JPH09318286A - Heat transfer pipe - Google Patents

Heat transfer pipe

Info

Publication number
JPH09318286A
JPH09318286A JP34340696A JP34340696A JPH09318286A JP H09318286 A JPH09318286 A JP H09318286A JP 34340696 A JP34340696 A JP 34340696A JP 34340696 A JP34340696 A JP 34340696A JP H09318286 A JPH09318286 A JP H09318286A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
groove
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34340696A
Other languages
Japanese (ja)
Inventor
Kotaro Tsuri
弘太郎 釣
Hidemitsu Kameoka
秀光 亀岡
Takeshi Isobe
剛 磯部
Takeshi Nishizawa
武史 西澤
Masanori Ozaki
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP34340696A priority Critical patent/JPH09318286A/en
Publication of JPH09318286A publication Critical patent/JPH09318286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate unevenness of concentration in a vertical direction of absorbing liquid at the surface of a heat transfer pipe, increase an interface disturbance and make a substantial improvement of a heat transfer performance. SOLUTION: This heat transfer pipe performs a heat exchanging operation between fluid in the pipe and fluid outside the pipe, wherein an outer circumferential surface of the heat transfer pipe 1 has at least two kinds of helical grooves M1, M2 in which directions of a twisted angle θ in respect to a pipe axis Z are opposite to each other and the twisted angle θ is in a range of 3 deg.-80 deg. and a groove depth of at least one helical groove M1 of the two kinds of helical grooves M1, M2 is different from that of the other helical groove M2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷水製造用の吸収
式冷凍機や吸収式冷温水機などの吸収器、再生器あるは
蒸発器に使用される伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for an absorber, a regenerator or an evaporator of an absorption refrigerator or an absorption chiller / heater for producing cold water.

【0002】[0002]

【従来の技術】吸収式冷凍機や吸収式冷温水機は蒸発器
で蒸発した冷媒の蒸発潜熱を被冷却水から奪うことによ
り冷水を作り出している。蒸発器で蒸発した冷媒は吸収
器の吸収液に吸収されて液体に戻るが、このときに蒸発
潜熱と希釈熱を放出する。吸収液は温度が高いと冷媒を
吸収しにくくなるので、蒸発潜熱と希釈熱により温度が
高くならないように伝熱管面上で吸収液を冷却してやる
必要がある。一般的に、例えば吸収器は伝熱管を水平あ
るいは垂直に多数配置し、その伝熱管上に吸収液を流下
させ、伝熱管内に冷却水を流す構造になっている。この
伝熱管は通常平滑管が用いられ、特に性能向上が必要な
ときに限って高性能伝熱管が使用される。
2. Description of the Related Art Absorption refrigerators and absorption chiller-heaters produce cold water by removing latent heat of vaporization of a refrigerant evaporated in an evaporator from water to be cooled. The refrigerant evaporated in the evaporator is absorbed by the absorbing liquid in the absorber and returns to the liquid, and at this time, the latent heat of evaporation and the heat of dilution are released. If the temperature of the absorbing liquid is high, it becomes difficult to absorb the refrigerant. Therefore, it is necessary to cool the absorbing liquid on the surface of the heat transfer tube so that the temperature does not rise due to the latent heat of evaporation and the heat of dilution. In general, for example, an absorber has a structure in which a large number of heat transfer tubes are arranged horizontally or vertically, an absorbing liquid flows down on the heat transfer tubes, and cooling water flows in the heat transfer tubes. A smooth tube is usually used as this heat transfer tube, and a high performance heat transfer tube is used only when performance improvement is required.

【0003】吸収器での伝熱管の性能を向上させる為に
は、伝熱面積を増大させる、流下する吸収液の表面
が蒸気を吸収した際に濃度が薄くなることによる吸収液
層の上下方向の濃度のバラツキを無くす、表面を流下
する吸収液における界面攪乱を促進させる、等の対策が
必要となる。このような高性能伝熱管として、伝熱管の
外表面に多数の螺旋溝を設けた実開昭57-100161 号公報
が提案されている。また、伝熱管の外表面に同じ深さの
多数の螺旋溝を逆方向に交差させた実開昭58-51671号公
報が提案されている。さらに、伝熱管端部の外表面にだ
け交差溝を設けた実開平1-73663 号公報が提案されてい
る。上記の公報のマイクロフィルムにより、伝熱管の外
表面に多数の螺旋溝を設けたり、伝熱管の外表面に螺旋
溝を逆方向に交差させたり、伝熱管の端部だけに交差溝
を設けたりすると、伝熱管の性能が向上することは知ら
れている。
In order to improve the performance of the heat transfer tube in the absorber, the heat transfer area is increased, and the surface of the flowing absorbing liquid becomes thin when the surface absorbs vapor, so that the concentration of the absorbing liquid decreases in the vertical direction. Therefore, it is necessary to take measures such as eliminating the variation in the concentration of water and promoting interfacial disturbance in the absorbing liquid flowing down the surface. As such a high performance heat transfer tube, Japanese Utility Model Laid-Open No. 57-100161 is proposed in which a large number of spiral grooves are provided on the outer surface of the heat transfer tube. Further, Japanese Utility Model Laid-Open No. 58-51671 has been proposed in which a large number of spiral grooves of the same depth are crossed in opposite directions on the outer surface of the heat transfer tube. Further, Japanese Utility Model Laid-Open No. 1-73663 has been proposed in which cross grooves are provided only on the outer surface of the end of the heat transfer tube. With the microfilm of the above publication, many spiral grooves are provided on the outer surface of the heat transfer tube, spiral grooves are crossed in the opposite direction on the outer surface of the heat transfer tube, or cross grooves are provided only at the ends of the heat transfer tube. Then, it is known that the performance of the heat transfer tube is improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、実開昭57-100
161 号公報や実開平1-73663 号公報のマイクロフィルム
に開示されている、伝熱管の外表面に同じ深さの一方向
の螺旋溝だけを設ける場合や伝熱管端部の外表面にだけ
交差溝を設けた場合については、伝熱管の表面の吸収液
の流れが一方向になり、伝熱管の高性能化の要因の一つ
である吸収液の界面攪乱が少なかった。また、実開昭58
-51671号公報のマイクロフィルムに開示されている、伝
熱管の外表面に同じ深さの螺旋溝を逆方向に交差させた
場合でも、吸収液の流れがただ螺旋溝の底部に沿って流
れ落ちているだけで管軸方向への広がりが少なく、吸収
液の上下方向の濃度のバラツキを無くすことができなか
った。したがって、伝熱管を平滑管に変えて上記の伝熱
管を用いた場合でも吸収器での伝熱性能の増加率は不十
分であった。
[Problems to be Solved by the Invention]
When the outer surface of the heat transfer tube is provided with only spiral grooves of the same depth in one direction, as disclosed in the microfilms of Japanese Utility Model Publication No. 161 and Japanese Utility Model Laid-Open No. 1-73663, or only the outer surface of the end of the heat transfer tube intersects In the case where the groove was provided, the flow of the absorbing liquid on the surface of the heat transfer tube became unidirectional, and the interface disturbance of the absorbing liquid, which is one of the factors for improving the performance of the heat transfer tube, was small. In addition, 58
Even if the spiral groove of the same depth is crossed in the opposite direction on the outer surface of the heat transfer tube, which is disclosed in the microfilm of JP-A-51671, the flow of the absorbing liquid just flows down along the bottom of the spiral groove. However, there was little spread in the tube axis direction, and it was not possible to eliminate variations in the vertical concentration of the absorbing liquid. Therefore, even when the heat transfer tube is changed to a smooth tube and the above heat transfer tube is used, the rate of increase in heat transfer performance in the absorber is insufficient.

