, the cooling roller 10 has two independent paths 12a and 12b that reciprocately circulate therein, thereby dividing the cooling region in the longitudinal direction of the cooling roller 10, and the first rotary pipe coupling means 11a and the second rotation. The coolant is circulated by forming a closed-loop flow path with a coolant circulation means (to be described later) via the pipe joint means 11b.

[構成例5]
次に、構成例5に係る冷却ローラ10を図10に示す。図10(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、2つの独立した経路12a、12bを設けた冷却ローラ10の概略断面図である。図10(b)は、図10(a)に示した冷却ローラ10を図中矢印X10から見た場合の内管15の拡大図である。
[Configuration Example 5]
Next, the cooling roller 10 which concerns on the structural example 5 is shown in FIG. FIG. 10A is a schematic cross-sectional view of the cooling roller 10 provided with two independent paths 12a and 12b by attaching the rotary pipe joint means 11 to both ends of the cooling roller 10 in the axial direction. FIG. 10B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 10A is viewed from the arrow X10 in the drawing.

外管14は回転し、内管15aの一端側は回転しないように第1の回転管継手手段11aに固定支持され、他端側は流路壁17に軸受け(図示しない)を介して回転自在に支持される。また、内管15bの一端側は回転しないように第2の回転管継手手段11bに固定支持され、他端側は流路壁17に軸受け(図示しない)を介して回転自在に支持される。内管15aの流路壁17の近傍には内側流路18aから外側流路16aへ冷却液が流れるように通水口20aが設けられており、内管15bの流路壁17の近傍には内側流路18bから外側流路16bへ冷却液が流れるように通水口20bが設けられている。   The outer tube 14 rotates, and one end side of the inner tube 15a is fixedly supported by the first rotary fitting means 11a so as not to rotate, and the other end side is freely rotatable on the flow path wall 17 via a bearing (not shown). Supported by Further, one end side of the inner pipe 15b is fixedly supported by the second rotary fitting means 11b so as not to rotate, and the other end side is rotatably supported by the flow path wall 17 via a bearing (not shown). A water passage 20a is provided in the vicinity of the flow path wall 17 of the inner pipe 15a so that the coolant flows from the inner flow path 18a to the outer flow path 16a, and an inner side in the vicinity of the flow path wall 17 of the inner pipe 15b. A water passage 20b is provided so that the coolant flows from the channel 18b to the outer channel 16b.

このような構成にした冷却ローラ10は、外側流路16内の特に外管14の内側近傍で冷却液の流れ(軸方向と回転方向の流れ)に乱流を起こし、冷却効率を上げることができる。   The cooling roller 10 configured as described above causes a turbulent flow in the flow of the coolant (flow in the axial direction and the rotation direction) in the outer flow path 16, particularly in the vicinity of the inner side of the outer tube 14, thereby improving the cooling efficiency. it can.

参考構成例]
次に、参考構成例に係る冷却ローラ10を図11に示す。図11(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、2つの経路12a、12bは通水口20を介してつながっている構造の冷却ローラ10の概略断面図である。外管14は回転し、内管15の両端は回転管継手手段11に回転自在に支持される。図11(b)は、図11(a)に示した冷却ローラ10を図中矢印X11から見た場合の内管15の拡大図である。また、図12は、図11に示したY−Y’の位置で冷却ローラ1を切断した際の断面を冷却ローラ10の長手方向から見た場合の断面図である。
[ Reference configuration example]
Next, a cooling roller 10 according to a reference configuration example is shown in FIG. FIG. 11A is a schematic cross-sectional view of the cooling roller 10 having a structure in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and the two paths 12 a and 12 b are connected via the water passage 20. It is. The outer tube 14 rotates, and both ends of the inner tube 15 are rotatably supported by the rotary joint means 11. FIG. 11B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 11A is viewed from the arrow X11 in the drawing. FIG. 12 is a cross-sectional view when the cross section when the cooling roller 1 is cut at the position YY ′ shown in FIG. 11 is viewed from the longitudinal direction of the cooling roller 10.

本構成例においては、図12に示す通り、外管14と内管15とは連結支持手段21により局所的に固定されている。これにより、外管14と内管15とは連れ回りをする。連結支持手段21は、外管14と内管15とが連れ回りをしたときの負荷に耐えられる機械強度を有し、外側流路16を流れる冷却液の流れをできる限り妨げない構造にすることが望ましい。   In this configuration example, as shown in FIG. 12, the outer tube 14 and the inner tube 15 are locally fixed by the connection support means 21. As a result, the outer tube 14 and the inner tube 15 rotate together. The connection support means 21 has a mechanical strength that can withstand a load when the outer tube 14 and the inner tube 15 are rotated, and has a structure that does not obstruct the flow of the coolant flowing through the outer flow path 16 as much as possible. Is desirable.

このような構成にした冷却ローラ10は、外側流路16内の冷却液の流れ(軸方向と回転方向の流れ)をスムーズにし、冷却効率を上げることができる。   The cooling roller 10 having such a configuration can smooth the flow of the coolant in the outer flow path 16 (flow in the axial direction and the rotational direction) and increase the cooling efficiency.

[構成例
次に、構成例に係る冷却ローラ10を図13に示す。図13(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、2つの経路12a、12bは通水口20を介してつながっている構造の冷却ローラ10の概略断面図である。図13(b)は、図13(a)に示した冷却ローラ10を図中矢印X13から見た場合の内管15の拡大図である。
[Configuration Example 6 ]
Next, the cooling roller 10 which concerns on the structural example 6 is shown in FIG. FIG. 13A is a schematic cross-sectional view of the cooling roller 10 having a structure in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and the two paths 12 a and 12 b are connected via the water passage 20. It is. FIG. 13B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 13A is viewed from the arrow X13 in the drawing.

内管15の通水口20が形成されている箇所と外管14との間には流路補助壁22が外管14の内壁に固定されており、内側流路18a、18bを流れてきた冷却液が通水口20を通り、外側流路16a、16bに流れ込み易くするようにしている。   A passage auxiliary wall 22 is fixed to the inner wall of the outer tube 14 between the location where the water passage 20 of the inner tube 15 is formed and the outer tube 14, and cooling that has flowed through the inner channels 18a and 18b. The liquid passes through the water flow port 20 so as to easily flow into the outer flow paths 16a and 16b.

内管15が回転しない場合や、外管14と内管15とが連れ回りする場合は、流路補助壁22を通水口20の内部まで設けることが可能であるが、外管14と内管15とが非同期で回転する場合は流路補助壁22を内管15に接触しないように外側流路16内に設ける必要がある。   When the inner tube 15 does not rotate or when the outer tube 14 and the inner tube 15 rotate together, the flow path auxiliary wall 22 can be provided up to the inside of the water inlet 20. In the case of rotating asynchronously with 15, it is necessary to provide the channel auxiliary wall 22 in the outer channel 16 so as not to contact the inner tube 15.

また、図14に示すように、内管15が内管15aと内管15bとの2つに分割されている場合にも経路12a、12b近傍の外管14の内壁に流路補助壁22を固定させて設けることで、内側流路18a、18bを流れてきた冷却液を経路12a、12bを通って外側流路16a、16bに流れ込み易くすることができる。   As shown in FIG. 14, when the inner tube 15 is divided into two, an inner tube 15a and an inner tube 15b, a flow path auxiliary wall 22 is provided on the inner wall of the outer tube 14 near the paths 12a and 12b. By providing them in a fixed manner, the coolant that has flowed through the inner flow paths 18a, 18b can easily flow into the outer flow paths 16a, 16b through the paths 12a, 12b.

[構成例
次に、構成例に係る冷却ローラ10を図15に示す。図15(a)は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、2つの経路12a、12bは通水口20を介してつながっている構造の冷却ローラ10の概略断面図である。図15(b)は、図15(a)に示した冷却ローラ10を図中矢印X15から見た場合の内管15の拡大図である。
[Configuration Example 7 ]
Next, a cooling roller 10 according to Structural Example 7 is shown in FIG. FIG. 15A is a schematic cross-sectional view of the cooling roller 10 having a structure in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and the two paths 12 a and 12 b are connected via the water passage 20. It is. FIG. 15B is an enlarged view of the inner tube 15 when the cooling roller 10 shown in FIG. 15A is viewed from the arrow X15 in the drawing.

本構成例においては、内管15には外側流路16と内側流路18とを連通する少なくとも2個の通水口20a、20bが形成されており、冷却ローラ10の長手方向で冷却液の折り返す位置が周方向で異なるようになっている。これにより、周方向1周にわたり冷却ローラ10の長手方向の同一箇所で内側流路18から外側流路16に冷却液が全て流れてしまうのを抑制することができる。   In the present configuration example, the inner pipe 15 is formed with at least two water passages 20 a and 20 b communicating the outer flow path 16 and the inner flow path 18, and the cooling liquid is folded back in the longitudinal direction of the cooling roller 10. The position is different in the circumferential direction. As a result, it is possible to prevent the entire coolant from flowing from the inner flow path 18 to the outer flow path 16 at the same location in the longitudinal direction of the cooling roller 10 over one circumference in the circumferential direction.

図15の冷却ローラ10の周方向の位置C2において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15内の内側流路18aを通り、冷却ローラ10の長手方向途中にある通水口20aを通って、外管14と内管15との間隙である外側流路16a及び外側流路16bを通り、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   In the circumferential position C2 of the cooling roller 10 in FIG. 15, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, passes through the inner flow path 18a in the inner pipe 15, The drainage of the first rotary joint means 11a passes through the water passage 20a in the longitudinal direction of the cooling roller 10 and the outer flow path 16a and the outer flow path 16b which are the gaps between the outer pipe 14 and the inner pipe 15. It is discharged from the outlet 13a and the drainage port 13b of the second rotary pipe joint means 11b.

同様に、冷却液は、第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、内管15内の内側流路18bを通り、冷却ローラ10の長手方向途中にある通水口20aを通って、外管14と内管15との間隙である外側流路16a及び外側流路16bを通り、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the coolant is supplied into the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b in the inner tube 15, and passes through the cooling roller 10 in the middle in the longitudinal direction. The water outlet 20a passes through the outer flow path 16a and the outer flow path 16b, which are the gap between the outer pipe 14 and the inner pipe 15, and passes through the drain port 13a of the first rotary fitting means 11a and the second rotary fitting means. It is discharged from the drain outlet 13b of 11b.

また、図15の冷却ローラ10の周方向の位置C1において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15内の内側流路18aを通り、冷却ローラ10の長手方向途中にある通水口20bを通って、外管14と内管15との間隙である外側流路16a及び外側流路16bを通り、第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出される。   Further, at the position C1 in the circumferential direction of the cooling roller 10 in FIG. 15, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, and passes through the inner flow path 18a in the inner pipe 15. The first rotary pipe coupling means 11a passes through the water passage 20b in the middle of the cooling roller 10 in the longitudinal direction, passes through the outer flow path 16a and the outer flow path 16b, which are the gaps between the outer pipe 14 and the inner pipe 15. The drainage port 13a and the drainage port 13b of the second rotary pipe coupling means 11b are discharged.

同様に、冷却液は、第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、内管15内の内側流路18bを通り、冷却ローラ10の長手方向途中にある通水口20bを通って、外管14と内管15との間隙である外側流路16a及び外側流路16bを通り、第1の回転管継手手段11aの排水口13aおよび第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the coolant is supplied into the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b in the inner tube 15, and passes through the cooling roller 10 in the middle in the longitudinal direction. The drainage port 13a of the first rotary fitting means 11a and the second rotary fitting means pass through the water port 20b, the outer flow path 16a and the outer flow path 16b, which are the gap between the outer pipe 14 and the inner pipe 15. It is discharged from the drain outlet 13b of 11b.

