JPH08338890A - High heat load cooling pipe - Google Patents

High heat load cooling pipe

Info

Publication number
JPH08338890A
JPH08338890A JP7145760A JP14576095A JPH08338890A JP H08338890 A JPH08338890 A JP H08338890A JP 7145760 A JP7145760 A JP 7145760A JP 14576095 A JP14576095 A JP 14576095A JP H08338890 A JPH08338890 A JP H08338890A
Authority
JP
Japan
Prior art keywords
coil
cooling pipe
high heat
cooling
heat load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145760A
Other languages
Japanese (ja)
Inventor
Yasuo Kahata
安雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7145760A priority Critical patent/JPH08338890A/en
Publication of JPH08338890A publication Critical patent/JPH08338890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To provide a high heat load cooling pipe which has simultaneously the effect of promoting turbulent flow near the cooling pipe wall and of holding bubble nuclei on the wall surface in a high heat load heat removal device for removing heat of high heat load and has high heat transfer performance by arranging circular cooling pipes at the part receiving high heat load. CONSTITUTION: By providing inside of a cooling pipe 3 with a cylindrical coil 8 formed in multiple net with coils 7 wound in reverse directions each other, turbulent flow near the pipe wall is more promoted, the effect of removing bubbles generated from the wall surface, and cooling performance is improved compared with the case of cooling pipe of a single inserted coil. Also, by assembling the coil 7 in net, each coil 7 is supported and therefore, the strength of the coil 7 becomes high and lowering of cooling performance due to deformation of the coil 7 is prevented. Moreover, by fining the intervals of the coils assembled in net and arranging them with contact to the pipe wall, an effect that the contact part between the pipe wall and the coil surface holds bubble nuclei is enhanced, and steam is stably generated from the pipe wall and so high cooling performance is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核融合炉に使用される
ダイバータ等のプラズマ対向機器、あるいはプラズマ加
熱装置である中性粒子ビーム入射装置のビームダンプ等
に適用される高熱負荷除熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat load heat removal apparatus applied to a plasma facing device such as a diverter used in a nuclear fusion reactor, or a beam dump of a neutral particle beam injection apparatus which is a plasma heating apparatus. Regarding

【0002】[0002]

【従来の技術】将来の核融合炉開発においては、10(M
W/m2 )以上の熱流束を受ける高熱負荷機器、例えば
ダイバータ等のプラズマ対向機器や、中性粒子ビーム入
射装置のビームダンプの除熱が重要な課題とされてい
る。
2. Description of the Related Art In future fusion reactor development, 10 (M
The removal of heat from a high heat load device that receives a heat flux of W / m 2 or more, for example, a plasma facing device such as a diverter or a beam dump of a neutral particle beam injector is an important issue.

【0003】ところで、このような高熱流束を受ける高
熱負荷機器は一般に冷却管群で構成され、冷媒を高速で
流通して除熱が行われている。冷媒が管壁を除熱して加
熱され、受熱面の温度が冷媒の飽和温度を越えると、沸
騰が始まる。このときの沸騰形態は、壁面から気泡が発
生・離脱を繰り返す核沸騰である。さらに、熱流束が上
昇していくと、沸騰が激しくなり、ついには、管壁が冷
媒の気相で覆われ管壁に液相が供給されない膜沸騰へと
移行する。
By the way, a high heat load device that receives such a high heat flux is generally composed of a cooling pipe group, and heat is removed by circulating a refrigerant at a high speed. When the refrigerant removes heat from the pipe wall and is heated, and the temperature of the heat receiving surface exceeds the saturation temperature of the refrigerant, boiling starts. The boiling form at this time is nucleate boiling in which bubbles are repeatedly generated and separated from the wall surface. Further, as the heat flux rises, boiling becomes more violent, and finally the film transitions to film boiling in which the tube wall is covered with the vapor phase of the refrigerant and the liquid phase is not supplied to the tube wall.

【0004】このとき管壁温度は1000℃以上急激に上昇
し、管壁材質の融点を越えるため冷却管は溶融破断す
る。この核沸騰から膜沸騰へ移行することをバーンアウ
ト、そのときの熱流束を限界熱流束と呼ぶ。
At this time, the temperature of the pipe wall rises rapidly by 1000 ° C. or more and exceeds the melting point of the material of the pipe wall, so that the cooling pipe melts and fractures. The transition from nucleate boiling to film boiling is called burnout, and the heat flux at that time is called critical heat flux.