【0005】本発明は上記の課題を解決し、伝熱管の表
面の吸収液の上下方向の濃度のバラツキを無くし、界面
攪乱を増加させ、伝熱性能を大幅に向上させる伝熱管を
提供することを目的とするものである。
The present invention solves the above problems and provides a heat transfer tube which eliminates the variation in the vertical concentration of the absorbing liquid on the surface of the heat transfer tube, increases the interface disturbance, and significantly improves the heat transfer performance. The purpose is.

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0007】本発明のうち請求項1の伝熱管は、管内の
流体と管外の流体との間で熱交換する伝熱管であって、
前記伝熱管の管外周面には管軸に対するねじれ角の方向
が逆向きで、ねじれ角が3゜〜80゜の範囲で少なくと
も2種類の螺旋溝を有し、前記少なくとも2種類の螺旋
溝のうち少なくとも1つの螺旋溝の溝深さが、他の螺旋
溝のそれとは異なっていることを特徴とする。
The heat transfer tube according to claim 1 of the present invention is a heat transfer tube for exchanging heat between a fluid inside the tube and a fluid outside the tube,
On the outer peripheral surface of the heat transfer tube, the direction of the helix angle with respect to the tube axis is opposite, and there are at least two types of spiral grooves within a helix angle range of 3 ° to 80 °. The groove depth of at least one of the spiral grooves is different from that of the other spiral grooves.

【0008】本発明のうち請求項2の伝熱管は、管軸に
対する螺旋溝の方向が逆向きな少なくとも2種類の螺旋
溝の管軸に対するねじれ角の絶対値が互いに異なってい
ることを特徴とする。
According to a second aspect of the present invention, the heat transfer tube is characterized in that the absolute values of the helix angle with respect to the tube axis of at least two kinds of spiral grooves having opposite directions to the tube axis are different from each other. To do.

【0009】本発明のうち請求項1または請求項2の伝
熱管において、螺旋溝の溝深さが0.1〜1.5mmの
範囲であり、周方向のピッチが0.3〜4.0mmの範
囲であり、少なくとも2種類の螺旋溝の溝深さの違いが
1.15倍以上であることが望ましい。
In the heat transfer tube according to claim 1 or 2 of the present invention, the spiral groove has a groove depth of 0.1 to 1.5 mm and a circumferential pitch of 0.3 to 4.0 mm. It is desirable that the difference between the groove depths of at least two kinds of spiral grooves is 1.15 times or more.

【0010】本発明のうち請求項3の伝熱管は、少なく
とも2種類の螺旋溝の管軸に対するねじれ角は15°〜
45゜の範囲内で、且つ最も深い螺旋溝の管軸に対する
ねじれ角の絶対値が他の螺旋溝のそれよりも小さく、且
つ前記螺旋溝の溝深さが0.1mm〜1.5mmの範囲
内となっていることを特徴とする。本発明のうち請求項
4の伝熱管は、管内周面に、管外周面に形成された溝深
さが最も大きい螺旋溝の凹凸形状に、対応した凸凹形状
の螺旋条を有することを特徴とする。
In the heat transfer tube according to claim 3 of the present invention, at least two kinds of spiral grooves have a twist angle of 15 ° to the tube axis.
Within the range of 45 °, the absolute value of the helix angle with respect to the tube axis of the deepest spiral groove is smaller than that of the other spiral grooves, and the groove depth of the spiral groove is in the range of 0.1 mm to 1.5 mm. It is characterized by being inside. The heat transfer tube according to claim 4 of the present invention is characterized in that the heat transfer tube according to claim 4 has, on the inner peripheral surface of the tube, a spiral strip having an uneven shape corresponding to the uneven shape of the spiral groove formed on the outer peripheral surface of the tube having the largest groove depth. To do.

【0011】本発明の請求項1の伝熱管によれば、伝熱
管の管外周面には管軸に対するねじれ角の方向が逆向き
で、ねじれ角が3゜〜80゜の範囲で少なくとも2種類
の螺旋溝を有し、少なくとも2種類の螺旋溝のうち少な
くとも1つの螺旋溝の溝深さが、他の螺旋溝のそれとは
異なっているので次のように作用する。例えばこの伝熱
管を水平に配置する吸収器に使用した場合、少なくとも
2種類の螺旋溝で囲まれた突起が管外周面に多数形成さ
れるので、吸収液がその突起にぶつかって撹乱作用がよ
り促進させられる。同時に、少なくとも2種類の螺旋溝
は管軸方向に対して逆方向にねじれているので、いくつ
かの突起にぶつかって撹乱された吸収液膜は螺旋溝の交
差部分を横切りながら、伝熱管外面での吸収液の広がり
を十分にさせると同時に、吸収液膜の撹乱作用を吸収液
の流下する下方向(管軸方向に直角な方向)にも十分に
促進させる。
According to the heat transfer tube of the first aspect of the present invention, at least two kinds of heat transfer tubes are provided on the outer peripheral surface of the heat transfer tube with the directions of the helix angles with respect to the tube axis being opposite, and in the helix angle range of 3 ° to 80 °. Since the groove depth of at least one spiral groove of at least two kinds of spiral grooves is different from that of the other spiral grooves, it operates as follows. For example, when this heat transfer tube is used in a horizontally arranged absorber, a large number of projections surrounded by at least two types of spiral grooves are formed on the outer peripheral surface of the tube. Promoted. At the same time, since at least two kinds of spiral grooves are twisted in the opposite direction to the tube axis direction, the absorbing liquid film that has been disturbed by hitting some protrusions crosses the intersection of the spiral grooves, and at the outer surface of the heat transfer tube. Of the absorption liquid, and at the same time, the disturbing action of the absorption liquid film is sufficiently promoted in the downward direction (direction perpendicular to the tube axis direction) in which the absorption liquid flows down.

【0012】また、螺旋溝のねじれ角が3゜〜80゜の
範囲であるので、吸収液膜の撹乱作用がより促進させら
れる。例えば、螺旋溝のねじれ角が3゜よりも小さいね
じれ角では、吸収液膜の流れがその溝に沿って左右に生
じ、吸収液膜同志がぶつかり合って一定の方向に安定し
て広げることができず、吸収液膜の攪乱作用も管軸方向
に促進させにくくなる。また、例えば螺旋溝の管軸方向
に対するねじれ角が80°よりも大きくなると、吸収液
膜の管軸方向への動きに対して螺旋溝と螺旋溝の間の突
起が妨げとなり、吸収液膜の攪乱作用が管軸方向に促進
されにくくなる。
Further, since the twist angle of the spiral groove is in the range of 3 ° to 80 °, the disturbing action of the absorbing liquid film is further promoted. For example, when the twist angle of the spiral groove is smaller than 3 °, the flow of the absorbing liquid film occurs left and right along the groove, and the absorbing liquid films may collide with each other and spread stably in a certain direction. However, it is difficult to promote the disturbing action of the absorbing liquid film in the tube axis direction. Further, for example, when the twist angle of the spiral groove with respect to the tube axis direction is larger than 80 °, the protrusion between the spiral groove and the spiral groove interferes with the movement of the absorbent liquid film in the tube axis direction, and the absorption liquid film It becomes difficult for the disturbing action to be promoted in the tube axis direction.

【0013】管軸方向に対するねじれ角が上記の3゜〜
80゜の範囲内にある少なくとも2種類の螺旋溝に沿っ
て流下する吸収液は、溝の深いところを流れる層と表面
の浅いところを流れる層とが流れる方向が逆であるため
に、表面を流下する濃度の薄い吸収液の層と溝の深いと
ころを流れる濃度の濃い吸収液の層とがぶつかりあい、
上下方向の濃度のバラツキが無くなり、また界面攪乱が
多く発生することになる。よって伝熱管の伝熱性能が大
幅に向上し、この伝熱管を装着した熱交換器の性能は大
幅に向上する。
The twist angle with respect to the tube axis direction is 3 ° to above.
The absorption liquid flowing down along at least two kinds of spiral grooves within the range of 80 ° has the opposite directions of flow in the layer flowing in the deep part of the groove and the layer flowing in the shallow part of the surface. The layer of the absorbent having a low concentration flowing down collides with the layer of the absorbent having a high concentration flowing deep in the groove,
Variations in the vertical concentration will disappear, and more interface disturbance will occur. Therefore, the heat transfer performance of the heat transfer tube is significantly improved, and the performance of the heat exchanger equipped with this heat transfer tube is significantly improved.

【0014】本発明の請求項2の伝熱管によれば、管軸
に対する螺旋溝の方向が逆向きな少なくとも2種類の螺
旋溝の管軸に対するねじれ角の絶対値が互いに異なって
いるので、伝熱管外表面の吸収液の流れが変化し、例え
ば角度の小さい方の螺旋溝の吸収液は管軸方向への流れ
を促進し、角度の大きい方の螺旋溝の吸収液は管周方向
への流れを一方向に制御する役目を行い、その相乗効果
によりいっそう伝熱性能が向上する。
According to the heat transfer tube of the second aspect of the present invention, since the absolute values of the twist angle with respect to the tube axis of at least two kinds of spiral grooves having the directions of the spiral groove opposite to the tube axis are different from each other, the heat transfer tube The flow of the absorption liquid on the outer surface of the heat pipe changes, for example, the absorption liquid in the spiral groove with the smaller angle promotes the flow in the axial direction of the pipe, and the absorption liquid in the spiral groove with the larger angle in the circumferential direction of the pipe. It plays the role of controlling the flow in one direction, and the synergistic effect further improves the heat transfer performance.

【0015】本発明の請求項1または請求項2の伝熱管
において、螺旋溝の溝深さが0.1〜1.5mmの範囲
であり、周方向のピッチが0.3〜4.0mmの範囲で
あり、少なくとも2種類の螺旋溝の溝深さの違いが1.
15倍以上であると次のような理由により最適な範囲と
なっている。螺旋溝の溝深さと周方向のピッチが前記範
囲よりも小さければ、突起による吸収液膜の攪乱作用促
進効果が小さく、前記範囲よりも大きければ、吸収液膜
が突起を乗り越えて管外周面に広がりにくい。また、螺
旋溝の溝深さの違いが1.15倍以上であるので伝熱管
外周面に形成される突起が吸収液の膜厚に対して最適な
差を生じさせることができる。その結果、吸収液に表面
張力の差をつけることができて、いわゆるマランゴニー
対流を促進させ、複数の螺旋溝の大きさが同じときより
も吸収液の撹乱作用が促進され、より高効率な熱交換が
行われるようになる。
In the heat transfer tube according to claim 1 or 2, the spiral groove has a groove depth of 0.1 to 1.5 mm and a circumferential pitch of 0.3 to 4.0 mm. And the difference in groove depth between at least two types of spiral groove is 1.
If it is 15 times or more, it is in the optimum range for the following reasons. If the groove depth of the spiral groove and the pitch in the circumferential direction are smaller than the above range, the effect of promoting the disturbing action of the absorbing liquid film by the protrusions is small, and if it is larger than the above range, the absorbing liquid film will pass over the protrusions and form the outer peripheral surface of the pipe. Hard to spread. Moreover, since the difference in groove depth of the spiral groove is 1.15 times or more, the protrusion formed on the outer peripheral surface of the heat transfer tube can cause an optimum difference with respect to the film thickness of the absorbing liquid. As a result, the surface tension of the absorbing liquid can be made different, so-called Marangoni convection can be promoted, and the disturbing action of the absorbing liquid is promoted compared to the case where the plurality of spiral grooves have the same size, so that a more efficient heat Exchange will be carried out.

【0016】本発明の請求項3の伝熱管によれば、少な
くとも2種類の螺旋溝の管軸に対するねじれ角は15°
〜45゜の範囲内で、且つ深い螺旋溝の管軸に対するね
じれ角の絶対値が他の螺旋溝のそれよりも小さく、且つ
前記螺旋溝の溝深さが0.1mm〜1.5mmの範囲内
となっているので、吸収液膜が深い溝に優先的に制御さ
れて、安定した管軸方向への広がりが与えられ、吸収液
膜の攪乱作用も管軸方向に促進され、さらに高効率な熱
交換が行われる。なお、溝深さが大きく、且つ管軸に対
するねじれ角の大きい螺旋溝の溝幅は、他の螺旋溝のそ
れよりも大きくすることが望ましい。その方が、吸収液
膜を管軸方向に安定して広げやすい。また、加工上もそ
の方が容易となる。本発明の請求項4の伝熱管によれ
ば、管内周面に、管外周面に形成された溝深さが最も大
きい螺旋溝の凹凸形状に、対応した凸凹形状の螺旋条を
有しているので、伝熱管内側を流れる冷却水に乱流効果
を与えることができ、管の内側の性能も向上する。ま
た、管外周面側の凸条の山に対応する管内側の部分の余
分な肉厚を削ることができるので、管の肉厚を管周方向
に薄くすることができる。よって伝熱管全体の単重量を
少なくできるので、コスト低減にも大変有効である。
According to the heat transfer tube of claim 3 of the present invention, the twist angle of at least two kinds of spiral grooves with respect to the tube axis is 15 °.
Within the range of ˜45 °, the absolute value of the twist angle of the deep spiral groove with respect to the tube axis is smaller than that of other spiral grooves, and the groove depth of the spiral groove is in the range of 0.1 mm to 1.5 mm. Since the absorption liquid film is controlled preferentially to the deep groove to give a stable spread in the tube axis direction, the disturbing action of the absorption liquid film is also promoted in the tube axis direction, resulting in higher efficiency. Heat exchange is performed. The groove width of the spiral groove having a large groove depth and a large twist angle with respect to the tube axis is preferably larger than that of the other spiral grooves. In that case, the absorbing liquid film can be stably and easily spread in the tube axis direction. Also, it is easier to process. According to the heat transfer tube of claim 4 of the present invention, on the inner peripheral surface of the tube, the spiral groove having the uneven shape corresponding to the uneven shape of the spiral groove having the largest groove depth formed on the outer peripheral surface of the tube is provided. Therefore, a turbulent flow effect can be given to the cooling water flowing inside the heat transfer tube, and the performance inside the tube is also improved. Further, since it is possible to reduce the extra wall thickness of the inner portion of the pipe corresponding to the ridges of the ridges on the outer peripheral surface side of the pipe, the wall thickness of the pipe can be reduced in the pipe circumferential direction. Therefore, the unit weight of the entire heat transfer tube can be reduced, which is very effective for cost reduction.

【0017】[0017]

【発明の実施の形態】以下に本発明を実施の形態により
詳細に説明する。 (実施例1)図1は本発明の伝熱管の一実施例を示す斜
視図である。図1の伝熱管1は外周面に2種類の螺旋溝
M1 、M2 を有したもので、螺旋溝M1 、M2 は管軸Z
に対するねじれ角θ1 、θ2 の方向が逆で、ねじれ角θ
1 、θ2 の大きさが異なっている。図1においては、ね
じれ角θ1 はねじれ角θ2 より小さい角度となってい
る。ねじれ角θの大きい、小さいは管軸Zに対する角度
で右ねじ、左ねじいずれであってもその絶対値をいう。
図1に示す本実施例の伝熱管は、管断面が真円の形状を
したものであるが、管断面は真円に限るものではなく、
例えば楕円状であっても何ら問題はない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to embodiments. (Embodiment 1) FIG. 1 is a perspective view showing an embodiment of the heat transfer tube of the present invention. The heat transfer tube 1 of FIG. 1 has two kinds of spiral grooves M1 and M2 on the outer peripheral surface, and the spiral grooves M1 and M2 are the tube axis Z.
And the twist angles θ1 and θ2 are opposite to each other, and the twist angle θ
The magnitudes of 1 and θ2 are different. In FIG. 1, the twist angle θ1 is smaller than the twist angle θ2. The large or small twist angle θ means the absolute value of the angle with respect to the tube axis Z, regardless of whether it is a right-hand thread or a left-hand thread.
The heat transfer tube of this embodiment shown in FIG. 1 has a tube cross section of a perfect circle, but the tube cross section is not limited to a perfect circle.
For example, there is no problem even if the shape is elliptical.

【0018】なお、本明細書において螺旋溝を図示する
場合、図示の都合上螺旋溝は一本の直線で表示してい
る。また溝深さが深い螺旋溝は太く表示している。螺旋
溝を図示している図面は図2を除いて全て同様である。
図2は図1の伝熱管の主要部の拡大断面図である。伝熱
管1の外周面の螺旋溝M1 はその溝深さH1 と周方向の
ピッチP1 が螺旋溝M2 の溝深さH2 と周方向のピッチ
P2 よりも大きくなっている。図2において、符号D0
は伝熱管1の外径である。
In the present specification, when the spiral groove is illustrated, the spiral groove is represented by a single straight line for convenience of illustration. The spiral groove having a deep groove depth is displayed thick. The drawings illustrating the spiral groove are similar except for FIG.
FIG. 2 is an enlarged sectional view of a main part of the heat transfer tube of FIG. The spiral groove M1 on the outer peripheral surface of the heat transfer tube 1 has a groove depth H1 and a circumferential pitch P1 larger than the groove depth H2 and the circumferential pitch P2 of the spiral groove M2. In FIG. 2, reference numeral D0
Is the outer diameter of the heat transfer tube 1.

【0019】螺旋溝M1 、M2 の管軸Zに対するねじれ
角θ1 、θ2 は3゜〜80゜の範囲が後述する試験の結
果最適である。また、螺旋溝M1 、M2 の周方向のピッ
チP1 、P2 は0.3〜4.0mmの範囲が後述する試
験の結果最適である。さらに、螺旋溝M1 、M2 の溝深
さH1 、H2 は0.1〜1.5mmの範囲が後述する試
験の結果最適である。さらにまた、螺旋溝M1 、M2 の
溝深さH1 、H2 は溝深さの違いが1.15倍以上であ
ると後述する試験の結果最適である。
The twist angles .theta.1 and .theta.2 of the spiral grooves M1 and M2 with respect to the tube axis Z are in the range of 3 to 80.degree. Further, the pitches P1 and P2 in the circumferential direction of the spiral grooves M1 and M2 are optimal in the range of 0.3 to 4.0 mm as a result of the test described later. Further, the groove depths H1 and H2 of the spiral grooves M1 and M2 are optimal in the range of 0.1 to 1.5 mm as a result of the test described later. Furthermore, the groove depths H1 and H2 of the spiral grooves M1 and M2 are optimal as a result of a test described later that the difference in groove depth is 1.15 times or more.

【0020】例えば、具体的な寸法としては、外径D0
は19.05mmφ、厚さ0.8mm、螺旋溝M1 の管
軸Zに対するねじれ角θ1 は右ねじ方向に15°、溝深
さH1 は0.6mm、周方向のピッチP1 は1.5m
m、螺旋溝M2 の管軸Zに対するねじれ角θ2 は左ねじ
方向(以下左ねじ方向を負の値にして表示する)−30
°、溝深さH2 は0.4mm、周方向のピッチP2 は
1.15mmである。なお、上記の寸法のうち、溝深さ
については深い方の螺旋溝の山の頂上が浅い方の螺旋溝
につぶされている場合があるが、元の深い方の螺旋溝深
さを数値としているので、実際に形成された螺旋溝の深
さとは異なっている場合がある。
For example, as a specific dimension, the outer diameter D0
Is 19.05 mmφ, thickness is 0.8 mm, the twist angle θ1 of the spiral groove M1 with respect to the tube axis Z is 15 ° in the right-hand thread direction, the groove depth H1 is 0.6 mm, and the pitch P1 in the circumferential direction is 1.5 m.
m, the helix angle θ2 of the spiral groove M2 with respect to the tube axis Z is the left-hand thread direction (hereinafter, the left-hand thread direction is shown as a negative value) -30
The groove depth H2 is 0.4 mm and the circumferential pitch P2 is 1.15 mm. Of the above dimensions, regarding the groove depth, the peak of the deeper spiral groove may be crushed by the shallower spiral groove, but the original deeper spiral groove depth is used as a numerical value. Therefore, the depth of the spiral groove actually formed may be different.

【0021】(実施例2)図3は本発明の伝熱管のその
他の実施例を示す斜視図である。図3の伝熱管1Aは実
施例1の伝熱管と同様に外周面に2種類の螺旋溝M3 、
M4 を有したもので、螺旋溝M3 、M4 は管軸Zに対す
るねじれ角θ3 、θ4 の方向が逆で、螺旋溝M3 のねじ
れ角θ3 は螺旋溝M4 より小さくなっている。また螺旋
溝M3 はその溝深さが螺旋溝M4 の溝深さよりも大きく
なっている。本実施例の特徴は伝熱管の内周面にある。
内周面には、外周面に形成された螺旋溝M3 に対応した
位置に螺旋溝M3 に対応した形状の螺旋条Nが形成され
ていることである。上記各実施例において外周面に形成
された螺旋溝は2本の場合について例示したが螺旋溝は
2本に限るものではなく、2本以上で螺旋溝が交差して
突起を形成できればよいのである。
(Embodiment 2) FIG. 3 is a perspective view showing another embodiment of the heat transfer tube of the present invention. The heat transfer tube 1A shown in FIG. 3 has two kinds of spiral grooves M3 on the outer peripheral surface, similar to the heat transfer tube of the first embodiment.
Since the spiral grooves M3 and M4 have M4, the helix angles .theta.3 and .theta.4 with respect to the tube axis Z are opposite to each other, and the helix angle .theta.3 of the spiral groove M3 is smaller than that of the spiral groove M4. The groove depth of the spiral groove M3 is larger than that of the spiral groove M4. The feature of this embodiment lies in the inner peripheral surface of the heat transfer tube.
That is, on the inner peripheral surface, a spiral strip N having a shape corresponding to the spiral groove M3 is formed at a position corresponding to the spiral groove M3 formed on the outer peripheral surface. In each of the above embodiments, the case where the number of spiral grooves formed on the outer peripheral surface is two has been illustrated, but the number of spiral grooves is not limited to two, and it is sufficient that two or more spiral grooves intersect to form a protrusion. .

【0022】図4は本発明の伝熱管の伝熱性能を測定し
た試験機を示すもので以下に簡単に説明する。44は蒸
発器であり、内部には伝熱管42を2列5段配管し、上
下の伝熱管42を相互を連通してこれらに水を通す。こ
れらの伝熱管42には散布パイプ46より冷媒(純水)
を散布した。43は吸収器であり、内部には試験すべき
サンプル管41を1列5段配管する。上下のサンプル管
41相互を連通してこれらに冷却水を通し、これらのサ
ンプル管41には散布パイプ45より吸収液(臭化リチ
ウム水溶液)を散布した。47は希溶液槽で、吸収器4
3内で冷媒蒸気を吸収して希釈された吸収液を溜めるも
のである。この希溶液槽47内の吸収液を濃溶液槽48
に供給し、この濃溶液槽48で臭化リチウムを加えて濃
度調整し、濃度調整後の吸収液を、ポンプ50により配
管49、散布パイプ45を通じてサンプル管41へ散布
した。
FIG. 4 shows a tester for measuring the heat transfer performance of the heat transfer tube of the present invention, which will be briefly described below. Reference numeral 44 denotes an evaporator, in which heat transfer tubes 42 are arranged in two rows and five stages, and the upper and lower heat transfer tubes 42 communicate with each other to pass water therethrough. A refrigerant (pure water) is supplied to these heat transfer tubes 42 from a spray pipe 46.
Was sprayed. Reference numeral 43 is an absorber in which sample tubes 41 to be tested are arranged in five rows in one row. The upper and lower sample tubes 41 were communicated with each other and cooling water was passed through them, and an absorption liquid (lithium bromide aqueous solution) was sprayed to these sample tubes 41 from a spray pipe 45. 47 is a dilute solution tank, which is an absorber 4
It absorbs the refrigerant vapor in 3 and stores the diluted absorption liquid. The absorbing solution in the dilute solution tank 47 is added to the concentrated solution tank 48.
Lithium bromide was added to the concentrated solution tank 48 to adjust the concentration, and the concentration-adjusted absorption liquid was sprayed by the pump 50 to the sample pipe 41 through the pipe 49 and the spray pipe 45.

【0023】試験条件を以下に示す。 吸収液:LiBr水溶液 入口濃度:58±0.5 wt.% 入口温度:40±1 ℃ 流量:0.021±0.002kg/m・s (単位長さ当たりの伝熱管の片側に流れる吸収液膜の質量流量) 界面活性剤:オクチルアルコールを250ppm添加 吸収液散布装置 孔径:1.5mm、間隔24mm 吸収器冷却水 入口温度:28±0.2 ℃ 流速:2.0 m/s 吸収器、蒸発器内圧力:15±0.5 mmHg 伝熱管の配列:長さ500mmの伝熱管を上下方向へ5段1列The test conditions are shown below. Absorbent: LiBr aqueous solution Inlet concentration: 58 ± 0.5 wt. % Inlet temperature: 40 ± 1 ° C. Flow rate: 0.021 ± 0.002 kg / m · s (Mass flow rate of absorbing liquid film flowing to one side of heat transfer tube per unit length) Surfactant: Add 250 ppm of octyl alcohol Absorption Liquid spraying device Pore size: 1.5 mm, Spacing 24 mm Absorber cooling water Inlet temperature: 28 ± 0.2 ° C. Flow velocity: 2.0 m / s Absorber / evaporator pressure: 15 ± 0.5 mmHg Arrangement of heat transfer tubes : Heat transfer tubes with a length of 500 mm are vertically arranged in 5 rows and 1 row

【0024】本発明の伝熱管としてリン脱酸銅で外径1
9.05mmの素管を用いて以下の表1〜表3に示す伝
熱管を作製して、各サンプルについて上記条件で伝熱測
定を行った。なお、一般に吸収式冷凍機用伝熱管の材質
として使用されるのはリン脱酸銅であるが、伝熱管の使
用環境によりキュプロニッケルやステンレスが使用され
ることがある。本発明の伝熱管は、これらの材質の場合
にも有効である。本発明の各伝熱管サンプル(発明1な
いし発明15)の熱通過率を表1〜表3の最右列に示
す。なお、従来例1、2として実開昭57-100161 号およ
び実開平1-73663 号公報のマイクロフィルムに開示され
ている方法で製造した伝熱管の測定も行った。
The heat transfer tube of the present invention is made of phosphorus deoxidized copper and has an outer diameter of 1
The heat transfer tubes shown in Tables 1 to 3 below were produced using a 9.05 mm element tube, and heat transfer measurements were performed on each sample under the above conditions. Although phosphorus deoxidized copper is generally used as the material of the heat transfer tube for the absorption chiller, cupronickel or stainless steel may be used depending on the usage environment of the heat transfer tube. The heat transfer tube of the present invention is also effective for these materials. The heat transfer rates of the heat transfer tube samples (Invention 1 to Invention 15) of the present invention are shown in the rightmost columns of Tables 1 to 3. As conventional examples 1 and 2, heat transfer tubes manufactured by the methods disclosed in the microfilms of Japanese Utility Model Publication No. 57-100161 and Japanese Utility Model Publication No. 1-73663 were also measured.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】表1の本発明1〜4と比較例1、2の測定
結果から管軸方向に対するねじれ角θの影響について判
断できる。図5は横軸にねじれ角、縦軸に従来例比熱通
過率をとったグラフである。図5のグラフにより管軸方
向に対して3〜80°の範囲が従来例より熱通過率が向
上していることが判る。なお、溝深さの深い螺旋溝のね
じれ角の望ましい範囲は15°〜45°である。また、
本発明2と本発明3の比較から、溝深さの大きい螺旋溝
のねじれ角の絶対値が他方の螺旋溝のそれよりも小さい
方が、熱通過率が向上していることが判る。ねじれ角に
ついては3°よりも小さくなると吸収液膜の流れが管軸
方向に生じ、吸収液膜を一定方向に安定して広げること
が不可能になり、その結果吸収液膜の攪乱作用も促進す
ることができない。
From the measurement results of the present inventions 1 to 4 and Comparative Examples 1 and 2 in Table 1, the influence of the twist angle θ with respect to the tube axis direction can be judged. FIG. 5 is a graph in which the horizontal axis represents the twist angle and the vertical axis represents the specific heat transmission rate of the conventional example. It can be seen from the graph of FIG. 5 that the heat transfer rate is improved in the range of 3 to 80 ° with respect to the tube axis direction as compared with the conventional example. The desirable range of the helix angle of the deep spiral groove is 15 ° to 45 °. Also,
From a comparison between Invention 2 and Invention 3, it can be seen that the heat transfer rate is improved when the absolute value of the twist angle of the spiral groove having a large groove depth is smaller than that of the other spiral groove. If the twist angle is less than 3 °, the flow of the absorbing liquid film occurs in the tube axis direction, and it becomes impossible to stably spread the absorbing liquid film in a certain direction. As a result, the disturbing action of the absorbing liquid film is also promoted. Can not do it.

【0029】また、ねじれ角を80°以上にすると吸収
液膜の管軸方向への動きが、螺旋溝の山に阻害され、吸
収液膜の攪乱作用が管軸方向に促進できなくなる。表2
の本発明5〜12と従来例2の測定結果から溝深さHあ
るいは溝ピッチPの影響について判断できる。図6は、
横軸に浅い溝に対する深い溝の溝深さの比、即ち浅い方
の螺旋溝の溝深さを1とした時の深い方の螺旋溝の溝深
さの値、縦軸に従来例比熱通過率をとったグラフであ
る。ここで横軸の値が1.0であるのが従来例2であ
る。図6より本発明例では、熱通過率が従来例2よりも
向上していることが判る。さらに、溝深さの比が1.1
5倍以上ならより望ましいことが判る。
When the twist angle is set to 80 ° or more, the movement of the absorbent liquid film in the tube axis direction is hindered by the ridges of the spiral groove, and the disturbing action of the absorbent liquid film cannot be promoted in the tube axis direction. Table 2
It is possible to judge the influence of the groove depth H or the groove pitch P from the measurement results of the present inventions 5 to 12 and the conventional example 2. FIG.
The horizontal axis shows the ratio of the depth of the deep groove to the depth of the shallow groove, that is, the value of the depth of the deep spiral groove when the depth of the shallow spiral groove is 1, and the vertical axis shows the specific heat passage of the conventional example. It is the graph which took the rate. In Conventional Example 2, the value on the horizontal axis is 1.0. It can be seen from FIG. 6 that the heat transmission rate of the example of the present invention is higher than that of the conventional example 2. Furthermore, the groove depth ratio is 1.1.
It turns out that it is more desirable if it is 5 times or more.

【0030】また表2により溝深さ0.1〜1.5m
m、溝ピッチ0.3〜4.0mmの範囲が従来例より5
%以上改善されている。溝深さと溝ピッチについては前
記の範囲より小さければ、突起による吸収液膜の攪乱作
用効果が期待できない。また、溝深さと溝ピッチが前記
の範囲より大きければ、螺旋溝の山が吸収液膜が攪乱作
用を起こすことを阻害する働きをし、伝熱性能向上は期
待できない。また、溝深さの違いが1.15倍以内であ
ると、流下する溶液は螺旋溝に沿ってただ流下するだけ
になり、上下方向に攪拌されず伝熱性能向上は期待でき
ない。
According to Table 2, the groove depth is 0.1 to 1.5 m.
m, groove pitch 0.3 to 4.0 mm is 5 than the conventional example
It has been improved by more than%. If the groove depth and groove pitch are smaller than the above ranges, the effect of disturbing the absorbing liquid film by the protrusion cannot be expected. If the groove depth and the groove pitch are larger than the above ranges, the crests of the spiral grooves act to prevent the absorbing liquid film from disturbing, and the heat transfer performance cannot be expected to be improved. Further, if the difference in groove depth is within 1.15 times, the solution flowing down will only flow down along the spiral groove, and it will not be stirred in the vertical direction, so improvement in heat transfer performance cannot be expected.

【0031】溝深さの違いが1.15倍以上必要である
ことから、深い方の螺旋溝の溝深さは0.15〜1.5
mm、他の螺旋溝の溝深さは0.1〜1.3mmの範囲
内に設定することが望ましい。なお、螺旋溝の断面形状
については三角形、台形、円弧状または管長手方向に形
状が変化しても上記数値内であればどのような形状でも
かまわない。また、表3で本発明7と、本発明13を比
較すると、2種類の螺旋溝のねじれ角が異なっている方
が伝熱性能が向上することが判る。これらの実験から、
本発明の伝熱管の効果を得るための望ましい形状は、2
種類以上の螺旋溝の管軸に対するねじれ角は15°〜4
5°の範囲内で、且つ深い螺旋溝の管軸に対するねじれ
角の絶対値が他の螺旋溝のそれよりも小さく設定され、
且つ前記螺旋溝の溝深さが0.1mm〜1.5mmの範
囲内のものである。なお、溝深さが大きく、且つ管軸に
対するねじれ角の大きい螺旋溝の溝幅は、他の螺旋溝の
それよりも大きくすることが望ましい。その方が、吸収
液膜を管軸方向に安定して広げやすい。また、加工上も
その方が容易となる。
Since the difference in groove depth is required to be 1.15 times or more, the groove depth of the deeper spiral groove is 0.15 to 1.5.
mm, and the groove depth of other spiral grooves is preferably set within the range of 0.1 to 1.3 mm. It should be noted that the cross-sectional shape of the spiral groove may be triangular, trapezoidal, arcuate, or any shape within the above numerical values even if the shape changes in the pipe longitudinal direction. Further, comparing Table 7 with Invention 7 and Invention 13, it can be seen that the heat transfer performance is improved when the twist angles of the two types of spiral grooves are different. From these experiments,
The desirable shape for obtaining the effect of the heat transfer tube of the present invention is 2
The twist angle of the spiral groove of more than one kind with respect to the tube axis is 15 ° to 4
Within the range of 5 °, the absolute value of the twist angle with respect to the tube axis of the deep spiral groove is set smaller than that of other spiral grooves,
Moreover, the groove depth of the spiral groove is in the range of 0.1 mm to 1.5 mm. The groove width of the spiral groove having a large groove depth and a large twist angle with respect to the tube axis is preferably larger than that of the other spiral grooves. In that case, the absorbing liquid film can be stably and easily spread in the tube axis direction. Also, it is easier to process.

【0032】以上の説明は、本発明の伝熱管を吸収式冷
凍機の吸収器に使用した例について行ったものである。
ところで吸収式冷凍機の蒸発器や流下液膜式再生器は、
吸収器と同じく水平に伝熱管を装着し、上方より液を滴
下または散布し液滴が重力により下方に落下し、次々と
伝熱管の上を流されていく方式をとっている。この蒸発
器や流下液膜式再生器に本願発明の伝熱管を装着するこ
とで、蒸発器での冷媒の広がり、再生器での溶液の広が
りと攪拌効果を期待できる。つまり本発明の伝熱管は蒸
発器や流下液膜式再生器での高性能伝熱管として使用し
ても効果的である。
The above description has been made on the example in which the heat transfer tube of the present invention is used in the absorber of the absorption refrigerator.
By the way, the evaporator of the absorption refrigerator and the falling film regenerator are
As with the absorber, a heat transfer tube is installed horizontally, and liquid is dropped or sprayed from above, and the liquid drops fall downward due to gravity, and they flow over the heat transfer tube one after another. By mounting the heat transfer tube of the present invention on this evaporator or falling film regenerator, it is possible to expect the expansion of the refrigerant in the evaporator, the expansion of the solution in the regenerator, and the stirring effect. That is, the heat transfer tube of the present invention is also effective when used as a high performance heat transfer tube in an evaporator or a falling liquid film type regenerator.

【0033】[0033]

【発明の効果】以上述べたように、本発明の請求項1の
伝熱管によれば、伝熱管の管外周面には管軸に対するね
じれ角の方向が逆向きで、ねじれ角が3゜〜80゜の範
囲で少なくとも2種類の螺旋溝を有し、少なくとも2種
類の螺旋溝のうち少なくとも1つの螺旋溝の溝深さが、
他の螺旋溝のそれとは異なっているので、少なくとも2
種類の螺旋溝で囲まれた突起が管外周面に多数形成さ
れ、吸収液がその突起にぶつかって撹乱作用がより促進
させられる。同時に、少なくとも2種類の螺旋溝は管軸
方向に対して逆方向にねじれているので、いくつかの突
起にぶつかって撹乱された吸収液膜は螺旋溝の交差部分
を横切りながら、伝熱管外面での吸収液の広がりを十分
に起させると同時に、吸収液膜の撹乱作用を吸収液の流
下する下方向(管軸方向に直角な方向)にも十分に促進
させる。
As described above, according to the heat transfer tube of claim 1 of the present invention, the direction of the helix angle with respect to the tube axis is opposite to the outer circumferential surface of the heat transfer tube, and the helix angle is 3 ° to 3 °. It has at least two kinds of spiral grooves in the range of 80 °, and the groove depth of at least one spiral groove of at least two kinds of spiral grooves is
Different from that of other spiral grooves, so at least 2
A large number of projections surrounded by spiral grooves of various kinds are formed on the outer peripheral surface of the tube, and the absorbing liquid collides with the projections to further promote the disturbing action. At the same time, since at least two kinds of spiral grooves are twisted in the opposite direction to the tube axis direction, the absorbing liquid film that has been disturbed by hitting some protrusions crosses the intersection of the spiral grooves, and at the outer surface of the heat transfer tube. The absorption liquid is sufficiently spread, and at the same time, the disturbing action of the absorption liquid film is sufficiently promoted in the downward direction (direction perpendicular to the tube axis direction) in which the absorption liquid flows down.

【0034】また、管軸方向に対するねじれ角が上記の
3゜〜80゜の範囲内にある少なくとも2種類の螺旋溝
に沿って流下する吸収液は、溝の深いところを流れる層
と表面の浅いところを流れる層とが流れる方向が逆であ
るために、表面を流下する濃度の薄い吸収液の層と溝の
深いところを流れる濃度の濃い吸収液の層とがぶつかり
あい、上下方向の濃度のバラツキが無くなり、また界面
攪乱が多く発生することになる。よって伝熱管の伝熱性
能が大幅に向上し、この伝熱管を装着した熱交換器の性
能は大幅に向上する。
Further, the absorbing liquid flowing down along at least two kinds of spiral grooves having a twist angle with respect to the tube axis direction in the above range of 3 ° to 80 ° has a layer flowing in a deep part of the groove and a shallow surface. However, since the flowing direction of the flowing layer is opposite to that of the flowing flowing layer, the layer of the absorbing liquid having a low concentration flowing down the surface collides with the layer of the absorbing liquid having a high concentration flowing in the deep part of the groove, and the concentration of the vertical direction is decreased. There will be no variation and a lot of interface disturbance will occur. Therefore, the heat transfer performance of the heat transfer tube is significantly improved, and the performance of the heat exchanger equipped with this heat transfer tube is significantly improved.

【0035】本発明の請求項2の伝熱管によれば、管軸
に対する螺旋溝の方向が逆向きな少なくとも2種類の螺
旋溝の管軸に対するねじれ角の絶対値が互いに異なって
いるので、伝熱管外表面の吸収液の流れが変化し、例え
ば角度の小さい方の螺旋溝の吸収液は管軸方向への流れ
を促進し、角度の大きい方の螺旋溝の吸収液は管周方向
への流れを一方向に制御する役目を行い、その相乗効果
によりいっそう伝熱性能が向上する。
According to the heat transfer tube of the second aspect of the present invention, since the absolute values of the twist angle with respect to the tube axis of at least two kinds of spiral grooves having the directions of the spiral groove opposite to the tube axis are different from each other, the heat transfer tube The flow of the absorption liquid on the outer surface of the heat pipe changes, for example, the absorption liquid in the spiral groove with the smaller angle promotes the flow in the axial direction of the pipe, and the absorption liquid in the spiral groove with the larger angle in the circumferential direction of the pipe. It plays the role of controlling the flow in one direction, and the synergistic effect further improves the heat transfer performance.

【0036】本発明の請求項1または請求項2の伝熱管
において、螺旋溝の溝深さが0.1〜1.5mmの範囲
であり、周方向のピッチが0.3〜4.0mmの範囲で
あり、少なくとも2種類の螺旋溝の溝深さの違いが1.
15倍以上であると、次のような理由により最適な範囲
となっている。螺旋溝の溝深さと周方向のピッチが前記
範囲よりも小さければ、突起による吸収液膜の攪乱作用
促進効果が小さく、前記範囲よりも大きければ、吸収液
膜が突起を乗り越えて管外周面に広がりにくい。また、
螺旋溝の溝深さの違いが1.15倍以上であるので伝熱
管外周面に形成される突起が吸収液の膜厚に対して最適
な差を生じさせることができる。その結果、吸収液に表
面張力の差をつけることができて、いわゆるマランゴニ
ー対流を促進させ、複数の螺旋溝の大きさが同じときよ
りも吸収液の撹乱作用が促進され、より高効率な熱交換
が行われるようになる。
In the heat transfer tube of claim 1 or 2, the spiral groove has a groove depth of 0.1 to 1.5 mm and a circumferential pitch of 0.3 to 4.0 mm. And the difference in groove depth between at least two types of spiral groove is 1.
If it is 15 times or more, it is in the optimum range for the following reasons. If the groove depth of the spiral groove and the pitch in the circumferential direction are smaller than the above range, the effect of promoting the disturbing action of the absorbing liquid film by the protrusions is small, and if it is larger than the above range, the absorbing liquid film will pass over the protrusions and form the outer peripheral surface of the pipe. Hard to spread. Also,
Since the difference in groove depth of the spiral groove is 1.15 times or more, the protrusion formed on the outer peripheral surface of the heat transfer tube can cause an optimum difference with respect to the film thickness of the absorbing liquid. As a result, the surface tension of the absorbing liquid can be made different, so-called Marangoni convection can be promoted, and the disturbing action of the absorbing liquid is promoted compared to the case where the plurality of spiral grooves have the same size, so that a more efficient heat Exchange will be carried out.

【0037】本発明の請求項3の伝熱管によれば、少な
くとも2種類の螺旋溝の管軸に対するねじれ角は15°
〜45゜の範囲内で、且つ深い螺旋溝の管軸に対するね
じれ角の絶対値が他の螺旋溝のそれよりも小さく、且つ
前記螺旋溝の溝深さが0.1mm〜1.5mmの範囲内
となっているので、吸収液膜が深い溝に優先的に制御さ
れて、安定した管軸方向への広がりが与えられ、吸収液
膜の攪乱作用も管軸方向に促進され、さらに高効率な熱
交換が行われる。なお、溝深さが大きく、且つ管軸に対
するねじれ角の大きい螺旋溝の溝幅は、他の螺旋溝のそ
れよりも大きくすることが望ましい。その方が、吸収液
膜を管軸方向に安定して広げやすい。また、加工上もそ
の方が容易となる。本発明の請求項4の伝熱管によれ
ば、管内周面に、管外周面に形成された溝深さが最も大
きい螺旋溝の凹凸形状に、対応した凸凹形状の螺旋条を
有しているので、伝熱管内側を流れる冷却水に乱流効果
を与えることができ、管の内側の性能も向上する。また
管外周面側の凸条の山に対応する管内側の部分の余分な
肉厚を削ることができるので、管の肉厚を管周方向に薄
くすることができる。よって伝熱管全体の単重量を少な
くできるので、コスト低減にも大変有効である。
According to the heat transfer tube of claim 3 of the present invention, the twist angle of at least two kinds of spiral grooves with respect to the tube axis is 15 °.
Within the range of ˜45 °, the absolute value of the twist angle of the deep spiral groove with respect to the tube axis is smaller than that of other spiral grooves, and the groove depth of the spiral groove is in the range of 0.1 mm to 1.5 mm. Since the absorption liquid film is controlled preferentially to the deep groove to give a stable spread in the tube axis direction, the disturbing action of the absorption liquid film is also promoted in the tube axis direction, resulting in higher efficiency. Heat exchange is performed. The groove width of the spiral groove having a large groove depth and a large twist angle with respect to the tube axis is preferably larger than that of the other spiral grooves. In that case, the absorbing liquid film can be stably and easily spread in the tube axis direction. Also, it is easier to process. According to the heat transfer tube of claim 4 of the present invention, on the inner peripheral surface of the tube, the spiral groove having the uneven shape corresponding to the uneven shape of the spiral groove having the largest groove depth formed on the outer peripheral surface of the tube is provided. Therefore, a turbulent flow effect can be given to the cooling water flowing inside the heat transfer tube, and the performance inside the tube is also improved. Further, since it is possible to reduce the excess wall thickness of the inner portion of the pipe corresponding to the convex ridges on the outer peripheral surface side of the pipe, it is possible to reduce the wall thickness of the pipe in the pipe circumferential direction. Therefore, the unit weight of the entire heat transfer tube can be reduced, which is very effective for cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の伝熱管の一実施の形態を示す斜視図で
ある。
FIG. 1 is a perspective view showing an embodiment of a heat transfer tube of the present invention.

【図2】図1の伝熱管の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the heat transfer tube of FIG.

【図3】本発明の伝熱管の他の実施の形態を示す斜視図
である。
FIG. 3 is a perspective view showing another embodiment of the heat transfer tube of the present invention.

【図4】本発明の伝熱管の性能を測定する試験機の概要
図である。
FIG. 4 is a schematic diagram of a tester for measuring the performance of the heat transfer tube of the present invention.

【図5】本発明の伝熱管の伝熱性能を示す関係図であ
る。
FIG. 5 is a relationship diagram showing heat transfer performance of the heat transfer tube of the present invention.

【図6】本発明の伝熱管の伝熱性能を示す関係図であ
る。
FIG. 6 is a relationship diagram showing heat transfer performance of the heat transfer tube of the present invention.

【符号の説明】[Explanation of symbols]

1 伝熱管 H 溝深さ M 螺旋溝 P ピッチ Z 管軸 θ ねじれ角 1 Heat transfer tube H Groove depth M Spiral groove P Pitch Z Pipe axis θ Twist angle

フロントページの続き (72)発明者 西澤 武史 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 尾崎 正則 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内(72) Inventor Takeshi Nishizawa 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Masanori Ozaki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 管内の流体と管外の流体との間で熱交換
する伝熱管であって、前記伝熱管の管外周面には管軸に
対するねじれ角の方向が逆向きで、ねじれ角が3゜〜8
0゜の範囲で少なくとも2種類の螺旋溝を有し、前記少
なくとも2種類の螺旋溝のうち少なくとも1つの螺旋溝
の溝深さが、他の螺旋溝のそれとは異なっていることを
特徴とする伝熱管。
1. A heat transfer tube for exchanging heat between a fluid inside a tube and a fluid outside the tube, wherein the tube outer peripheral surface of the heat transfer tube has a twist angle direction opposite to a tube axis and a twist angle of 3 to 8
It has at least two kinds of spiral grooves in the range of 0 °, and at least one spiral groove of the at least two kinds of spiral grooves has a groove depth different from that of the other spiral grooves. Heat transfer tube.
【請求項2】 管軸に対する螺旋溝の方向が逆向きな少
なくとも2種類の螺旋溝の管軸に対するねじれ角の絶対
値が互いに異なっていることを特徴とする請求項1に記
載の伝熱管。
2. The heat transfer tube according to claim 1, wherein the absolute values of the helix angle with respect to the tube axis of at least two kinds of spiral grooves having the directions of the spiral groove opposite to the tube axis are different from each other.
【請求項3】 少なくとも2種類の螺旋溝の管軸に対す
るねじれ角は15°〜45゜の範囲内で、且つ最も深い
螺旋溝の管軸に対するねじれ角の絶対値が他の螺旋溝の
それよりも小さく、且つ前記螺旋溝の溝深さが0.1m
m〜1.5mmの範囲内となっていることを特徴とする
請求項1または請求項2に記載の伝熱管。
3. The twist angle of at least two kinds of spiral grooves with respect to the tube axis is in the range of 15 ° to 45 °, and the absolute value of the twist angle with respect to the tube axis of the deepest spiral groove is larger than that of other spiral grooves. And the groove depth of the spiral groove is 0.1 m
The heat transfer tube according to claim 1 or 2, wherein the heat transfer tube has a diameter in the range of m to 1.5 mm.
【請求項4】 管内周面に、管外周面に形成された溝深
さが最も大きい螺旋溝の凹凸形状に、対応した凸凹形状
の螺旋条を有することを特徴とする請求項1ないし請求
項3に記載の伝熱管。
4. The inner peripheral surface of the pipe is provided with a spiral strip having an uneven shape corresponding to the concavo-convex shape of the spiral groove formed on the outer peripheral surface of the pipe and having the largest groove depth. The heat transfer tube as described in 3.
JP34340696A 1996-03-28 1996-12-24 Heat transfer pipe Pending JPH09318286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34340696A JPH09318286A (en) 1996-03-28 1996-12-24 Heat transfer pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7399896 1996-03-28
JP8-73998 1996-03-28
JP34340696A JPH09318286A (en) 1996-03-28 1996-12-24 Heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH09318286A true JPH09318286A (en) 1997-12-12

Family

ID=26415146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34340696A Pending JPH09318286A (en) 1996-03-28 1996-12-24 Heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH09318286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227315A (en) * 2010-04-21 2011-11-10 Ricoh Co Ltd Cooling device and image forming apparatus
JP2012018239A (en) * 2010-07-07 2012-01-26 Ricoh Co Ltd Cooling device and image forming apparatus
CN102519297A (en) * 2011-12-29 2012-06-27 鄢炳火 Heat exchanger with convection heat transfer ability strengthened by aid of transverse fluid mixing effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227315A (en) * 2010-04-21 2011-11-10 Ricoh Co Ltd Cooling device and image forming apparatus
JP2012018239A (en) * 2010-07-07 2012-01-26 Ricoh Co Ltd Cooling device and image forming apparatus
CN102519297A (en) * 2011-12-29 2012-06-27 鄢炳火 Heat exchanger with convection heat transfer ability strengthened by aid of transverse fluid mixing effect

Similar Documents

Publication Publication Date Title
US5992512A (en) Heat exchanger tube and method for manufacturing the same
US6655451B2 (en) Heat transfer tube for falling film type evaporator
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
JP4395378B2 (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
KR100518695B1 (en) Absorption Type Refrigerator and Heat Transfer Tube Used Therewith
JPH07167530A (en) Heat transfer tube for absorber
KR102066878B1 (en) Evaporation heat transfer tube with a hollow caviity
JPH10267460A (en) Heat transfer pipe of absorbing device
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JPH09318286A (en) Heat transfer pipe
JP3050795B2 (en) Heat transfer tube
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3266886B2 (en) Heat transfer tube
JP2001153580A (en) Heat transfer pipe
JP3434464B2 (en) Heat transfer tube
JPH0961013A (en) Absorption refrigerating machine
JPH1078268A (en) Heat transfer tube
JPH102689A (en) Heat transfer tube
JPH10213387A (en) Heat transfer tube
JPS62206356A (en) Heat transfer tube for dispersing droplet
JPS636364A (en) Heat transfer tube for absorber
JPH06159860A (en) Heat transfer pipe for absorber
JP5255249B2 (en) Heat transfer tube with internal fin
JPH09113164A (en) Heat transfer pipe for absorber
JPH07109354B2 (en) Heat exchanger