このように内管15に設けられた複数個の通水口20の位置を冷却ローラ10の周方向で異なる位置に配置することにより、周方向で異なる位置の外側流路16を流れてきた冷却液が通水口20を通って内側流路18に流れ込むときに、異なる通水口20から内側流路18に流れ込んだ冷却液が互いにぶつかり合うことがないため、対流や乱流を低減することができ、外側流路16から内側流路18への冷却液の流れがスムーズになり、冷却効率を上げることができる。また、これらの対流や乱流を低減することにより局所的に冷却効率が低下することを抑制することができる。   In this way, by disposing the positions of the plurality of water flow ports 20 provided in the inner pipe 15 at different positions in the circumferential direction of the cooling roller 10, the coolant that has flowed through the outer flow paths 16 at different positions in the circumferential direction. When the coolant flows into the inner flow path 18 through the water flow port 20, the cooling liquids that flow into the inner flow path 18 from different water flow ports 20 do not collide with each other, so that convection and turbulence can be reduced. The flow of the coolant from the outer channel 16 to the inner channel 18 becomes smooth, and the cooling efficiency can be increased. Moreover, it can suppress that cooling efficiency falls locally by reducing these convection and turbulence.

[構成例
次に、構成例に係る冷却ローラ10を図16に示す。図16は、冷却ローラ10の軸方向両端それぞれに回転管継手手段11を取り付けて、経路12aと経路12bは通水口20を介してつながっている構造の冷却ローラ10の概略断面図である。冷却ローラ10の長手方向と直交する方向に熱定着手段7を通って高温となった用紙Pが搬送される。
[Configuration Example 8 ]
Next, a cooling roller 10 according to Configuration Example 8 is shown in FIG. FIG. 16 is a schematic cross-sectional view of the cooling roller 10 having a structure in which the rotary pipe joint means 11 is attached to both ends of the cooling roller 10 in the axial direction, and the path 12 a and the path 12 b are connected via the water passage 20. The sheet P having a high temperature is conveyed through the heat fixing means 7 in a direction orthogonal to the longitudinal direction of the cooling roller 10.

図16において冷却液は、第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、内管15a内の内側流路18aを通り、冷却ローラ10の長手方向途中にある経路12aと経路12bとを分離する流路壁17で折り返されて、外管14と内管15aとの間隙である外側流路16aを通り、第1の回転管継手手段11aの排水口13aから排出される。   In FIG. 16, the coolant is supplied into the cooling roller 10 from the water supply port 19a of the first rotary pipe joint means 11a, passes through the inner flow path 18a in the inner tube 15a, and is in the middle of the cooling roller 10 in the longitudinal direction. 12a and the path 12b are folded back by the flow path wall 17 and passed through the outer flow path 16a which is a gap between the outer pipe 14 and the inner pipe 15a, and discharged from the drain port 13a of the first rotary joint means 11a. Is done.

同様に、冷却液は第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、内管15b内の内側流路18bを通り、冷却ローラ10の長手方向途中にある経路12aと経路12bとを分離する流路壁17で折り返されて、外管14と内管15bとの間隙である外側流路16bを通り、第2の回転管継手手段11bの排水口13bから排出される。   Similarly, the cooling liquid is supplied into the cooling roller 10 from the water supply port 19b of the second rotary pipe joint means 11b, passes through the inner flow path 18b in the inner pipe 15b, and the path 12a in the middle of the cooling roller 10 in the longitudinal direction. And the flow path wall 17 that separates the path 12b, passes through the outer flow path 16b that is the gap between the outer pipe 14 and the inner pipe 15b, and is discharged from the drain port 13b of the second rotary fitting means 11b. The

したがって、用紙P以外の外部からの受熱がない場合、冷却ローラ10の外側流路16を流れる冷却液の温度および冷却ローラ10の外管14の表面温度は、内側流路18a、18bで折り返されて外側流路16a、16bに流れ込んだ位置が最も低く、第1の回転管継手手段11a側や第2の回転管継手手段11b側で最も高くなる。   Therefore, when there is no heat received from outside the paper P, the temperature of the coolant flowing through the outer flow path 16 of the cooling roller 10 and the surface temperature of the outer tube 14 of the cooling roller 10 are folded back by the inner flow paths 18a and 18b. The position where the air flows into the outer flow paths 16a and 16b is the lowest and the highest on the first rotary fitting 11a side and the second rotary fitting 11b side.

そこで、本構成例においては、冷却ローラ10の長手方向に対して、用紙Pの中心位置が流路壁17の位置を通るように、用紙Pを搬送させる。これにより、用紙Pの幅方向に対して左右均等に温度勾配を持って冷却ローラ10の外管14が冷却されるとともに、経路12a、12bから同量の熱量を奪うことになるので、どちらか一方の経路12の冷却液の温度上昇が大きくなるといったことを防止することができる。   Therefore, in the present configuration example, the sheet P is transported so that the center position of the sheet P passes through the position of the flow path wall 17 with respect to the longitudinal direction of the cooling roller 10. As a result, the outer tube 14 of the cooling roller 10 is cooled with a uniform temperature gradient with respect to the width direction of the paper P, and the same amount of heat is taken from the paths 12a and 12b. It is possible to prevent an increase in the temperature of the coolant in one path 12 from becoming large.

また、用紙Pの幅方向に対して左右均等に温度勾配を持って冷却ローラ10の外管14が冷却されるため、用紙Pの幅方向のカール、定着による画質および光沢ムラを低減することができる。   Further, since the outer tube 14 of the cooling roller 10 is cooled with a uniform temperature gradient on the left and right with respect to the width direction of the paper P, curling in the width direction of the paper P, image quality due to fixing, and uneven gloss can be reduced. it can.

また、本構成例で冷却ローラ10に設けた流路壁17を有しない構造の冷却ローラ10を用いる場合には、冷却ローラ10の長手方向に対して、用紙Pの中心位置が通水口20の中心位置を通るように、用紙Pを搬送させればよい。   Further, when the cooling roller 10 having a structure without the flow path wall 17 provided on the cooling roller 10 is used in the present configuration example, the center position of the sheet P with respect to the longitudinal direction of the cooling roller 10 is the water outlet 20. The paper P may be conveyed so as to pass through the center position.

ここで、用紙Pの幅が外側流路16aの長さより短い場合、経路12aのみに通水し、用紙Pは図17に示すように冷却ローラ10の経路12a上を搬送させる。このように一方の流路aへの通水のみで用紙Pの冷却を行うことで、エネルギーの低減および冷却装置100の長寿命化を図ることができる。   Here, when the width of the sheet P is shorter than the length of the outer flow path 16a, water is passed through only the path 12a, and the sheet P is conveyed on the path 12a of the cooling roller 10 as shown in FIG. Thus, by cooling the paper P only by passing water through one flow path a, energy can be reduced and the life of the cooling device 100 can be extended.

図17においては、外側流路16aと外側流路16bとの長さを同一としているが、外側流路16aと外側流路16bとの長さが異なる場合も考えられる。その場合、用紙Pの幅を検出して、用紙Pの幅が外側流路16aと外側流路16bとのどちらの長さよりも短いときには外側流路16a上と外側流路16b上とのどちら側を搬送させてもよく、用紙Pの幅が外側流路16aと16bのどちらか一方より長く、もう一方より短いときには、用紙Pの幅よりも長い方の経路12a上または経路12b上を搬送させればよい。   In FIG. 17, the lengths of the outer flow path 16a and the outer flow path 16b are the same, but the lengths of the outer flow path 16a and the outer flow path 16b may be different. In that case, the width of the paper P is detected, and when the width of the paper P is shorter than either the outer flow path 16a or the outer flow path 16b, which side of the outer flow path 16a or the outer flow path 16b is on either side. When the width of the paper P is longer than one of the outer channels 16a and 16b and shorter than the other, the paper P is transported on the path 12a or the path 12b that is longer than the width of the paper P. Just do it.

次に、図18を用いて、1つの送液手段で冷却液1を送液する場合について説明する。
冷却装置100に用いられている図18に示す冷却循環装置50は、タンク51内の冷却液1をポンプ52で送り出し、放熱手段であるラジエータ54を通るときに、冷却ファン53から送風を受けて外部に熱を放熱して冷却液1の温度を下げる(冷却液1と外部との熱交換)。ラジエータ54で冷却された冷却液1は分岐点J1で流路が2つに分かれた送液チューブ55それぞれにより冷却ローラ10の軸方向両端それぞれに取り付けられた、第1の回転管継手手段11aの給水口19a、及び、第2の回転管継手手段11bの給水口19bから、冷却ローラ10内に供給され、冷却ローラ内の経路12aや経路12bを流れる。このとき、熱定着手段7を通って高温となった用紙Pの熱を冷却ローラ10が奪い、冷却ローラ10内の冷却液1の温度が上昇する(冷却液1と用紙Pとの熱交換)。冷却ローラ10内で温度が上昇した冷却液1は第1の回転管継手手段11aの排水口13aや第2の回転管継手手段11bの排水口13bから排出され、合流点J2で再び一つの流路をとなった送液チューブ55を通り、タンク51を経由して再びポンプ52で送り出される。これらの冷却液1の循環を通して、用紙Pの熱を冷却装置100の外部に放出することを繰り返す。
Next, the case where the cooling liquid 1 is fed by one liquid feeding means will be described with reference to FIG.
The cooling circulation device 50 shown in FIG. 18 used for the cooling device 100 sends out the coolant 1 in the tank 51 by the pump 52 and receives air from the cooling fan 53 when passing through the radiator 54 which is a heat radiating means. Heat is radiated to the outside to lower the temperature of the coolant 1 (heat exchange between the coolant 1 and the outside). The cooling liquid 1 cooled by the radiator 54 is supplied to the first rotary pipe joint means 11a attached to both ends in the axial direction of the cooling roller 10 by the liquid feeding tubes 55 each having a flow path divided into two at the branch point J1. The water is supplied into the cooling roller 10 from the water supply port 19a and the water supply port 19b of the second rotary fitting 11b, and flows through the path 12a and the path 12b in the cooling roller. At this time, the cooling roller 10 takes away the heat of the sheet P that has become high temperature through the heat fixing unit 7, and the temperature of the cooling liquid 1 in the cooling roller 10 rises (heat exchange between the cooling liquid 1 and the sheet P). . The coolant 1 whose temperature has risen in the cooling roller 10 is discharged from the drain port 13a of the first rotary joint means 11a and the drain port 13b of the second rotary joint means 11b, and flows again at the junction J2. The liquid passes through the liquid supply tube 55 along the path, and is again sent out by the pump 52 via the tank 51. Through the circulation of the coolant 1, the heat of the sheet P is repeatedly released to the outside of the cooling device 100.

図18に示す冷却循環装置50において、ラジエータ54を出てから冷却ローラ10までの流路および冷却ローラ10の経路12a側と経路12b側の流路に関する構造が同一である場合、1つのポンプ52で送液することにより、給水口19a及び給水口19bには同一の流量および圧力となる。したがって、冷却ローラ10は流路壁17の左右で対称の冷却効率とすることができる。   In the cooling circulation device 50 shown in FIG. 18, when the flow path from the radiator 54 to the cooling roller 10 and the flow path on the path 12a side and the path 12b side of the cooling roller 10 are the same, one pump 52 In this case, the water supply port 19a and the water supply port 19b have the same flow rate and pressure. Therefore, the cooling roller 10 can have a symmetrical cooling efficiency on the left and right of the flow path wall 17.

次に、図19を用いて、2つの送液手段で冷却液1を送液する場合について説明する。
図19に示す冷却循環装置50において、冷却ローラ10の経路12aと経路12bの冷却液1の循環系は独立した流路R1と流路R2となっている。
Next, the case where the cooling liquid 1 is fed by two liquid feeding means will be described with reference to FIG.
In the cooling circulation device 50 shown in FIG. 19, the circulation system of the coolant 1 in the path 12a and the path 12b of the cooling roller 10 is an independent flow path R1 and flow path R2.

流路R1側では、タンク51a内の冷却液1aをポンプ52aで送り出し、ラジエータ54aを通るときに、冷却ファン53aから送風を受けて外部に熱を放熱して冷却液1aの温度を下げる(冷却液1aと外部との熱交換)。ラジエータ54aで冷却された冷却液1aは送液チューブ55aにより冷却ローラ10の軸方向一端側に取り付けられた第1の回転管継手手段11aの給水口19aから冷却ローラ10内に供給され、冷却ローラ内の経路12aを流れる。このとき、熱定着手段7を通って高温となった用紙Pの熱を冷却ローラ10が奪い、冷却ローラ10内の冷却液1aの温度が上昇する(冷却液1aと用紙Pとの熱交換)。冷却ローラ10内で温度が上昇した冷却液1aは第1の回転管継手手段11aの排水口13aから排出され、タンク51aを経由して再びポンプ52aで送り出される。   On the flow path R1 side, the coolant 1a in the tank 51a is pumped out by the pump 52a, and when passing through the radiator 54a, air is blown from the cooling fan 53a to radiate heat to the outside to lower the temperature of the coolant 1a (cooling) Heat exchange between the liquid 1a and the outside). The cooling liquid 1a cooled by the radiator 54a is supplied into the cooling roller 10 from the water supply port 19a of the first rotary joint means 11a attached to one end side in the axial direction of the cooling roller 10 by the liquid supply tube 55a. It flows through the inner path 12a. At this time, the cooling roller 10 takes away the heat of the sheet P that has become high temperature through the heat fixing unit 7 and the temperature of the cooling liquid 1a in the cooling roller 10 rises (heat exchange between the cooling liquid 1a and the sheet P). . The coolant 1a whose temperature has risen in the cooling roller 10 is discharged from the drain port 13a of the first rotary fitting means 11a, and is sent out again by the pump 52a via the tank 51a.

また、流路R2側では、タンク51b内の冷却液1bをポンプ52aで送り出し、ラジエータ54bを通るときに、冷却ファン53bから送風を受けて外部に熱を放熱して冷却液1bの温度を下げる(冷却液1bと外部との熱交換)。ラジエータ54bで冷却された冷却液1bは送液チューブ55bにより冷却ローラ10の軸方向一端側に取り付けられた第2の回転管継手手段11bの給水口19bから冷却ローラ10内に供給され、冷却ローラ内の経路12bを流れる。このとき、熱定着手段7を通って高温となった用紙Pの熱を冷却ローラ10が奪い、冷却ローラ10内の冷却液1bの温度が上昇する(冷却液1bと用紙Pとの熱交換)。冷却ローラ10内で温度が上昇した冷却液1bは第2の回転管継手手段11bの排水口13bから排出され、タンク51bを経由して再びポンプ52bで送り出される。   On the flow path R2 side, the coolant 1b in the tank 51b is pumped out by the pump 52a, and when passing through the radiator 54b, the air is received from the cooling fan 53b to dissipate heat to reduce the temperature of the coolant 1b. (Heat exchange between the coolant 1b and the outside). The cooling liquid 1b cooled by the radiator 54b is supplied into the cooling roller 10 from the water supply port 19b of the second rotary joint means 11b attached to one end in the axial direction of the cooling roller 10 by the liquid supply tube 55b. Flows through the inner path 12b. At this time, the cooling roller 10 takes away the heat of the sheet P that has become high temperature through the heat fixing unit 7 and the temperature of the cooling liquid 1b in the cooling roller 10 rises (heat exchange between the cooling liquid 1b and the sheet P). . The coolant 1b whose temperature has increased in the cooling roller 10 is discharged from the drain port 13b of the second rotary fitting means 11b, and is sent out again by the pump 52b via the tank 51b.

したがって、冷却ローラ10内の経路12aと経路12bとが異なる場合や、冷却ローラ10の経路12aと経路12bとが外部から受ける受熱量が異なる場合や、ラジエータ54a、54bを出てから冷却ローラ10までの流路が異なる場合等において、ポンプ52a、52bの送液量、冷却ファン53a、53bの風量、冷却液1a、1bの流量を独立して制御することが可能となる。   Therefore, when the path 12a and the path 12b in the cooling roller 10 are different from each other, when the amount of heat received from the outside of the path 12a and the path 12b of the cooling roller 10 is different, or after leaving the radiators 54a and 54b, the cooling roller 10 In the case where the flow paths are different, it is possible to independently control the liquid feeding amount of the pumps 52a and 52b, the air volume of the cooling fans 53a and 53b, and the flow rates of the cooling liquids 1a and 1b.

次に、冷却液1の流量を調整する機構ついて説明する。
冷却循環装置50を画像形成装置等に実装する場合、レイアウト上やスペースの問題により、例えラジエータ54を出てから冷却ローラ10までの流路および冷却ローラ10の経路12a側と経路12b側の流路に関する構造が同一であっても、第1の回転管継手手段11aと第2の回転管継手手段11bとに繋ぐ送液チューブ55の長さ異なることが十分考えられる。このとき、圧力損失等の影響により冷却ローラ10内の2つの経路12aと経路12bで冷却効率に差が生じる。また、循環系の構成の違いに加え、部品精度のばらつきやロット間のばらつきも考えられる。そこで、冷却循環装置50の送液チューブ55などに流量調整弁56を繋いで、機械的機構により流量の調整を可能にする。
Next, a mechanism for adjusting the flow rate of the coolant 1 will be described.
When the cooling circulation device 50 is mounted on an image forming apparatus or the like, the flow from the radiator 54 to the cooling roller 10 and the flow on the path 12a side and the path 12b side of the cooling roller 10 due to layout and space problems. Even if the structure regarding the path is the same, it is conceivable that the lengths of the liquid feeding tubes 55 connected to the first rotary pipe joint means 11a and the second rotary pipe joint means 11b are different. At this time, there is a difference in cooling efficiency between the two paths 12a and 12b in the cooling roller 10 due to the influence of pressure loss and the like. Further, in addition to the difference in the configuration of the circulatory system, variations in parts accuracy and variations between lots can be considered. Therefore, the flow rate adjusting valve 56 is connected to the liquid feeding tube 55 of the cooling circulation device 50, and the flow rate can be adjusted by a mechanical mechanism.

次に、冷却液1の温度を検知して冷却液1の流量を制御する場合について説明する。図20はタンク51a、51b内に冷却液1の温度を検知する温度検知手段57a、57bを設けた例である。   Next, the case where the temperature of the coolant 1 is detected and the flow rate of the coolant 1 is controlled will be described. FIG. 20 shows an example in which temperature detection means 57a and 57b for detecting the temperature of the coolant 1 are provided in the tanks 51a and 51b.

温度検知手段57a、57bによって検知した冷却液1の温度はフィードバック制御され、冷却ローラ10の経路12aと経路12bとを流れる冷却液の温度が同一になるようにポンプ52a、52bの送液量または流量調整弁56a、56bを調整して、冷却液1の流量を調整する。   The temperature of the coolant 1 detected by the temperature detectors 57a and 57b is feedback-controlled, and the pumping amount of the pumps 52a and 52b or the temperature of the coolant flowing through the path 12a and the path 12b of the cooling roller 10 is the same. The flow rate adjustment valves 56a and 56b are adjusted to adjust the flow rate of the coolant 1.

ここで、冷却する対象物は冷却ローラ10上を搬送される用紙Pであるから、温度検知手段57a、57bにより冷却ローラ10内の外側流路16a、16bを流れる冷却液1の温度を検知してフィードバック制御する方法が最も精度が良いことになる。しかし、冷却ローラ10内の外側流路16a、16bは温度検知手段57a、57bを設けるためのスペース的な問題や、冷却ローラ10が回転駆動する問題などがあるため、実際に温度検知手段57a、57bを設ける場所としては、冷却液1が第1の回転管継手手段11aの給水口19aや第2の回転管継手手段11bの給水口19bに流れ込む直前の図20に示す温度検知手段57c、57dが配設された位置が望ましい。また、各温度検知手段57によって検知した冷却液1の温度をフィードバックして、冷却ファン53a、53bの風量を制御して冷却液1の温度を制御する構成も可能である。   Here, since the object to be cooled is the sheet P conveyed on the cooling roller 10, the temperature detection means 57a, 57b detects the temperature of the coolant 1 flowing through the outer flow paths 16a, 16b in the cooling roller 10. The feedback control method is the most accurate. However, since the outer flow paths 16a and 16b in the cooling roller 10 have a space problem for providing the temperature detection means 57a and 57b and a problem that the cooling roller 10 is driven to rotate, the temperature detection means 57a, As a place where 57b is provided, the temperature detection means 57c and 57d shown in FIG. 20 immediately before the coolant 1 flows into the water supply port 19a of the first rotary joint means 11a and the water supply port 19b of the second rotary pipe joint means 11b. The position where is disposed is desirable. Also, a configuration is possible in which the temperature of the coolant 1 is controlled by feeding back the temperature of the coolant 1 detected by each temperature detection means 57 and controlling the air volume of the cooling fans 53a and 53b.

次に、冷却ローラ10の表面近傍の温度を検知して冷却液の流量を制御する場合について説明する。
図21は冷却ローラ10の外管14内部に冷却ローラ10の表面近傍の温度を検知する温度検知手段58を設けた例である。温度検知手段58によって検知した冷却ローラ10の表面近傍の温度はフィードバック制御され、冷却ローラ10の経路12aと経路12bとを流れる冷却液の温度が同一になるように例えば、図18に示したポンプ52の送液量または流量調整弁56a、56bを調整して、冷却液の流量を調整する。また、温度検知手段58によって検知した冷却ローラ10の冷却ローラ10の表面近傍の温度をフィードバックして、例えば、図18の冷却ファン53の風量を制御して冷却液の温度を制御する。
Next, the case where the temperature near the surface of the cooling roller 10 is detected to control the flow rate of the cooling liquid will be described.
FIG. 21 shows an example in which temperature detecting means 58 for detecting the temperature in the vicinity of the surface of the cooling roller 10 is provided inside the outer tube 14 of the cooling roller 10. The temperature in the vicinity of the surface of the cooling roller 10 detected by the temperature detecting means 58 is feedback controlled so that the temperature of the coolant flowing through the path 12a and the path 12b of the cooling roller 10 becomes the same, for example, the pump shown in FIG. The flow rate of the coolant is adjusted by adjusting the liquid supply amount or flow rate adjustment valves 56a and 56b of 52. Further, the temperature near the surface of the cooling roller 10 detected by the temperature detecting means 58 is fed back, for example, the air volume of the cooling fan 53 in FIG. 18 is controlled to control the temperature of the coolant.

図22は、本発明の冷却ローラ10を有する冷却装置100を搭載したタンデム型中間転写ベルト方式のカラー画像形成装置の構成概略図である。   FIG. 22 is a schematic configuration diagram of a color image forming apparatus of a tandem type intermediate transfer belt system equipped with a cooling device 100 having the cooling roller 10 of the present invention.

複数のローラによって中間転写媒体としての中間転写ベルト61を展張し、中間転写ベルト61はこれらのローラにより回転するように構成すると共に、中間転写ベルト61のまわりに画像形成用のプロセス手段を配置している。   An intermediate transfer belt 61 as an intermediate transfer medium is stretched by a plurality of rollers, the intermediate transfer belt 61 is configured to rotate by these rollers, and a process unit for image formation is disposed around the intermediate transfer belt 61. ing.

中間転写ベルト61の回転方向を図中矢印aとするとき、中間転写ベルト61の上方であってローラ62とローラ63との間には、中間転写ベルト61の回転方向の上流側から順に画像形成用のプロセス手段として、第1画像ステーション64Y、第2画像ステーション64C、第3画像ステーション64M、第5画像ステーション64Bkが配置されている。例えば第1画像ステーション64Yは、ドラム状の感光体71Yの周囲に帯電手段70Y、光書き込み手段72Y、現像装置73Y、クリーニング手段74Yが配置され、さらに中間転写ベルト61を挟んで感光体71の対向位置に中間転写ベルト61への転写手段としての1次転写ローラ75Yが設けられており、他の3つの画像ステーションも同一構成となっている。そしてそれら4つの画像ステーションが互いに所定のピッチ間隔となるように左右並列に配置されている。   When the rotation direction of the intermediate transfer belt 61 is indicated by an arrow a in the drawing, image formation is performed in order from the upstream side in the rotation direction of the intermediate transfer belt 61 above the intermediate transfer belt 61 and between the rollers 62 and 63. As the process means, a first image station 64Y, a second image station 64C, a third image station 64M, and a fifth image station 64Bk are arranged. For example, in the first image station 64Y, a charging unit 70Y, an optical writing unit 72Y, a developing unit 73Y, and a cleaning unit 74Y are arranged around a drum-shaped photoconductor 71Y, and the photoconductor 71 is opposed to the intermediate transfer belt 61. A primary transfer roller 75Y as a transfer means to the intermediate transfer belt 61 is provided at the position, and the other three image stations have the same configuration. These four image stations are arranged side by side so as to have a predetermined pitch interval.

本実施形態では光書き込み手段72をLEDを光源とする光学系としているが、半導体レーザーを光源とするレーザー光学系で構成することもでき、感光体71に対して画像情報に応じた露光を行う。   In the present embodiment, the optical writing means 72 is an optical system using an LED as a light source. However, the optical writing unit 72 can also be configured by a laser optical system using a semiconductor laser as a light source, and exposes the photoconductor 71 according to image information. .

中間転写ベルト61の下方には、シート状部材である用紙Pの用紙収納部76および給紙コロ77、レジストローラ対78、中間転写ベルト61を張架するローラ65に中間転写ベルト61を介して対向するように設けられた中間転写ベルト61から用紙Pへの転写手段としての2次転写ローラ66、中間転写ベルト61の裏面に接するローラ68の対向位置に中間転写ベルト61のおもて面に接するように設けられたクリーニング手段69、熱定着手段7、用紙Pを冷却する冷却ローラ10を有する冷却装置100、トナー定着後の用紙Pの排出部である排紙収容部8などが配置されている。そして、用紙収納部76から排紙収容部8へ至る用紙搬送路79が延びている。両面画像形成時に裏面の画像形成を行わせるため、冷却装置100を一度通過した用紙Pを反転させ、再度、レジストローラ対78へ搬送する両面画像形成用の用紙搬送路80も備えている。   Below the intermediate transfer belt 61, a sheet storage unit 76 and a sheet feeding roller 77, a registration roller pair 78, and a roller 65 that stretches the intermediate transfer belt 61 are interposed via the intermediate transfer belt 61. A secondary transfer roller 66 serving as a transfer means from the intermediate transfer belt 61 provided so as to face the sheet P and a roller 68 in contact with the back surface of the intermediate transfer belt 61 are opposed to the front surface of the intermediate transfer belt 61. A cleaning unit 69 provided in contact therewith, a thermal fixing unit 7, a cooling device 100 having a cooling roller 10 that cools the paper P, a paper discharge accommodating unit 8 that is a discharge unit of the paper P after toner fixing, and the like are arranged. Yes. A paper conveyance path 79 extending from the paper storage unit 76 to the paper discharge storage unit 8 extends. In order to form an image on the back side when forming a double-sided image, a paper conveyance path 80 for double-sided image formation that reverses the paper P once passed through the cooling device 100 and conveys it again to the registration roller pair 78 is also provided.

なお、冷却装置100の冷却ローラ10は用紙Pの熱を受熱する受熱部であり、冷却ファン53を装着したラジエータ54、ポンプ52、タンク51と共に送液チューブ55で連通/連結され、冷却液1が封入されている。冷却液の循環経路は送液チューブ55の矢印で示すように、ラジエータ54で冷やされた冷却液1を、冷却ローラ10へ供給し、そして冷却ローラ10内を廻ってから排出し、その後にタンク51、ポンプ52へ送り、再び、ラジエータ54に戻す順序であり、ポンプ52の回転圧力により冷却液1を循環させ、ラジエータ54で放熱することで冷却液1、如いては冷却ローラ10を冷やす。ポンプ52のパワーやラジエータ54の大きさなどは、熱設計条件(冷却ローラ10が冷却すべき熱量と温度の条件)によって決定される流量、圧力、冷却効率などを元に選定される。   The cooling roller 10 of the cooling device 100 is a heat receiving unit that receives the heat of the paper P. The cooling roller 10 is connected / connected by a liquid supply tube 55 together with a radiator 54, a pump 52, and a tank 51 equipped with a cooling fan 53. Is enclosed. As shown by the arrow of the liquid feeding tube 55, the cooling liquid circulation path supplies the cooling liquid 1 cooled by the radiator 54 to the cooling roller 10, discharges it after passing through the cooling roller 10, and then the tank. 51, the pump 52 is sent to the pump 52 and returned to the radiator 54 again. The coolant 1 is circulated by the rotational pressure of the pump 52, and the radiator 54 radiates heat to cool the coolant 1, and the cooling roller 10. The power of the pump 52, the size of the radiator 54, and the like are selected based on the flow rate, pressure, cooling efficiency, etc. determined by the thermal design conditions (the amount of heat and temperature conditions that the cooling roller 10 should cool).

画像の形成プロセスは、第1画像ステーション64Yに着目すれば、一般の静電記録方式に準じていて、暗中にて帯電手段70Yにより一様に帯電された感光体71Y上に光書き込み手段72Yにより露光して静電潜像を形成し、この静電潜像を現像装置73Yによりトナー像として可視像化する。そのトナー像は1次転写ローラ75Yにより感光体71Y上から中間転写ベルト61に転写される。転写後の感光体71Yの表面はクリーニング手段74によりクリーニングされる。他の画像ステーション64も第1画像ステーション64Yと同構成であり、同様の画像形成プロセスが行われる。   The image forming process follows the general electrostatic recording system when paying attention to the first image station 64Y, and is formed by the light writing means 72Y on the photoreceptor 71Y uniformly charged by the charging means 70Y in the dark. An electrostatic latent image is formed by exposure, and the electrostatic latent image is visualized as a toner image by the developing device 73Y. The toner image is transferred from the photoreceptor 71Y to the intermediate transfer belt 61 by the primary transfer roller 75Y. The surface of the photoreceptor 71Y after the transfer is cleaned by the cleaning means 74. The other image stations 64 have the same configuration as the first image station 64Y, and the same image forming process is performed.

画像ステーション64Y,64C,64M,64Bkにおける各現像装置73は、それぞれ異なる4色のトナーによる可視像化機能を有しており、各画像ステーション64Y,64C,64M,64Bkでイエロー、シアン、マゼンタ、ブラックを分担すれば、フルカラー画像を形成することができる。よって、中間転写ベルト61の同一画像形成領域が4つの画像ステーション64Y,64C,64M,64Bkを順次通過する間に、中間転写ベルト61を挟むようにして各感光体71とそれぞれ対向して設けられた1次転写ローラ75により与えられる転写バイアスによって、それぞれ1色ずつトナー像を中間転写ベルト61上に重ね転写されるようにすれば、上記同一画像形成領域が各画像ステーション64Y,64C,64M,64Bkを1回通過した時点で、この同一画像領域に、重ね転写によってフルカラートナー画像を得ることができる。   Each developing device 73 in each of the image stations 64Y, 64C, 64M, and 64Bk has a visual image forming function using different four color toners. Yellow, cyan, and magenta are used in each of the image stations 64Y, 64C, 64M, and 64Bk. If black is shared, a full color image can be formed. Accordingly, the same image forming area of the intermediate transfer belt 61 is provided to face the respective photoreceptors 71 so as to sandwich the intermediate transfer belt 61 while sequentially passing through the four image stations 64Y, 64C, 64M, and 64Bk. If the toner images are transferred one by one on the intermediate transfer belt 61 by the transfer bias given by the next transfer roller 75, the same image forming area will be transferred to each of the image stations 64Y, 64C, 64M, 64Bk. At the time of passing once, a full color toner image can be obtained by overlapping transfer on the same image area.

そして、中間転写ベルト61上に形成されてフルカラートナー画像は、用紙Pに転写される。転写後の中間転写ベルト61はクリーニング手段69によりクリーニングされる。用紙Pへの転写は転写時においてローラ65上で中間転写ベルト61を介して2次転写ローラ66に転写バイアスを印加し、2次転写ローラ66と中間転写ベルト61とのニップ部に用紙Pを通過させることにより行なわれる。用紙Pへの転写後、用紙P上に担持されたフルカラートナー像を熱定着手段7で定着することにより、用紙P上にフルカラーの最終画像が形成され、排紙収容部8に積載される。   Then, the full-color toner image formed on the intermediate transfer belt 61 is transferred to the paper P. The intermediate transfer belt 61 after the transfer is cleaned by a cleaning unit 69. For transfer onto the paper P, a transfer bias is applied to the secondary transfer roller 66 via the intermediate transfer belt 61 on the roller 65 at the time of transfer, and the paper P is applied to the nip portion between the secondary transfer roller 66 and the intermediate transfer belt 61. This is done by passing it through. After the transfer to the paper P, the full-color toner image carried on the paper P is fixed by the thermal fixing unit 7, thereby forming a full-color final image on the paper P and stacking it on the paper discharge storage unit 8.

本実施形態の画像形成装置においては、排紙収容部8に用紙Pが積載される前に、熱定着手段7の直後に配置した冷却装置100を用紙Pが通過する。通過する際、熱定着手段7で熱せられた用紙Pが受熱部である冷却ローラ10に接触しながら通過することになるので、冷却ローラ10の表面で用紙Pから熱を吸熱し、この熱を冷却ローラ10内部の冷却液1へ伝達する。熱が伝達され高温となった冷却液1は、この後、冷却ローラ10から排出され、冷却液1はタンク51、ポンプ52を経て、冷却ファン53を装着したラジエータ54に送られ、そこで熱が画像形成装置外に排熱される。ラジエータ54で熱が除去され室温近くにまで下げられた冷却液1は、その後、再び冷却ローラ10へと送られる。このような冷却液1による高い冷却性能の排熱サイクルによって、熱定着手段7で熱せられて高温となった用紙Pが効率良く冷やされる。従って、用紙Pが排紙収容部8に積載される時点では、用紙P上のトナーを確実に硬化状態とさせることができる。特に両面画像形成出力の際に大きな問題となっていたブロッキング現象を回避することができる。   In the image forming apparatus of the present embodiment, the paper P passes through the cooling device 100 disposed immediately after the heat fixing unit 7 before the paper P is stacked in the paper discharge storage unit 8. When passing, the paper P heated by the heat fixing means 7 passes while contacting the cooling roller 10 which is a heat receiving portion. Therefore, the surface of the cooling roller 10 absorbs heat from the paper P, and this heat is absorbed. This is transmitted to the coolant 1 inside the cooling roller 10. After the heat is transferred and the coolant 1 is heated to a high temperature, the coolant 1 is discharged from the cooling roller 10, and the coolant 1 is sent through the tank 51 and the pump 52 to the radiator 54 equipped with the cooling fan 53. Heat is exhausted outside the image forming apparatus. The coolant 1 from which heat has been removed by the radiator 54 and lowered to near room temperature is then sent to the cooling roller 10 again. By such an exhaust heat cycle with high cooling performance by the cooling liquid 1, the paper P heated to a high temperature by the heat fixing means 7 is efficiently cooled. Therefore, when the paper P is stacked in the paper discharge storage unit 8, the toner on the paper P can be surely cured. In particular, it is possible to avoid the blocking phenomenon that has been a serious problem in the double-sided image formation output.

本実施形態では、冷却ローラの長手方向両端それぞれに回転管継手手段11を取り付けているが、図23に示すように、冷却ローラの一端側にだけ回転管継手手段11を取り付けた構成であっても良い。この場合、外管14に内包される内管15の内部を部分的に二重管構造にする。これにより、回転管継手手段11の給水口19から供給された冷却液1が内管15内の内側流路18aを冷却ローラの回転管継手手段11が取り付けられた側である一端側から他端側に向かって流れ、内管15の略中央部に形成された連通口20を通り分岐壁25によって分岐され外側流路16aと外側流路16bとに流れ込む。外側流路16aに流れ込んだ冷却液1は、外側流路16aを前記一端側に向かって流れ回転管継手手段11の排水口13から排出される。一方、外側流路16bに流れ込んだ冷却液1は、外側流路16bを前記他端側に向かって流れ外管14の他端側の内側端面で折り返されて内管15内の内側流路18bに流れ込む。内側流路18に流れ込んだ冷却液1は前記一端側に向かって流れ内管5内の内側流路18cを通り回転管継手手段11の排出口13から排出される。   In this embodiment, the rotary joint means 11 is attached to each of the longitudinal ends of the cooling roller. However, as shown in FIG. 23, the rotary pipe joint means 11 is attached only to one end of the cooling roller. Also good. In this case, the inside of the inner tube 15 included in the outer tube 14 is partially made into a double tube structure. As a result, the coolant 1 supplied from the water supply port 19 of the rotary pipe joint means 11 passes through the inner flow path 18a in the inner pipe 15 from one end side, which is the side where the rotary pipe joint means 11 of the cooling roller is attached, to the other end. It flows toward the side, passes through the communication port 20 formed at the substantially central portion of the inner tube 15, is branched by the branch wall 25, and flows into the outer channel 16a and the outer channel 16b. The coolant 1 that has flowed into the outer flow path 16 a flows through the outer flow path 16 a toward the one end side and is discharged from the drain port 13 of the rotary fitting means 11. On the other hand, the coolant 1 that has flowed into the outer flow path 16 b flows toward the other end side of the outer flow path 16 b and is folded back at the inner end face on the other end side of the outer pipe 14 to be turned into the inner flow path 18 b in the inner pipe 15. Flow into. The coolant 1 flowing into the inner flow path 18 flows toward the one end side, passes through the inner flow path 18 c in the inner pipe 5, and is discharged from the discharge port 13 of the rotary joint means 11.

以上、本実施形態によれば、シート状部材である用紙Pに接することで用紙Pを冷却する冷却ローラ10と、冷却ローラ10に設けられた供給口から冷却ローラ10内に冷却媒体である冷却液1を供給し、冷却ローラ10に設けられた排出口から冷却ローラ10外に排出された冷却液1を回収する冷却媒体供給回収手段であるポンプ52と、を備えた冷却装置100において、冷却ローラ10は、外管14内に内管15を内包し、外管14と内管15との隙間を冷却液1が流れる外側流路16、及び、内管15内を冷却液1が流れる内側流路18を有する二重管構造であり、内管15の冷却ローラ長手方向途中に外側流路16と内側流路18とを連通する開口を設けており、ポンプ52によって供給された冷却液1が内側流路18を流れ前記開口を通って外側流路16に流れ込み少なくとも冷却ローラ10の一端側に向かって流れる第1の経路である経路12aと、ポンプ52によって供給された冷却液1が内側流路18を流れ前記開口を通って外側流路16に流れ込み少なくとも冷却ローラ10の他端側に向かって流れる第2の経路である経路12bとが形成されるように構成した。これにより、冷却ローラ10の長手方向で冷却液1が流れる経路を2つに分割して冷却ローラ10が冷却されるので、冷却ローラ10の長手方向で冷却液1を一方向で行う構成よりも、冷却ローラ10の温度上昇を低減することができる。また、冷却ローラ10の長手方向及び両端の温度差を低減することができる。また、冷却ローラ10の幅方向で均一な画質、光沢をえることができる。さらに、冷却ローラ10の長手方向で対称に温度制御しているので、用紙Pのカールを低減することができる。
また、冷却ローラ10の両端それぞれに、外管14を回転可能に支持し、内管15を固定支持する支持手段である回転管継手手段11を設けたことで、外側流路16内の外管14近傍で冷却液1の流れ(長手方向と回転方向の流れ)に乱流を起こさせるので、冷却効率を上げることができる。
また、本実施形態によれば、上記開口が内管15の冷却ローラ長手方向の略中央部に形成されており、冷却ローラ10の一端側に、冷却ローラ10内に冷却液1を供給する第1の供給口と、冷却ローラ10内から冷却ローラ10外に冷却液1を排出する第1の排出口とを設け、冷却ローラ10の他端側に、冷却ローラ10内に冷却液1を供給する第2の供給口と、冷却ローラ10内から冷却ローラ10外に冷却液1を排出する第2の排出口とを設けており、前記第1の供給口から供給された冷却液1は前記経路12aで内側流路18を流れ前記開口を通って外側流路16に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出され、前記第2の供給口から供給された冷却液1は前記経路12bで内側流路18を流れ前記開口を通って外側流路16に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出される。これにより、冷却ローラ10の構成が簡素化されるので、冷却装置100の低コスト化を図ることができる。
また、本実施形態によれば、上記開口が内管15の冷却ローラ長手方向の略中央部に形成されており、冷却ローラ10の一端側に、冷却ローラ10内に冷却液1を供給する第1の供給口を設け、冷却ローラ10の他端側に、冷却ローラ10内に冷却液1を供給する第2の供給口を設け、冷却ローラ10の一端側と他端側とのどちらか一方に、冷却ローラ10内から冷却ローラ10外に冷却液1を排出する排出口を設けており、前記第1の供給口から供給された冷却液1は前記経路12aで内側流路18を流れ前記開口を通って外側流路16に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出され、前記第2の供給口から供給された冷却液1は前記経路12bで内側流路18を流れ前記開口を通って外側流路16に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出される。これにより、前記経路12aと前記経路12bとを流れる冷却液1の前記排出口を1箇所に共通化しているので、冷却ローラ10の構成が簡素化されるので、冷却装置100の低コスト化を図ることができ、また、前記排出口とポンプ52などとを繋ぐ送液チューブ55の引き回しを簡単にすることができる。
また、本実施形態によれば、冷却ローラ10内を冷却ローラ長手方向途中で2つの領域に仕切る仕切り壁である流路壁17を有し、冷却ローラ10の一端側に、冷却ローラ10内に冷却液1を供給する第1の供給口と、冷却ローラ10内から冷却ローラ10外に冷却液1を排出する第1の排出口とを設け、冷却ローラ10の他端側に、冷却ローラ10内に冷却液1を供給する第2の供給口と、冷却ローラ10内から冷却ローラ10外に冷却液1を排出する第2の排出口とを設けており、前記第1の供給口から供給された冷却液1は上記経路12aで内側流路18を流れ流路壁17で折り返されて流路壁17よりも前記一端側にある外側流路16に流れ込み前記第1の排出口から排出され、前記第2の供給口から供給された冷却液1は上記経路12bで内側流路18を流れ流路壁17で折り返されて流路壁17よりも前記他端側にある外側流路16に流れ込み前記第2の排出口から排出される。これにより、冷却ローラ10の構成が簡素化されるので、冷却装置100の低コスト化を図ることができる。
また、本実施形態によれば、上記経路12aと上記経路12bとの冷却ローラ長手方向途中で流路壁17によって冷却液1の折り返される位置が、冷却ローラ10の周方向で段階的または連続的に異なる。これにより、冷却ローラ10の用紙Pが搬送される領域において、冷却ローラ10の長手方向で冷却ローラ10の1周にわたり外側流路16に通水されない箇所を無くすことができるので、局所的に冷却できない箇所を無くすことができる
た、本実施形態によれば、前記開口の近傍に内側流路18から前記開口を通して外側流路16に冷却液1を導くガイド壁である流路補助壁22、23、24を設けたことで、2つの異なる内側流路18を流れてきた冷却液1を直接合流させることなく、内側流路18から外側流路16の方向にスムーズに流れを導くことができるので、冷却効率の低下を抑制することができる。
また、本実施形態によれば、上記開口を内管15の長手方向で異なる位置に複数形成したことで、冷却ローラ10の長手方向の前記開口がある箇所で冷却ローラ10の1周にわたり、外側流路16で2つの異なる外側流路16を流れてきた冷却液1がぶつかり合う位置をずらしているので、局所的に冷却効率が低下することを抑制することができる。
また、本実施形態によれば、用紙Pの冷却ローラ長手方向に直交する方向の幅の略中央が、上記経路12aで外側流路16から内側流路18に冷却液1が流れ込む位置、及び、上記経路12bで外側流路16から内側流路18に冷却液1が流れ込む位置、の近傍を通ることで、2つの異なる外側流路16を通る用紙Pの面積が同じになるように中央通紙されるので、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、用紙Pの冷却ローラ長手方向に直交する方向の幅が、上記経路12aの外側流路16と上記経路12bの外側流路16とのどちらかの冷却ローラ長手方向の幅よりも狭い場合には、用紙Pの前記幅よりも冷却ローラ長手方向の幅が広い上記経路12a上または上記経路12b上で用紙Pが搬送され、用紙Pが搬送される側の経路にのみ冷却液1を流す。これにより、前記経路12aと前記経路12bとのどちらか一方への通水のみで用紙Pの冷却を行うので、エネルギーの低減を図ることができる。
また、本実施形態によれば、上記経路12a及び上記経路12bに流す冷却液1の送液を1つの送液手段で行う。これにより、1つの送液手段で前記経路12aと前記経路12bとに冷却液1を流しているので、冷却装置100の小型化や低コスト化を図ることができる。また、前記経路12aと前記経路12bとを同一構成にすることで、冷却ローラ長手方向の左右で冷却ローラ10の温度及び温度勾配を同一にすることができる。
また、本実施形態によれば、上記経路12aに流す冷却液1と上記経路12bに流す冷却液1とを別個の送液手段で行うことで、前記経路12aの流量と前記経路12bに流す流量とをそれぞれ独立して制御することができる。また、送液手段として送液性能の低い小型、低コストのものを用いることができる。
また、本実施形態によれば、上記経路12aと上記経路12bとに流す冷却液1の流量を調整する流量調整手段である流量調整弁56を有しており、流量調整弁56によって前記経路12aに流す冷却液1の流量と前記経路12bに流す冷却液1の流量とを同一にする。これにより、冷却ローラ長手方向において前記経路12aと前記経路12bとの協会部を中心にして対称の温度勾配に制御することができる。また、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、上記前記経路12aと上記経路12bとに流す冷却液1の流量を調整する流量調整手段である流量調整弁56と、上記経路12a及び上記経路12bを流れる冷却液1の温度を検知する温度検知手段57とを有し、温度検知手段57によって検知した冷却液1の温度に基づいて、前記経路12a上及び前期経路12b上の冷却効率が同一になるように、流量調整弁56によって前記経路12aに流す冷却液1の流量と前記経路12bに流す冷却液1の流量とを調整する。これにより、冷却ローラ長手方向の左右で冷却ローラ10の温度および温度勾配が同一になるように制御しているので、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、冷却液1の熱を外部に放熱する放熱手段であるラジエータ54と、ラジエータ54に送風する冷却ファン53と、冷却ファン53の風量を制御する風量制御手段と、上記経路12a及び上記経路12bを流れる冷却液1の温度を検知する温度検知手段57とを有し、温度検知手段57によって検知した冷却液1の温度に基づいて、前記経路12a及び前記経路12bを流れる冷却液1の温度が同一になるように、前記風量制御手段によって冷却ファン53の風量を制御する。これにより、冷却ローラ長手方向の左右で冷却ローラ10の温度および温度勾配が同一になるように制御しているので、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、上記前記経路12aと上記経路12bとに流す冷却液1の流量を調整する流量調整手段である流量調整弁56と、上記経路12a上及び上記経路12b上における冷却ローラ表面近傍の温度を検知する温度検知手段58とを有し、温度検知手段58によって検知した冷却ローラ表面近傍の温度に基づいて、前記経路12a上及び前記経路12b上の冷却ローラ表面近傍の温度が同一になるように、流量調整弁56によって前記経路12aに流す冷却液1の流量と前記経路12bに流す冷却液1の流量とを調整する。これにより、冷却ローラ長手方向の左右で冷却ローラ10の温度および温度勾配が同一になるように制御しているので、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、冷却液1の熱を外部に放熱する放熱手段であるラジエータ54と、ラジエータ54に送風する冷却ファン53と、冷却ファン53の風量を制御する風量制御手段と、上記経路12a上及び上記経路12b上における冷却ローラ表面近傍の温度を検知する温度検知手段58とを有し、温度検知手段58によって検知した冷却ローラ表面近傍の温度に基づいて、前記経路12a上及び前記経路12b上の冷却ローラ表面近傍の温度が同一になるように、前記風量制御手段によって冷却ファン53の風量を制御する。これにより、冷却ローラ長手方向の左右で冷却ローラ10の温度および温度勾配が同一になるように制御しているので、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
また、本実施形態によれば、用紙P上にトナー像を形成するトナー像形成手段と、用紙P上に形成されたトナー像を少なくとも熱によって用紙Pに定着させる熱定着手段7と、熱定着手段7によってトナー像が定着された用紙Pを冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、本発明の冷却装置100を用いることで、用紙Pの幅方向のカールや、定着による画質及び光沢ムラを低減することができる。
As described above, according to the present embodiment, the cooling roller 10 that cools the paper P by contacting the paper P that is a sheet-like member, and the cooling that is a cooling medium in the cooling roller 10 from the supply port provided in the cooling roller 10. In the cooling device 100, the cooling device 100 includes a pump 52 that is a cooling medium supply and recovery unit that supplies the liquid 1 and collects the cooling liquid 1 discharged from the discharge port provided in the cooling roller 10 to the outside of the cooling roller 10. The roller 10 includes an inner tube 15 in the outer tube 14, an outer flow path 16 in which the coolant 1 flows through the gap between the outer tube 14 and the inner tube 15, and an inner side in which the coolant 1 flows in the inner tube 15. The double pipe structure having the flow path 18 is provided with an opening communicating with the outer flow path 16 and the inner flow path 18 in the middle of the inner pipe 15 in the longitudinal direction of the cooling roller, and the coolant 1 supplied by the pump 52 is provided. Flows through the inner channel 18 The coolant 12 supplied by the pump 52 flows through the inner passage 18 and the passage 12a, which is the first passage that flows into the outer passage 16 through the opening and flows toward at least one end of the cooling roller 10, and passes through the opening. A path 12b that is a second path that flows through the outer flow path 16 and flows toward at least the other end side of the cooling roller 10 is formed. As a result, the cooling roller 10 is cooled by dividing the flow path of the cooling liquid 1 in the longitudinal direction of the cooling roller 10 into two, so that the cooling liquid 1 can be cooled in one direction in the longitudinal direction of the cooling roller 10. The temperature rise of the cooling roller 10 can be reduced. Further, the temperature difference between the longitudinal direction and both ends of the cooling roller 10 can be reduced. Further, uniform image quality and gloss can be obtained in the width direction of the cooling roller 10. Further, since the temperature is controlled symmetrically in the longitudinal direction of the cooling roller 10, curling of the paper P can be reduced.
Further, the outer pipe 14 in the outer flow path 16 is provided at both ends of the cooling roller 10 by providing the rotary pipe joint means 11 that supports the outer pipe 14 rotatably and supports the inner pipe 15 in a fixed manner. Since the turbulent flow is caused in the flow of the coolant 1 (the flow in the longitudinal direction and the rotation direction) in the vicinity of 14, the cooling efficiency can be increased.
Further, according to the present embodiment, the opening is formed at a substantially central portion of the inner tube 15 in the longitudinal direction of the cooling roller, and the cooling liquid 1 is supplied to the cooling roller 10 at one end side of the cooling roller 10. 1 supply port and a first discharge port for discharging the cooling liquid 1 from the cooling roller 10 to the outside of the cooling roller 10, and supplying the cooling liquid 1 into the cooling roller 10 on the other end side of the cooling roller 10 And a second discharge port for discharging the coolant 1 from the inside of the cooling roller 10 to the outside of the cooling roller 10, and the coolant 1 supplied from the first supply port is In the path 12a, it flows through the inner flow path 18 through the opening into the outer flow path 16, flows toward at least one of the one end side and the other end side, and the first discharge port and the second discharge port And is supplied from the second supply port. The coolant 1 flows through the inner flow path 18 in the path 12b, flows into the outer flow path 16 through the opening, flows toward at least one of the one end side and the other end side, and the first discharge port. It is discharged from at least one of the second discharge ports. Thereby, since the structure of the cooling roller 10 is simplified, the cost reduction of the cooling device 100 can be achieved.
Further, according to the present embodiment, the opening is formed at a substantially central portion of the inner tube 15 in the longitudinal direction of the cooling roller, and the cooling liquid 1 is supplied to the cooling roller 10 at one end side of the cooling roller 10. 1, a second supply port for supplying the coolant 1 into the cooling roller 10 is provided on the other end side of the cooling roller 10, and one of the one end side and the other end side of the cooling roller 10 is provided. In addition, a discharge port for discharging the cooling liquid 1 from the cooling roller 10 to the outside of the cooling roller 10 is provided, and the cooling liquid 1 supplied from the first supply port flows through the inner flow path 18 through the path 12a. The coolant 1 flows into the outer flow path 16 through the opening, flows toward the one end side or the other end side, is discharged from the discharge port, and the coolant 1 supplied from the second supply port passes the inner flow path through the path 12b. 18 flows through the opening to the outer flow path 16. Toward viewing the one end or the other end side is discharged from the flow the discharge port. Thereby, since the discharge port of the coolant 1 flowing through the path 12a and the path 12b is shared at one place, the configuration of the cooling roller 10 is simplified, so that the cost of the cooling device 100 can be reduced. In addition, the liquid feeding tube 55 that connects the discharge port and the pump 52 can be easily routed.
Further, according to the present embodiment, the cooling roller 10 has the flow path wall 17 that is a partition wall that divides the inside of the cooling roller 10 into two regions in the longitudinal direction of the cooling roller. A first supply port for supplying the cooling liquid 1 and a first discharge port for discharging the cooling liquid 1 from the cooling roller 10 to the outside of the cooling roller 10 are provided, and the cooling roller 10 is provided on the other end side of the cooling roller 10. A second supply port for supplying the coolant 1 and a second discharge port for discharging the coolant 1 from the inside of the cooling roller 10 to the outside of the cooling roller 10 are provided and supplied from the first supply port. The cooled liquid 1 flows through the inner flow path 18 through the path 12a and is folded back by the flow path wall 17, flows into the outer flow path 16 on the one end side of the flow path wall 17, and is discharged from the first discharge port. The coolant 1 supplied from the second supply port passes through the path Discharged from the second outlet flows into the outer channel 16 in the other end side than the flow path wall 17 is folded in the inner channel 18 of the flow passage wall 17 in 2b. Thereby, since the structure of the cooling roller 10 is simplified, the cost reduction of the cooling device 100 can be achieved.
Further, according to the present embodiment, the position at which the coolant 1 is folded back by the flow path wall 17 in the longitudinal direction of the cooling roller between the path 12 a and the path 12 b is stepwise or continuous in the circumferential direction of the cooling roller 10. Different. Thereby, in the area | region where the paper P of the cooling roller 10 is conveyed, the location which is not allowed to flow through the outer flow path 16 over the entire circumference of the cooling roller 10 in the longitudinal direction of the cooling roller 10 can be eliminated. The place that cannot be done can be eliminated .
Also, according to this embodiment, by providing the flow path auxiliary walls 22, 23 and 24 a guide wall for guiding the cooling liquid 1 to the outside passage 16 through the opening from the inner flow path 18 in the vicinity of the opening Thus, the flow of the coolant 1 flowing through the two different inner flow paths 18 can be smoothly guided from the inner flow path 18 to the outer flow path 16 without directly joining the cooling liquids 1. Can be suppressed.
Further, according to the present embodiment, a plurality of the openings are formed at different positions in the longitudinal direction of the inner tube 15, so that the outer periphery of the cooling roller 10 extends around the circumference of the cooling roller 10 at a location where the opening in the longitudinal direction of the cooling roller 10 is present. Since the position where the coolant 1 that has flowed through the two different outer flow paths 16 collides with each other is shifted in the flow path 16, it is possible to suppress local reduction in cooling efficiency.
Further, according to the present embodiment, the approximate center of the width of the sheet P in the direction orthogonal to the longitudinal direction of the cooling roller is the position where the coolant 1 flows from the outer channel 16 to the inner channel 18 in the path 12a, and By passing in the vicinity of the position where the coolant 1 flows from the outer flow path 16 to the inner flow path 18 in the path 12b, the central sheet is passed so that the areas of the sheets P passing through the two different outer flow paths 16 are the same. Therefore, curling in the width direction of the paper P and image quality and gloss unevenness due to fixing can be reduced.
Further, according to the present embodiment, the width of the sheet P in the direction orthogonal to the longitudinal direction of the cooling roller is the longitudinal direction of the cooling roller of either the outer flow path 16 of the path 12a or the outer flow path 16 of the path 12b. Is narrower than the width of the sheet P, the sheet P is conveyed on the path 12a or the path 12b, which is wider in the longitudinal direction of the cooling roller than the width of the sheet P. Only flow the coolant 1. Thereby, since the paper P is cooled only by passing water through one of the path 12a and the path 12b, energy can be reduced.
Moreover, according to this embodiment, the liquid supply of the coolant 1 flowing through the path 12a and the path 12b is performed by one liquid supply unit. Thereby, since the cooling liquid 1 is allowed to flow through the path 12a and the path 12b with one liquid feeding means, the size and cost of the cooling device 100 can be reduced. In addition, by configuring the path 12a and the path 12b to have the same configuration, the temperature and temperature gradient of the cooling roller 10 can be the same on the left and right in the longitudinal direction of the cooling roller.
Further, according to the present embodiment, the flow rate of the flow path 12a and the flow rate of the flow path 12b are flowed by performing the cooling liquid 1 flowing through the path 12a and the cooling liquid 1 flowing through the path 12b by separate liquid feeding means. And can be controlled independently. Moreover, a small and low cost liquid feeding performance can be used as the liquid feeding means.
Further, according to the present embodiment, the flow rate adjusting valve 56 that is a flow rate adjusting means for adjusting the flow rate of the coolant 1 flowing through the path 12 a and the path 12 b is provided. The flow rate of the coolant 1 flowing in the flow path and the flow rate of the coolant 1 flowing in the path 12b are made the same. Thereby, in the longitudinal direction of the cooling roller, the temperature gradient can be controlled to be symmetric with respect to the association portion of the path 12a and the path 12b. Further, curling in the width direction of the paper P and image quality and gloss unevenness due to fixing can be reduced.
Further, according to the present embodiment, the flow rate adjusting valve 56 which is a flow rate adjusting means for adjusting the flow rate of the coolant 1 flowing through the route 12a and the route 12b, and the coolant flowing through the route 12a and the route 12b. Temperature detection means 57 for detecting the temperature of 1, and based on the temperature of the coolant 1 detected by the temperature detection means 57, the cooling efficiency on the path 12 a and the previous period path 12 b are the same. The flow rate adjusting valve 56 adjusts the flow rate of the coolant 1 flowing through the path 12a and the flow rate of the coolant 1 flowing through the path 12b. Thus, the temperature and temperature gradient of the cooling roller 10 are controlled to be the same on the left and right in the longitudinal direction of the cooling roller, so that curling in the width direction of the paper P, image quality and gloss unevenness due to fixing can be reduced. it can.
Further, according to the present embodiment, the radiator 54 that is a heat radiating means for radiating the heat of the coolant 1 to the outside, the cooling fan 53 that blows air to the radiator 54, the air volume control means that controls the air volume of the cooling fan 53, Temperature detecting means 57 for detecting the temperature of the coolant 1 flowing through the path 12a and the path 12b. Based on the temperature of the coolant 1 detected by the temperature detecting means 57, the paths 12a and 12b are The air volume of the cooling fan 53 is controlled by the air volume control means so that the temperature of the flowing coolant 1 becomes the same. Thus, the temperature and temperature gradient of the cooling roller 10 are controlled to be the same on the left and right in the longitudinal direction of the cooling roller, so that curling in the width direction of the paper P, image quality and gloss unevenness due to fixing can be reduced. it can.
Further, according to the present embodiment, the flow rate adjusting valve 56 which is a flow rate adjusting means for adjusting the flow rate of the coolant 1 flowing through the path 12a and the path 12b, and cooling on the path 12a and the path 12b. Temperature detecting means 58 for detecting the temperature in the vicinity of the roller surface, and based on the temperature in the vicinity of the cooling roller surface detected by the temperature detecting means 58, the temperature in the vicinity of the cooling roller surface on the path 12a and the path 12b. The flow rate adjusting valve 56 adjusts the flow rate of the coolant 1 flowing through the path 12a and the flow rate of the coolant 1 flowing through the path 12b. Thus, the temperature and temperature gradient of the cooling roller 10 are controlled to be the same on the left and right in the longitudinal direction of the cooling roller, so that curling in the width direction of the paper P, image quality and gloss unevenness due to fixing can be reduced. it can.
Further, according to the present embodiment, the radiator 54 that is a heat radiating means for radiating the heat of the coolant 1 to the outside, the cooling fan 53 that blows air to the radiator 54, the air volume control means that controls the air volume of the cooling fan 53, Temperature detecting means 58 for detecting the temperature in the vicinity of the surface of the cooling roller on the path 12a and on the path 12b, and on the path 12a and on the basis of the temperature in the vicinity of the surface of the cooling roller detected by the temperature detecting means 58. The air volume of the cooling fan 53 is controlled by the air volume control means so that the temperatures near the surface of the cooling roller on the path 12b are the same. Thus, the temperature and temperature gradient of the cooling roller 10 are controlled to be the same on the left and right in the longitudinal direction of the cooling roller, so that curling in the width direction of the paper P, image quality and gloss unevenness due to fixing can be reduced. it can.
Further, according to the present embodiment, the toner image forming unit that forms a toner image on the paper P, the thermal fixing unit 7 that fixes the toner image formed on the paper P to the paper P by at least heat, and the thermal fixing. In the image forming apparatus including the cooling unit that cools the paper P on which the toner image is fixed by the unit 7, the cooling device 100 according to the present invention is used as the cooling unit. Image quality and gloss unevenness due to fixing can be reduced.

1 冷却液
2 ローラ
3 ローラ
4 搬送ベルト
5 上ガイド
6 ブラケット
7 熱定着手段
8 排紙収容部
10 冷却ローラ
10b 断面孔
10c フランジ
10d フランジ
10e リング
10f ネジ
10h 平行ネジ部
10i 嵌合部
10k 開口孔
10m 断面孔
11 回転管継手手段
11c 嵌合部
11e ケーシング
11f フランジ
11g リング
11h ネジ
11i リング
11j ロータ
11k 平行ネジ部
12 流路
13 排水口
14 外管
15 内管
16 外側流路
17 流路壁
18 内側流路
19 給水口
20 通水口
21 連結支持手段
22 流路補助壁
23 流路補助壁
24 流路補助壁
25 分岐壁
35e ケーシング
50 冷却循環装置
51 タンク
52 ポンプ
53 冷却ファン
54 ラジエータ
55 送液チューブ
56 流量調整弁
57 温度検知手段
58 温度検知手段
61 中間転写ベルト
62 ローラ
63 ローラ
64 画像ステーション
65 ローラ
66 2次転写ローラ
68 ローラ
69 クリーニング手段
70 帯電手段
71 感光体
72 書き込み手段
73 現像装置
74 クリーニング手段
75 1次転写ローラ
76 用紙収納部
77 給紙コロ
78 レジストローラ対
79 用紙搬送路
80 用紙搬送路
100 冷却装置
DESCRIPTION OF SYMBOLS 1 Coolant 2 Roller 3 Roller 4 Conveyor belt 5 Upper guide 6 Bracket 7 Thermal fixing means 8 Discharge storage part 10 Cooling roller 10b Cross-sectional hole 10c Flange 10d Flange 10e Ring 10f Screw 10h Parallel screw part 10i Fitting part 10k Opening hole 10m Cross-sectional hole 11 Rotating pipe coupling means 11c Fitting portion 11e Casing 11f Flange 11g Ring 11h Screw 11i Ring 11j Rotor 11k Parallel threaded portion 12 Channel 13 Drain port 14 Outer tube 15 Inner tube 16 Outer channel 17 Channel wall 18 Inner flow Channel 19 Water supply port 20 Water flow port 21 Connection support means 22 Flow path auxiliary wall 23 Flow path auxiliary wall 24 Flow path auxiliary wall 25 Branch wall 35e Casing 50 Cooling circulation device 51 Tank 52 Pump 53 Cooling fan 54 Radiator 55 Liquid feeding tube 56 Flow rate Regulating valve 5 Temperature detection means 58 Temperature detection means 61 Intermediate transfer belt 62 Roller 63 Roller 64 Image station 65 Roller 66 Secondary transfer roller 68 Roller 69 Cleaning means 70 Charging means 71 Photoconductor 72 Writing means 73 Developing device 74 Cleaning means 75 Primary transfer roller 76 Paper storage section 77 Paper feed roller 78 Registration roller pair 79 Paper transport path 80 Paper transport path 100 Cooling device

特開2006−003819号公報JP 2006-003819 A

Claims (17)

シート状部材に接することでシート状部材を冷却する冷却ローラと、
該冷却ローラに設けられた供給口から冷却ローラ内に冷却媒体を供給し、該冷却ローラに設けられた排出口から冷却ローラ外に排出された冷却媒体を回収する冷却媒体供給回収手段と、を備えた冷却装置において、
前記冷却ローラは、外管内に内管を内包し、該外管と該内管との隙間を冷却媒体が流れる外側流路、及び、該内管内を冷却媒体が流れる内側流路を有する二重管構造であり、前記内管の冷却ローラ長手方向途中に前記外側流路と前記内側流路とを連通する開口を設けており、
前記冷却媒体供給回収手段によって供給された冷却媒体が前記内側流路を流れ前記開口を通って前記外側流路に流れ込み少なくとも前記冷却ローラの一端側に向かって流れる第1の経路と、前記冷却媒体供給回収手段によって供給された冷却媒体が前記内側流路を流れ前記開口を通って前記外側流路に流れ込み少なくとも前記冷却ローラの他端側に向かって流れる第2の経路とが形成されるように構成し
前記冷却ローラの両端それぞれに、前記外管を回転可能に支持し、前記内管を固定支持する支持手段を設けたことを特徴とする冷却装置。
A cooling roller that cools the sheet-like member by contacting the sheet-like member;
Cooling medium supply and recovery means for supplying a cooling medium into the cooling roller from a supply port provided in the cooling roller, and recovering the cooling medium discharged outside the cooling roller from a discharge port provided in the cooling roller; In the provided cooling device,
The cooling roller includes an inner tube in an outer tube, a double channel having an outer channel through which a cooling medium flows through a gap between the outer tube and the inner tube, and an inner channel through which the cooling medium flows in the inner tube. It is a pipe structure, provided with an opening that communicates the outer flow path and the inner flow path in the longitudinal direction of the cooling roller of the inner pipe,
A first path through which the cooling medium supplied by the cooling medium supply / recovery means flows through the inner flow path, flows into the outer flow path through the opening, and flows toward at least one end of the cooling roller; and the cooling medium A cooling medium supplied by the supply and recovery means flows through the inner flow path, flows into the outer flow path through the opening, and forms at least a second path that flows toward the other end side of the cooling roller. configured,
The cooling device according to claim 1, further comprising: a supporting unit that rotatably supports the outer tube and fixedly supports the inner tube at both ends of the cooling roller .
請求項1の冷却装置において、
上記開口が上記内管の冷却ローラ長手方向の略中央部に形成されており、
上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第1の排出口とを設け、
前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第2の排出口とを設けており、
前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出され、
前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側と前記他端側との少なくとも一方に向かって流れ前記第1の排出口と前記第2の排出口との少なくとも一方から排出されることを特徴とする冷却装置。
The cooling device of claim 1.
The opening is formed in a substantially central portion of the inner pipe in the longitudinal direction of the cooling roller,
A first supply port for supplying the cooling medium into the cooling roller and a first discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller are provided on one end side of the cooling roller,
A second supply port for supplying the cooling medium into the cooling roller and a second discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller are provided on the other end side of the cooling roller. And
The cooling medium supplied from the first supply port flows in the first path through the inner flow path and through the opening into the outer flow path, toward at least one of the one end side and the other end side. Discharged from at least one of the first outlet and the second outlet,
The cooling medium supplied from the second supply port flows through the inner channel through the second path, and flows into the outer channel through the opening, toward at least one of the one end side and the other end side. A cooling device, wherein the cooling device is discharged from at least one of the first discharge port and the second discharge port.
請求項1の冷却装置において、
上記開口が上記内管の冷却ローラ長手方向の略中央部に形成されており、
上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口を設け、
前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口を設け、
上記冷却ローラの一端側と他端側とのどちらか一方に、前記冷却ローラ内から冷却ローラ外に上記冷却媒体を排出する排出口を設けており、
前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出され、
前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記開口を通って前記外側流路に流れ込み前記一端側または前記他端側に向かって流れ前記排出口から排出されることを特徴とする冷却装置。
The cooling device of claim 1.
The opening is formed in a substantially central portion of the inner pipe in the longitudinal direction of the cooling roller,
A first supply port for supplying the cooling medium into the cooling roller is provided on one end side of the cooling roller,
A second supply port for supplying the cooling medium into the cooling roller is provided on the other end side of the cooling roller,
A discharge port for discharging the cooling medium from the inside of the cooling roller to the outside of the cooling roller is provided on one of the one end side and the other end side of the cooling roller,
The cooling medium supplied from the first supply port flows in the first path through the inner flow path, through the opening, into the outer flow path, and flows toward the one end side or the other end side. Discharged from the exit,
The cooling medium supplied from the second supply port flows through the inner flow path through the second path, flows into the outer flow path through the opening, and flows toward the one end side or the other end side. A cooling device that is discharged from an outlet.
請求項1の冷却装置において、
上記冷却ローラ内を冷却ローラ長手方向途中で2つの領域に仕切る仕切り壁を有し、
上記冷却ローラの一端側に、該冷却ローラ内に上記冷却媒体を供給する第1の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第1の排出口とを設け、
前記冷却ローラの他端側に、該冷却ローラ内に上記冷却媒体を供給する第2の供給口と、前記冷却ローラ内から冷却ローラ外に前記冷却媒体を排出する第2の排出口とを設けており、
前記第1の供給口から供給された冷却媒体は上記第1の経路で前記内側流路を流れ前記仕切り壁で折り返されて前記仕切り壁よりも前記一端側にある前記外側流路に流れ込み前記第1の排出口から排出され、
前記第2の供給口から供給された冷却媒体は上記第2の経路で前記内側流路を流れ前記仕切り壁で折り返されて前記仕切り壁よりも前記他端側にある前記外側流路に流れ込み前記第2の排出口から排出されることを特徴とする冷却装置。
The cooling device of claim 1.
A partition wall that divides the inside of the cooling roller into two regions in the longitudinal direction of the cooling roller;
A first supply port for supplying the cooling medium into the cooling roller and a first discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller are provided on one end side of the cooling roller,
A second supply port for supplying the cooling medium into the cooling roller and a second discharge port for discharging the cooling medium from the cooling roller to the outside of the cooling roller are provided on the other end side of the cooling roller. And
The cooling medium supplied from the first supply port flows in the first flow path through the inner flow path, is folded back by the partition wall, and flows into the outer flow path on the one end side of the partition wall. Discharged from 1 outlet,
The cooling medium supplied from the second supply port flows through the inner channel in the second path, is folded back by the partition wall, and flows into the outer channel on the other end side with respect to the partition wall. A cooling device that is discharged from the second discharge port.
請求項4の冷却装置において、
上記第1の経路と上記第2の経路との冷却ローラ長手方向途中で上記仕切り壁によって折り返される位置が、前記冷却ローラの周方向で段階的または連続的にことなることを特徴とする冷却装置。
The cooling device according to claim 4.
The cooling device characterized in that the position of the first path and the second path folded back by the partition wall in the middle of the cooling roller in the longitudinal direction is stepwise or continuously in the circumferential direction of the cooling roller. .
請求項2または3の冷却装置において、
前記開口の近傍に前記内側流路から前記開口を通して前記外側流路に冷却媒体を導くガイド壁を設けたことを特徴とする冷却装置。
The cooling device according to claim 2 or 3,
A cooling device comprising a guide wall for guiding a cooling medium from the inner flow path to the outer flow path through the opening in the vicinity of the opening.
請求項2または3の冷却装置において、
上記開口を上記内管の長手方向で異なる位置に複数形成したことを特徴とする冷却装置。
The cooling device according to claim 2 or 3,
A cooling device, wherein a plurality of the openings are formed at different positions in the longitudinal direction of the inner tube.
請求項1、2、3、4、5、6またはの冷却装置において、
シート状部材の冷却ローラ長手方向に直交する方向の幅の略中央が、上記第1の経路で前記内側流路から前記外側流路に冷却媒体が流れ込む位置、及び、上記第2の経路で前記内側流路から前記外側流路に冷却媒体が流れ込む位置、の近傍を通ることを特徴とする冷却装置。
Claim 1, 2, 3, 4, in the 7 cooling device was 6 or,
The substantially center of the width of the sheet-like member in the direction orthogonal to the longitudinal direction of the cooling roller is the position where the cooling medium flows from the inner flow path to the outer flow path in the first path, and the second path A cooling device characterized by passing through the vicinity of a position where a cooling medium flows from an inner flow path to the outer flow path.
請求項1、2、3、4、5、6またはの冷却装置において、
シート状部材の冷却ローラ長手方向に直交する方向の幅が、上記第1の経路の前記外側流路と上記第2の経路の前記外側流路とのどちらかの冷却ローラ長手方向の幅よりも狭い場合には、シート状部材の前記幅よりも前記冷却ローラ長手方向の幅が広い上記第1の経路上または上記第2の経路上でシート状部材が搬送され、シート状部材が搬送される側の流路にのみ冷却媒体を流すことを特徴とする冷却装置。
Claim 1, 2, 3, 4, in the 7 cooling device was 6 or,
The width of the sheet-like member in the direction perpendicular to the longitudinal direction of the cooling roller is larger than the width of the longitudinal direction of the cooling roller in either the outer channel of the first path or the outer channel of the second path. When the width is narrow, the sheet-like member is conveyed on the first path or the second path, which is wider in the longitudinal direction of the cooling roller than the width of the sheet-like member, and the sheet-like member is conveyed. A cooling device, wherein a cooling medium is allowed to flow only in a flow path on the side.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
上記第1の経路及び上記第2の経路に流す冷却媒体の送液を1つの送液手段で行うことを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
A cooling device characterized in that the liquid feeding of the cooling medium flowing through the first path and the second path is performed by one liquid feeding means.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
上記第1の経路に流す冷却媒体と上記第2の経路に流す冷却媒体とを別個の送液手段で行うことを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
A cooling device, wherein the cooling medium flowing in the first path and the cooling medium flowing in the second path are performed by separate liquid feeding means.
請求項1、2、3、4、5、6、7またはの冷却装置において、
上記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段を有しており、
前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを同一にすることを特徴とする冷却装置。
In the cooling device according to claim 1,2,3,4,5,6, 7 or 8,
A flow rate adjusting means for adjusting a flow rate of the cooling medium flowing through the first path and the second path;
The cooling apparatus characterized in that the flow rate of the cooling medium flowing through the first path and the flow rate of the cooling medium flowing through the second path are made the same by the flow rate adjusting means.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
上記前記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段と、
上記第1の経路及び上記第2の経路を流れる冷却媒体の温度を検知する温度検知手段とを有し、
前記温度検知手段によって前記検知した冷却媒体の温度に基づいて、前記第1の経路上及び前期第2の経路上の冷却効率が同一になるように、前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを調整することを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
Flow rate adjusting means for adjusting the flow rate of the cooling medium flowing through the first path and the second path;
Temperature detecting means for detecting the temperature of the cooling medium flowing through the first path and the second path,
Based on the temperature of the cooling medium detected by the temperature detecting means, the flow rate adjusting means sets the first path so that the cooling efficiency on the first path and the previous second path become the same. A cooling device characterized by adjusting a flow rate of a cooling medium to flow and a flow rate of a cooling medium to flow in the second path.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
冷却媒体の熱を外部に放熱する放熱手段と、
該放熱手段に送風する冷却ファンと、
該冷却ファンの風量を制御する風量制御手段と、
上記第1の経路及び上記第2の経路を流れる冷却媒体の温度を検知する温度検知手段とを有し、
前記温度検知手段によって検知した冷却媒体の温度に基づいて、前記第1の経路及び前記第2の経路を流れる冷却媒体の温度が同一になるように、前記風量制御手段によって前記冷却ファンの風量を制御することを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
A heat dissipating means for dissipating the heat of the cooling medium to the outside;
A cooling fan for blowing air to the heat dissipating means;
An air volume control means for controlling the air volume of the cooling fan;
Temperature detecting means for detecting the temperature of the cooling medium flowing through the first path and the second path,
Based on the temperature of the cooling medium detected by the temperature detecting means, the air volume control means controls the air volume of the cooling fan so that the temperature of the cooling medium flowing through the first path and the second path becomes the same. A cooling device characterized by controlling.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
上記前記第1の経路と上記第2の経路とに流す冷却媒体の流量を調整する流量調整手段と、
上記第1の経路上及び上記第2の経路上における冷却ローラ表面近傍の温度を検知する温度検知手段とを有し、
前記温度検知手段によって検知した冷却ローラ表面近傍の温度に基づいて、前記第1の経路上及び前記第2の経路上の冷却ローラ表面近傍の温度が同一になるように、前記流量調整手段によって前記第1の経路に流す冷却媒体の流量と前記第2の経路に流す冷却媒体の流量とを調整することを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
Flow rate adjusting means for adjusting the flow rate of the cooling medium flowing through the first path and the second path;
Temperature detecting means for detecting the temperature in the vicinity of the surface of the cooling roller on the first path and the second path,
Based on the temperature in the vicinity of the surface of the cooling roller detected by the temperature detecting means, the flow rate adjusting means adjusts the temperature in the vicinity of the surface of the cooling roller on the first path and the second path by the flow rate adjusting means. A cooling device characterized by adjusting a flow rate of a cooling medium flowing through the first path and a flow rate of the cooling medium flowing through the second path.
請求項1、2、3、4、5、6、7、8またはの冷却装置において、
冷却媒体の熱を外部に放熱する放熱手段と、
該放熱手段に送風する冷却ファンと、
該冷却ファンの風量を制御する風量制御手段と、
上記第1の経路上及び上記第2の経路上における冷却ローラ表面近傍の温度を検知する温度検知手段とを有し、
前記温度検知手段によって検知した冷却ローラ表面近傍の温度に基づいて、前記第1の経路上及び前記第2の経路上の冷却ローラ表面近傍の温度が同一になるように、前記風量制御手段によって前記冷却ファンの風量を制御することを特徴とする冷却装置。
In the claims 1,2,3,4,5,6,7, the cooling device 9 was 8 or,
A heat dissipating means for dissipating the heat of the cooling medium to the outside;
A cooling fan for blowing air to the heat dissipating means;
An air volume control means for controlling the air volume of the cooling fan;
Temperature detecting means for detecting the temperature in the vicinity of the surface of the cooling roller on the first path and the second path,
Based on the temperature in the vicinity of the cooling roller surface detected by the temperature detection means, the air volume control means controls the air volume control means so that the temperatures in the vicinity of the cooling roller surface on the first path and the second path become the same. A cooling device that controls the air volume of a cooling fan.
シート状部材上にトナー像を形成するトナー像形成手段と、
該シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、
該熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、
前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15または16の冷却装置を用いることを特徴とする画像形成装置。
Toner image forming means for forming a toner image on a sheet-like member;
Thermal fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member at least by heat;
An image forming apparatus comprising: a cooling unit that cools the sheet-like member on which the toner image is fixed by the heat fixing unit;
As the cooling means, according to claim 1,2,3,4,5,6,7,8,9,10,11,12,13,14,1 5 or is a characterized by the use of 16 of the cooling device Image forming apparatus.
JP2009182899A 2009-08-05 2009-08-05 Cooling device and image forming apparatus Expired - Fee Related JP5354367B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009182899A JP5354367B2 (en) 2009-08-05 2009-08-05 Cooling device and image forming apparatus
US12/844,384 US8606138B2 (en) 2009-08-05 2010-07-27 Cooling device having a turbulence generating unit
CN201010247336XA CN101995809B (en) 2009-08-05 2010-08-05 Cooling device
US14/075,850 US9400485B2 (en) 2009-08-05 2013-11-08 Cooling device having a turbulence generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182899A JP5354367B2 (en) 2009-08-05 2009-08-05 Cooling device and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2011034008A JP2011034008A (en) 2011-02-17
JP5354367B2 true JP5354367B2 (en) 2013-11-27

Family

ID=43763117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182899A Expired - Fee Related JP5354367B2 (en) 2009-08-05 2009-08-05 Cooling device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5354367B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557098B2 (en) * 2010-07-07 2014-07-23 株式会社リコー Cooling device and image forming apparatus
US12060634B2 (en) * 2021-05-11 2024-08-13 Applied Materials, Inc. Roller for transporting a flexible substrate, vacuum processing apparatus, and method of cooling a roller
CN115091738B (en) * 2022-06-16 2023-07-21 浙江启德新材料有限公司 Transparent PVC decorative film processing device and production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752227A (en) * 1972-01-06 1973-08-14 Gen Tire & Rubber Co Embossing roll with integral cooling means
US3870100A (en) * 1972-12-05 1975-03-11 Polysius Ag Conveyor axle for a traveling grate
JPH0243585A (en) * 1988-08-04 1990-02-14 Minolta Camera Co Ltd Fixation device
JP2005298109A (en) * 2004-04-09 2005-10-27 Ricoh Co Ltd Moving medium cooling device and image forming device
JP4445336B2 (en) * 2004-06-21 2010-04-07 株式会社リコー Cooling device, image forming apparatus
JP4549199B2 (en) * 2005-02-08 2010-09-22 キヤノン株式会社 Image heating device
JP2007328161A (en) * 2006-06-08 2007-12-20 Canon Inc Image heating apparatus
JP5000385B2 (en) * 2006-06-21 2012-08-15 オセ−テクノロジーズ・ベー・ヴエー Roller for printer and method for cooling roller surface
JP5339204B2 (en) * 2009-08-05 2013-11-13 株式会社リコー Cooling device and image forming apparatus

Also Published As

Publication number Publication date
JP2011034008A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
EP2302466B1 (en) Cooling Device and Image Forming Device
US8606138B2 (en) Cooling device having a turbulence generating unit
JP5339204B2 (en) Cooling device and image forming apparatus
US9423730B2 (en) Cooling device and image forming apparatus including same
JP4549199B2 (en) Image heating device
US9296235B2 (en) Cooling device and image forming apparatus
JP5910930B2 (en) Heat exchange apparatus and image forming apparatus
JP5408550B2 (en) Cooling device and image forming apparatus
JP2015072451A (en) Cooling apparatus and image forming apparatus
JP4445336B2 (en) Cooling device, image forming apparatus
JP5354367B2 (en) Cooling device and image forming apparatus
JP5578415B2 (en) Cooling device and image forming apparatus
JP5483174B2 (en) Cooling device and image forming apparatus
JP2010266810A (en) Cooling device and image forming apparatus
JP5761593B2 (en) Heat exchange apparatus and image forming apparatus
JP5522529B2 (en) Cooling device and image forming apparatus
JP5522528B2 (en) Cooling device and image forming apparatus
JP5582392B2 (en) Cooling device and image forming apparatus
JP5818131B2 (en) Cooling device and image forming apparatus
JP2012168216A (en) Heat exchanger and image forming device
JP5910928B2 (en) Heat exchange apparatus and image forming apparatus
JP2005258116A (en) Image forming apparatus
JP6598096B2 (en) Cooling device and image forming apparatus
JP2023169734A (en) Image forming apparatus
JP2016040620A (en) Cooling device and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R151 Written notification of patent or utility model registration

Ref document number: 5354367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees