JP5483174B2 - Cooling device and image forming apparatus - Google Patents

Cooling device and image forming apparatus Download PDF

Info

Publication number
JP5483174B2
JP5483174B2 JP2009257656A JP2009257656A JP5483174B2 JP 5483174 B2 JP5483174 B2 JP 5483174B2 JP 2009257656 A JP2009257656 A JP 2009257656A JP 2009257656 A JP2009257656 A JP 2009257656A JP 5483174 B2 JP5483174 B2 JP 5483174B2
Authority
JP
Japan
Prior art keywords
cooling
outer tube
cooling device
turbulent flow
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009257656A
Other languages
Japanese (ja)
Other versions
JP2011102893A (en
Inventor
覚 岡野
和之 西村
賢一 竹原
泰明 飯嶋
博充 藤谷
友康 平澤
政範 斉藤
伸五 鈴木
慶祐 湯淺
圭介 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009257656A priority Critical patent/JP5483174B2/en
Priority to US12/844,384 priority patent/US8606138B2/en
Priority to CN201010247336XA priority patent/CN101995809B/en
Publication of JP2011102893A publication Critical patent/JP2011102893A/en
Priority to US14/075,850 priority patent/US9400485B2/en
Application granted granted Critical
Publication of JP5483174B2 publication Critical patent/JP5483174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

本発明は、プリンタ、ファクシミリ、複写機などの画像形成装置に用いられる冷却装置、及び、その冷却装置を備えた画像形成装置に関するものである。   The present invention relates to a cooling device used in an image forming apparatus such as a printer, a facsimile machine, and a copying machine, and an image forming apparatus provided with the cooling device.

画像形成装置としては、電子写真技術を用いてシート状部材である用紙上にトナー画像を形成し、熱定着装置を通過させることでトナーを溶融し融着させるものが知られている。一般に熱定着装置の温度は、トナーや用紙の種類、用紙搬送スピードなどによって異なるが180[℃]〜200[℃]程度の温度に設定され制御されて、トナーを瞬時に融着させる。熱定着装置を通過した直後の用紙の表面温度は、用紙の熱容量(比熱、密度など)に左右されるが例えば100[℃]〜130[℃]程度の高い温度となっている。トナーの溶融温度はもっと低いので、熱定着装置通過直後の時点ではトナーは少し軟らかいままであり、用紙が冷えるまでは、しばらく粘着状態にある。そのため、連続的に画像出力動作が繰り返され熱定着装置通過後の用紙が排紙収容部に積載される場合、用紙上のトナーが十分に硬化できず軟化状態にあると、用紙上のトナーが別の用紙に貼り付く、所謂、ブロッキング現象を起こり画像品質が著しく低下することがある。   2. Description of the Related Art As an image forming apparatus, an apparatus that forms a toner image on a sheet-like sheet using electrophotographic technology and melts and fuses the toner by passing through a thermal fixing device is known. In general, the temperature of the heat fixing device varies depending on the type of toner and paper, the paper conveyance speed, and the like, but is set and controlled at a temperature of about 180 [° C.] to 200 [° C.] to fuse the toner instantaneously. The surface temperature of the paper immediately after passing through the heat fixing device is a high temperature of about 100 [° C.] to 130 [° C.] although it depends on the heat capacity (specific heat, density, etc.) of the paper. Since the melting temperature of the toner is lower, the toner is slightly soft at the time immediately after passing through the heat fixing device, and remains in a sticky state for a while until the paper cools down. Therefore, when the image output operation is repeated continuously and the paper after passing through the heat fixing device is stacked in the paper discharge container, if the toner on the paper cannot be sufficiently cured and is in a soft state, the toner on the paper A so-called blocking phenomenon that sticks to another sheet may occur and the image quality may be significantly reduced.

特許文献1に記載の画像形成装置では、軸受を介して回転可能にブラケットに支持され、用紙に接触して用紙を搬送しつつ冷却する冷却ローラを備えた冷却装置が、熱定着装置よりも用紙搬送方向下流側に設けられている。熱定着装置通過後の用紙が冷却装置の冷却ローラによって冷却されることで、用紙上のトナーも冷やされ硬化し、上記ブロッキング現象が起こるのを抑えることができる。また、冷却ローラは管状構造であり、冷却ローラ長手方向一端側から他端側に向かって冷却ローラ内に冷却液が流され、用紙から熱を奪うことで温度が上昇した冷却ローラが冷却液により冷却される。   In the image forming apparatus described in Patent Literature 1, a cooling device including a cooling roller that is rotatably supported by a bracket via a bearing and that cools the paper while contacting the paper and transporting the paper is more paper than the thermal fixing device. It is provided on the downstream side in the transport direction. The paper after passing through the heat fixing device is cooled by the cooling roller of the cooling device, so that the toner on the paper is cooled and hardened, and the occurrence of the blocking phenomenon can be suppressed. In addition, the cooling roller has a tubular structure, and the cooling liquid flows into the cooling roller from one end side to the other end side in the longitudinal direction of the cooling roller. To be cooled.

近年、電話料金の請求書や領収書等の高速プリントや、厚紙、コート紙等へのカラー光沢画像のプリントなど、軽印刷のニーズが多くなりつつある。このような軽印刷では、高速で大量プリントが行われるため、より短時間に高温のシート状部材を冷却する必要がある。また、オフィス向けとは異なり、カラープリントの頻度も多く、光沢画像も多いことから、定着部ではより高温でシート状部材に画像を定着させるため、高効率の冷却が求められるようになってきた。   In recent years, there has been an increasing need for light printing such as high-speed printing such as telephone bills and receipts, and printing of color glossy images on cardboard, coated paper, and the like. In such a light printing, a large amount of printing is performed at a high speed, and thus it is necessary to cool a high-temperature sheet-like member in a shorter time. In addition, unlike office use, color printing is frequently performed and glossy images are often used. Therefore, high-efficiency cooling has come to be required in order to fix the image on the sheet-like member at a higher temperature in the fixing unit. .

しかしながら、冷却ローラ内に冷却液を単に流しただけでは、冷却ローラ内壁近傍の冷却液の温度が高くなり過ぎて冷却液により冷却ローラを効果的に冷やすことができず、その結果、冷却ローラによって用紙の冷却を適切に行えないといった問題が生じ得る。   However, if the coolant is simply flowed into the cooling roller, the temperature of the coolant near the inner wall of the cooling roller becomes too high, and the cooling roller cannot be cooled effectively by the coolant. There may be a problem that the sheet cannot be properly cooled.

本発明は以上の問題点に鑑みなされたものであり、その目的は、冷却ローラによるシート状部材の冷却効率を向上させることができる冷却装置、及び、画像形成装置を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide a cooling device and an image forming apparatus capable of improving the cooling efficiency of a sheet-like member by a cooling roller.

上記目的を達成するために、請求項1の発明は、中空状の管状部材からなる冷却ローラと、該管状部材内に冷却液を搬送する冷却媒体搬送手段と、を備え、前記冷却ローラにシート状部材を接触させてシート状部材を冷却する冷却装置において、冷却液に乱流を発生させる乱流発生手段を前記管状部材の内壁近傍に設けており、前記乱流発生手段が螺旋形状であり、該螺旋形状の巻き方向を、前記管状部材である外管の内壁近傍を流れる冷却液の流れ方向とは逆方向の送りが発生する巻き方向とすることを特徴とするものである。
また、請求項2の発明は、請求項1の冷却装置において、上記乱流発生手段は上記管状部材に対して着脱可能であることを特徴とするものである。
また、請求項3の発明は、請求項1または2の冷却装置において、上記外管の中空内部に該外管よりも細管構造の内管を内包し、該外管と該内管との間を冷却液が流れる外側流路、及び、該内管内を冷却液が流れる内側流路を有する二重管構造であることを特徴とするものである。
また、請求項4の発明は、請求項3の冷却装置において、上記外管の中空内部で、上記内管よりも外径の大きいシリンダを該内管を内包するように取り付けたことを特徴とするものである。
また、請求項5の発明は、請求項3の冷却装置において、上記内管が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項6の発明は、請求項4の冷却装置において、上記シリンダが、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項7の発明は、請求項1、2、3、4、5または6の冷却装置において、上記外管の長手方向に渡るシート状部材が挟持される領域に上記乱流発生手段を配設したことを特徴とするものである。
また、請求項8の発明は、請求項1、2、3、4、5または6の冷却装置において、上記外管の周方向に渡るシート状部材が挟持される領域に上記乱流発生手段を配設したことを特徴とするものである。
また、請求項9の発明は、請求項1、2、3、4、5、6、7または8の冷却装置において、上記乱流発生手段に振動を加える加振手段を有することを特徴とするものである。
また、請求項10の発明は、請求項1、2、3、4、5、6、7、8または9の冷却装置において、上記乱流発生手段はコイル状部材であることを特徴とするものである。
また、請求項11の発明は、請求項1の冷却装置において、上記外管の中空内部にコア部材を内包し、上記乱流発生手段を設けた該外管と該コア部材で形成される間隙に冷却液が流れる流路を有することを特徴とするものである。
また、請求項12の発明は、請求項11の冷却装置において、上記コア部材の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とするものである。
また、請求項13の発明は、請求項3の冷却装置において、上記内管の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とするものである。
また、請求項14の発明は、請求項4の冷却装置において、上記シリンダの外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とするものである。
また、請求項15の発明は、請求項11の冷却装置において、上記コア部材が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とするものである。
また、請求項16の発明は、シート状部材上にトナー像を形成するトナー像形成手段と、該シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、該熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14または15の冷却装置を用いることを特徴とするものである。
In order to achieve the above object, the invention of claim 1 comprises a cooling roller comprising a hollow tubular member, and a cooling medium conveying means for conveying a cooling liquid into the tubular member, and a sheet is provided on the cooling roller. In the cooling device for cooling the sheet-like member by contacting the sheet-like member, turbulent flow generating means for generating turbulent flow in the coolant is provided in the vicinity of the inner wall of the tubular member, and the turbulent flow generating means has a spiral shape The spiral winding direction is a winding direction in which feed in the direction opposite to the flow direction of the coolant flowing in the vicinity of the inner wall of the outer tube, which is the tubular member, is generated .
According to a second aspect of the invention, in the cooling device of the first aspect, the turbulent flow generating means is detachable from the tubular member.
The invention of claim 3 is the refrigeration apparatus according to claim 1 or 2, than the outer tube to the hollow interior of the upper Kigai tube enclosing the inner tube of the tubular structure, the outer tube and the inner tube A double-pipe structure having an outer flow path through which a cooling liquid flows and an inner flow path through which the cooling liquid flows in the inner pipe is characterized.
The invention of claim 4 is characterized in that, in the cooling device of claim 3, a cylinder having an outer diameter larger than that of the inner tube is attached inside the hollow of the outer tube so as to enclose the inner tube. To do.
According to a fifth aspect of the present invention, in the cooling device of the third aspect, the inner tube is rotatable at a different rotational speed in the same direction as the outer tube, and in a direction opposite to the rotation direction of the outer tube. It is provided in a rotatable or fixed state.
According to a sixth aspect of the present invention, in the cooling device of the fourth aspect, the cylinder can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, and is rotated in a direction opposite to the rotation direction of the outer tube. It is possible or is provided in a fixed state.
The invention of claim 7 is the cooling device of claim 1, 2, 3, 4, 5 or 6, wherein the turbulent flow generating means is provided in a region where the sheet-like member extending in the longitudinal direction of the outer tube is sandwiched. It is characterized by being disposed.
Further, the invention of claim 8 is the cooling device of claim 1, 2, 3, 4, 5 or 6, wherein the turbulent flow generating means is provided in a region where the sheet-like member across the circumferential direction of the outer tube is sandwiched. It is characterized by being disposed.
The invention according to claim 9 is the cooling apparatus according to claim 1, 2, 3, 4, 5, 6, 7 or 8, further comprising a vibrating means for applying vibration to the turbulent flow generating means. Is.
The invention according to claim 10 is the cooling device according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the turbulent flow generating means is a coil-shaped member. It is.
The invention according to claim 11 is the cooling device according to claim 1, wherein a core member is included in the hollow inside of the outer tube, and a gap formed between the outer tube provided with the turbulent flow generating means and the core member. It has a flow path through which a coolant flows.
The invention of claim 12 is characterized in that, in the cooling device of claim 11 , a second turbulent flow generating means for generating a turbulent flow in the coolant is provided in the vicinity of the outer peripheral surface of the core member. is there.
The invention of claim 13 is characterized in that, in the cooling device of claim 3, second turbulent flow generating means for generating turbulent flow in the coolant is provided in the vicinity of the outer peripheral surface of the inner tube. is there.
The invention of claim 14 is characterized in that, in the cooling device of claim 4, second turbulent flow generating means for generating turbulent flow in the coolant is provided in the vicinity of the outer peripheral surface of the cylinder. .
The invention of claim 15 is the cooling device of claim 11 , wherein the core member is rotatable at a different rotational speed in the same direction as the rotation direction of the outer tube, and is opposite to the rotation direction of the outer tube. It is provided in a rotatable or fixed state.
According to a sixteenth aspect of the present invention, there is provided a toner image forming means for forming a toner image on a sheet-like member, and a heat fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member by at least heat. And a cooling unit that cools the sheet-like member on which the toner image has been fixed by the thermal fixing unit, wherein the cooling unit is the claim 1, 2, 3, 4, 5, 6, 7, 8,9,10,11,12,13,1 4 or is characterized in the use of the cooling device 15.

本発明においては、乱流発生手段により管状部材の内壁近傍で冷却液の流れは乱流となる。これにより、前記内壁近傍にある温度の高い冷却液と前記内壁から離れた位置にある温度の低い冷却液との入れ替えが盛んに行われる。よって、乱流発生手段を前記内壁近傍に設けない場合よりも内壁近傍の冷却液の温度を低くすることができるので、その分、冷却液によって管状部材を効果的に冷やすことができる。したがって、前記管状部材からなる冷却ローラによるシート状部材の冷却効率を向上させることができる。   In the present invention, the flow of the coolant becomes turbulent near the inner wall of the tubular member by the turbulent flow generating means. Thereby, replacement of the coolant having a high temperature in the vicinity of the inner wall and the coolant having a low temperature at a position away from the inner wall is actively performed. Therefore, since the temperature of the coolant near the inner wall can be made lower than when no turbulent flow generating means is provided near the inner wall, the tubular member can be effectively cooled by the coolant. Therefore, the cooling efficiency of the sheet-like member by the cooling roller made of the tubular member can be improved.

以上、本発明によれば、冷却ローラによるシート状部材の冷却効率を向上させることができるという優れた効果がある。   As mentioned above, according to this invention, there exists the outstanding effect that the cooling efficiency of the sheet-like member by a cooling roller can be improved.