【0005】冷却管の限界熱流束を向上させる技術とし
て、直円管状の冷媒管内に螺旋状テープを挿入して除熱
管を構成し、冷媒である水等の強制対流サブクール沸騰
を利用して除熱を行うことが提案されている。これは冷
媒管内に螺旋状テープを挿入することによって冷媒に旋
回流を生じさせるもので、その旋回流による遠心力によ
り、管壁から発生した気泡を除去し、加熱されていない
冷媒を管壁に供給する効果があり、熱伝達が促進され限
界熱流束が通常のストレート流より増大することがすで
に明らかにされている(参考文献:「伝熱工学資料 改
訂第4版」,p194 ,日本機械学会,1986年発行)。
As a technique for improving the critical heat flux of a cooling pipe, a heat-removing pipe is constructed by inserting a spiral tape into a right circular pipe-shaped refrigerant pipe, and is removed by using forced convection subcool boiling of water as a refrigerant. Providing heat is suggested. This is to generate a swirling flow in the refrigerant by inserting a spiral tape into the refrigerant pipe.The centrifugal force of the swirling flow removes the bubbles generated from the pipe wall and causes the unheated refrigerant to flow to the pipe wall. It has already been clarified that it has a supply effect, heat transfer is promoted, and the critical heat flux is increased compared to the normal straight flow (Reference: "Heat Transfer Engineering Material Revision 4th Edition", p194, The Japan Society of Mechanical Engineers). , 1986).

【0006】また、螺旋状テープの代わりに螺旋状に巻
いたコイルを挿入する冷却管も、管壁面近傍の乱流を促
進して壁面から発生した気泡を除去する効果によって限
界熱流束が通常のストレート流より増大することがすで
に明らかにされている(参考文献:G.P.Celataら,Warm
e und Stoffubertragung,vol.27(1992), 233.) 図4から図6は、このような従来の高熱負荷除熱装置の
基本的構成を示したものである。図4から図6に示すよ
うに、一定間隔で互いに平行に配置された冷媒入口配管
1および冷媒出口管2に、除熱管として直円管状の冷却
管3の各端部が多数隣接して、かつ複数段状をなして、
それぞれ連通接続されている。図示の例では、冷却管3
が上下2段に積層され、かつ等間隔で平行に並べられて
おり、また、図4に示した構成例では冷却管1の除熱性
能を向上させるために、各冷却管3内に螺旋状テープ4
が各冷却管3の軸方向に沿ってそれぞれ設けられてい
る。
Also, in a cooling pipe in which a coil wound in a spiral shape is inserted instead of the spiral tape, the limit heat flux is usually the same due to the effect of promoting turbulent flow near the wall surface of the pipe and removing bubbles generated from the wall surface. It has already been clarified that the flow rate is larger than that of the straight flow (reference: GP Celata et al., Warm).
e und Stoffubertragung, vol.27 (1992), 233. 4 to 6 show the basic structure of such a conventional high heat load heat removal apparatus. As shown in FIGS. 4 to 6, the refrigerant inlet pipe 1 and the refrigerant outlet pipe 2 arranged in parallel with each other at regular intervals are adjacent to each other by a large number of end portions of the cooling pipe 3 having a right circular tube shape as a heat removal pipe. And in multiple steps,
Each is connected for communication. In the illustrated example, the cooling pipe 3
Are stacked in two layers vertically and arranged in parallel at equal intervals. Further, in the configuration example shown in FIG. 4, in order to improve the heat removal performance of the cooling pipe 1, a spiral shape is provided in each cooling pipe 3. Tape 4
Are provided along the axial direction of each cooling pipe 3.

【0007】使用時においては、中性粒子ビーム5の照
射域に冷却管3が隙間なく配置される。この冷却管3に
冷媒入口配管1から供給された冷媒6が、螺旋状テープ
4により旋回流となって冷却管3内を流れ、中性粒子ビ
ーム5によって加熱された受熱面を冷却した後、冷媒出
口配管2から排出される。このとき、冷媒6は旋回流に
より熱伝達が促進される。
During use, the cooling pipe 3 is arranged in the irradiation area of the neutral particle beam 5 without any gap. The coolant 6 supplied from the coolant inlet pipe 1 to the cooling pipe 3 becomes a swirling flow by the spiral tape 4 and flows in the cooling pipe 3 to cool the heat receiving surface heated by the neutral particle beam 5, It is discharged from the refrigerant outlet pipe 2. At this time, the heat transfer of the refrigerant 6 is promoted by the swirling flow.

【0008】[0008]

【発明が解決しようとする課題】沸騰現象を利用した冷
却方法では、壁面から発生する発泡点密度が大きく、発
生した気泡を壁面から除去する効果が大きいほど高い伝
熱促進効果が得られる。螺旋状テープや螺旋状コイルを
挿入した冷却管の伝熱促進効果は、管壁近傍の乱流促進
による気泡除去効果によるものである。
In the cooling method utilizing the boiling phenomenon, the higher the foaming point density generated from the wall surface and the greater the effect of removing the generated bubbles from the wall surface, the higher the effect of promoting heat transfer. The heat transfer enhancing effect of the cooling pipe having the spiral tape or the spiral coil inserted therein is due to the bubble removing effect by promoting the turbulent flow near the pipe wall.

【0009】一方、管内壁面の発泡点密度を高めると、
伝熱面からの気泡発生が多くなり、冷却性能が向上す
る。気泡は、伝熱面上の発泡点から繰り返し発生する
が、毎回気泡半径が零から出発するとすれば気泡発生の
ためには大きな壁面過熱度が必要となり冷却性能が低下
する。このため、伝熱面上の発泡点にはある程度の気泡
核を保持する必要があり、気泡核から成長した気泡が離
脱を繰り返すことにより安定した沸騰状態が保たれる。
On the other hand, if the foaming point density on the inner wall surface of the pipe is increased,
The number of bubbles generated from the heat transfer surface is increased, and the cooling performance is improved. Bubbles are repeatedly generated from the bubbling point on the heat transfer surface, but if the bubble radius starts from zero every time, a large degree of wall superheat is required for bubble generation and cooling performance deteriorates. For this reason, it is necessary to hold a certain amount of bubble nuclei at the foaming point on the heat transfer surface, and bubbles that have grown from the bubble nuclei are repeatedly desorbed to maintain a stable boiling state.

【0010】螺旋状コイルを挿入した冷却管では、発生
した気泡を除去する効果は大きいが、伝熱面に気泡核を
形成・保持する効果は通常のストレート管と変わらない
ため、冷媒の冷却能力を十分に引き出すことができず
に、必要以上に多くの冷媒流量が必要とされる。
A cooling pipe having a spiral coil inserted therein has a great effect of removing generated bubbles, but since the effect of forming and retaining bubble nuclei on the heat transfer surface is the same as that of a normal straight pipe, the cooling capacity of the refrigerant is reduced. Cannot be sufficiently drawn out, and an excessively large refrigerant flow rate is required.

【0011】また、螺旋状コイルを挿入した冷却管で
は、コイルの線径が大きいほどかつコイルの巻きピッチ
が小いほど冷却性能が向上するが、それに相反して流通
抵抗、すなわちコイルに働く抵抗力は増大する。
Further, in a cooling pipe having a spiral coil inserted therein, the cooling performance is improved as the wire diameter of the coil is larger and the winding pitch of the coil is smaller, but contrary to this, the flow resistance, that is, the resistance acting on the coil. Power increases.

【0012】コイルは所定の巻きピッチで保持されたと
きに十分な冷却性能が得られるものであり、流通抵抗が
大きくなりコイルが冷却管内で弾性または塑性変形して
巻きピッチが大きくなると、冷却性能が低下し冷却管が
バーンアウトする可能性が高い。また、コイルを下流側
で固定している場合は、冷媒の流れによりコイルが固定
箇所で圧縮されて大きな抵抗となり冷媒が流れ難くなる
ため、やはりバーンアウトする危険性がある。
The coil has sufficient cooling performance when it is held at a predetermined winding pitch. If the flow resistance increases and the coil elastically or plastically deforms in the cooling pipe to increase the winding pitch, the cooling performance increases. It is highly possible that the cooling pipe will burn out. When the coil is fixed on the downstream side, the flow of the refrigerant causes the coil to be compressed at the fixed portion to generate a large resistance, which makes it difficult for the refrigerant to flow, and thus there is a risk of burnout.

【0013】本発明はこのような事情に鑑みてなされた
もので、第1の目的は、冷却管の管壁近傍の乱流を促進
する効果と壁面に気泡核を保持する効果を併せ持ち、高
い熱伝達性能を有する高熱負荷冷却管を提供することに
ある。
The present invention has been made in view of such circumstances, and a first object thereof is to have both an effect of promoting turbulent flow in the vicinity of the tube wall of the cooling tube and an effect of retaining bubble nuclei on the wall surface, which is high. An object is to provide a high heat load cooling pipe having heat transfer performance.

【0014】第2の目的は、螺旋状コイルを挿入した冷
却管において、冷媒の流通抵抗によりコイルが変形する
ことなく安定した冷却性能が得られる高熱負荷除熱冷却
管を提供することにある。
It is a second object of the present invention to provide a high-heat-load heat removal cooling pipe in which stable cooling performance can be obtained in a cooling pipe in which a spiral coil is inserted without the coil being deformed by the flow resistance of the refrigerant.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の高熱負荷冷却管は、互いに巻き方向
が反対の複数のコイルを円筒状に組み、冷却管内に内壁
面に沿って配設したことを特徴とするものである。
In order to achieve the above-mentioned object, the high heat load cooling pipe according to claim 1 is constructed by assembling a plurality of coils whose winding directions are opposite to each other in a cylindrical shape, along the inner wall surface of the cooling pipe. It is characterized by being arranged as.

【0016】請求項2に記載の発明は、請求項1に記載
の高熱負荷冷却管の挿入した円筒状に組んだコイルの内
側にさらに、それより太い線径の螺旋状コイルを挿入し
たことを特徴とするものである。
According to the second aspect of the present invention, a spiral coil having a wire diameter larger than that of the coil assembled in the cylindrical shape in which the high heat load cooling pipe according to the first aspect is inserted is inserted. It is a feature.

【0017】請求項3に記載の発明は、請求項1に記載
の高熱負荷冷却管の挿入した円筒状に組んだコイルの内
側に螺旋状テープを挿入したことを特徴とするものであ
る。請求項4に記載の高熱負荷冷却管は、冷却管内に2
本以上の螺旋状コイルを軸方向に沿って均等間隔で配設
したことを特徴とするものである。
The invention according to claim 3 is characterized in that a spiral tape is inserted inside the coil assembled in a cylindrical shape into which the high heat load cooling pipe according to claim 1 is inserted. The high heat load cooling pipe according to claim 4 is provided in the cooling pipe.
The present invention is characterized in that two or more spiral coils are arranged at equal intervals along the axial direction.

【0018】請求項5に記載の高熱負荷冷却管は、冷却
管内に軸方向に沿って螺旋状コイルを配設し、螺旋状コ
イルに軸方向に平行に一本以上の針金を取り付けたこと
を特徴とするものである。
In the high heat load cooling pipe according to the present invention, a spiral coil is arranged in the cooling pipe along the axial direction, and one or more wires are attached to the spiral coil parallel to the axial direction. It is a feature.

【0019】[0019]

【作用】請求項1ないし請求項3に示す構成によれば、
互いに巻き方向が反対のコイルを多数円筒状に組んだコ
イルを挿入することにより、一本のコイルを挿入した冷
却管の場合より、管壁近傍の乱流が促進され、壁面から
発生した気泡を除去する効果が高くなり、冷却性能が向
上する。また、コイルを網状にくむことにより、コイル
の強度がたかくなるため、コイルの変形により冷却性能
が低下することを防ぐことができる。
According to the constitutions of claims 1 to 3,
By inserting a coil in which a number of coils with opposite winding directions are assembled into a cylindrical shape, turbulent flow near the tube wall is promoted and bubbles generated from the wall surface are more promoted than in the case of a cooling tube with one coil inserted. The removal effect is enhanced and the cooling performance is improved. Further, since the strength of the coil is increased by forming the coil in a net shape, it is possible to prevent the cooling performance from being deteriorated due to the deformation of the coil.

【0020】また、網状に組むコイルの間隔を十分細か
くし、管内壁面に密着して配設することにより、管壁面
と網状のコイル面との接触部が気泡核を保持する効果が
あり、管壁から安定して蒸気が発生するため、冷却性能
が向上する。
Also, by making the spacing between the coils assembled in a mesh shape sufficiently small and closely arranging the coils on the inner wall surface of the tube, the contact portion between the wall surface of the tube and the mesh coil surface has the effect of holding the bubble nucleus, Since the steam is stably generated from the wall, the cooling performance is improved.

【0021】また、請求項2,3に記載の発明では、網
状に組んだコイルの内側にさらに螺旋状コイルまたは螺
旋状テープを配設、管壁と網状に組んだコイルの接触部
から発生した蒸気泡を壁面から除去する効果が高めら
れ、冷却性能が向上する。
Further, in the invention described in claims 2 and 3, a spiral coil or a spiral tape is further provided inside the mesh-shaped coil, and the spiral coil or the spiral tape is generated from the contact portion between the tube wall and the mesh-shaped coil. The effect of removing vapor bubbles from the wall surface is enhanced, and the cooling performance is improved.

【0022】請求項4に記載の発明では、2本以上の螺
旋状コイルを軸方向に沿って均等間隔で配設したことに
より、1本で螺旋状コイルを構成した場合と比較して、
各コイルの巻きピッチを大きくすることができる。螺旋
状コイルに働く冷媒の流動抵抗は、軸方向の流れに対し
てコイルの巻き方向ができるだけ平行に近い方が小さく
なるため、1本で螺旋状コイルを構成した場合よりコイ
ルに働く流動抵抗が小さくなり、コイルが変形して冷却
性能が低下する危険性が少なくなる。
In the invention according to claim 4, two or more spiral coils are arranged at equal intervals along the axial direction, so that a single spiral coil is formed,
The winding pitch of each coil can be increased. The flow resistance of the refrigerant acting on the spiral coil is smaller when the winding direction of the coil is as parallel as possible to the axial flow, so that the flow resistance acting on the coil is smaller than that when the spiral coil is composed of one coil. The size of the coil is reduced, and the risk that the coil is deformed and the cooling performance is deteriorated is reduced.

【0023】また、冷却性能はコイルの巻きピッチが小
さいほど高くなるが、2本以上の螺旋状コイルを均等間
隔で配設することにより、巻きピッチの小さい1本の螺
旋状コイルを挿入した場合と同様の乱流促進効果があ
り、高い冷却性能が得られる。
Further, the cooling performance becomes higher as the winding pitch of the coil is smaller, but when one spiral coil having a small winding pitch is inserted by arranging two or more spiral coils at equal intervals. It has the same turbulent flow promoting effect as above, and high cooling performance can be obtained.

【0024】請求項5に記載の発明では、冷却管内に軸
方向に沿って螺旋状コイルを配設し、螺旋状コイルに軸
方向に平行に少なくとも一本の針金状の線材を取り付
け、一定間隔で螺旋状コイルとの接触部を固定すること
により、螺旋状コイルの強度を高めることができ、コイ
ルが変形して冷却性能が低下する危険性が少なくなる。
In the invention according to claim 5, a spiral coil is arranged in the cooling pipe along the axial direction, and at least one wire-shaped wire is attached to the spiral coil in parallel with the axial direction, and the spiral coil is attached at regular intervals. By fixing the contact portion with the spiral coil by, the strength of the spiral coil can be increased, and the risk that the coil is deformed and the cooling performance is reduced is reduced.

【0025】[0025]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は、請求項1に記載の発明の一実施例
の基本的構成を示している。本実施例は、互いに巻き方
向が反対のコイル7を多数網状に組み円筒状コイル8を
形成して冷却管3内に配設する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic configuration of an embodiment of the invention described in claim 1. In this embodiment, a large number of coils 7 whose winding directions are opposite to each other are assembled in a net shape to form a cylindrical coil 8 and the cylindrical coil 8 is arranged in the cooling pipe 3.

【0026】互いに巻き方向が反対のコイルを多数網状
に組んだことに、一本のコイルを挿入した冷却管の場合
より管壁近傍の乱流が促進され、壁面から発生した気泡
を除去する効果が高くなり、冷却性能が向上する。ま
た、コイルを網状に組むことにより、互いのコイルを支
持するためコイルの強度が高くなるため、コイルの変形
により冷却性能が低下することを防ぐことができる。
The effect of removing bubbles generated from the wall surface by promoting turbulent flow in the vicinity of the tube wall by arranging a plurality of coils whose winding directions are opposite to each other in a net shape is more promoted than in the case of a cooling tube in which one coil is inserted. And the cooling performance is improved. In addition, by assembling the coils in a net shape, the strength of the coils is increased because they support each other, so that it is possible to prevent the cooling performance from being deteriorated due to the deformation of the coils.

【0027】多くの螺旋状コイルを冷却管内に挿入する
ことにより、冷媒の流通抵抗が大きくなるが、コイルを
組むことによりその強度が高められるためコイル線径を
細めることができ、その影響は小さい。また、冷却管内
の乱流促進はできるだけ壁面の近傍で行うほど冷却性能
に及ぼす効果は大きくなるため、円筒状コイル8に用い
るコイル7の線径が細いほど冷却性能は向上する。
By inserting a large number of spiral coils into the cooling pipe, the flow resistance of the refrigerant increases, but the strength of the coil is increased by assembling the coils, so that the coil wire diameter can be reduced and its effect is small. . Further, since the effect on the cooling performance becomes greater as the turbulent flow promotion in the cooling pipe is performed as close to the wall surface as possible, the cooling performance is improved as the wire diameter of the coil 7 used for the cylindrical coil 8 is smaller.

【0028】さらに、図1に示した網状に組むコイル7
の間隔を十分細かくし、管内壁面に密着して配設するこ
とによって、管壁面と網状のコイル面との接触部が気泡
核を保持する効果があるため、管壁から安定して蒸気が
発生し、高い冷却性能が得られる。
Furthermore, the coil 7 assembled in the mesh shape shown in FIG.
Since the space between the pipe wall and the pipe wall is closely attached, the contact area between the pipe wall and the mesh-shaped coil surface has the effect of retaining bubble nuclei, so that stable steam is generated from the pipe wall. However, high cooling performance can be obtained.

【0029】請求項2に記載の発明は、図1に示した円
筒状コイル8の内側にさらに螺旋状コイルを配設する。
このとき、管壁と円筒状コイル8の接触部から発生した
蒸気泡は、内側に配設した螺旋状コイルにより壁面から
離脱する効果が高められ、冷却性能が向上する。内側に
配設するコイルは、円筒状コイル8からの気泡離脱を助
長させる目的のものであり、コイル線径が太いほどその
効果は大きく、少なくとも円筒状コイル8を形成するコ
イル7よりも太い線径のコイルを用いる必要がある。
In the second aspect of the present invention, a spiral coil is further arranged inside the cylindrical coil 8 shown in FIG.
At this time, the vapor bubbles generated from the contact portion between the tube wall and the cylindrical coil 8 are more effectively separated from the wall surface by the spiral coil disposed inside, and the cooling performance is improved. The coil disposed inside is for the purpose of facilitating bubble separation from the cylindrical coil 8, and the larger the coil wire diameter, the greater the effect, and at least the wire thicker than the coil 7 forming the cylindrical coil 8. It is necessary to use a coil of diameter.

【0030】また、請求項3の発明は円筒状コイルから
の気泡離脱を促進させる機構として、螺旋状テープを円
筒状コイルの内側に配設したものであり、本実施例の効
果は前記のものと同様である。
Further, the invention of claim 3 is one in which a spiral tape is disposed inside the cylindrical coil as a mechanism for promoting bubble separation from the cylindrical coil, and the effect of this embodiment is as described above. Is the same as.

【0031】図2は、請求項4に記載の発明の一実施例
である。本実施例は2本以上の螺旋状コイルを軸方向に
沿って均等間隔で配設することを特徴としており、図2
に示した実施例では2本の螺旋状コイル9a,9bを軸
方向に沿って均等間隔で配設した。
FIG. 2 shows an embodiment of the invention described in claim 4. The present embodiment is characterized in that two or more spiral coils are arranged at equal intervals along the axial direction.
In the embodiment shown in (2), the two spiral coils 9a and 9b are arranged at equal intervals along the axial direction.

【0032】2本の螺旋状コイルを軸方向に沿って均等
間隔で配設したことにより、1本で螺旋状コイルを構成
した場合と比較して、各コイルの巻きピッチを大きくす
ることができる。コイル1本の巻きピッチを2倍に大き
くしても、2本のコイルの効果により受熱面近傍の冷媒
の流れの乱流が促進され、管壁からの気泡離脱の効果が
大きくなり、また、離脱した気泡とサブークル液との混
合も促進されるため、高い除熱性能が得られる。
By arranging the two spiral coils at equal intervals along the axial direction, the winding pitch of each coil can be increased as compared with the case where one spiral coil is formed. . Even if the winding pitch of one coil is doubled, the turbulent flow of the refrigerant flow in the vicinity of the heat receiving surface is promoted by the effect of the two coils, and the effect of bubble separation from the pipe wall is increased. Since the mixing of the separated bubbles and the subicle liquid is promoted, high heat removal performance can be obtained.

【0033】螺旋状コイルに働く冷媒の流動抵抗は、軸
方向の流れに対してコイルの巻き方向ができるだけ平行
に近い方が小さくなるため、1本で螺旋状コイルを構成
した場合よりコイルに働く流動抵抗が小さくなり、コイ
ルが変形して冷却性能が低下する危険性がなくなる。
Since the flow resistance of the refrigerant acting on the spiral coil is smaller when the winding direction of the coil is as parallel as possible to the axial flow, it works on the coil more than when the spiral coil is composed of one coil. The flow resistance is reduced, and there is no risk that the coil will deform and the cooling performance will decrease.

【0034】また、冷却性能はコイル巻きピッチが小さ
いほど高くなるが、2本以上の螺旋状コイルを均等間隔
で配設することにより、巻きピッチの小さい1本の螺旋
状コスルを挿入した場合と同様の乱流促進効果があり、
高い冷却性能が得られる。
Further, the cooling performance becomes higher as the coil winding pitch becomes smaller. However, by disposing two or more spiral coils at equal intervals, it is possible to insert one spiral cosule having a small winding pitch. Has a similar turbulence promoting effect,
High cooling performance can be obtained.

【0035】図3は、請求項3に記載の発明の一実施例
であり、冷却管内に軸方向に沿って螺旋状コイル7を配
設し、さらに螺旋状コイルに軸方向に平行に2本の針金
10を取り付け、一定間隔で螺旋状コイルとの接触部を固
定した。この針金10により、螺旋状コイルの強度を高め
ることができ、コイルが変形して冷却性能が低下する危
険性が少なくなる。
FIG. 3 shows an embodiment of the invention described in claim 3, in which a spiral coil 7 is arranged in the cooling pipe along the axial direction, and two spiral coils are arranged in parallel with the spiral coil in the axial direction. Wire
10 was attached, and the contact portion with the spiral coil was fixed at regular intervals. The wire 10 can increase the strength of the spiral coil and reduce the risk that the coil is deformed and the cooling performance is deteriorated.

【0036】[0036]

【発明の効果】請求項1ないし請求項3に記載の発明に
よると、互いに巻き方向が反対のコイルを多数円筒状に
組んだコイルを挿入することにより、一本のコイルを挿
入した冷却管の場合より、管壁近傍の乱流が促進され、
壁面から発生した気泡を除去する効果が高くなり、冷却
性能が向上する。また、コイルを網状にくむことによ
り、コイルの強度がたかくなるため、コイルの変形によ
り冷却性能が低下することを防ぐことができる。
According to the present invention as set forth in claims 1 to 3, a cooling pipe having one coil inserted therein is formed by inserting a coil in which a plurality of coils having opposite winding directions are assembled into a cylindrical shape. In some cases, turbulent flow near the pipe wall is promoted,
The effect of removing bubbles generated from the wall surface is enhanced, and the cooling performance is improved. Further, since the strength of the coil is increased by forming the coil in a net shape, it is possible to prevent the cooling performance from being deteriorated due to the deformation of the coil.

【0037】また、網状に組むコイルの間隔を十分細か
くし、管内壁面に密着して配設することにより、管壁面
と網状のコイル面との接触部が気泡核を保持する効果が
あり、管壁から安定して蒸気が発生するため、冷却性能
が向上する。
Further, by making the intervals of the coils assembled in a mesh shape sufficiently small and closely disposing the coils on the inner wall surface of the tube, the contact portion between the wall surface of the tube and the mesh surface of the coil has an effect of holding bubble nuclei. Since the steam is stably generated from the wall, the cooling performance is improved.

【0038】また、請求項2,3に記載の発明では、網
状に組んだコイルの内側にさらに管壁と網状に組んだコ
イルの接触部から発生した蒸気泡を壁面から除去する機
構を設けたことにより気泡除去効果が高められ、冷却性
能が向上する。
According to the second and third aspects of the present invention, a mechanism for removing vapor bubbles generated from the contact portion between the pipe wall and the mesh-shaped coil from the wall surface is provided inside the mesh-shaped coil. As a result, the effect of removing bubbles is enhanced and the cooling performance is improved.

【0039】請求項4に記載の発明では、2本以上の螺
旋状コイルを軸方向に沿って均等間隔で配設したことに
より、1本で螺旋状コイルを構成した場合と比較して、
各コイルの巻きピッチを大きくすることができる。螺旋
状コイルに働く冷媒の流動抵抗は、軸方向の流れに対し
てコイルの巻き方向ができるだけ平行に近い方が小さく
なるため、1本で螺旋状コイルを構成した場合よりコイ
ルに働く流動抵抗が小さくなり、コイルが変形して冷却
性能が低下する危険性が少なくなる。
In the invention according to claim 4, two or more spiral coils are arranged at equal intervals along the axial direction, so that the spiral coil is constituted by one coil.
The winding pitch of each coil can be increased. The flow resistance of the refrigerant acting on the spiral coil is smaller when the winding direction of the coil is as parallel as possible to the axial flow, so that the flow resistance acting on the coil is smaller than that when the spiral coil is composed of one coil. The size of the coil is reduced, and the risk that the coil is deformed and the cooling performance is deteriorated is reduced.

【0040】また、冷却性能はコイルの巻きピッチが小
さいほど高くなるが、2本以上の螺旋状コイルを均等間
隔で配設することにより、巻きピッチの小さい1本の螺
旋状コイルを挿入した場合と同様の乱流促進効果があ
り、高い冷却性能が得られる。
Further, the cooling performance becomes higher as the winding pitch of the coil is smaller, but when one spiral coil having a small winding pitch is inserted by arranging two or more spiral coils at equal intervals. It has the same turbulent flow promoting effect as above, and high cooling performance can be obtained.

【0041】請求項5の発明では、冷却管内に軸方向に
沿って螺旋状コイルを配設し、螺旋状コイルに軸方向に
平行に少なくとも一本の針金状の線材を取り付け、一定
間隔で螺旋状コイルとの接触部を固定することにより、
螺旋状コイルの強度を高めることができ、コイルが変形
して冷却性能が低下する危険性が少なくなる。
According to the invention of claim 5, a spiral coil is arranged along the axial direction in the cooling pipe, and at least one wire-shaped wire is attached to the spiral coil parallel to the axial direction, and the spiral coil is spirally arranged at regular intervals. By fixing the contact part with the coil,
The strength of the spiral coil can be increased, and there is less risk that the coil will deform and cooling performance will deteriorate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1に対応する一実施例を示す構
成図。
FIG. 1 is a configuration diagram showing an embodiment corresponding to claim 1 of the present invention.

【図2】本発明の請求項4に対応する実施例を示す構成
図。
FIG. 2 is a configuration diagram showing an embodiment corresponding to claim 4 of the present invention.

【図3】本発明の請求項5に対応する一実施例を示す構
成図。
FIG. 3 is a configuration diagram showing an embodiment corresponding to claim 5 of the present invention.

【図4】従来の高熱負荷除熱装置の基本構成を示す正面
図。
FIG. 4 is a front view showing the basic configuration of a conventional high heat load heat removal device.

【図5】図4の上面図。5 is a top view of FIG.

【図6】図4の側面図。FIG. 6 is a side view of FIG. 4;

【符号の説明】 1…冷媒入口配管 2…冷媒出口配管 3…冷却管 4…螺旋状テープ 5…中性粒子ビーム 6…冷媒 7…螺旋状コイル 8…円筒状コイル 9…螺旋状コイル 10…針金[Explanation of Codes] 1 ... Refrigerant inlet pipe 2 ... Refrigerant outlet pipe 3 ... Cooling pipe 4 ... Spiral tape 5 ... Neutral particle beam 6 ... Refrigerant 7 ... Spiral coil 8 ... Cylindrical coil 9 ... Spiral coil 10 ... wire

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高熱負荷を受ける部位に円管状の冷却管
を配置し、この冷却管内に軸方向に沿って螺旋状コイル
を配設した冷却管において、互いに巻き方向が反対の複
数のコイルを円筒状に組み、冷却管内に内壁面に沿って
配設したことを特徴とする高熱負荷冷却管。
1. A cooling pipe in which a circular tubular cooling pipe is arranged in a portion that receives a high heat load, and a spiral coil is arranged in the cooling pipe along an axial direction, and a plurality of coils having mutually opposite winding directions are provided. A high heat load cooling pipe characterized by being assembled in a cylindrical shape and arranged along the inner wall surface in the cooling pipe.
【請求項2】 高熱負荷を受ける部位に円管状の冷却管
を配置し、この冷却管内に軸方向に沿って螺旋状コイル
を配設した冷却管において、互いに巻き方向が反対の複
数のコイルを円筒状に組み、さらに、円筒状に組んだコ
イルの内側に前記コイルより太い線径の螺旋状コイルを
挿入したことを特徴とする高熱負荷冷却管。
2. A cooling pipe, in which a circular cooling pipe is arranged at a portion subjected to a high heat load, and a spiral coil is arranged along the axial direction in the cooling pipe, a plurality of coils having mutually opposite winding directions are provided. A high heat load cooling pipe, characterized in that it is assembled in a cylindrical shape, and further, a spiral coil having a wire diameter larger than that of the coil is inserted inside the cylindrically assembled coil.
【請求項3】 高熱負荷を受ける部位に円管状の冷却管
を配置し、この冷却管内に軸方向に沿って螺旋状コイル
を配設した冷却管において、互いに巻き方向が反対の複
数のコイルを円筒状に組み、さらに、円筒状に組んだコ
イルの内側に螺旋状テ―プを挿入したことを特徴とする
高熱負荷冷却管。
3. A cooling pipe, in which a circular cooling pipe is arranged in a portion which receives a high heat load, and a spiral coil is arranged along the axial direction in the cooling pipe, a plurality of coils having mutually opposite winding directions are provided. A high heat load cooling tube characterized by being assembled in a cylindrical shape and further having a spiral tape inserted inside a coil assembled in a cylindrical shape.
【請求項4】 高熱負荷を受ける部位に円管状の冷却管
を配置し、この冷却管内に軸方向に沿って螺旋状コイル
を配設した冷却管において、2本以上の螺旋状コイルを
軸方向に均等間隔で冷却管内に配設したことを特徴とす
る高熱負荷冷却管。
4. A cooling pipe in which a circular tubular cooling pipe is arranged at a portion subjected to a high heat load, and a spiral coil is arranged along the axial direction in the cooling pipe, and two or more spiral coils are axially arranged. A high heat load cooling pipe, wherein the cooling pipes are arranged in the cooling pipe at equal intervals.
【請求項5】 高熱負荷を受ける部位に円管状の冷却管
を配置し、この冷却管内に軸方向に沿って螺旋状コイル
を配設した冷却管において、螺旋状コイルに軸方向に平
行に少なくとも一本の針金状の線材を取り付けたことを
特徴とする高熱負荷冷却管。
5. A cooling pipe in which a circular cooling pipe is arranged in a portion that receives a high heat load, and a spiral coil is arranged in the cooling pipe along the axial direction, and at least in parallel to the spiral coil in the axial direction. A high heat load cooling tube with a single wire-shaped wire attached.
JP7145760A 1995-06-13 1995-06-13 High heat load cooling pipe Pending JPH08338890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145760A JPH08338890A (en) 1995-06-13 1995-06-13 High heat load cooling pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145760A JPH08338890A (en) 1995-06-13 1995-06-13 High heat load cooling pipe

Publications (1)

Publication Number Publication Date
JPH08338890A true JPH08338890A (en) 1996-12-24

Family

ID=15392534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145760A Pending JPH08338890A (en) 1995-06-13 1995-06-13 High heat load cooling pipe

Country Status (1)

Country Link
JP (1) JPH08338890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102893A (en) * 2009-11-11 2011-05-26 Ricoh Co Ltd Cooling device and image forming apparatus
JP2011227315A (en) * 2010-04-21 2011-11-10 Ricoh Co Ltd Cooling device and image forming apparatus
JP2012018239A (en) * 2010-07-07 2012-01-26 Ricoh Co Ltd Cooling device and image forming apparatus
US8606138B2 (en) 2009-08-05 2013-12-10 Ricoh Company, Limited Cooling device having a turbulence generating unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606138B2 (en) 2009-08-05 2013-12-10 Ricoh Company, Limited Cooling device having a turbulence generating unit
US9400485B2 (en) 2009-08-05 2016-07-26 Ricoh Company, Ltd. Cooling device having a turbulence generating unit
JP2011102893A (en) * 2009-11-11 2011-05-26 Ricoh Co Ltd Cooling device and image forming apparatus
JP2011227315A (en) * 2010-04-21 2011-11-10 Ricoh Co Ltd Cooling device and image forming apparatus
JP2012018239A (en) * 2010-07-07 2012-01-26 Ricoh Co Ltd Cooling device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4948543B2 (en) Steam generating pipe and once-through boiler
JP2528658B2 (en) Pump / heat exchanger assembly
WO2005052483A2 (en) Method of making multi-tube in spiral heat exchanger
JP3524083B2 (en) Helical heat exchanger with intermediate heat carrier
US4363773A (en) Superconductive electromagnet apparatus
JPH08338890A (en) High heat load cooling pipe
JPH0636869A (en) Electromagnetic induction heating coil
JP5207053B2 (en) Heat exchanger and water heater
JP5186374B2 (en) Melting furnace with an inductor device having a single loop of multiple conductors
US4556104A (en) Heat exchanger
JP2010085038A (en) Heat exchanger and water heater
JP2891693B1 (en) High frequency heating coil device
JP2008292059A (en) Heat exchanger and water heater
US4182413A (en) Radial flow heat exchanger
KR100663069B1 (en) High efficiency heating apparatus of boiler
JPH08146170A (en) High thermal load heat removing device
JP4272622B2 (en) Horizontal boiler operation method and boiler for carrying out this operation method
JP2003068443A (en) Induction heating unit for fluid heating
EP1379826A1 (en) Thermal energy store containing a heat exchanger
US4471266A (en) Delay line for a traveling-wave tube cooled by heat pipes and a traveling-wave tube comprising a delay line of this type
EP4038324A1 (en) An electric gas heater device and a system of electric gas heater devices
JP2002533689A (en) Fuel assemblies for boiling water reactors.
Le et al. Investigation of critical heat flux behavior in tight rod bundles with and without wire spacer
Bergles et al. Enhancement of heat transfer in swirled boiling flows
JPH06281763A (en) Heat removal device for high heat load