(a)構成例1に係る冷却ローラを軸方向で切断した場合の断面図。(b)構成例1の冷却ローラを直径方向で切断した場合の断面図。(A) Sectional drawing at the time of cut | disconnecting the cooling roller which concerns on the structural example 1 in an axial direction. (B) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 1 in a diameter direction. 用紙搬送の働きをも担う本発明の冷却ローラを備えた冷却装置の一例の概略図。Schematic of an example of the cooling device provided with the cooling roller of this invention which also plays the role of paper conveyance. 冷却ローラ内部の流速分布図。Flow velocity distribution diagram inside the cooling roller. 冷却ローラ内壁面における剥離点よりも流れ方向下流における熱伝達率分布図。FIG. 6 is a heat transfer coefficient distribution diagram downstream of the peeling point on the inner wall surface of the cooling roller in the flow direction. (a)外管が右回転、コイル状部材が右巻きの冷却ローラの拡大断面図。(b)外管が左回転、コイル状部材が右巻きの冷却ローラの拡大断面図。(c)外管が右回転、コイル状部材が左巻きの冷却ローラの拡大断面図。(d)外管が左回転、コイル状部材が左巻きの冷却ローラの拡大断面図。(A) Enlarged sectional view of the cooling roller with the outer tube rotating clockwise and the coil-shaped member rotating clockwise. (B) Enlarged sectional view of the cooling roller with the outer tube rotating counterclockwise and the coiled member rotating clockwise. (C) Enlarged sectional view of the cooling roller with the outer tube rotating clockwise and the coil-shaped member rotating counterclockwise. (D) Enlarged sectional view of the cooling roller with the outer tube rotating counterclockwise and the coiled member rotating counterclockwise. 乱流発生手段として網状部材を設けた冷却ローラの構成図。The block diagram of the cooling roller which provided the net-like member as a turbulent flow generation means. 構成例2の冷却ローラを軸方向で切断した場合の断面図。Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 2 in an axial direction. (a)構成例3の冷却ローラを軸方向で切断した場合の断面図。(b)構成例3の冷却ローラを直径方向で切断した場合の断面図。(A) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 3 in an axial direction. (B) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 3 in a diameter direction. 外管内に小径なコイル状部材を設ける場合の一例を示した説明図。Explanatory drawing which showed an example in the case of providing a small diameter coil-shaped member in an outer tube | pipe. 外管内に小径なコイル状部材を設ける場合の他の例の説明図。Explanatory drawing of the other example in the case of providing a small diameter coil-shaped member in an outer tube | pipe. 複数の小径コイル状部材を用紙近くに配した場合の冷却ローラの構成図。The block diagram of a cooling roller at the time of arrange | positioning several small diameter coil-shaped members near the paper. 小径コイル状部材に振動を加える加振手段を設けた場合の模式図。The schematic diagram at the time of providing the vibration means which applies a vibration to a small diameter coil-shaped member. (a)コイル状部材を内壁近傍に設けた外管とコアとから成る冷却ローラの拡大断面図。(b)コアにも乱流発生手段であるコイル状部材を設けた場合の冷却ローラの拡大断面図。(A) The expanded sectional view of the cooling roller which consists of an outer tube | pipe and the core which provided the coil-shaped member in the inner wall vicinity. (B) The expanded sectional view of the cooling roller at the time of providing the coil-shaped member which is a turbulent flow generation means also in a core. (a)構成例5の冷却ローラを軸方向で切断した場合の断面図。(b)構成例5の冷却ローラを直径方向で切断した場合の断面図。(A) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 5 in an axial direction. (B) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 5 in a diameter direction. 外管と内管との回転数が異なる場合の冷却ローラを直径方向で切断した場合の断面図。Sectional drawing at the time of cut | disconnecting the cooling roller in the diameter direction when the rotation speeds of an outer tube and an inner tube differ. 外管と内管との回転数が異なる場合の冷却ローラを軸方向で切断した場合の断面図。Sectional drawing at the time of cut | disconnecting the cooling roller in an axial direction when the rotation speeds of an outer tube and an inner tube differ. (a)外管と内管とから成る管構造の冷却ローラの拡大断面図。(b)内管にも乱流発生手段であるコイル状部材を設けた場合の冷却ローラの拡大断面図。(A) The expanded sectional view of the cooling roller of the pipe structure which consists of an outer pipe and an inner pipe. (B) The expanded sectional view of a cooling roller at the time of providing the coil-shaped member which is a turbulent flow generation means also in an inner pipe. 外管内に小径なコイル状部材を設ける場合の一例を示した説明図。Explanatory drawing which showed an example in the case of providing a small diameter coil-shaped member in an outer tube | pipe. 外管内に小径なコイル状部材を設ける場合の他の例の説明図。Explanatory drawing of the other example in the case of providing a small diameter coil-shaped member in an outer tube | pipe. (a)構成例6の冷却ローラを軸方向で切断した場合の断面図。(b)構成例6の冷却ローラを直径方向で切断した場合の断面図。(A) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 6 in an axial direction. (B) Sectional drawing at the time of cut | disconnecting the cooling roller of the structural example 6 in a diameter direction. (a)外管、内管及びシリンダから成る管構造の冷却ローラの拡大断面図。(b)シリンダにも乱流発生手段であるコイル状部材を設けた場合の冷却ローラの拡大断面図。(A) The expanded sectional view of the cooling roller of the pipe structure which consists of an outer pipe, an inner pipe, and a cylinder. (B) The expanded sectional view of the cooling roller at the time of providing the coil-shaped member which is a turbulent flow generation means also in a cylinder. 本実施形態に係る画像形成装置の概略構成図。1 is a schematic configuration diagram of an image forming apparatus according to an embodiment.

本発明の実施形態に係る冷却ローラ及び冷却装置を、熱定着手段によって記録用紙上のトナーを定着させる画像形成装置を用いて説明する。しかし、本発明の冷却ローラおよび冷却装置はそれに限定されることなく、シート媒体の冷却が必要な装置であれば適応可能である。   A cooling roller and a cooling device according to an embodiment of the present invention will be described using an image forming apparatus in which toner on a recording sheet is fixed by a thermal fixing unit. However, the cooling roller and the cooling device of the present invention are not limited thereto, and can be applied to any device that requires cooling of the sheet medium.

冷却手段としての冷却ローラは、管状構造であり、内部に冷却液を流し循環させることで冷却ローラ表面を冷やすようにしたものである。この冷却ローラを有する冷却装置を熱定着手段直後の用紙搬送経路中に配置し、冷却ローラによって用紙を搬送させると同時に、接触させることで用紙から熱を除去し冷却する。   The cooling roller as the cooling means has a tubular structure, and the surface of the cooling roller is cooled by flowing and circulating a cooling liquid therein. A cooling device having this cooling roller is arranged in the paper transport path immediately after the heat fixing means, and the paper is transported by the cooling roller and simultaneously brought into contact with it to remove heat from the paper and cool it.

図2は、用紙搬送の働きをも担う本発明の冷却ローラ22を備えた冷却装置18の一例の概略図である。冷却装置18にはシート状部材である用紙20の搬送方向(左右方向)に間隔をおいて配列されたローラ40とローラ41が設けられて、用紙搬送の搬送ベルト42を展張している。そして用紙搬送方向下流側のローラ40を駆動ローラ(図示しない駆動源と連結)として、搬送ベルト42を反時計回り方向に回転させ、用紙を図中右側から左側へ搬送する。   FIG. 2 is a schematic diagram of an example of the cooling device 18 provided with the cooling roller 22 of the present invention that also functions as paper conveyance. The cooling device 18 is provided with rollers 40 and 41 arranged at intervals in the conveyance direction (left-right direction) of the sheet 20 that is a sheet-like member, and the conveyance belt 42 for conveying the sheet is extended. Then, using the roller 40 on the downstream side in the paper transport direction as a driving roller (connected to a drive source not shown), the transport belt 42 is rotated counterclockwise to transport the paper from the right side to the left side in the drawing.

冷却装置18よりも用紙搬送方向上流側には熱定着手段16が配置されており、冷却装置18よりも用紙搬送方向下流側には排紙収容部17があり、ローラ41の上方には熱定着手段16から搬送されてきた用紙20をガイドする上ガイド43が設けられている。また、ローラ40とローラ41との中間位置には、搬送ベルト42に食い込むように上から冷却ローラ22が圧接されており、冷却ローラ22は搬送ベルト42の搬送力を利用した連れ回りで回転するようになっている。図中の符号34は冷却装置18本体を構成するブラケットであり、ローラ40、ローラ41、冷却ローラ22、及び、上ガイド43などの構成部品を固定または回転自在に支持する部材である。冷却装置18はこのブラケット44によりユニット化され、画像形成装置本体に組み込まれる。   A heat fixing unit 16 is disposed upstream of the cooling device 18 in the paper conveyance direction, a paper discharge accommodating portion 17 is provided downstream of the cooling device 18 in the paper conveyance direction, and heat fixing is performed above the roller 41. An upper guide 43 that guides the paper 20 conveyed from the means 16 is provided. In addition, the cooling roller 22 is pressed from above at an intermediate position between the roller 40 and the roller 41 so as to bite into the conveying belt 42, and the cooling roller 22 rotates along with the conveying force of the conveying belt 42. It is like that. Reference numeral 34 in the drawing is a bracket that constitutes the main body of the cooling device 18, and is a member that supports components such as the roller 40, the roller 41, the cooling roller 22, and the upper guide 43 in a fixed or rotatable manner. The cooling device 18 is unitized by the bracket 44 and incorporated in the main body of the image forming apparatus.

熱定着手段16で熱せられ高温となった用紙20は、排紙収容部17に排出される前に冷却装置18を通過する。詳細には、熱定着手段16を通って高温となった用紙22が、冷却装置18の上ガイド43とローラ41との間に入り込み、その後、冷却ローラ22と搬送ベルト42とで形成されるニップ領域部を通過して排紙収容部17に排出される。冷却ローラ22の内部は管構造になっており、外部で十分に冷却された冷却液が冷却ローラ22内に供給され冷却ローラ22内を循環した後に冷却液が冷却ローラ22内から排出される。用紙22は、冷却ローラ22と搬送ベルト42とが接することで形成されるニップ領域で冷却ローラ22に密着し接触しながら通過されるので、その際に用紙22の熱は冷却ローラ22に吸熱され用紙22が十分に冷却される。例えば、熱定着手段16の通過直後の用紙22の表面温度が100[℃]程度のときに用紙22を冷却装置18に通過させることで、用紙22を50[℃]〜60[℃]程度まで冷却することができる。   The paper 20 heated to the high temperature by the heat fixing unit 16 passes through the cooling device 18 before being discharged into the paper discharge accommodating portion 17. More specifically, the sheet 22 that has become hot through the heat fixing unit 16 enters between the upper guide 43 and the roller 41 of the cooling device 18, and then the nip formed by the cooling roller 22 and the conveying belt 42. The sheet passes through the area portion and is discharged to the paper discharge storage portion 17. The inside of the cooling roller 22 has a pipe structure, and the cooling liquid sufficiently cooled outside is supplied into the cooling roller 22 and circulated through the cooling roller 22, and then the cooling liquid is discharged from the cooling roller 22. Since the sheet 22 passes through the nip region formed by the contact between the cooling roller 22 and the conveying belt 42 while being in close contact with the cooling roller 22, the heat of the sheet 22 is absorbed by the cooling roller 22 at that time. The sheet 22 is sufficiently cooled. For example, by passing the paper 22 through the cooling device 18 when the surface temperature of the paper 22 immediately after passing through the heat fixing unit 16 is about 100 [° C.], the paper 22 is reduced to about 50 [° C.] to about 60 [° C.]. Can be cooled.

なお後述するが、冷却ローラ22は回転管継ぎ手手段を介してタンク101、ポンプ100、冷却ファン104を装着したラジエータ103などの冷却液循環手段と連通/連結され、封入した冷却液が循環することで冷却ローラ22が冷やされる。   As will be described later, the cooling roller 22 communicates / connects with a coolant circulating means such as the radiator 103 equipped with the tank 101, the pump 100, and the cooling fan 104 via the rotating pipe joint means, and the enclosed coolant is circulated. As a result, the cooling roller 22 is cooled.

ここで、電子写真方式の画像形成装置では、トナーが定着された高温のままの用紙は、カール発生を招いたり、またトナーが完全に固化されていないことから、積載すると用紙同士が張り付いたりして画像品質を著しく損ねるため、冷却が必要であった。   Here, in the electrophotographic image forming apparatus, the high-temperature paper on which the toner is fixed causes curling, and the toner is not completely solidified. Therefore, cooling is necessary to significantly deteriorate the image quality.

従来、オフィス向けの電子写真方式の画像形成装置においては、高温の用紙を冷却するため、用紙の上面及び帯下面に冷却ファンにより直接風を当てて冷却する方式や、用紙を、冷却ファンにより末端を冷却したヒートパイプローラに用紙を挟持させて冷却する方式が数多く採用されてきた。   Conventionally, in an electrophotographic image forming apparatus for office use, in order to cool high-temperature paper, a cooling fan can be used to cool the top surface and bottom surface of the paper by directly blowing air, or the paper can be terminated by a cooling fan. A number of methods have been adopted in which a sheet is sandwiched between heat pipe rollers that have been cooled and cooled.

しかしながら、近年、電子写真方式の画像形成装置は、電話料金の請求書や領収書等の高速プリントや、厚紙・コート紙等へのカラー光沢画像のプリントなど、軽印刷のニーズが多くなりつつあった。このような電子写真方式の画像形成装置による軽印刷では、高速で大量プリントが行われるため、より短時間に高温の用紙を冷却する必要があった。また、オフィス向けとは異なりカラープリントの頻度も多く、光沢画像も多いことから、定着部ではより高温で用紙にトナーを定着するため、従来方式以上の高効率の冷却が求められるようになってきた。   However, in recent years, electrophotographic image forming apparatuses have been increasingly demanded for light printing, such as high-speed printing such as telephone bills and receipts, and printing of color glossy images on cardboard and coated paper. It was. In light printing by such an electrophotographic image forming apparatus, a large amount of printing is performed at high speed, and thus it is necessary to cool a high-temperature paper in a shorter time. Also, unlike office use, color printing is more frequent and glossy images are more frequent. Therefore, the fixing unit fixes toner on paper at a higher temperature, so cooling that is more efficient than the conventional method is required. It was.

そこで、上述した冷却ファンやヒートパイプローラよりも冷却効率の高い、循環する冷却液を中空の冷却ローラに通して、この冷却ローラにより高温の用紙を冷却させる液冷方式が提案され始めた。   Therefore, a liquid cooling method has started to be proposed in which circulating cooling liquid having higher cooling efficiency than the above-described cooling fan and heat pipe roller is passed through a hollow cooling roller, and the high-temperature paper is cooled by the cooling roller.

用紙の温度を効率よく下げるには、用紙から冷却ローラの壁部を挟んで冷却液までの熱流束を増加させる必要がある。ここで、冷却ローラの壁部と冷却液との間の熱流束は、「J.P.ホールマン著 伝熱工学<上>(ブレイン図書出版)、P11−12」より、対流熱伝達による数1のように表される。   In order to efficiently reduce the temperature of the sheet, it is necessary to increase the heat flux from the sheet to the cooling liquid across the wall of the cooling roller. Here, the heat flux between the wall portion of the cooling roller and the coolant is the number by convective heat transfer from "JP Hallman Heat Transfer Engineering <Top> (Brain Book Publishing), P11-12". It is expressed as 1.

Figure 0005483174
ただし、
W[W]:熱流束
h[W/m・℃]:ローラ内壁面の熱伝達率
A[m]:ローラ内壁面積
Tr[℃]:ローラ内壁面温度
Tw[℃]:液温(ローラ内壁面より十分離れた位置で)
Figure 0005483174
However,
W [W]: Heat flux h [W / m 2 · ° C.]: Heat transfer coefficient A [m 2 ] of roller inner wall surface: Roller inner wall area Tr [° C.] Roller inner wall surface temperature Tw [° C.]: Liquid temperature ( (In a position sufficiently away from the inner wall of the roller)

数1より、熱流束Wを上げるためには、液温Twを下げるか、ローラ内壁面積Aを増加するか、ローラ内壁面の熱伝達率hを向上させる必要がある。   From Equation 1, in order to increase the heat flux W, it is necessary to decrease the liquid temperature Tw, increase the roller inner wall area A, or improve the heat transfer coefficient h of the roller inner wall surface.

数1における熱流束Wを上げるため、ローラ内部を流れる流体を空気から冷却液に変えて熱伝導率や比熱を高くしたり、ローラに内部における流体の速度を増加したりするのは、ローラ内壁面の熱伝達率hを増加させることに対応している。ただし、流体速度を上げることは、ローラ内部に液体を送液するためのポンプに大きな負担を与えることになるため、容易には行えない。   In order to increase the heat flux W in Equation 1, the fluid flowing inside the roller is changed from air to cooling liquid to increase the thermal conductivity and specific heat, or to increase the fluid velocity inside the roller. This corresponds to increasing the heat transfer coefficient h of the wall surface. However, increasing the fluid velocity is not easy because it imposes a large burden on the pump for feeding the liquid into the roller.

また、数1において液温Twを下げることでも熱流束Wを上げることが可能であるが、液温Twを下げる手段として、冷却ファンとラジエータとを使った場合には、液温Twは本質的に室温以下にすることはできないため、液温Twが思ったほど下がるものではない。また、液温Twを下げる手段として冷凍機を使った場合、液温Twは室温以下には下がるものの、冷凍機の消費電力や初期投資のコストが嵩み、実現は容易ではない。   In addition, the heat flux W can be increased by lowering the liquid temperature Tw in Equation 1, but when a cooling fan and a radiator are used as means for lowering the liquid temperature Tw, the liquid temperature Tw is essential. Since the liquid temperature Tw cannot be lowered below room temperature, the liquid temperature Tw does not decrease as much as expected. Further, when a refrigerator is used as a means for lowering the liquid temperature Tw, the liquid temperature Tw is lowered to room temperature or lower, but the power consumption of the refrigerator and the initial investment cost increase and it is not easy to realize.

そこで、本実施形態においては、これらの不具合が生じるのを抑えつつ、冷却ローラ22による用紙20の冷却効率を向上させている。   Therefore, in the present embodiment, the cooling efficiency of the sheet 20 by the cooling roller 22 is improved while suppressing the occurrence of these problems.

[構成例1]
図1(a)は、本構成例の冷却ローラ22を軸方向で切断した場合の断面図であり、図1(b)は、本構成例の冷却ローラ22を直径方向で切断した場合の断面図である。
本構成例の冷却ローラ22には、冷却ローラ22である中空の外管1の内壁近傍に外管1内の冷却液を乱流化するための乱流発生手段としてのコイル状部材2が配設されている。コイル状部材2の冷却ローラ軸方向(スラスト方向)端部は、外管の内壁に設けられた突起部材である固定棒60により固定されている。また、外管1の両端は開口しており、それら開口から外管1内にフランジ38を嵌合圧入させて取り付けている。また、フランジ38の軸部をロータリージョイント35内に設けられた軸受37に嵌合圧入させている。また、樹脂製のシール部材39によって、ロータリージョイント35の胴部36の内壁とフランジ38の軸部との間から液体がロータリージョイント35外に漏れ出さないようにしている。
[Configuration example 1]
1A is a cross-sectional view when the cooling roller 22 of this configuration example is cut in the axial direction, and FIG. 1B is a cross-section when the cooling roller 22 of this configuration example is cut in the diameter direction. FIG.
In the cooling roller 22 of this configuration example, a coil-shaped member 2 as a turbulent flow generating means for turbulently flowing the coolant in the outer tube 1 is arranged near the inner wall of the hollow outer tube 1 that is the cooling roller 22. It is installed. The end of the coiled member 2 in the axial direction (thrust direction) of the cooling roller is fixed by a fixing rod 60 that is a protruding member provided on the inner wall of the outer tube. Further, both ends of the outer tube 1 are open, and a flange 38 is fitted and fitted into the outer tube 1 from these openings. Further, the shaft portion of the flange 38 is press-fitted into a bearing 37 provided in the rotary joint 35. Further, a resin seal member 39 prevents liquid from leaking out of the rotary joint 35 from between the inner wall of the body portion 36 of the rotary joint 35 and the shaft portion of the flange 38.

また、冷却ローラ22の外管1と図示しない搬送ベルト42(図2参照)とによって用紙20が挟持され、かつ、図1(b)中の矢印の方向に外管1が回転してシート状部材22が紙面右側から左側に搬送される構成になっている。   Further, the sheet 20 is sandwiched between the outer tube 1 of the cooling roller 22 and a conveyance belt 42 (not shown) (see FIG. 2), and the outer tube 1 rotates in the direction of the arrow in FIG. The member 22 is configured to be conveyed from the right side to the left side of the drawing.

図1(a)で紙面左側より外管1内に流入した冷却液は、外管1の内部を送液される際、当初は図2に示されるように流速プロファイル3のようなポアズイユ流れに似た流れ場を形成する。この流速プロファイル3は、図1(a)や図1(b)に示される、外管1の内壁近傍に配設されたコイル状部材2に衝突し流れが乱れ、図3に示されるように流れが外管1の内壁に付着4の如く付着が発生したり、剥離5のように剥離したりが発生する。   In FIG. 1A, when the coolant flowing into the outer tube 1 from the left side of the drawing is fed into the outer tube 1, it initially flows in a Poiseuille flow like the flow velocity profile 3 as shown in FIG. Create a similar flow field. The flow velocity profile 3 collides with the coil-shaped member 2 disposed in the vicinity of the inner wall of the outer tube 1 shown in FIGS. 1A and 1B, and the flow is disturbed. As shown in FIG. The flow may be attached to the inner wall of the outer tube 1 as shown by attachment 4 or may be peeled off as shown by separation 5.

ここで、流れの剥離や付着が発生する箇所では外管1の内壁から冷却液への熱伝達率が向上する。流れの剥離に関して言えば、図4に示すように、外管1の内壁面上に冷却液流れの剥離5が発生した場合、剥離5の位置を原点とし、そこから冷却液流れ方向下流の位置xにおける熱伝達率は、「J.P.ホールマン著 伝熱工学<上>(ブレイン図書出版)、P.144−160、式(5−41)」に掲載されている流れが層流時の対流熱伝達式である数2に基づき、hxのように分布される。このとき、剥離5の箇所、すなわち原点で理論上、熱伝達率は+∞に大きくなる(ただし、工学上、実際に、x=0で熱伝達率が+∞になることはない)。   Here, the heat transfer rate from the inner wall of the outer tube 1 to the cooling liquid is improved at locations where flow separation or adhesion occurs. Regarding flow separation, as shown in FIG. 4, when the separation 5 of the coolant flow occurs on the inner wall surface of the outer tube 1, the position of the separation 5 is the origin, and the position downstream of the separation direction in the coolant flow direction The heat transfer coefficient at x is the flow shown in "JP Hallman Heat Transfer Engineering <Top> (Brain Book Publishing), P. 144-160, Formula (5-41)" when the flow is laminar. It is distributed like hx based on the convection heat transfer equation (2). At this time, the heat transfer coefficient theoretically increases to + ∞ at the location of the separation 5, that is, the origin (however, in terms of engineering, the heat transfer coefficient does not actually become + ∞ when x = 0).

Figure 0005483174
ただし、
x[m]:流れの剥離点からの位置
hx[W/m・K]:位置xにおける局所熱伝達率
Pr[1]:プラントル係数
U∞[m/s]:ローラ内壁面より十分離れた流れの主流速
ν[m/s]:動粘性率(=粘性率/密度)
k:熱伝導率
Figure 0005483174
However,
x [m]: position hx [W / m 2 · K] from flow separation point: local heat transfer rate Pr [1] at position x: Prandtl coefficient U∞ [m / s]: sufficiently separated from roller inner wall surface Main flow velocity ν [m 2 / s]: kinematic viscosity (= viscosity / density)
k: thermal conductivity

これらの流れの剥離や付着は、外管1の内壁近傍で数多く発生し、それぞれの箇所で熱伝達率は高くなることから、延いては外管1の長手方向に渡って一様に高い熱伝達率が実現されローラから冷却液までの熱流束が増加し、延いてはシート状部材の冷却効率が飛躍的向上する。したがって、高温である用紙20は、冷却ローラ22の外管1と図示しない搬送ベルト42(図2参照)とによって挟持搬送される際、用紙20の熱は外管1の壁部を通って外管1の内部を流れる冷却液に高効率で伝達され、延いては用紙20の温度は低減する。   Many of these flow separations and adhesions occur in the vicinity of the inner wall of the outer tube 1, and the heat transfer coefficient becomes higher at each location. The transmission rate is realized, the heat flux from the roller to the cooling liquid is increased, and the cooling efficiency of the sheet-like member is dramatically improved. Therefore, when the high-temperature paper 20 is nipped and conveyed by the outer tube 1 of the cooling roller 22 and the conveyance belt 42 (not shown) (see FIG. 2), the heat of the paper 20 is removed through the wall portion of the outer tube 1. It is transmitted with high efficiency to the coolant flowing inside the tube 1, and the temperature of the paper 20 is reduced.

また、上記乱流発生手段であるコイル状部材2は、外管1の内壁近傍に配されるため、外管1の内部を流れる冷却液の流れを大きく妨げるものではない。したがって、外管1の内部を流れる冷却液に対して大きな流体抵抗にはなり得ず、外管1内に冷却液を送り込む図示しないポンプの送液に大きな負荷を与えることがなく、前記ポンプの消費電力を抑えた運転を行うことができる。   Further, since the coil-shaped member 2 as the turbulent flow generating means is disposed in the vicinity of the inner wall of the outer tube 1, it does not greatly hinder the flow of the coolant flowing inside the outer tube 1. Therefore, it cannot become a large fluid resistance with respect to the coolant flowing inside the outer tube 1, and does not give a large load to the liquid feed of a pump (not shown) that feeds the coolant into the outer tube 1. Operation with low power consumption can be performed.

また、上記乱流発生手段であるコイル状部材2は、外管1とは別部材にして外管1の内壁面の直径よりもやや小径に作ることで、冷却ローラ22を組み立てる工程で、容易に外管1内部に挿入でき、また外管1の内壁面とコイル状部材2とで発生する摩擦力にて自然にコイル状部材2を外管1内に固定できるため、特別な固定手段も必要なく容易に実現が可能である。また、外管1内からコイル状部材2の取り外しも容易に行えるため、冷却ローラ22のメンテナンス性を向上させることができる。   In addition, the coiled member 2 as the turbulent flow generating means is a member different from the outer tube 1 and made slightly smaller than the diameter of the inner wall surface of the outer tube 1, so that the cooling roller 22 can be assembled easily. Since the coiled member 2 can be naturally fixed in the outer tube 1 by the frictional force generated between the inner wall surface of the outer tube 1 and the coiled member 2, a special fixing means is also provided. It can be easily realized without necessity. Further, since the coil-shaped member 2 can be easily detached from the outer tube 1, the maintainability of the cooling roller 22 can be improved.

なお、冷却液の流れの方向は、図1(a)に示す方向と逆方向でも構わない。   The direction of the coolant flow may be opposite to the direction shown in FIG.

外管1に螺旋形状の部材や突起を設ける場合、その螺旋形状の巻き方向は流体抵抗の問題が起きないよう、外管1の回転方向を考えて、冷却液の流れ方向と同方向の送りが発生する巻き方向とすることが考えられる。   When the outer tube 1 is provided with a spiral member or protrusion, the spiral winding direction is fed in the same direction as the flow direction of the cooling liquid in consideration of the rotation direction of the outer tube 1 so that the problem of fluid resistance does not occur. It is conceivable that the winding direction causes the occurrence of

例えば、図1(a)に示すように外管1の左側から右側に向かって冷却液が流れ(前記左側が冷却液流れ方向上流側、前記右側が冷却液流れ方向下流側)、図1(b)ように下流側の軸方向から見て外管1が右回転しているような場合において、コイル状部材2によって外管1の内壁近傍に流体抵抗とならないように乱流を起こそうとすると、外管1と共に右回転するコイル状部材2の巻き方向は、冷却液の流れ方向と同方向の送りが発生する右巻きとなる。   For example, as shown in FIG. 1A, the coolant flows from the left side to the right side of the outer tube 1 (the left side is the upstream side in the coolant flow direction, the right side is the downstream side in the coolant flow direction), and FIG. b) In the case where the outer tube 1 is rotating clockwise as viewed from the downstream axial direction, the coiled member 2 tries to cause turbulent flow so as not to cause fluid resistance in the vicinity of the inner wall of the outer tube 1. Then, the winding direction of the coil-shaped member 2 that rotates clockwise together with the outer tube 1 is a right-handed winding in which the feed in the same direction as the flow direction of the coolant occurs.

図5(a)は外管1が右回転、コイル状部材2が右巻きの冷却ローラ22の拡大断面図であり、図1(a)をコイル状部材2の巻き方向を分かり易く実際的に描いたものである。図5(a)で冷却液の流れ方向とコイル状部材2の回転による冷却液の送り方向とが同方向となることが分かる。   FIG. 5A is an enlarged cross-sectional view of the cooling roller 22 in which the outer tube 1 is rotated clockwise and the coil-shaped member 2 is right-handed. FIG. It is drawn. In FIG. 5A, it can be seen that the flow direction of the coolant and the feed direction of the coolant due to the rotation of the coiled member 2 are the same.

言うまでもないが、同じように紙面左側から右側に冷却液を流し、図1(b)の用紙20の搬送方向を逆方向(紙面右方向)とする場合は、外管1は冷却液流れ方向下流側の軸方向から見て左回転となるので、このときのコイル状部材2の巻き方向は左巻きとなる。図5(d)は、外管1が左回転、コイル状部材2が左巻きの冷却ローラ22の拡大断面図で、冷却液の流れ方向とコイル状部材2の回転による冷却液の送り方向とが同方向となることが分かる。   Needless to say, in the same way, when the cooling liquid is made to flow from the left side to the right side of the sheet and the conveying direction of the sheet 20 in FIG. 1B is reversed (right direction on the sheet), the outer tube 1 is downstream in the flow direction of the cooling liquid. Since the left-handed rotation is seen from the axial direction on the side, the winding direction of the coiled member 2 at this time is left-handed. FIG. 5D is an enlarged cross-sectional view of the cooling roller 22 in which the outer tube 1 is rotated counterclockwise and the coil-shaped member 2 is counterclockwise. The flow direction of the cooling liquid and the direction of cooling liquid feeding due to the rotation of the coil-shaped member 2 are It turns out that it becomes the same direction.

このように、冷却ローラ22の外管1内を流れる冷却液の流れ方向とコイル状部材2の回転による冷却液の送り方向とが同方向となるように構成することで、外管1の内部を流れる冷却液に対するコイル状部材2による流体抵抗を低減することができる。   In this way, the flow direction of the coolant flowing in the outer tube 1 of the cooling roller 22 and the feed direction of the coolant due to the rotation of the coiled member 2 are configured in the same direction, so that the inside of the outer tube 1 The fluid resistance by the coil-shaped member 2 with respect to the cooling fluid flowing through can be reduced.

一方、外管内壁(内周面)に設ける乱流発生手段をコイル状部材2のような螺旋形状とし、その螺旋の巻き方向を、外管1の回転方向に応じて外管内壁近傍に沿って流れる冷却液の流れ方向に対して、逆向きの方向に送りが発生する巻き方向とする。   On the other hand, the turbulent flow generating means provided on the inner wall (inner peripheral surface) of the outer tube is formed in a spiral shape like the coiled member 2, and the winding direction of the spiral is along the vicinity of the inner wall of the outer tube according to the rotation direction of the outer tube 1. The winding direction is such that the feed is generated in a direction opposite to the flow direction of the flowing coolant.

図5(a)や図5(d)に示される構成の冷却ローラ22よりも外管1の内壁近傍の冷却液において、より一層の乱流を発生させ、冷却性能をさらに向上させるようにした。その方法として、コイル状部材2の巻き方向を図5(a)や図5(d)に示される構成の巻き方向とは逆の巻き方向とし、冷却液の流れ方向とは逆向きの送りが発生するようにした。こうすることで外管1の内壁近傍において、冷却液流れ方向下流に向かう冷却液の流れに対して、コイル状部材2によって冷却液を逆向きに送ろうとする力(流れ)がぶつかることになるので、より複雑でよりランダムな乱流が発生し、外管1から冷却液への熱伝達効率が格段に向上する。   In the cooling liquid near the inner wall of the outer tube 1 than the cooling roller 22 having the configuration shown in FIGS. 5A and 5D, a further turbulent flow is generated to further improve the cooling performance. . As the method, the winding direction of the coil-shaped member 2 is set to a winding direction opposite to the winding direction of the configuration shown in FIGS. 5A and 5D, and the feeding in the direction opposite to the flow direction of the coolant is performed. It was made to occur. As a result, in the vicinity of the inner wall of the outer pipe 1, a force (flow) for sending the coolant in the opposite direction by the coiled member 2 collides with the coolant flow toward the downstream in the coolant flow direction. Therefore, a more complicated and more random turbulent flow is generated, and the heat transfer efficiency from the outer tube 1 to the coolant is greatly improved.

コイル状部材2による冷却液の送り方向が外管1内を流れる冷却液の流れ方向と同方向となる図5(a)や図5(d)に示した構成に対し、コイル状部材2による冷却液の送り方向が外管1内を流れる冷却液の流れ方向と逆方向の送りとなる構成例を図5(b)と図5(c)とに示す。   In contrast to the configuration shown in FIGS. 5A and 5D in which the coolant feeding direction by the coil-shaped member 2 is the same as the flow direction of the coolant flowing in the outer tube 1, the coil-shaped member 2 FIG. 5B and FIG. 5C show a configuration example in which the feeding direction of the cooling liquid is the feeding direction opposite to the flowing direction of the cooling liquid flowing in the outer tube 1.

図5(a)や図5(c)に示すように紙面左側から右側に向かって冷却液が流れ、冷却液流れ方向下流側の軸方向から見て外管1が右回転する場合、コイル状部材2による冷却液の送り方向を外管1内を流れる冷却液の流れと同方向とするときは、図5(a)に示すようにコイル状部材2を右巻きにし、コイル状部材2による冷却液の送り方向を外管1内を流れる冷却液の流れ方向とは逆方向とするとには、図5(c)に示すようにコイル状部材2を左巻きにとする。   As shown in FIG. 5 (a) and FIG. 5 (c), when the coolant flows from the left side to the right side of the drawing and the outer tube 1 rotates clockwise when viewed from the axial direction downstream in the coolant flow direction, When the direction in which the coolant is fed by the member 2 is the same as the flow of the coolant flowing in the outer tube 1, the coiled member 2 is wound clockwise as shown in FIG. In order to set the coolant feeding direction to be opposite to the coolant flowing in the outer tube 1, the coiled member 2 is left-handed as shown in FIG.

また、図5(b)や図5(d)に示すように外管1内を紙面左側から右側に向かって冷却液が流れるが、冷却液流れ方向下流側の軸方向から見て外管1が左回転する場合、コイル状部材2による冷却液の送り方向を外管1内を流れる冷却液の流れ方向と同方向とするときは、図5(d)に示すようにコイル状部材2を左巻きにし、コイル状部材2による冷却液の送り方向を外管1内を流れる冷却液の流れ方向とは逆方向とするときには、図5(b)に示すようにコイル状部材2を右巻きにする。   Further, as shown in FIGS. 5B and 5D, the coolant flows in the outer tube 1 from the left side to the right side in the drawing, but the outer tube 1 is viewed from the axial direction downstream in the coolant flow direction. Is rotated counterclockwise, when the coolant feeding direction by the coil-shaped member 2 is the same as the flow direction of the coolant flowing in the outer tube 1, the coil-shaped member 2 is moved as shown in FIG. When left-handed and the direction in which the coolant is fed by the coil-shaped member 2 is opposite to the direction of the coolant flowing through the outer tube 1, the coil-shaped member 2 is wound clockwise as shown in FIG. To do.

なお、以上の組合せ関係は限定されるものではなく、例えば外管1の回転方向とコイル状部材2の巻き方向とはそのままで、冷却液の流れ方向のみを反対方向(紙面右側から左側へ流れる方向)にすれば、図5(a)や図5(d)に示す構成が冷却液の流れ方向とコイル状部材2による冷却液の送り方向とが逆向きになる。   The above combination is not limited. For example, the rotation direction of the outer tube 1 and the winding direction of the coiled member 2 remain the same, and only the flow direction of the cooling liquid flows in the opposite direction (from the right side to the left side of the page). 5 (a) and 5 (d), the coolant flow direction and the coolant feed direction by the coiled member 2 are opposite to each other.

よって、外管1の回転方向、冷却液の流れ方向、及び、コイル状部材2による冷却液の送り方向の3者の組合せ関係で、コイル状部材2による冷却液の送りを冷却液の流れ方向と同じ向きの送りまたは逆向きの送りが発生するように、コイル状部材2の巻き方向を決める。   Therefore, the coolant is fed by the coiled member 2 in the direction of the coolant flow in the three-way combination of the rotation direction of the outer tube 1, the coolant flow direction, and the coolant feed direction by the coiled member 2. The winding direction of the coil-shaped member 2 is determined so that the same feed or the reverse feed occurs.

ただし、コイル状部材2などの乱流発生手段の形状の大きさによっては流体抵抗が大きくなってしまうので注意が必要である。例えば、コイル状部材2の場合、その線径が極細であれば乱流による効果は小さくなるが、その分、コイル状部材2による冷却液の送り方向が冷却液の流れ方向とは逆向きであっても流体抵抗としては非常に小さく問題にならないレベルとなる。逆に、コイル状部材2の線径を極太にすれば乱流効果は大きくなるが、コイル状部材2による冷却液の送りが冷却液の流れ方向とは逆向きの送りも大きく強くなるので流体抵抗が増大してしまう。しかし、冷却液の流速、流量、冷却液が流れる間隙の幅(大きさ)、及び、冷却性能目標などの仕様条件によってコイル状部材2などの乱流発生手段の形状やその大きさは、各々の場合毎に対応して変わるので、一概に決めることはできない。そのため、本願出願人は、最小限の流体抵抗で最大限の乱流効果が得られるよう、乱流発生手段の最適な形状や大きさ(例えば線径寸法)を、シミュレーションや実験評価で比較や確認などを行って決めた。また、乱流発生手段がコイル状部材2のように螺旋形状の場合は、その螺旋ピッチ間隔が乱流の発生頻度や乱流の発生する位置間隔を決めるファクターとなるので、螺旋ピッチ間隔も同様に考慮する必要がある。   However, care must be taken because the fluid resistance increases depending on the size of the turbulent flow generating means such as the coil-shaped member 2. For example, in the case of the coil-shaped member 2, if the wire diameter is extremely small, the effect of turbulent flow is reduced. However, the coolant feeding direction by the coil-shaped member 2 is opposite to the coolant flow direction. Even so, the fluid resistance is very small and does not cause a problem. Conversely, if the wire diameter of the coil-shaped member 2 is made extremely thick, the turbulent flow effect is increased, but the feed of the coolant by the coil-shaped member 2 is also greatly strengthened because the feed in the direction opposite to the flow direction of the coolant is greatly increased. Resistance will increase. However, the shape and the size of the turbulent flow generating means such as the coiled member 2 are respectively determined according to the specification conditions such as the flow rate of the coolant, the flow rate, the width (size) of the gap through which the coolant flows, and the cooling performance target. Since it changes corresponding to each case, it is not possible to make a general decision. Therefore, the applicant of the present application compares the optimum shape and size (for example, the wire diameter dimension) of the turbulent flow generating means by simulation and experimental evaluation so that the maximum turbulent flow effect can be obtained with the minimum fluid resistance. We decided after confirming. Further, when the turbulent flow generating means has a spiral shape like the coiled member 2, the helical pitch interval is a factor that determines the frequency of occurrence of turbulent flow and the position interval at which turbulent flow is generated. Need to be considered.

上記乱流発生手段としては、コイル状部材2の他に、例えば、図6に示すような網状部材6でも構わない。また、網状部材6ほどではないが、複数本の線状部材等を外管1内に挿入しても良い。あるいは、複数パンチ孔を設けたシートを円筒状に丸めたものや多少厚みのある多孔質媒体を外管1内に挿入しても良い。   As the turbulent flow generation means, in addition to the coil-shaped member 2, for example, a net-like member 6 as shown in FIG. Further, although not as much as the net member 6, a plurality of linear members or the like may be inserted into the outer tube 1. Alternatively, a sheet having a plurality of punch holes rounded into a cylindrical shape or a slightly thick porous medium may be inserted into the outer tube 1.

[構成例2]
図7は本構成例の冷却ローラ22を軸方向で切断した場合の断面図である。本構成例においては、図7に示すように、外管1の軸方向で用紙20近傍のみに、乱流発生手段であるコイル状部材2を設けている。高温の用紙20が接する外管1の近傍のみにコイル状部材2を設けることで、外管1内のコイル状部材2が設けられていない、その他の部分で冷却ローラ22の外管1内を流れる冷却液に対しコイル状部材2による流体抵抗の発生はないことから、前記ポンプの負荷は小さく消費電力を下げられ且つ耐久性も向上し、また一ランク下のポンプで済み、低コスト化も図ることができる。
[Configuration example 2]
FIG. 7 is a cross-sectional view of the cooling roller 22 of this configuration example when cut in the axial direction. In this configuration example, as shown in FIG. 7, a coil-shaped member 2 that is a turbulent flow generating means is provided only in the vicinity of the sheet 20 in the axial direction of the outer tube 1. By providing the coil-shaped member 2 only in the vicinity of the outer tube 1 with which the high-temperature paper 20 is in contact, the coil-shaped member 2 in the outer tube 1 is not provided. Since no fluid resistance is generated by the coil-shaped member 2 with respect to the flowing coolant, the load on the pump is small, the power consumption is reduced and the durability is improved. Can be planned.

[構成例3]
図8(a)は本構成例の冷却ローラ22を軸方向で切断した場合の断面図であり、図8(b)は本構成例の冷却ローラ22を直径方向で切断した場合の断面図である。本構成例においては、図8(a)や図8(b)に示すように、外管1の直径よりもずっと小径なコイル状部材70を、外管1の用紙20近傍のみに設置している。
[Configuration example 3]
FIG. 8A is a cross-sectional view when the cooling roller 22 of the present configuration example is cut in the axial direction, and FIG. 8B is a cross-sectional view when the cooling roller 22 of the present configuration example is cut in the diameter direction. is there. In this configuration example, as shown in FIGS. 8A and 8B, a coil-shaped member 70 having a diameter much smaller than the diameter of the outer tube 1 is installed only in the vicinity of the paper 20 of the outer tube 1. Yes.

図9に示すように、一端がロータリージョイント35の端部に固定支持され他端が外管1内に位置する冷却ローラ軸方向に長尺なシャフト63の前記他端に固定させて設けた固定棒60の側壁に冷却ローラ軸方向で穴を開け、そこに冷却ローラ軸方向に長く細い針金61を通し針金トメ具62で針金61を固定棒60にとめる。また、図9では図示しないが冷却ローラ軸方向反対側も同じ構成となっている。そして、その針金61にコイル状部材70を通すことで、外管1の内壁近傍にコイル状部材70を留めている。また、コイル状部材70の冷却ローラ軸方向(スラスト方向)は、固定棒60によって固定されている。このような構成にすることによって、外管1が回転してもロータリージョイント35に一端が固定支持されたシャフト63は回転しないことから、シャフト63に設けられた固体棒60に張架された針金61に通されたコイル状部材70も外管1が回転しても用紙20近傍の位置から変位することはない。   As shown in FIG. 9, one end is fixedly supported at the end of the rotary joint 35 and the other end is fixed to the other end of the shaft 63 that is long in the axial direction of the cooling roller located in the outer tube 1. A hole is made in the side wall of the rod 60 in the axial direction of the cooling roller, and a thin wire 61 that is long and thin in the axial direction of the cooling roller is passed through the hole. Although not shown in FIG. 9, the opposite side in the cooling roller axial direction has the same configuration. And the coil-shaped member 70 is fastened near the inner wall of the outer tube 1 by passing the coil-shaped member 70 through the wire 61. Further, the cooling roller axial direction (thrust direction) of the coil-shaped member 70 is fixed by a fixing rod 60. With such a configuration, even if the outer tube 1 rotates, the shaft 63 whose one end is fixedly supported by the rotary joint 35 does not rotate. Therefore, the wire stretched around the solid rod 60 provided on the shaft 63 The coil-shaped member 70 passed through 61 is not displaced from the position near the paper 20 even when the outer tube 1 rotates.

また、図10に示すように、固定棒60を軸受64を介してシャフト63に揺動可能に吊り下げて設けてもよい。この際、固定棒60の軸受64とは反対側の端部に錘65を設けておくことで、錘65の自重によりコイル状部材70を用紙20近傍の位置に位置させることができる。   Further, as shown in FIG. 10, the fixing rod 60 may be provided so as to be swingable on the shaft 63 via a bearing 64. At this time, by providing the weight 65 at the end of the fixed rod 60 opposite to the bearing 64, the coiled member 70 can be positioned in the vicinity of the paper 20 by the weight of the weight 65.

また、変形例として図11では、小径なコイル状部材70を複数用意し、用紙20と外管1との接触面積が広い場合に対応させて複数のコイル状部材70を外管1の用紙20近傍のみに配置している。これら複数のコイル状部材70は、図9や図11に示すような構成をコイル状部材70と同じ数だけ設けることで、外管1の内壁近傍に留められる。   As a modification, in FIG. 11, a plurality of small-diameter coil-like members 70 are prepared, and the plurality of coil-like members 70 are made to correspond to the case where the contact area between the paper 20 and the outer tube 1 is wide. It is arranged only in the vicinity. The plurality of coil-shaped members 70 are provided in the vicinity of the inner wall of the outer tube 1 by providing the same number of configurations as shown in FIGS. 9 and 11 as the coil-shaped members 70.

このようにコイル状部材2よりも小径のコイル状部材70を外管1内の用紙20近傍のみに配置することで、コイル状部材2を設ける場合よりもコイル状部材70による流体抵抗を低減でき、前記ポンプの負荷は小さく消費電力を下げられ且つ耐久性も向上し、また一ランク下のポンプで済み、低コスト化も図ることができる。   Thus, by arranging the coil-shaped member 70 having a smaller diameter than the coil-shaped member 2 only in the vicinity of the paper 20 in the outer tube 1, the fluid resistance by the coil-shaped member 70 can be reduced as compared with the case where the coil-shaped member 2 is provided. The load of the pump is small, the power consumption can be reduced, the durability can be improved, and the pump can be reduced by one rank, so that the cost can be reduced.

なお、乱流発生を助長させる意味で、コイル状部材などの乱流発生手段を外的に振動させる構成としても良い。図12では、加振手段9により、用紙20近傍に配された、乱流発生手段である小径なコイル状部材70を、非接触で超音波等の振動波を送射して振動させ、乱流発生を助長している。   In addition, it is good also as a structure which vibrates externally turbulent flow generation means, such as a coil-shaped member, in the meaning which promotes turbulent flow generation. In FIG. 12, the small-diameter coil-shaped member 70, which is a turbulent flow generating means, disposed near the paper 20 is vibrated by emitting vibration waves such as ultrasonic waves in a non-contact manner. Contributes to flow generation.

[構成例4]
図13(a)に示すように、冷却ローラ22を、コイル状部材2を内壁近傍に設けた外管1とコア31とから成る管構造とし、外管1とコア31とで狭い間隙を形成する。その間隙を流路として冷却液を流す。すると、図5(a)に比べて冷却液の流速が増加し、それにコイル状部材2による外管1の内壁近傍の乱流効果が加わることになるので、相乗効果で熱伝達率がより向上し、更なる用紙20の温度低減が見込める。
[Configuration Example 4]
As shown in FIG. 13A, the cooling roller 22 has a tube structure composed of an outer tube 1 and a core 31 provided with a coiled member 2 in the vicinity of the inner wall, and a narrow gap is formed between the outer tube 1 and the core 31. To do. Coolant is allowed to flow using the gap as a flow path. Then, the flow rate of the coolant is increased as compared with FIG. 5A, and the turbulent flow effect in the vicinity of the inner wall of the outer tube 1 by the coil-like member 2 is added thereto, so that the heat transfer rate is further improved by a synergistic effect. In addition, further temperature reduction of the paper 20 can be expected.

図13(b)は、図13(a)のコア31にも乱流発生手段であるコイル状部材32を設けたものである。コア31の外壁近傍にもコイル状部材32によって乱流を発生させ、外管1のコイル状部材2による外管内壁近傍の乱流と合わせて、外管1とコア31との間隙内でより複雑で大きな乱流を発生させて、図13(a)で示した構成よりも冷却性能を向上させることができる。   In FIG. 13B, the core 31 shown in FIG. 13A is also provided with a coil-shaped member 32 which is a turbulent flow generating means. A turbulent flow is also generated in the vicinity of the outer wall of the core 31 by the coil-shaped member 32, and together with the turbulent flow in the vicinity of the inner wall of the outer tube due to the coil-shaped member 2 of the outer tube 1, Complex and large turbulent flow can be generated to improve the cooling performance as compared with the configuration shown in FIG.

また、本構成例の冷却ローラ22の場合、外管1とコア31との回転数を異なるようにしておくことで、冷却液の旋回速度成分は外管1内壁近傍とコア31外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。コア31の回転が、例えば外管1よりも何倍もの回転数であったり、逆に静止して非回転であったり、など外管1の回転数と異なれば異なる程、効果を得ることができる。なお、最大限の効果を望む場合はコア31を外管1の回転方向とは逆方向に回転させれば良い。しかも、外管1とコア31とで形成される狭い間隙による流速増加で、さらに熱伝達率が向上する。また、コア31にもコイル状部材32などの乱流発生手段を設けた冷却ローラ22であれば、一段と熱伝達率が向上する。   Further, in the case of the cooling roller 22 of this configuration example, the rotational speed component of the coolant is different between the vicinity of the inner wall of the outer pipe 1 and the vicinity of the outer wall of the core 31 by making the rotational speeds of the outer pipe 1 and the core 31 different. The heat transfer rate is further improved by promoting the generation of turbulent flow. The more the rotation of the core 31 is different from the number of rotations of the outer tube 1, such as, for example, the number of rotations of the outer tube 1 is many times that of the outer tube 1, or it is stationary and non-rotation. it can. In addition, what is necessary is just to rotate the core 31 in the reverse direction to the rotation direction of the outer tube | pipe 1 when the maximum effect is desired. In addition, the heat transfer rate is further improved by increasing the flow velocity due to the narrow gap formed by the outer tube 1 and the core 31. Further, if the cooling roller 22 is provided with turbulent flow generating means such as the coil-like member 32 in the core 31, the heat transfer rate is further improved.

[構成例5]
図14(a)は、本構成例の冷却ローラ22を軸方向で切断した場合の断面図であり、図14(b)は、本構成例の冷却ローラ22を直径方向で切断した場合の断面図である。
本構成例の冷却ローラ22には、外管1の内部に内管7が設けられており、外管1と内管7との間の冷却液が流れる隙間内の外管1の内壁近傍に外管1内の冷却液を乱流化するための乱流発生手段としてのコイル状部材2が配設されている。
[Configuration Example 5]
FIG. 14A is a cross-sectional view when the cooling roller 22 of this configuration example is cut in the axial direction, and FIG. 14B is a cross-section when the cooling roller 22 of this configuration example is cut in the diameter direction. FIG.
In the cooling roller 22 of this configuration example, an inner tube 7 is provided inside the outer tube 1, and in the vicinity of the inner wall of the outer tube 1 in a gap through which the coolant flows between the outer tube 1 and the inner tube 7. A coiled member 2 is provided as turbulent flow generating means for turbulent cooling of the coolant in the outer tube 1.

本構成例は図14に示すように、冷却ローラ22を外管1と内管7とから成る管構造とし、冷却ローラ22内で冷却液を往復させる。すなわち、外管1と内管7とで形成した間隙を往流路として冷却液を紙面左側から流入させ、外管1の右端でUターンさせて、内管7の内部を復流路として紙面左側に向けて冷却液を流出させる構成である。なお、冷却液の流入出経路は逆方向、つまり、内管7の内部を往流路とし、外管1と内管7とで形成した間隙を復流路としても構わない。   In this configuration example, as shown in FIG. 14, the cooling roller 22 has a tube structure including the outer tube 1 and the inner tube 7, and the coolant is reciprocated in the cooling roller 22. In other words, the coolant formed by the gap formed between the outer tube 1 and the inner tube 7 is used as the forward flow path, and the cooling liquid is introduced from the left side of the drawing, and is U-turned at the right end of the outer tube 1. In this configuration, the coolant flows out toward the left side. The cooling liquid inflow / outflow path may be in the reverse direction, that is, the inside of the inner tube 7 may be the forward flow path, and the gap formed by the outer pipe 1 and the inner pipe 7 may be the return flow path.

本構成例においては、往流路の流路の間隙が狭いので、図5(a)に比べて外管内壁近傍の冷却液の流速が増加し、さらにコイル状部材2による外管内壁近傍の乱流効果が加わるので、外管1から冷却液への熱伝達率が向上する。また、内管7の外径寸法を外管1の内径寸法に近づけて間隙をより狭くすれば、図13(a)に示したコア31を設けた場合と同様の効果が得られる。   In the present configuration example, since the gap of the flow path of the forward flow path is narrow, the flow rate of the coolant near the inner wall of the outer pipe increases as compared with FIG. Since the turbulent flow effect is added, the heat transfer rate from the outer tube 1 to the coolant is improved. Further, if the outer diameter of the inner tube 7 is made closer to the inner diameter of the outer tube 1 to make the gap narrower, the same effect as that obtained when the core 31 shown in FIG.

また、本構成例においては、冷却ローラ22の軸方向端部に設けられ外管1内への冷却液の流入流出用のメカニカルシールを施された継ぎ手は、冷却ローラ22の紙面左側のみ、すなわち、冷却ローラ22の軸方向一端側のみに設ければよく、これにより冷却ローラ22の紙面右側、言い換えれば、前記継ぎ手手段が設けられていない冷却ローラ22の軸方向他端側には空スペースが生まれる。この空スペースは、画像形成装置の小型化に寄与し、また、冷却ローラ22を冷却装置18や画像形成装置へ組み付ける際、冷却液のチューブや配管に捕らわれずに容易に冷却ローラ22の組み付け作業を行うことができる。   Further, in this configuration example, the joint provided with the mechanical seal for inflow and outflow of the cooling liquid into the outer tube 1 provided at the end portion in the axial direction of the cooling roller 22 is only the left side of the cooling roller 22 in the drawing, that is, Therefore, it is only necessary to provide the cooling roller 22 on one end side in the axial direction, and as a result, there is an empty space on the right side of the cooling roller 22, in other words, on the other end side in the axial direction of the cooling roller 22 where the joint means is not provided. to be born. This empty space contributes to the miniaturization of the image forming apparatus, and when the cooling roller 22 is assembled to the cooling apparatus 18 or the image forming apparatus, the assembling work of the cooling roller 22 is easily performed without being caught by the cooling liquid tube or piping. It can be performed.

また、外管1と内管7とで構成される冷却ローラ22の場合、図15に示すように外管1と内管7との回転数を異なるようにしておくことで、冷却液の旋回速度成分は外管1内壁近傍と内管7外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。内管7の回転が、例えば外管1よりも何倍もの回転数であったり逆に静止して非回転であったりなど、外管1の回転数と異なれば異なる程、効果を得ることができる。なお、最大限の効果を望む場合は内管7を外管1の回転方向とは逆方向に回転させれば良い。   Further, in the case of the cooling roller 22 composed of the outer tube 1 and the inner tube 7, the rotation of the coolant can be performed by making the outer tube 1 and the inner tube 7 have different rotational speeds as shown in FIG. The velocity component is greatly different between the vicinity of the inner wall of the outer tube 1 and the vicinity of the outer wall of the inner tube 7, which promotes the generation of turbulent flow and further improves the heat transfer coefficient. As the rotation of the inner tube 7 is different from the number of rotations of the outer tube 1, for example, the number of rotations is many times that of the outer tube 1 or is stationary and non-rotating, the effect can be obtained. it can. If the maximum effect is desired, the inner tube 7 may be rotated in the direction opposite to the rotation direction of the outer tube 1.

例えば、図16に示すように、ロータリージョイントの外部に設けたモータ80の回転軸に磁石81を取り付け、一方でモータ80に取り付けた磁石81と対向する内管7の外周面にも磁石82を取り付けておき、モータ80に取り付けた磁石81を回転させて両磁石間に作用する磁力により内管7に取り付けた磁石82に回転力を加えることによって内管7を回転させる構成で、モータ80の回転数や回転方向を制御することにより、外管1と内管7との回転数や回転方向を異ならせることができる。   For example, as shown in FIG. 16, a magnet 81 is attached to the rotating shaft of a motor 80 provided outside the rotary joint, while a magnet 82 is also attached to the outer peripheral surface of the inner tube 7 facing the magnet 81 attached to the motor 80. It is attached, and the inner tube 7 is rotated by applying a rotational force to the magnet 82 attached to the inner tube 7 by rotating the magnet 81 attached to the motor 80 and acting between the two magnets. By controlling the number of rotations and the direction of rotation, the number of rotations and the direction of rotation of the outer tube 1 and the inner tube 7 can be made different.

図17(b)は、図17(a)の内管7にも乱流発生手段であるコイル状部材33を設けたものである。内管7の外壁近傍にもコイル状部材33によって乱流を発生させ、外管1のコイル状部材2による外管内壁近傍の乱流と合わせて、外管1と内管7とで形成される間隙内でより複雑で大きな乱流を発生させて、冷却性能をさらに向上させることができる。   In FIG. 17B, the inner tube 7 of FIG. 17A is also provided with a coiled member 33 which is a turbulent flow generating means. A turbulent flow is also generated near the outer wall of the inner tube 7 by the coiled member 33, and is formed by the outer tube 1 and the inner tube 7 together with the turbulent flow near the inner wall of the outer tube by the coiled member 2 of the outer tube 1. The cooling performance can be further improved by generating a more complicated and larger turbulent flow in the gap.

また、図18や図19に示すように、外管1の直径よりもずっと小径なコイル状部材70を、外管1の用紙20近傍のみに設置する構成を採用することもできる。   Further, as shown in FIGS. 18 and 19, a configuration in which a coil-like member 70 having a diameter much smaller than the diameter of the outer tube 1 is installed only in the vicinity of the paper 20 of the outer tube 1 can be adopted.

図18に示すように、一端がロータリージョイント35に固定支持され他端が外管1内に位置する、冷却ローラ軸方向に長尺なシャフト63の前記他端に固定させて設けた固定棒60の側壁に冷却ローラ軸方向で穴を開け、そこに冷却ローラ軸方向に長く細い針金61を通し針金トメ具62で針金61を固定棒60にとめる。そして、その針金61にコイル状部材70を通すことで、外管1の内壁近傍にコイル状部材70を留めている。また、針金61の固定棒61側とは反対側の端部は、コイル状部材70を針金61に通した後に折り曲げてコイル状部材70が針金61から抜け出ないようにしている。コイル状部材70の重さはそれほど重くないため、強度的に片持ちでシャフト63を支持することは可能であるが、強度が増すようにシャフト63を2本以上設けても良い。   As shown in FIG. 18, a fixed rod 60 provided with one end fixedly supported by the rotary joint 35 and the other end positioned in the outer tube 1 fixed to the other end of the shaft 63 that is long in the axial direction of the cooling roller. A hole is made in the side of the cooling roller in the axial direction of the cooling roller, and a thin wire 61 that is long and thin in the axial direction of the cooling roller is passed therethrough. And the coil-shaped member 70 is fastened near the inner wall of the outer tube 1 by passing the coil-shaped member 70 through the wire 61. Further, the end of the wire 61 opposite to the fixing rod 61 side is bent after passing the coiled member 70 through the wire 61 so that the coiled member 70 does not come out of the wire 61. Since the weight of the coil-shaped member 70 is not so heavy, it is possible to support the shaft 63 with a cantilever strength, but two or more shafts 63 may be provided to increase the strength.

また、図19に示すように、固定棒60を軸受64を介して内管7に揺動可能に吊り下げて設けてもよい。この際、固定棒60の軸受64とは反対側の端部に錘65を設けておくことで、錘65の自重によりコイル状部材70を用紙20近傍の位置に位置させることができる。   Further, as shown in FIG. 19, the fixing rod 60 may be provided so as to be swingable on the inner tube 7 via a bearing 64. At this time, by providing the weight 65 at the end of the fixed rod 60 opposite to the bearing 64, the coiled member 70 can be positioned in the vicinity of the paper 20 by the weight of the weight 65.

このようにコイル状部材2よりも小径のコイル状部材70を外管1内の用紙20近傍のみに配置することで、コイル状部材2を設ける場合よりもコイル状部材70による流体抵抗を低減でき、前記ポンプの負荷は小さく消費電力を下げられ且つ耐久性も向上し、また一ランク下のポンプで済み、低コスト化も図ることができる。   Thus, by arranging the coil-shaped member 70 having a smaller diameter than the coil-shaped member 2 only in the vicinity of the paper 20 in the outer tube 1, the fluid resistance by the coil-shaped member 70 can be reduced as compared with the case where the coil-shaped member 2 is provided. The load of the pump is small, the power consumption can be reduced, the durability can be improved, and the pump can be reduced by one rank, so that the cost can be reduced.

[構成例6]
図20(a)は、本構成例の冷却ローラ22を軸方向で切断した場合の断面図であり、図20(b)は、本構成例の冷却ローラ22を直径方向で切断した場合の断面図である。
本構成例の冷却ローラ22には、外管1の内部に内管7が設けられ、さらに、その内管7の外側に中空のシリンダ8が挿入されており、外管1とシリンダ8とで形成される狭い間隙と内管7内を冷却液が流れる構成となっている。すなわち、紙面左側から冷却液を外管1とシリンダ8とで形成される狭い間隙から流入させ、外管1の右側端部に到達した冷却液をUターンさせて内管7の内部を紙面左側に向けて流出させる構成としている。本構成例のようにシリンダ8を設けることで、シリンダ8が無い場合に比べて外管1の内壁近傍などの流速が増加し外管1の壁部から冷却液への熱伝達率が向上して、更なる用紙20の温度低減を図ることができる。なお、冷却液の流入出経路は逆方向、つまり、内管7の内部を往流路とし、外管1とシリンダ8とで形成した間隙を復流路としても構わない。
[Configuration Example 6]
FIG. 20A is a cross-sectional view when the cooling roller 22 of this configuration example is cut in the axial direction, and FIG. 20B is a cross-section when the cooling roller 22 of this configuration example is cut in the diameter direction. FIG.
In the cooling roller 22 of this configuration example, an inner tube 7 is provided inside the outer tube 1, and a hollow cylinder 8 is inserted outside the inner tube 7. The cooling liquid flows through the narrow gap formed and the inner pipe 7. That is, the coolant is introduced from the left side of the drawing through a narrow gap formed by the outer tube 1 and the cylinder 8, and the coolant that has reached the right end of the outer tube 1 is U-turned so that the inside of the inner tube 7 is left on the page. It is configured to flow toward By providing the cylinder 8 as in this configuration example, the flow velocity in the vicinity of the inner wall of the outer tube 1 is increased and the heat transfer rate from the wall portion of the outer tube 1 to the coolant is improved compared to the case without the cylinder 8. Thus, the temperature of the paper 20 can be further reduced. The cooling liquid inflow / outflow path may be in the opposite direction, that is, the inside of the inner tube 7 may be the forward flow path, and the gap formed by the outer pipe 1 and the cylinder 8 may be the return flow path.

この冷却ローラ22の場合、外管1とシリンダ8とで狭い間隙を形成し、その狭い間隙を流路として冷却液が流れるので、図5(a)に比べて冷却液の流速が増加する。さらに、それにコイル状部材2による外管内壁近傍の乱流効果が加わるので、相乗効果で外管1から冷却液への熱伝達率がより向上し、更なる用紙20の温度低減が見込める。   In the case of the cooling roller 22, a narrow gap is formed between the outer tube 1 and the cylinder 8, and the cooling liquid flows using the narrow gap as a flow path, so that the flow rate of the cooling liquid increases as compared with FIG. Furthermore, since the turbulent flow effect in the vicinity of the inner wall of the outer tube by the coil-shaped member 2 is added to it, the heat transfer rate from the outer tube 1 to the cooling liquid is further improved by a synergistic effect, and the temperature of the paper 20 can be further reduced.

また、この構成の場合も、冷却液の流入流出用継ぎ手を冷却ローラ22の紙面左側端部のみに設ければよいので、画像形成装置小型化や組立作業性の向上が可能となる。つまり、図21(a)の冷却ローラ22は、図13(a)と図17(a)とに示した構成を組み合わせた構成であり、双方の利点や効果を有している。   Also in this configuration, the cooling fluid inflow / outflow coupling need only be provided at the left end of the cooling roller 22 in the drawing, so that the image forming apparatus can be downsized and the assembly workability can be improved. That is, the cooling roller 22 in FIG. 21A is a configuration combining the configurations shown in FIG. 13A and FIG. 17A, and has the advantages and effects of both.

図21(b)は、図21(a)のシリンダ8にも乱流発生手段であるコイル状部材34を設けたものである。これにより、シリンダ8の外壁近傍にもコイル状部材34によって乱流を発生させ、外管1のコイル状部材2による乱流と合わせて、外管1とシリンダ8とで形成される間隙内でより複雑で大きな乱流を発生させて、冷却性能をさらに向上させることができる。つまり、図21(b)の冷却ローラ22は、図13(b)と図20(b)とに示した構成を組み合わせた構成であり、双方の利点や効果を有している。   FIG. 21B shows a case where a coil-like member 34 which is a turbulent flow generating means is provided in the cylinder 8 of FIG. Thereby, a turbulent flow is also generated near the outer wall of the cylinder 8 by the coiled member 34, and in the gap formed by the outer tube 1 and the cylinder 8 together with the turbulent flow by the coiled member 2 of the outer tube 1. A more complicated and large turbulent flow can be generated to further improve the cooling performance. That is, the cooling roller 22 in FIG. 21B is a configuration combining the configurations shown in FIGS. 13B and 20B, and has the advantages and effects of both.

また、本構成例の冷却ローラ22の場合、外管1とシリンダ8との回転数を異なるようにしておくことで、冷却液の旋回速度成分は外管1内壁近傍とシリンダ8外壁近傍とで大きく異なり、乱流発生を助長して熱伝達率がより向上する。シリンダ8の回転が、例えば外管1よりも何倍もの回転数であったり逆に静止して非回転であったりなど、外管1の回転数と異なれば異なる程、効果を得ることができる。なお、最大限の効果を望む場合はシリンダ87を外管1の回転方向とは逆方向に回転させれば良い。しかも、外管1とシリンダ8とで形成される狭い間隙による流速増加で、さらに熱伝達率が向上する。また、シリンダ8にもコイル状部材34などの乱流発生手段を設けた冷却ローラ22であれば、一段と熱伝達率が向上する。   Further, in the case of the cooling roller 22 of this configuration example, the rotational speed components of the cooling liquid are different between the vicinity of the inner wall of the outer pipe 1 and the vicinity of the outer wall of the cylinder 8 by making the rotational speeds of the outer pipe 1 and the cylinder 8 different. The heat transfer rate is further improved by promoting the generation of turbulent flow. As the rotation of the cylinder 8 is different from the number of rotations of the outer tube 1, for example, the number of rotations is many times higher than that of the outer tube 1 or is stationary and non-rotating, the effect can be obtained. . If the maximum effect is desired, the cylinder 87 may be rotated in the direction opposite to the rotation direction of the outer tube 1. In addition, the heat transfer rate is further improved by increasing the flow velocity due to the narrow gap formed by the outer tube 1 and the cylinder 8. Further, if the cooling roller 22 is provided with the turbulent flow generating means such as the coiled member 34 in the cylinder 8, the heat transfer coefficient is further improved.

次に、本発明の冷却ローラ22を有する冷却装置18を搭載したタンデム型中間転写ベルト方式のカラー画像形成装置の構成概略図を図22に示す。   Next, FIG. 22 shows a schematic configuration diagram of a color image forming apparatus of a tandem type intermediate transfer belt system equipped with a cooling device 18 having a cooling roller 22 of the present invention.

複数のローラによって中間転写媒体としての中間転写ベルト51を展張し、中間転写ベルト51はこれらのローラにより回転するように構成すると共に、中間転写ベルト51のまわりに画像形成用のプロセス手段を配置している。   An intermediate transfer belt 51 as an intermediate transfer medium is stretched by a plurality of rollers, and the intermediate transfer belt 51 is configured to rotate by these rollers, and an image forming process means is disposed around the intermediate transfer belt 51. ing.

中間転写ベルト51の回転方向を図中矢印aとするとき、中間転写ベルト51の上方であってローラ52とローラ53との間には、中間転写ベルト51の回転方向の上流側から順に画像形成用のプロセス手段として、第一画像ステーション54Y、第二画像ステーション54C、第三画像ステーション54M、第四画像ステーション54Bkが配置されている。例えば第一画像ステーション54Yは、ドラム状の感光体11Yの周囲に帯電手段10Y、光書き込み手段12Y、現像装置13Y、クリーニング手段14Yが配置され、さらに中間転写ベルト51を挟んで感光体11の対向位置に中間転写ベルト51への転写手段としての一次転写ローラ15Yが設けられており、他の3つの画像ステーションも同一構成となっている。そしてそれら4つの画像ステーションが互いに所定のピッチ間隔となるように左右並列に配置されている。   When the rotation direction of the intermediate transfer belt 51 is indicated by an arrow a in the drawing, image formation is performed in order from the upstream side in the rotation direction of the intermediate transfer belt 51 above the intermediate transfer belt 51 and between the rollers 52 and 53. As a processing means, a first image station 54Y, a second image station 54C, a third image station 54M, and a fourth image station 54Bk are arranged. For example, in the first image station 54Y, the charging unit 10Y, the optical writing unit 12Y, the developing unit 13Y, and the cleaning unit 14Y are arranged around the drum-shaped photoconductor 11Y, and the photoconductor 11 is opposed to the intermediate transfer belt 51. A primary transfer roller 15Y as a transfer unit to the intermediate transfer belt 51 is provided at the position, and the other three image stations have the same configuration. These four image stations are arranged side by side so as to have a predetermined pitch interval.

本実施形態では光書き込み手段12をLEDを光源とする光学系としているが、半導体レーザーを光源とするレーザー光学系で構成することもでき、感光体11に対して画像情報に応じた露光を行う。   In this embodiment, the optical writing unit 12 is an optical system using an LED as a light source, but it can also be configured by a laser optical system using a semiconductor laser as a light source, and the photosensitive member 11 is exposed according to image information. .

中間転写ベルト51の下方には、シート状部材である用紙20の用紙収納部19および給紙コロ23、レジストローラ対21、中間転写ベルト51を張架するローラ55に中間転写ベルト51を介して対向するように設けられた中間転写ベルト51から用紙20への転写手段としての二次転写ローラ56、中間転写ベルト51の裏面に接するローラ58の対向位置に中間転写ベルト51のおもて面に接するように設けられたクリーニング手段59、熱定着手段16、用紙20を冷却する冷却ローラ22を有する冷却装置18、トナー定着後の用紙20の排出部である排紙収容部17などが配置されている。そして、用紙収納部19から排紙収容部17へ至る用紙搬送路28が延びている。両面画像形成時に裏面の画像形成を行わせるため、冷却装置18を一度通過した用紙20を反転させ、再度、レジストローラ対21へ搬送する両面画像形成用の用紙搬送路29も備えている。   Below the intermediate transfer belt 51, a sheet storage unit 19 and a sheet feeding roller 23 of the sheet 20, which is a sheet-like member, a registration roller pair 21, and a roller 55 that stretches the intermediate transfer belt 51 are interposed via the intermediate transfer belt 51. On the front surface of the intermediate transfer belt 51 at a position opposite to the secondary transfer roller 56 as a transfer means from the intermediate transfer belt 51 provided so as to face the roller 58 and the roller 58 in contact with the back surface of the intermediate transfer belt 51. A cleaning unit 59 provided in contact therewith, a thermal fixing unit 16, a cooling device 18 having a cooling roller 22 for cooling the paper 20, a paper discharge container 17 that is a discharge unit of the paper 20 after toner fixing, and the like are arranged. Yes. A paper transport path 28 extending from the paper storage unit 19 to the paper discharge storage unit 17 extends. In order to perform image formation on the back side during double-sided image formation, a paper conveyance path 29 for double-sided image formation is also provided, which reverses the paper 20 that has once passed through the cooling device 18 and conveys it again to the registration roller pair 21.

なお、冷却装置18の冷却ローラ22は用紙20の熱を受熱する受熱部であり、冷却ファン104を装着したラジエータ103、ポンプ100、タンク101と共に配管105で連通/連結され、冷却液が封入されている。冷却液の循環経路は配管105の矢印で示すように、ラジエータ103で冷やされた冷却液を、冷却ローラ22へ供給し、そして冷却ローラ22内を廻ってから排出し、その後にタンク101、ポンプ100へ送り、再び、ラジエータ103に戻す順序であり、ポンプ100の回転圧力により冷却液を循環させ、ラジエータ103で放熱することで冷却液、如いては冷却ローラ22を冷やす。ポンプ100のパワーやラジエータ103の大きさなどは、熱設計条件(冷却ローラ22が冷却すべき熱量と温度の条件)によって決定される流量、圧力、冷却効率などを元に選定される。   The cooling roller 22 of the cooling device 18 is a heat receiving unit that receives the heat of the paper 20, and is connected / connected by the pipe 105 together with the radiator 103, the pump 100, and the tank 101 to which the cooling fan 104 is attached, and the cooling liquid is enclosed. ing. As shown by the arrow of the pipe 105, the cooling liquid circulation path supplies the cooling liquid cooled by the radiator 103 to the cooling roller 22, discharges it after passing through the cooling roller 22, and thereafter, tank 101, pump The cooling liquid is circulated by the rotational pressure of the pump 100 and radiated by the radiator 103 to cool the cooling liquid, that is, the cooling roller 22. The power of the pump 100, the size of the radiator 103, and the like are selected based on the flow rate, pressure, cooling efficiency, and the like determined by the thermal design conditions (the amount of heat and temperature that the cooling roller 22 should cool).

画像の形成プロセスは、第一画像ステーション54Yに着目すれば、一般の静電記録方式に準じていて、暗中にて帯電手段10Yにより一様に帯電された感光体11Y上に光書き込み手段12Yにより露光して静電潜像を形成し、この静電潜像を現像装置13Yによりトナー像として可視像化する。そのトナー像は一次転写ローラ15Yにより感光体11Y上から中間転写ベルト51に転写される。転写後の感光体11Yの表面はクリーニング手段14によりクリーニングされる。他の画像ステーション54も第一画像ステーション54Yと同構成であり、同様の画像形成プロセスが行われる。   When the image forming process is focused on the first image station 54Y, it follows the general electrostatic recording system, and the light writing unit 12Y applies the photoconductor 11Y uniformly charged by the charging unit 10Y in the dark. An electrostatic latent image is formed by exposure, and the electrostatic latent image is visualized as a toner image by the developing device 13Y. The toner image is transferred from the photoreceptor 11Y to the intermediate transfer belt 51 by the primary transfer roller 15Y. The surface of the photoreceptor 11Y after the transfer is cleaned by the cleaning means 14. The other image stations 54 have the same configuration as the first image station 54Y, and the same image forming process is performed.

画像ステーション54Y,54C,54M,54Bkにおける各現像装置13は、それぞれ異なる4色のトナーによる可視像化機能を有しており、各画像ステーション54Y,54C,54M,54Bkでイエロー、シアン、マゼンタ、ブラックを分担すれば、フルカラー画像を形成することができる。よって、中間転写ベルト51の同一画像形成領域が4つの画像ステーション54Y,54C,54M,54Bkを順次通過する間に、中間転写ベルト51を挟むようにして各感光体11とそれぞれ対向して設けられた一次転写ローラ15により与えられる転写バイアスによって、それぞれ1色ずつトナー像を中間転写ベルト51上に重ね転写されるようにすれば、上記同一画像形成領域が各画像ステーション54Y,54C,54M,54Bkを1回通過した時点で、この同一画像領域に、重ね転写によってフルカラートナー画像を得ることができる。   Each developing device 13 in each of the image stations 54Y, 54C, 54M, and 54Bk has a visible image forming function using different four color toners, and yellow, cyan, and magenta are used in each of the image stations 54Y, 54C, 54M, and 54Bk. If black is shared, a full color image can be formed. Therefore, while the same image forming area of the intermediate transfer belt 51 sequentially passes through the four image stations 54Y, 54C, 54M, and 54Bk, the primary provided so as to face the respective photoreceptors 11 with the intermediate transfer belt 51 interposed therebetween. If the toner images are transferred one by one on the intermediate transfer belt 51 by the transfer bias applied by the transfer roller 15, the same image forming area is assigned to each of the image stations 54Y, 54C, 54M and 54Bk. At the time of passing, the full color toner image can be obtained by overlapping transfer on the same image area.

そして、中間転写ベルト51上に形成されてフルカラートナー画像は、用紙20に転写される。転写後の中間転写ベルト51はクリーニング手段59によりクリーニングされる。用紙20への転写は転写時においてローラ55上で中間転写ベルト51を介して二次転写ローラ56に転写バイアスを印加して、二次転写ローラ56と中間転写ベルト51とのニップ部に用紙20を通過させることにより行なわれる。用紙20への転写後、用紙20上に担持されたフルカラートナー像を熱定着手段16で定着することにより、用紙20上にフルカラーの最終画像が形成され、排紙収容部17に積載される。   Then, the full color toner image formed on the intermediate transfer belt 51 is transferred to the paper 20. The intermediate transfer belt 51 after the transfer is cleaned by a cleaning unit 59. During transfer, the transfer bias is applied to the secondary transfer roller 56 via the intermediate transfer belt 51 on the roller 55 at the time of transfer, and the sheet 20 is placed at the nip portion between the secondary transfer roller 56 and the intermediate transfer belt 51. This is done by passing. After the transfer to the paper 20, the full-color toner image carried on the paper 20 is fixed by the heat fixing unit 16, so that a full-color final image is formed on the paper 20 and is stacked on the paper discharge storage unit 17.

本実施形態の画像形成装置においては、排紙収容部17に用紙20が積載される前に、熱定着手段16の直後に配置した冷却装置18を用紙20が通過する。通過する際、熱定着手段16で熱せられた用紙20が受熱部である冷却ローラ22に接触しながら通過することになるので、冷却ローラ22の表面で用紙20から熱を吸熱し、この熱を冷却ローラ22内部の冷却液へ伝達する。熱が伝達され高温となった冷却液は、この後、冷却ローラ22から排出され、冷却液はタンク101、ポンプ100を経て、冷却ファン104を装着したラジエータ103に送られ、そこで熱が画像形成装置外に排熱される。ラジエータ103で熱が除去され室温近くにまで下げられた冷却液は、その後、再び冷却ローラ22へと送られる。このような冷却液による高い冷却性能の排熱サイクルによって、熱定着手段16で熱せられて高温となった用紙20が効率良く冷やされる。したがって、用紙20が排紙収容部17に積載される時点では、用紙20上のトナーを確実に硬化状態とさせることができる。特に両面画像形成出力の際に大きな問題となっていたブロッキング現象を回避することができる。   In the image forming apparatus according to the present embodiment, the paper 20 passes through the cooling device 18 disposed immediately after the heat fixing unit 16 before the paper 20 is stacked in the paper discharge storage unit 17. When passing, the paper 20 heated by the heat fixing means 16 passes while contacting the cooling roller 22 which is a heat receiving portion. Therefore, the surface of the cooling roller 22 absorbs heat from the paper 20, and this heat is absorbed. This is transmitted to the cooling liquid inside the cooling roller 22. After the heat is transferred, the high-temperature coolant is discharged from the cooling roller 22, and the coolant passes through the tank 101 and the pump 100 and is sent to the radiator 103 equipped with the cooling fan 104, where the heat is formed. Heat is exhausted outside the equipment. The coolant whose heat has been removed by the radiator 103 and lowered to near room temperature is then sent to the cooling roller 22 again. By such an exhaust heat cycle with high cooling performance by the coolant, the sheet 20 heated to the high temperature by the heat fixing means 16 is efficiently cooled. Therefore, the toner on the paper 20 can be surely cured when the paper 20 is stacked in the paper discharge accommodating portion 17. In particular, it is possible to avoid the blocking phenomenon that has been a serious problem in the double-sided image formation output.

以下、本発明における電子写真方式の画像形成装置の実施例について説明する。   Embodiments of an electrophotographic image forming apparatus according to the present invention will be described below.

[実施例1]
本発明の冷却ローラ22を、リコー社製imagio Neo C600カラー画像形成装置の改造機へ適用した。Imagio Neo C600は、図22に示したタンデム型の間接転写方式を採用している。
[Example 1]
The cooling roller 22 of the present invention was applied to a remodeling machine for an imgio Neo C600 color image forming apparatus manufactured by Ricoh. The Image Neo C600 employs the tandem indirect transfer system shown in FIG.

冷却ローラ22は、外径φ30.4[mm]、厚さ1.1[mm]のアルミニウム製の外管1に、線太さ0.5[mm]、ピッチ6[mm]のコイル状部材2を外管1の内壁に沿わせて挿入した構成とし、さらにショーワ技研社製の一方向流れ用の回転ジョイント2個を、冷却ローラ両端に封止・回転可能なように取り付けた。   The cooling roller 22 is a coil-shaped member having an outer diameter of 30.4 [mm] and a thickness of 1.1 [mm] made of aluminum and a coil thickness of 0.5 [mm] and a pitch of 6 [mm]. 2 was inserted along the inner wall of the outer tube 1 and two unidirectional flow rotary joints manufactured by Showa Giken Co., Ltd. were attached to both ends of the cooling roller so as to be sealed and rotated.

ラジエータは、一辺が120[mm]の正方形をしたアルミニウム製コルゲート型(厚み20[mm])を直列に2個、ラジエータファンは、ラジエータと同サイズで一辺が120[mm]の正方形をした軸流ファン(流速2.3[m/s])、ポンプは、締め切り揚程が50[kPa]の遠心型、タンクは、容積700[mL]のポリプロピレン製、配管は、ブチルゴムとEPDM混合成分からなるゴムチューブ、循環する冷却液は、プロピレングリコールを主成分とした、防錆剤も含有された−13[℃]不凍仕様を選んだ。   The radiator has two aluminum corrugated types (thickness 20 [mm]) in a square shape with a side of 120 [mm] in series, and the radiator fan has the same size as the radiator and a square shaft with a side of 120 [mm] A flow fan (flow rate 2.3 [m / s]), a pump is a centrifugal type whose deadline is 50 [kPa], a tank is made of polypropylene having a volume of 700 [mL], and a pipe is made of a mixed component of butyl rubber and EPDM. As the rubber tube and the circulating coolant, -13 [° C.] antifreeze specification containing propylene glycol as a main component and containing a rust preventive was selected.

以上の構成より、1分間に75枚のカラー両面連続印刷を、コート紙である王子製紙社製グロスコート(158[g/m])、PODフィルムコートS(198[g/m])に対して連続3時間行った。なお、用紙の温度測定は、定着装置と冷却装置との間における用紙搬送経路中と、冷却ローラ22よりも用紙搬送方向下流側の用紙搬送経路中と、に細い熱伝対を設けておき、その熱伝対に用紙が接触した際の温度を測定した。その結果、用紙温度低減効果として、王子製紙社製グロスコートを用いた場合は、冷却ローラ22による冷却後の用紙温度が、定着後に用紙が冷却ローラ22によって冷却される前の用紙温度から35[℃]下がった。また、PODフィルムコートSを用いた場合は、冷却ローラ22による冷却後の用紙温度が、定着後に用紙が冷却ローラ22によって冷却される前の用紙温度から30[℃]下がった。また用紙にはカールや張り付き等といった不具合は見られなかった。 With the above configuration, 75 color double-sided continuous printing per minute is performed on the coated paper, which is a gloss coat (158 [g / m 2 ]) manufactured by Oji Paper Co., Ltd., and a POD film coat S (198 [g / m 2 ]). For 3 hours. Note that for the temperature measurement of the paper, a thin thermocouple is provided in the paper transport path between the fixing device and the cooling device and in the paper transport path downstream of the cooling roller 22 in the paper transport direction. The temperature when the paper contacted the thermocouple was measured. As a result, when a gloss coat manufactured by Oji Paper Co., Ltd. is used as the effect of reducing the paper temperature, the paper temperature after cooling by the cooling roller 22 is 35 [from the paper temperature before the paper is cooled by the cooling roller 22 after fixing. [C]. When the POD film coat S was used, the paper temperature after cooling by the cooling roller 22 was lowered by 30 [° C.] from the paper temperature after fixing and before the paper was cooled by the cooling roller 22. Also, there were no defects such as curling or sticking on the paper.

[実施例2]
実施例2は、冷却ローラ22として、外径φ30.4[mm]、厚さ1.1[mm]のアルミニウム製の外管1に、アルミニウム製の内管7と、この内管7にシリンダ8を取り付けたものと、線太さ0.5[mm]、ピッチ15[mm]のコイル状部材2を外管1の内壁に沿わせて挿入した構成とし、さらにこの冷却ローラ22の片端には、ショーワ技研社製の両方向流れ用の回転ジョイントを、封止・回転可能なように取り付けたものを採用した。この際、内管7の内径はφ[4mm]、外管1とシリンダ8との間隙は1.1[mm]とした。
[Example 2]
In the second embodiment, as the cooling roller 22, an aluminum outer tube 1 having an outer diameter of 30.4 [mm] and a thickness of 1.1 [mm], an inner tube 7 made of aluminum, and a cylinder in the inner tube 7 are used. 8 and a coil-shaped member 2 having a line thickness of 0.5 [mm] and a pitch of 15 [mm] are inserted along the inner wall of the outer tube 1, and at one end of the cooling roller 22. Employs a rotating joint for bi-directional flow manufactured by Showa Giken Co., Ltd. so that it can be sealed and rotated. At this time, the inner diameter of the inner tube 7 was φ [4 mm], and the gap between the outer tube 1 and the cylinder 8 was 1.1 [mm].

以上の構成より、1分間に75枚のカラー両面連続印刷を4時間行った。なお、用紙の温度測定は、定着装置と冷却装置との間における用紙搬送経路中と、冷却ローラ22よりも用紙搬送方向下流側の用紙搬送経路中と、に細い熱伝対を設けておき、その熱伝対に用紙が接触した際の温度を測定した。その結果、用紙温度低減効果として、王子製紙社製グロスコートを用いた場合は、冷却ローラ22による冷却後の用紙温度が、定着後に用紙が冷却ローラ22によって冷却される前の用紙温度から39[℃]下がった。また、PODフィルムコートSを用いた場合は、冷却ローラ22による冷却後の用紙温度が、定着後に用紙が冷却ローラ22によって冷却される前の用紙温度から33[℃]下がった。また用紙にはカールや張り付き等といった不具合は見られなかった。   With the above configuration, 75 color double-sided continuous printing was performed for 4 hours per minute. Note that for the temperature measurement of the paper, a thin thermocouple is provided in the paper transport path between the fixing device and the cooling device and in the paper transport path downstream of the cooling roller 22 in the paper transport direction. The temperature when the paper contacted the thermocouple was measured. As a result, when a gloss coat manufactured by Oji Paper Co., Ltd. is used as the effect of reducing the paper temperature, the paper temperature after cooling by the cooling roller 22 is 39 [from the paper temperature before the paper is cooled by the cooling roller 22 after fixing. [C]. Further, when the POD film coat S was used, the sheet temperature after cooling by the cooling roller 22 was lowered by 33 [° C.] from the sheet temperature after fixing before the sheet was cooled by the cooling roller 22. Also, there were no defects such as curling or sticking on the paper.

[比較例]
次に、実施例1や実施例2で冷却ローラ22内に設けていたコイル状部材2を冷却ローラ22内から取り除いた、各実施例に対する比較例について説明する。
[Comparative example]
Next, a comparative example for each example in which the coil-shaped member 2 provided in the cooling roller 22 in Example 1 or Example 2 is removed from the cooling roller 22 will be described.

冷却ローラ22は、外径φ30.4[mm]、厚さ1.1[mm]のアルミニウム製の外管1に、ショーワ技研社製の一方向流れ用の回転ジョイント2個を、冷却ローラ両端に封止・回転可能なように取り付けた。このような冷却ロータを、リコー社製imagio Neo C600カラー画像形成装置の改造機へ適用した。Imagio Neo C600は、図22に示したタンデム型の間接転写方式を採用している。   The cooling roller 22 is composed of an aluminum outer tube 1 having an outer diameter of 30.4 [mm] and a thickness of 1.1 [mm], two unidirectional flow rotary joints manufactured by Showa Giken Co., and both ends of the cooling roller. It was attached so that it could be sealed and rotated. Such a cooling rotor was applied to a remodeling machine for an imgio Neo C600 color image forming apparatus manufactured by Ricoh. The Image Neo C600 employs the tandem indirect transfer system shown in FIG.

ラジエータは、一辺が120[mm]の正方形をしたアルミニウム製コルゲート型(厚み20[mm])を直列に2個、ラジエータファンは、ラジエータと同サイズで一辺が120[mm]の正方形をした軸流ファン(流速2.3[m/s])、ポンプは、締め切り揚程が50[kPa]の遠心型、タンクは、容積700[mL]のポリプロピレン製、配管は、ブチルゴムとEPDM混合成分からなるゴムチューブ、循環する冷却液は、プロピレングリコールを主成分とした、防錆剤も含有された−13[℃]不凍仕様を選んだ。   The radiator has two aluminum corrugated types (thickness 20 [mm]) in a square shape with a side of 120 [mm] in series, and the radiator fan has the same size as the radiator and a square shaft with a side of 120 [mm] A flow fan (flow rate 2.3 [m / s]), a pump is a centrifugal type whose deadline is 50 [kPa], a tank is made of polypropylene having a volume of 700 [mL], and a pipe is made of a mixed component of butyl rubber and EPDM. As the rubber tube and the circulating coolant, -13 [° C.] antifreeze specification containing propylene glycol as a main component and containing a rust preventive was selected.

以上の構成より、1分間に75枚のカラー両面連続印刷を、コート紙である王子製紙社製グロスコート(158[g/m])、PODフィルムコートS(198[g/m])に対して連続3時間行った。なお、用紙の温度測定は、定着装置と冷却装置との間における用紙搬送経路中と、冷却ローラよりも用紙搬送方向下流側の用紙搬送経路中と、に細い熱伝対を設けておき、その熱伝対に用紙が接触した際の温度を測定した。その結果、用紙温度低減効果として、王子製紙社製グロスコートを用いた場合は、冷却ローラによる冷却後の用紙温度が、定着後に用紙が冷却ローラによって冷却される前の用紙温度から33[℃]下がった。また、PODフィルムコートSを用いた場合は、冷却ローラによる冷却後の用紙温度が、定着後に用紙が冷却ローラによって冷却される前の用紙温度から27[℃]下がった。また用紙にはカールや張り付き等といった不具合は見られなかった。 With the above configuration, 75 color double-sided continuous printing per minute is performed on the coated paper, which is a gloss coat (158 [g / m 2 ]) manufactured by Oji Paper Co., Ltd., and a POD film coat S (198 [g / m 2 ]). For 3 hours. The temperature of the paper is measured by providing thin thermocouples in the paper transport path between the fixing device and the cooling device and in the paper transport path downstream of the cooling roller in the paper transport direction. The temperature when the paper contacted the thermocouple was measured. As a result, when the gloss coat manufactured by Oji Paper Co., Ltd. is used as the effect of reducing the paper temperature, the paper temperature after cooling by the cooling roller is 33 [° C.] from the paper temperature after fixing and before the paper is cooled by the cooling roller. lowered. Further, when the POD film coat S was used, the paper temperature after cooling by the cooling roller dropped by 27 [° C.] from the paper temperature after fixing and before the paper was cooled by the cooling roller. Also, there were no defects such as curling or sticking on the paper.

実施例1、実施例2、及び、比較例の実験結果から、冷却ローラ22内にコイル状部材2を設置して冷却ローラ22の内壁近傍に乱流を積極的に発生させることによって、冷却ローラ22内にコイル状部材2を設置しない場合よりも、上記用紙温度低減効果を向上させることができるのがわかる。   From the experimental results of Example 1, Example 2 and the comparative example, the coiled member 2 is installed in the cooling roller 22 to positively generate a turbulent flow in the vicinity of the inner wall of the cooling roller 22. It can be seen that the effect of reducing the sheet temperature can be improved as compared with the case where the coil-shaped member 2 is not installed in the interior 22.

以上、本実施形態によれば、中空状の管状部材である外管1などからなる冷却ローラ22と、冷却ローラ22内に冷却液を搬送する冷却媒体搬送手段であるポンプ100と、を備え、冷却ローラ22に用紙20を接触させて用紙20を冷却する冷却装置18において、冷却液に乱流を発生させる乱流発生手段を外管1の内壁近傍に設けたことで、乱流発生手段により内壁近傍で冷却液の流れは乱流となる。これにより、内壁近傍にある温度の高い冷却液と前記内壁から離れた位置にある温度の低い冷却液との入れ替えが盛んに行われる。よって、乱流発生手段を内壁近傍に設けない場合よりも内壁近傍の冷却液の温度を低くすることができるので、その分、冷却液によって冷却ローラ22を効果的に冷やすことができる。その結果、冷却ローラによる用紙20の冷却効率を向上させることができる。
また、乱流発生手段が螺旋形状であり、螺旋形状の巻き方向を、外管1の内壁近傍を流れる冷却液の流れ方向とは逆方向の送りが発生する巻き方向とすることで、外管1の内壁近傍の冷却液に対し、より一層の乱流を発生させ冷却性能を更に向上させることができるので、用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、上記乱流発生手段は外管1に対して着脱可能であることで、乱流発生手段を設けるために外管1に予め溝やスリットを掘るといった難しい加工工程は必要なく後付けできて、またメンテナンスのための取替えも可能となる。
また、本実施形態によれば、上記管状部材である外管1の中空内部に外管1よりも細管構造の内管7を内包し、外管1と内管7との間を冷却液が流れる外側流路、及び、内管7内を冷却液が流れる内側流路を有する二重管構造である。これにより、外管1と内管7との間隙と内管7内部とで冷却液の流路を分けることができるため、一方を冷却液の流れの往路とし他方を冷却液の流れの復路とすることができる。そのため、冷却液の流入流出口を冷却ローラ22の軸方向片側に設けることができ、冷却液の流入流出口を冷却ローラ22の軸方向両側に設ける場合よりも省スペース化を図ることができる。また、冷却ローラ22を冷却装置18や画像形成装置に容易に組み付けることができる。
また、本実施形態によれば、外管1の中空内部で、内管7よりも外径の大きいシリンダ8を、内管7を内包するように取り付けたことで、外管1とシリンダ8との間隙を狭められるため、外管内壁近傍における冷却液の流速が増加し、ローラ内壁と冷却液との熱伝達率が増加して、延いては用紙20の冷却効率が向上する。
また、本実施形態によれば、内管7が、外管1の回転方向と同一方向に異なる回転数で回転可能、外管1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、外管1と内管7との間隙からなる流路において、旋回速度成分が大きくなり、前述した連流発生手段による冷却液の乱流発生を助長することができる。これにより、外管内壁面上の至る箇所で、より多くの冷却液の流れの剥離や付着が発生し、更なる用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、シリンダ8が、外管1の回転方向と同一方向に異なる回転数で回転可能、外管1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、外管1とシリンダ8との間隙からなる流路において、旋回速度成分が大きくなり、前述した連流発生手段による冷却液の乱流発生を助長することができる。これにより、外管内壁面上の至る箇所で、より多くの冷却液の流れの剥離や付着が発生し、更なる用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、外管1の長手方向に渡る用紙20が挟持される領域に乱流発生手段を配設したことで、その他の部分で乱流発生手段による流体抵抗の発生もなく、ポンプの負荷を低減し、消費電力を下げられる他、一ランク下のポンプで済み、低コスト化も図れる。また、ポンプの消費電力を抑えることは耐久時間の増加にも繋がる。
また、本実施形態によれば、外管1の周方向に渡る用紙20が挟持される領域に乱流発生手段を配設したことで、その他の部分で乱流発生手段による流体抵抗の発生はなく、ポンプの負荷を低減し、消費電力を下げられる他、一ランク下のポンプで済み、低コストかも図れる。また、ポンプの消費電力を抑えることは耐久時間の増加にも繋がる。
また、本実施形態によれば、乱流発生手段に振動を加える加振手段を有することで、乱流発生手段を振動させ、乱流発生手段近傍の冷却液の流れの速度が変動し増加するため、前述したような乱流発生手段による冷却液の乱流発生を助長させることができる。これにより、外管内壁面上の至る箇所で、より多くの冷却液の流れの剥離や付着が発生し、更なる用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、乱流発生手段がコイル状部材であることで、本発明の冷却ローラ22を低コストで容易に実現することができる
た、本実施形態によれば、外管1の中空内部にコア部材であるコア31を内包し、乱流発生手段を設けた外管1とコア31で形成される間隙に冷却液が流れる流路を有する。これにより、コア31を内包して形成した狭間隙流路に冷却液を流すので、外管内壁近傍における冷却液の流速が増加し、ローラ内壁と冷却液との熱伝達率が増加して、延いては用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、コア31の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことで、流路間隙内でより複雑で大きな乱流が発生し、ローラ内壁と冷却液との熱伝達率が一層増加して、用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、内管7の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことで、流路間隙内でより複雑で大きな乱流が発生し、ローラ内壁と冷却液との熱伝達率が一層増加して、用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、シリンダ8の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことで、流路間隙内でより複雑で大きな乱流が発生し、ローラ内壁と冷却液との熱伝達率が一層増加して、用紙20の冷却効率を向上させることができる。
また、本実施形態によれば、コア31が、外管1の回転方向と同一方向に異なる回転数で回転可能、外管1の回転方向とは逆方向に回転可能、または、固定状態で設けられていることで、外管1内にコア31を内包して形成した狭間隙の流路において、旋回速度成分が大きくなり、前述した乱流発生手段による冷却液の乱流発生を助長することができる。これにより、外管内壁面上の至る箇所で、より多くの冷却液の流れの剥離や付着が発生し、更なる用紙20の冷却効率が向上する。
また、本実施形態によれば、用紙20上にトナー像を形成するトナー像形成手段と、用紙20上に形成されたトナー像を少なくとも熱によって用紙20に定着させる熱定着手段16と、熱定着手段16によってトナー像が定着された用紙20を冷却する冷却手段とを備えた画像形成装置において、前記冷却手段として、本発明の冷却ローラ22を有する冷却装置18を用いることで、用紙20の冷却効率を向上することができる。
As described above, according to the present embodiment, the cooling roller 22 including the outer tube 1 that is a hollow tubular member and the like, and the pump 100 that is a cooling medium conveying unit that conveys the cooling liquid into the cooling roller 22 are provided. In the cooling device 18 that cools the paper 20 by bringing the paper 20 into contact with the cooling roller 22, turbulent flow generating means for generating turbulent flow in the coolant is provided in the vicinity of the inner wall of the outer tube 1. The coolant flow becomes turbulent near the inner wall. Thereby, replacement of the coolant having a high temperature in the vicinity of the inner wall and the coolant having a low temperature at a position away from the inner wall is actively performed. Therefore, since the temperature of the coolant near the inner wall can be made lower than when no turbulent flow generating means is provided near the inner wall, the cooling roller 22 can be effectively cooled by the coolant. As a result, the cooling efficiency of the paper 20 by the cooling roller can be improved.
Further, the turbulent flow generating means has a spiral shape, and the spiral winding direction is set to a winding direction in which a feed in the direction opposite to the flow direction of the coolant flowing in the vicinity of the inner wall of the outer tube 1 is generated. The cooling performance can be further improved by generating a further turbulent flow with respect to the cooling liquid in the vicinity of the inner wall of the paper 1, so that the cooling efficiency of the paper 20 can be improved.
Moreover, according to this embodiment, the said turbulent flow generation means can be attached or detached with respect to the outer tube | pipe 1, Therefore In order to provide a turbulent flow generation | occurrence | production means, the difficult process process of digging a groove | channel and a slit previously in the outer tube | pipe 1. Can be retrofitted without needing, and can be replaced for maintenance.
Further, according to the present embodiment, the inner tube 7 having a narrower tube structure than the outer tube 1 is included in the hollow inside of the outer tube 1 that is the tubular member, and the cooling liquid is interposed between the outer tube 1 and the inner tube 7. This is a double-pipe structure having an outer flow channel that flows and an inner flow channel through which the coolant flows in the inner tube 7. Thereby, since the flow path of the coolant can be divided between the gap between the outer tube 1 and the inner tube 7 and the inside of the inner tube 7, one is the forward path of the coolant flow and the other is the return path of the coolant flow. can do. Therefore, the inflow / outflow port of the cooling liquid can be provided on one side of the cooling roller 22 in the axial direction, and space can be saved as compared with the case where the inflow / outflow port of the cooling liquid is provided on both sides of the cooling roller 22 in the axial direction. Further, the cooling roller 22 can be easily assembled to the cooling device 18 and the image forming apparatus.
Further, according to the present embodiment, the cylinder 8 having a larger outer diameter than the inner tube 7 is attached inside the hollow of the outer tube 1 so as to enclose the inner tube 7. Therefore, the flow rate of the cooling liquid in the vicinity of the inner wall of the outer tube is increased, the heat transfer coefficient between the inner wall of the roller and the cooling liquid is increased, and the cooling efficiency of the sheet 20 is improved.
Further, according to the present embodiment, the inner tube 7 can be rotated at a different number of rotations in the same direction as the rotation direction of the outer tube 1, can be rotated in a direction opposite to the rotation direction of the outer tube 1, or in a fixed state. By being provided, the swirl speed component increases in the flow path formed by the gap between the outer tube 1 and the inner tube 7, and the generation of the turbulent flow of the coolant by the above-described continuous flow generating means can be promoted. As a result, separation and adhesion of a larger amount of coolant flow occur at various locations on the inner wall surface of the outer tube, and the cooling efficiency of the paper 20 can be further improved.
Further, according to this embodiment, the cylinder 8 can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube 1, can be rotated in a direction opposite to the rotation direction of the outer tube 1, or is provided in a fixed state. As a result, the swirl speed component increases in the flow path formed by the gap between the outer tube 1 and the cylinder 8, and the generation of the turbulent flow of the coolant by the above-described continuous flow generating means can be promoted. As a result, separation and adhesion of a larger amount of coolant flow occur at various locations on the inner wall surface of the outer tube, and the cooling efficiency of the paper 20 can be further improved.
Further, according to the present embodiment, the turbulent flow generating means is disposed in the region where the paper 20 extending in the longitudinal direction of the outer tube 1 is sandwiched, so that fluid resistance is also generated by the turbulent flow generating means in other portions. In addition, the pump load can be reduced and the power consumption can be reduced. In addition, the pump can be reduced by one rank and the cost can be reduced. Moreover, suppressing the power consumption of the pump leads to an increase in the durability time.
Further, according to the present embodiment, the turbulent flow generating means is disposed in the region where the paper 20 extending in the circumferential direction of the outer tube 1 is sandwiched, so that the fluid resistance is generated by the turbulent flow generating means in other portions. In addition to reducing the load on the pump and lowering the power consumption, it is possible to use a pump that is one rank lower and lower costs. Moreover, suppressing the power consumption of the pump leads to an increase in the durability time.
Further, according to the present embodiment, the vibration generating means that vibrates the turbulent flow generating means causes the turbulent flow generating means to vibrate, and the flow rate of the coolant near the turbulent flow generating means fluctuates and increases. Therefore, the generation of the turbulent flow of the coolant by the turbulent flow generating means as described above can be promoted. As a result, separation and adhesion of a larger amount of coolant flow occur at various locations on the inner wall surface of the outer tube, and the cooling efficiency of the paper 20 can be further improved.
Moreover, according to this embodiment, since the turbulent flow generating means is a coil-shaped member, the cooling roller 22 of the present invention can be easily realized at low cost .
Also, according to this embodiment, the core 31 is a core member encloses the hollow interior of the outer tube 1, the cooling liquid flows through the space formed by the outer tube 1 and the core 31 provided with turbulence generating means It has a flow path. As a result, since the coolant flows through the narrow gap flow path formed by including the core 31, the flow rate of the coolant in the vicinity of the inner wall of the outer tube increases, the heat transfer coefficient between the roller inner wall and the coolant increases, As a result, the cooling efficiency of the paper 20 can be improved.
Further, according to the present embodiment, the second turbulent flow generating means for generating the turbulent flow in the coolant is provided in the vicinity of the outer peripheral surface of the core 31, so that a more complicated and large turbulent flow is generated in the flow path gap. In addition, the heat transfer coefficient between the roller inner wall and the cooling liquid is further increased, and the cooling efficiency of the paper 20 can be improved.
Further, according to the present embodiment, by providing the second turbulent flow generating means for generating the turbulent flow in the coolant near the outer peripheral surface of the inner pipe 7, more complicated and large turbulent flow is generated in the channel gap. As a result, the heat transfer rate between the inner wall of the roller and the coolant is further increased, and the cooling efficiency of the paper 20 can be improved.
Further, according to the present embodiment, the second turbulent flow generating means for generating the turbulent flow in the coolant is provided in the vicinity of the outer peripheral surface of the cylinder 8, so that a more complicated and large turbulent flow is generated in the flow passage gap. In addition, the heat transfer coefficient between the roller inner wall and the cooling liquid is further increased, and the cooling efficiency of the paper 20 can be improved.
Further, according to this embodiment, the core 31 can be rotated at a different number of rotations in the same direction as the rotation direction of the outer tube 1, can be rotated in the direction opposite to the rotation direction of the outer tube 1, or is provided in a fixed state. As a result, in the narrow gap flow path formed by including the core 31 in the outer tube 1, the swirl speed component increases, and the above-described turbulent flow generating means promotes the generation of the turbulent flow of the coolant. Can do. As a result, separation and adhesion of a larger amount of coolant flow occur at various locations on the inner wall surface of the outer tube, and further cooling efficiency of the sheet 20 is improved.
Further, according to the present embodiment, the toner image forming unit that forms a toner image on the paper 20, the thermal fixing unit 16 that fixes the toner image formed on the paper 20 to the paper 20 at least by heat, and the thermal fixing. In the image forming apparatus provided with a cooling means for cooling the paper 20 on which the toner image is fixed by the means 16, the cooling device 18 having the cooling roller 22 of the present invention is used as the cooling means, thereby cooling the paper 20. Efficiency can be improved.

1 外管
2 コイル状部材
3 流速プロファイル
4 付着
5 剥離
6 網状部材
7 内管
8 シリンダ
9 加振手段
10 帯電手段
11 感光体
12 光書き込み手段
13 現像装置
14 クリーニング手段
15 一次転写ローラ
16 熱定着手段
17 排紙収容部
18 冷却装置
19 用紙収納部
20 用紙
21 レジストローラ対
22 冷却ローラ
23 給紙コロ
28 用紙搬送路
29 用紙搬送路
31 コア
32 コイル状部材
33 コイル状部材
34 コイル状部材
35 ロータリージョイント
36 胴部
37 軸受
38 フランジ
39 シール部材
40 ローラ
41 ローラ
42 搬送ベルト
43 上ガイド
44 ブラケット
51 中間転写ベルト
52 ローラ
53 ローラ
55 ローラ
56 二次転写ローラ
58 ローラ
59 クリーニング手段
60 固定棒
61 針金
62 針金トメ具
63 シャフト
64 軸受
65 錘
70 コイル状部材
80 モータ
81 磁石
82 磁石
100 ポンプ
101 タンク
103 ラジエータ
104 冷却ファン
105 配管
DESCRIPTION OF SYMBOLS 1 Outer tube 2 Coil-shaped member 3 Flow velocity profile 4 Adhesion 5 Separation 6 Net-like member 7 Inner tube 8 Cylinder 9 Excitation means 10 Charging means 11 Photoconductor 12 Optical writing means 13 Developing device 14 Cleaning means 15 Primary transfer roller 16 Thermal fixing means DESCRIPTION OF SYMBOLS 17 Paper discharge accommodating part 18 Cooling device 19 Paper accommodating part 20 Paper 21 Registration roller pair 22 Cooling roller 23 Paper feed roller 28 Paper conveyance path 29 Paper conveyance path 31 Core 32 Coil-shaped member 33 Coil-shaped member 34 Coil-shaped member 35 Rotary joint 36 Body 37 Bearing 38 Flange 39 Seal member 40 Roller 41 Roller 42 Conveying belt 43 Upper guide 44 Bracket 51 Intermediate transfer belt 52 Roller 53 Roller 55 Roller 56 Secondary transfer roller 58 Roller 59 Cleaning means 60 Fixing rod 61 Wire 62 Wire hook 63 Shaft 64 Bearing 65 Weight 70 Coiled member 80 Motor 81 Magnet 82 Magnet 100 Pump 101 Tank 103 Radiator 104 Cooling fan 105 Piping

特開2006−003819号公報JP 2006-003819 A

Claims (16)

中空状の管状部材からなる冷却ローラと、
該管状部材内に冷却液を搬送する冷却媒体搬送手段と、を備え、
前記冷却ローラにシート状部材を接触させてシート状部材を冷却する冷却装置において、
冷却液に乱流を発生させる乱流発生手段を前記管状部材の内壁近傍に設けており、
前記乱流発生手段が螺旋形状であり、該螺旋形状の巻き方向を、前記管状部材である外管の内壁近傍を流れる冷却液の流れ方向とは逆方向の送りが発生する巻き方向とすることを特徴とする冷却装置。
A cooling roller made of a hollow tubular member;
Cooling medium conveying means for conveying a cooling liquid into the tubular member,
In the cooling device that cools the sheet-like member by bringing the sheet-like member into contact with the cooling roller,
Turbulent flow generating means for generating turbulent flow in the coolant is provided near the inner wall of the tubular member ,
The turbulent flow generation means has a spiral shape, and the winding direction of the spiral shape is a winding direction in which a feed in a direction opposite to the flow direction of the coolant flowing in the vicinity of the inner wall of the outer tube as the tubular member is generated. A cooling device characterized by.
請求項1の冷却装置において、
上記乱流発生手段は上記管状部材に対して着脱可能であることを特徴とする冷却装置。
The cooling device of claim 1.
The cooling apparatus according to claim 1, wherein the turbulent flow generating means is detachable from the tubular member.
請求項1または2の冷却装置において、
記外管の中空内部に該外管よりも細管構造の内管を内包し、該外管と該内管との間を冷却液が流れる外側流路、及び、該内管内を冷却液が流れる内側流路を有する二重管構造であることを特徴とする冷却装置。
The cooling device according to claim 1 or 2,
Enclosing the inner tube of the tubular structure than the outer tube to the hollow interior of the upper Kigai tube, an outer flow path flows between the outer tube and the inner tube the cooling liquid, and, is the internal tube cooling liquid A cooling device having a double-pipe structure having an inner flow path.
請求項3の冷却装置において、
上記外管の中空内部で、上記内管よりも外径の大きいシリンダを該内管を内包するように取り付けたことを特徴とする冷却装置。
The cooling device according to claim 3.
A cooling device, wherein a cylinder having an outer diameter larger than that of the inner tube is attached inside the hollow of the outer tube so as to enclose the inner tube.
請求項3の冷却装置において、
上記内管が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device according to claim 3.
The inner tube can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. Cooling system.
請求項4の冷却装置において、
上記シリンダが、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device according to claim 4.
The cooling is characterized in that the cylinder can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. apparatus.
請求項1、2、3、4、5または6の冷却装置において、
上記外管の長手方向に渡るシート状部材が挟持される領域に上記乱流発生手段を配設したことを特徴とする冷却装置。
The cooling device according to claim 1, 2, 3, 4, 5 or 6.
The cooling device according to claim 1, wherein the turbulent flow generating means is disposed in a region where the sheet-like member across the longitudinal direction of the outer tube is sandwiched.
請求項1、2、3、4、5または6の冷却装置において、
上記外管の周方向に渡るシート状部材が挟持される領域に上記乱流発生手段を配設したことを特徴とする冷却装置。
The cooling device according to claim 1, 2, 3, 4, 5 or 6.
The cooling device according to claim 1, wherein the turbulent flow generating means is disposed in a region where the sheet-like member across the circumferential direction of the outer tube is sandwiched.
請求項1、2、3、4、5、6、7または8の冷却装置において、
上記乱流発生手段に振動を加える加振手段を有することを特徴とする冷却装置。
The cooling device according to claim 1, 2, 3, 4, 5, 6, 7 or 8.
A cooling device comprising vibration means for applying vibration to the turbulent flow generation means.
請求項1、2、3、4、5、6、7、8または9の冷却装置において、
上記乱流発生手段はコイル状部材であることを特徴とする冷却装置。
The cooling device according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9,
The turbulent flow generating means is a coiled member.
請求項1の冷却装置において、
上記外管の中空内部にコア部材を内包し、上記乱流発生手段を設けた該外管と該コア部材で形成される間隙に冷却液が流れる流路を有することを特徴とする冷却装置。
The cooling device of claim 1 .
A cooling apparatus comprising a core member enclosed in a hollow interior of the outer tube, and a flow path through which a coolant flows in a gap formed by the outer tube provided with the turbulent flow generation means and the core member.
請求項11の冷却装置において、
上記コア部材の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とする冷却装置。
The cooling device of claim 11 , wherein
A cooling device comprising a second turbulent flow generating means for generating a turbulent flow in the coolant near the outer peripheral surface of the core member.
請求項3の冷却装置において、
上記内管の外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とする冷却装置。
The cooling device according to claim 3.
A cooling device comprising a second turbulent flow generating means for generating a turbulent flow in the coolant near the outer peripheral surface of the inner pipe.
請求項4の冷却装置において、
上記シリンダの外周面近傍に冷却液に乱流を発生させる第二の乱流発生手段を設けたことを特徴とする冷却装置。
The cooling device according to claim 4.
A cooling device comprising second turbulent flow generating means for generating turbulent flow in the coolant near the outer peripheral surface of the cylinder.
請求項11の冷却装置において、
上記コア部材が、上記外管の回転方向と同一方向に異なる回転数で回転可能、該外管の回転方向とは逆方向に回転可能、または、固定状態で設けられていることを特徴とする冷却装置。
The cooling device of claim 11 , wherein
The core member can be rotated at a different rotational speed in the same direction as the rotation direction of the outer tube, can be rotated in a direction opposite to the rotation direction of the outer tube, or is provided in a fixed state. Cooling system.
シート状部材上にトナー像を形成するトナー像形成手段と、
該シート状部材上に形成されたトナー像を少なくとも熱によってシート状部材に定着させる熱定着手段と、
該熱定着手段によってトナー像が定着されたシート状部材を冷却する冷却手段とを備えた画像形成装置において、
前記冷却手段として、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14または15の冷却装置を用いることを特徴とする画像形成装置。
Toner image forming means for forming a toner image on a sheet-like member;
Thermal fixing means for fixing the toner image formed on the sheet-like member to the sheet-like member at least by heat;
An image forming apparatus comprising: a cooling unit that cools the sheet-like member on which the toner image is fixed by the heat fixing unit;
As the cooling means, according to claim 1,2,3,4,5,6,7,8,9,10,11,12,13,1 4 or an image, which comprises using a cooling apparatus 15 Forming equipment.
JP2009257656A 2009-08-05 2009-11-11 Cooling device and image forming apparatus Expired - Fee Related JP5483174B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009257656A JP5483174B2 (en) 2009-11-11 2009-11-11 Cooling device and image forming apparatus
US12/844,384 US8606138B2 (en) 2009-08-05 2010-07-27 Cooling device having a turbulence generating unit
CN201010247336XA CN101995809B (en) 2009-08-05 2010-08-05 Cooling device
US14/075,850 US9400485B2 (en) 2009-08-05 2013-11-08 Cooling device having a turbulence generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257656A JP5483174B2 (en) 2009-11-11 2009-11-11 Cooling device and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2011102893A JP2011102893A (en) 2011-05-26
JP5483174B2 true JP5483174B2 (en) 2014-05-07

Family

ID=44193251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257656A Expired - Fee Related JP5483174B2 (en) 2009-08-05 2009-11-11 Cooling device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5483174B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736663B2 (en) * 2010-04-16 2015-06-17 株式会社リコー Cooling device and image forming apparatus
JP5578415B2 (en) * 2010-04-21 2014-08-27 株式会社リコー Cooling device and image forming apparatus
JP5557098B2 (en) * 2010-07-07 2014-07-23 株式会社リコー Cooling device and image forming apparatus
JP5910928B2 (en) * 2011-12-14 2016-04-27 株式会社リコー Heat exchange apparatus and image forming apparatus
JP2022051446A (en) 2020-09-18 2022-03-31 富士フイルムビジネスイノベーション株式会社 Particle conveying device and image forming apparatus
WO2024019708A1 (en) * 2022-07-19 2024-01-25 Hewlett-Packard Development Company, L.P. Photoconductive sleeve supports

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927198A1 (en) * 1979-07-05 1981-01-15 Maschf Augsburg Nuernberg Ag COOLING ROLLER WITH AN OUTER ROLL COVER AND AN INNER BODY
DE68910193T2 (en) * 1988-06-07 1994-02-17 Grace W R & Co Chill roll.
JPH08338890A (en) * 1995-06-13 1996-12-24 Toshiba Corp High heat load cooling pipe
JP2004285952A (en) * 2003-03-24 2004-10-14 Mitsubishi Motors Corp Engine cooling device
JP4445336B2 (en) * 2004-06-21 2010-04-07 株式会社リコー Cooling device, image forming apparatus

Also Published As

Publication number Publication date
JP2011102893A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
US8606138B2 (en) Cooling device having a turbulence generating unit
JP5483174B2 (en) Cooling device and image forming apparatus
US8351817B2 (en) Cooling device and image forming device
JP2011048259A (en) Cooling device and image forming apparatus
JP4445336B2 (en) Cooling device, image forming apparatus
JP5578415B2 (en) Cooling device and image forming apparatus
JP4751769B2 (en) Cooling method, cooling device, and image forming apparatus
JP5339204B2 (en) Cooling device and image forming apparatus
JP5408550B2 (en) Cooling device and image forming apparatus
JP5026202B2 (en) Developing device and image forming apparatus
JP2009175260A (en) Transfer material cooling device and image forming apparatus
JP5557098B2 (en) Cooling device and image forming apparatus
JP5354367B2 (en) Cooling device and image forming apparatus
JP5891193B2 (en) Fixing apparatus and image forming apparatus
JP5818131B2 (en) Cooling device and image forming apparatus
JP5582392B2 (en) Cooling device and image forming apparatus
JP5736663B2 (en) Cooling device and image forming apparatus
JP5522529B2 (en) Cooling device and image forming apparatus
JP5522528B2 (en) Cooling device and image forming apparatus
JP2010191380A (en) Fixing device and image forming apparatus equipped with the same
JP2009223122A (en) Image forming device and process cartridge
CN109541920B (en) Medium cooling apparatus and image forming apparatus
JP6044395B2 (en) Cooling device and image forming apparatus
JP5532403B2 (en) Developing device and image forming apparatus
JP2014202768A (en) Sheet cooling device and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R151 Written notification of patent or utility model registration

Ref document number: 5483174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees