JP3091071B2 - Heat exchangers and absorption air conditioners - Google Patents

Heat exchangers and absorption air conditioners

Info

Publication number
JP3091071B2
JP3091071B2 JP06025712A JP2571294A JP3091071B2 JP 3091071 B2 JP3091071 B2 JP 3091071B2 JP 06025712 A JP06025712 A JP 06025712A JP 2571294 A JP2571294 A JP 2571294A JP 3091071 B2 JP3091071 B2 JP 3091071B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
wall
absorption
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06025712A
Other languages
Japanese (ja)
Other versions
JPH06307788A (en
Inventor
大資 久島
章 西口
富久 大内
道彦 相沢
佐武郎 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP06025712A priority Critical patent/JP3091071B2/en
Publication of JPH06307788A publication Critical patent/JPH06307788A/en
Application granted granted Critical
Publication of JP3091071B2 publication Critical patent/JP3091071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器及び吸収冷暖
房機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger and an absorption air conditioner.

【0002】[0002]

【従来の技術】従来、例えば熱交換器用伝熱管は熱交換
器の性能向上のため、沸騰用、蒸発用、凝縮用、吸収用
など、その用途によりさまざまな形状のものが提案され
ている。このなかで特に流下液膜式の熱交換器は吸収冷
暖房機等の吸収器、蒸発器に多く利用されている。例え
ば吸収器では、密閉容器内に水平あるいは垂直に伝熱管
を多数配置し、その伝熱管上に、吸収溶液を流下させ、
前記密閉容器に連結されている蒸発器より発生する冷媒
蒸気を、吸収溶液が吸収する際に発生する吸収熱を伝熱
管を介して冷却媒体によって排除している。
2. Description of the Related Art Hitherto, for example, heat exchanger tubes for heat exchangers have been proposed in various shapes depending on the application, such as boiling, evaporating, condensing and absorbing, in order to improve the performance of the heat exchanger. Among them, a falling liquid film type heat exchanger is widely used for an absorber such as an absorption air conditioner and an evaporator. For example, in an absorber, a number of heat transfer tubes are arranged horizontally or vertically in a closed container, and the absorbing solution is allowed to flow down on the heat transfer tubes,
Absorbing heat generated when the absorbing solution absorbs the refrigerant vapor generated from the evaporator connected to the closed container is eliminated by the cooling medium via the heat transfer tube.

【0003】吸収は蒸発器での蒸発圧力と、伝熱管表面
に流下された吸収溶液の飽和蒸気圧の差によって生じ、
この圧力差が大きくなるほど吸収能力は向上する。吸収
溶液の飽和蒸気圧は、溶液の温度が低いほど、濃度が高
いほど低くなるため、吸収能力を向上させるためには、
高い冷却能力によって溶液の温度を低く保つと同時に、
吸収溶液の濃度をできるだけ高く維持することが必要と
なる。例えば熱伝達性能向上を目的に伝熱面積を増大す
るために、伝熱管の表面にフィンが等ピッチで形成され
ている。なお、この種のものの伝熱性能改良に関するも
のとして例えば特開平1−134180号公報が挙げら
れる。しかしこれらの伝熱管は能力当りのコストが高
く、このためコストの低い平滑管が利用されることが多
い。
[0003] Absorption is caused by the difference between the evaporation pressure in the evaporator and the saturated vapor pressure of the absorbing solution flowing down on the surface of the heat transfer tube.
As the pressure difference increases, the absorption capacity improves. Since the saturated vapor pressure of the absorbing solution is lower as the temperature of the solution is lower and the concentration is higher, in order to improve the absorbing capacity,
The high cooling capacity keeps the solution temperature low,
It is necessary to keep the concentration of the absorbing solution as high as possible. For example, fins are formed at equal pitches on the surface of the heat transfer tube in order to increase the heat transfer area for the purpose of improving heat transfer performance. Japanese Patent Application Laid-Open No. 1-148180 discloses a method for improving the heat transfer performance of this type. However, these heat transfer tubes have a high cost per capacity, and thus low cost smooth tubes are often used.

【0004】また伝熱壁面上を流下する液膜状の熱媒体
ではなく単相流の熱媒体に関しての熱伝達促進技術とし
ては、実開昭59−71083号公報、及び特開昭61
−6595号公報に開示されるように、単相流媒体の流
れる側の電熱壁面に滑らかな突起を設けることにより熱
媒体の流動を剥離渦を生じないように乱し、熱媒体の流
動に伴う圧力損失の増大を極力防ぎながら、熱伝達性能
を向上させようとするものがある。しかし、この滑らか
な突起を形成させるために必要となる。伝熱壁表面の反
対側に形成する窪みは、もう一方の熱媒体の熱伝達性能
の向上になんら効果を及ぼそうとするものではない。
Japanese Patent Application Laid-Open No. Sho 59-71083 and Japanese Patent Application Laid-Open No. S61-61609 disclose heat transfer promoting technology for a single-phase flow heat medium instead of a liquid film heat medium flowing down on a heat transfer wall surface.
As disclosed in JP-A-6595, a smooth projection is provided on the electric heating wall surface on the side where the single-phase flow medium flows, so that the flow of the heat medium is disturbed so as not to cause separation vortex, and the flow accompanying the flow of the heat medium is caused. There are some that attempt to improve heat transfer performance while preventing an increase in pressure loss as much as possible. However, it is necessary to form these smooth projections. The depression formed on the opposite side of the heat transfer wall surface has no effect on improving the heat transfer performance of the other heat transfer medium.

【0005】また相変化を伴う熱交換器として満液形蒸
発器があり、このなかで沸騰現象を促進するために特開
平4−236097号公報に開示されるように、沸騰を
促進する側の伝熱面に空洞部を形成し、かつこの空洞の
伝熱表面部分での開口部の面積を、伝熱壁面と平行な断
面における横断開口面積より小さくすることで、沸騰促
進に有効な気泡核を生成し易くしている。
[0005] A liquid-filled evaporator is also known as a heat exchanger with a phase change. In order to promote the boiling phenomenon, as disclosed in Japanese Patent Application Laid-Open No. Hei. By forming a cavity in the heat transfer surface and making the area of the opening at the heat transfer surface smaller than the transverse opening area in a cross section parallel to the heat transfer wall, bubble nuclei effective for promoting boiling Is easy to generate.

【0006】また凝縮用伝熱壁としては、特開昭58−
129197号公報に開示されるように伝熱壁表面に複
数の窪みを設け、伝熱壁上で蒸気の凝縮により生じた液
膜をこの窪みに引き込み一定時間保持できるように、こ
の窪みの深さを深くすることによって、窪み以外の伝熱
壁での液膜の厚さを薄くし、凝縮伝熱性能を高めてい
る。
As a heat transfer wall for condensation, Japanese Patent Laid-Open No.
As disclosed in JP-A-129197, a plurality of depressions are provided on the surface of the heat transfer wall, and the depth of the depression is set so that a liquid film generated by condensation of vapor on the heat transfer wall can be drawn into the depression and held for a certain period of time. By increasing the depth, the thickness of the liquid film on the heat transfer walls other than the depressions is reduced, thereby improving the condensation heat transfer performance.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、これ
まで、冷凍機の小型化、高性能化のため、各種のフィン
付き伝熱管が提案された。従来の伝熱管は冷却能力を上
げるために、伝熱管にフィンを配置し、そのフィンのピ
ッチを細かくし、伝熱面積の向上を図るものが主流であ
った。しかし、これらの伝熱管を吸収冷暖房機の吸収器
などの液膜流下式熱交換器に利用した場合、吸収現象は
吸収溶液液膜の表面のみで起こるため表面部分の濃度の
みが低下し、結果的に伝熱管に単純にフィンを多く配置
することによって冷却能力を高めようとした場合、フィ
ンの間に溶液が溜り液膜の厚さが増加し、吸収時の熱物
質移動の抵抗になり、期待されるほどの吸収能力増加に
はなっていない。またこれらのフィンのために液膜が伝
熱管上を流下する時に、伝熱管の軸方向への液膜の広が
りが悪くなり、伝熱管の下段に行けば行くほど、液膜の
均一性が欠け液膜が存在しない箇所が発生する結果とな
った。伝熱管上に吸収溶液よりなる液膜がないと吸収現
象は起きないため、結果的には吸収現象促進のために形
成したフィンが有効に働かない場合が生じていた。この
結果、吸収能力を期待するほど上げることができない結
果となった。
In the above prior art, various types of finned heat transfer tubes have been proposed so far in order to reduce the size and the performance of the refrigerator. In the conventional heat transfer tubes, fins are arranged on the heat transfer tubes in order to increase the cooling capacity, the pitch of the fins is reduced, and the heat transfer area is improved. However, when these heat transfer tubes are used for a liquid film falling down type heat exchanger such as an absorber of an absorption air conditioner, the absorption phenomenon occurs only on the surface of the absorbing solution liquid film, and only the concentration at the surface part decreases, resulting in When trying to increase the cooling capacity by simply arranging many fins in the heat transfer tube, the solution accumulates between the fins and the thickness of the liquid film increases, resulting in resistance to heat and mass transfer during absorption, The absorption capacity has not increased as much as expected. In addition, when the liquid film flows down the heat transfer tube due to these fins, the spread of the liquid film in the axial direction of the heat transfer tube becomes worse, and the further down the heat transfer tube, the less uniform the liquid film becomes. As a result, a portion where the liquid film did not exist was generated. If there is no liquid film made of the absorbing solution on the heat transfer tube, the absorption phenomenon does not occur, and as a result, the fin formed for promoting the absorption phenomenon may not work effectively. As a result, the absorption capacity could not be increased as expected.

【0008】また特開平1−134180号公報には液
膜の撹拌性を向上するために、伝熱管に多数の管軸に平
行である溝を付けたものが開示されているが、この方法
では加工が複雑であること、また溝を付けることによっ
て不用意に伝熱面積を減少させるなどの問題点があっ
た。
Japanese Patent Application Laid-Open No. 1-134180 discloses a heat transfer tube in which a plurality of grooves are formed parallel to the tube axis in order to improve the agitation of the liquid film. There are problems that the processing is complicated and that the heat transfer area is inadvertently reduced by providing grooves.

【0009】また吸収能力を伝熱管にフィンを配置する
ことにより改善する方法は、伝熱管を構成するために必
要な銅材のコスト及び加工コストを上げる結果となり、
その割に性能の向上率が低いなどの問題点があった。
The method of improving the absorption capacity by arranging the fins on the heat transfer tube results in an increase in the cost and processing cost of the copper material required to construct the heat transfer tube.
However, there are problems such as a low performance improvement ratio.

【0010】また特開昭58−129197号公報に開
示されるように伝熱壁表面に複数の窪みを設け、伝熱壁
上の液膜をこの窪みに引き込み一定時間保持できるよう
に、この窪みの深さを深くしたのでは、流下液膜式熱交
換器のように流下する液膜の膜厚が厚い場合には、窪み
内に形成される液膜の厚さが厚くなるため、液膜が熱伝
達の抵抗となって伝熱性能を高めることができないとい
う問題点があった。
Further, as disclosed in Japanese Patent Application Laid-Open No. 58-129197, a plurality of depressions are provided on the surface of the heat transfer wall, and the liquid film on the heat transfer wall is drawn into the depression and held for a certain period of time. If the thickness of the liquid film flowing down is large as in the case of a falling liquid film heat exchanger, the thickness of the liquid film formed in the depression becomes large. However, there is a problem that the heat transfer resistance cannot be improved due to heat transfer resistance.

【0011】本発明の目的は、伝熱性能または吸収性能
を高め、また壁面に突起を有する伝熱壁において、壁面
上での流体の撹拌を促進させ吸収性能を高め得る構造の
熱交換器及び吸収冷暖房機を提供することにある。
An object of the present invention is to provide a heat exchanger having a structure capable of enhancing heat transfer performance or absorption performance, and, in a heat transfer wall having a projection on a wall surface, promoting agitation of a fluid on the wall surface to enhance absorption performance. An object of the present invention is to provide an absorption air conditioner.

【0012】[0012]

【課題を解決するための手段】本発明は、第1の流体が
流れる第1の表面と第2の流体が流れる第2の表面とを
有し、第1の流体と第2の流体との間で熱交換する熱交
換器において、 前記第1の表面と前記第2の表面の少
なくともいずれかに、少なくとも2個の窪みを、窪み間
に隔壁部をそれぞれ形成し、この隔壁部の窪み底部から
の高さは、隣り合う窪みの最短距離仮想線上において、
他の場所におけるより低いことを特徴とする熱交換器を
開示する。
SUMMARY OF THE INVENTION The present invention has a first surface through which a first fluid flows and a second surface through which a second fluid flows. In a heat exchanger for exchanging heat between at least one of the first surface and the second surface, at least two depressions are formed, and a partition is formed between the depressions. Height from the shortest distance imaginary line of adjacent dents,
Disclosed is a heat exchanger characterized by being lower elsewhere.

【0013】更に本発明は、第1の表面と前記第2の表
面が伝熱管の内面と外面とをなすことを特徴とする熱交
換器を開示する。
Further, the present invention discloses a heat exchanger, wherein the first surface and the second surface form an inner surface and an outer surface of the heat transfer tube.

【0014】更に本発明は、蒸発器、吸収器、再生器、
凝縮機を備え、吸収溶液と冷媒とを用いる吸収冷暖房機
において、前記熱交換器を吸収器に用いたことを特徴と
する吸収冷暖房機を開示する。
Further, the present invention provides an evaporator, an absorber, a regenerator,
An absorption air conditioner comprising a condenser and using an absorption solution and a refrigerant, wherein the heat exchanger is used as an absorber is disclosed.

【0015】更に本発明は、吸収溶液は臭化リチウム水
溶液であり、この吸収溶液に界面活性剤を添加したこと
を特徴とする吸収冷暖房機を開示する。
Further, the present invention discloses an absorption cooling / heating machine characterized in that the absorbing solution is an aqueous solution of lithium bromide and a surfactant is added to the absorbing solution.

【0016】更に本発明は、吸収器には伝熱管が配設さ
れており、この伝熱管の外表面を流下する吸収溶液の流
量は、伝熱管の単位長さ当たり0.25kg/m・sか
ら0.7kg/m・sであることを特徴とする吸収冷暖
房機を開示する。
Further, according to the present invention, a heat transfer tube is provided in the absorber, and the flow rate of the absorbing solution flowing down the outer surface of the heat transfer tube is 0.25 kg / m · s per unit length of the heat transfer tube. To 0.7 kg / m · s.

【0017】[0017]

【実施例】図1、図2、図3に実施例を示す。図1は伝
熱壁の断面図、図2は伝熱壁表面の液膜形状図、図3は
図1の伝熱壁を用いた伝熱管の実施例の外観図である。
FIG. 1, FIG. 2 and FIG. 3 show an embodiment. 1 is a cross-sectional view of a heat transfer wall, FIG. 2 is a liquid film shape diagram of the heat transfer wall surface, and FIG. 3 is an external view of a heat transfer tube using the heat transfer wall of FIG.

【0018】図1、図2、図3において、伝熱壁21の
表面には、流下液膜の膜厚を薄くすると同時に溶液表面
積を拡大するために窪み20を形成する。この窪み20
の深さ(hd)は窪み径(Dd)より小さくなるように
形成する。
In FIGS. 1, 2 and 3, a depression 20 is formed in the surface of the heat transfer wall 21 in order to reduce the thickness of the falling liquid film and at the same time increase the solution surface area. This depression 20
Is formed so that the depth (hd) is smaller than the recess diameter (Dd).

【0019】又加工を容易するために、伝熱壁表面が2
次元平面であれば該窪み20は複数の直線もしくは曲線
に、又伝熱壁表面が3次元表面、例えば図3に示すよう
に、伝熱管に用いられた場合には1条あるいは複数条の
螺旋曲線又は管軸に平行あるいは垂直な複数の直線に沿
って一定あるいは規則的に変化する間隔で断続的に設け
る。
In order to facilitate processing, the surface of the heat transfer wall must be 2
If the plane is a three-dimensional plane, the depression 20 is a plurality of straight lines or curves, and if the heat transfer wall surface is a three-dimensional surface, for example, as shown in FIG. It is provided intermittently at constant or regularly varying intervals along a curve or a plurality of straight lines parallel or perpendicular to the tube axis.

【0020】又この窪み20の内面は滑らかな曲率をも
つ面とし、かつ窪み20の横断開口面積が深さ方向に減
少し、又好ましくは窪み20と反対の面すなわち裏面に
滑らかな突起29が生じていて窪み20の深さを伝熱壁
21の肉厚(t)より深くする。さらに壁面には窪み2
0のない平滑面21Aが存在し、平滑面の面積は、窪み
20を形成しない場合の全平面積の50%以下とする。
The inner surface of the depression 20 has a surface having a smooth curvature, and the cross-sectional opening area of the depression 20 decreases in the depth direction. Preferably, a smooth projection 29 is formed on the surface opposite to the depression 20, that is, on the back surface. The depth of the depression 20 is made larger than the thickness (t) of the heat transfer wall 21. In addition, depression 2 on the wall
There is a smooth surface 21A without zero, and the area of the smooth surface is 50% or less of the total plane area when the depression 20 is not formed.

【0021】伝熱壁表面に形成した窪み20は次の作用
をする。一般に液体と固体が接触する場合に、界面張力
の影響により、メニスカスが形成される。メニスカスは
ヤング・ラプラスの式において形成される界面の曲率半
径 の一方を大きくとった場合、界面断面形状は円弧に
近似することができる。したがって、窪み径(円でない
場合は円相当径)よりも窪み20の深さが大きくなると
窪み20内に形成する液膜22の厚さが厚くなり、熱抵
抗が増えて好ましくないので、本実施例では窪み径に対
して、窪み20の深さを小さくすることにより、窪み2
0内に形成する液膜22の厚さを薄くし、熱抵抗を減ら
して熱交換性能を向上させる。
The depression 20 formed on the surface of the heat transfer wall performs the following operation. Generally, when a liquid and a solid come into contact with each other, a meniscus is formed due to the influence of interfacial tension. If one of the radius of curvature of the interface formed by the meniscus in the Young-Laplace equation is large, the cross-sectional shape of the interface can be approximated to an arc. Therefore, if the depth of the dent 20 is larger than the dent diameter (or a circle equivalent diameter if it is not a circle), the thickness of the liquid film 22 formed in the dent 20 increases, and the thermal resistance increases. In the example, by reducing the depth of the depression 20 with respect to the diameter of the depression, the depression 2
The thickness of the liquid film 22 formed in the inside is reduced, the heat resistance is reduced, and the heat exchange performance is improved.

【0022】また次の作用をする。(1)液膜22内で
吸収現象のように熱以外の物質移動がある場合、この物
質拡散の浸透割合が大きくなる。(2)伝熱管軸方向の
液膜の広がりが阻害されず、伝熱壁表面に形成される流
下液膜の膜厚を管軸方向に広く均一化させる作用があ
る。(3)吸収溶液として臭化リチウム水溶液を用い
て、その中に界面活性剤を数十から数百ppm添加した
場合、前記窪みから次の窪みへと溶液が乗り越える場
合、冷媒蒸気を吸収して表面張力が大きくなって窪み部
のよく冷却された吸収溶液を引っ張り上げる。これによ
り吸収溶液の対流が活発化して熱・物質移動性能を向上
することができる。
The following operation is also performed. (1) When there is a substance transfer other than heat, such as an absorption phenomenon, in the liquid film 22, the permeation rate of this substance diffusion increases. (2) The spread of the liquid film in the axial direction of the heat transfer tube is not hindered, and there is an effect that the film thickness of the falling liquid film formed on the surface of the heat transfer wall is made uniform in the axial direction of the tube. (3) When an aqueous solution of lithium bromide is used as an absorbing solution, and a surfactant is added to the solution in an amount of several tens to several hundreds ppm, when the solution gets over from the above-mentioned dent to the next dent, it absorbs refrigerant vapor. As the surface tension increases, the well-cooled absorbing solution in the depression is pulled up. Thereby, the convection of the absorbing solution is activated and the heat / mass transfer performance can be improved.

【0023】吸収能力を高める効果を高めるために図4
8に示すように窪み20の形状を変えた伝熱管(D1か
らD4までの4種類)および性能比較のために従来の窪
みのない平滑管を作った。これらは窪み20の形状を半
球面形とし伝熱面の面積拡大率をほぼ等しくなるよう窪
み20の深さ及び径を変えたものである。性能測定結果
を図4に示す。図は横軸に液膜流量(kg/m.s)、
縦軸に熱伝達率(W/m2K)をとったものである。図
から明らかなように、性能が最も大となるものは平滑管
と比較して40%以上の向上が図られている。また本結
果より窪み20の深さは1mm度で大きな効果が期待で
きることがわかった。
FIG. 4 shows the effect of increasing the absorption capacity.
As shown in FIG. 8, heat transfer tubes (four types from D1 to D4) in which the shape of the recess 20 was changed and a conventional smooth tube without a recess were made for performance comparison. In these, the shape and the diameter of the depression 20 are changed so that the shape of the depression 20 is hemispherical and the area expansion rate of the heat transfer surface becomes substantially equal. FIG. 4 shows the performance measurement results. In the figure, the horizontal axis represents the liquid film flow rate (kg / ms),
The vertical axis represents the heat transfer coefficient (W / m 2 K). As is clear from the figure, the one with the highest performance is improved by 40% or more as compared with the smooth tube. From this result, it was found that a great effect can be expected when the depth of the depression 20 is 1 mm.

【0024】さらに、伝熱壁表面の窪み形状は円弧と限
らない。図5から図20に示す形状のものでも同様の効
果が得られる。図5は実施例の平面図、図6はその断面
図で窪み20Aの平面は円で断面が円弧のもの、図7は
他の実施例の平面図、図8はその断面図で窪み20Bの
平面は楕円で断面も楕円のもの、図9はさらに他の実施
例の平面図、図10はその断面図で窪み20Cの平面は
円で断面が円錐のもの、図11はさらに他の実施例の平
面図、図12はその断面図で窪み20Dの平面は円で断
面が四角錐のもの、図13はさらに他の実施例の平面
図、図14はその断面図で窪み20Eの平面は六角形で
断面も六角錐のもの、図15はさらに他の実施例の平面
図、図16はその断面図で窪み20Fの平面は四角形で
その断面が四角錐のもの、図17はさらに他の実施例の
平面図、図18はその断面図で窪み20Gの平面は円で
断面が円弧かつ底に突起を有するものと、図19はさら
に他の実施例の平面図、図20はその断面図で窪み20
Hの平面は円で断面が円弧でかつ底にさらに窪みを有す
るもの、図21はさらに他の実施例の平面図、図22は
その断面図で窪み20Iと突起20Jとが混合して存在
しているもの、図23はさらに他の実施例の平面図、図
24はその断面図で突起20Jのみで形成したもので、
液膜の漏れ性を高める効果は窪み形状のものより若干劣
る。さらに、窪み20の配列は図25から図32に示す
ものでもよい。前述した図1に示す実施例の窪み20を
形成した伝熱管の場合、管内側の熱伝達率も高める。こ
のときに管内流体の乱れを促進するために窪み20は図
3、図25のように千鳥もしくは正方配列でなく、図2
6のように窪み20の大きさを変化させると、さらに高
い効果を得ることができる。また図27は伝熱管表面で
の液膜の管軸方向の均一性を高めるのに効果がある。図
28は管内を流れる流体に螺旋状の乱れをつくる効果が
あり管内性能を高めることができる。また図29に示す
ように窪み配列の規則性を弱めることによりさらに管内
側の性能を高めることができる。これらの管外側、管内
側の性能を高める組み合わせとして、他に図30から図
32のような実施例もそれぞれ効果が高い。また伝熱管
21を重力に対して立てて使用し、管内側に液膜を流下
させるような場合では、図33に示すように管内側に窪
み30を設けることにより性能を高めることができる。
Furthermore, the shape of the depression on the surface of the heat transfer wall is not limited to an arc. Similar effects can be obtained with the shapes shown in FIGS. FIG. 5 is a plan view of the embodiment, FIG. 6 is a cross-sectional view thereof, and the plane of the depression 20A is a circle having a circular cross section, FIG. 7 is a plan view of another embodiment, and FIG. 9 is a plan view of still another embodiment, FIG. 9 is a plan view of another embodiment, FIG. 10 is a cross-sectional view of the embodiment, and the plane of the depression 20C is a circle and the cross section is conical. FIG. 11 is still another embodiment. FIG. 12 is a cross-sectional view of FIG. 12, and the plane of the depression 20D is a circle having a quadrangular pyramid cross section. FIG. 13 is a plan view of another embodiment, and FIG. 15 is a plan view of still another embodiment, FIG. 16 is a plan view of another embodiment, FIG. 16 is a cross-sectional view of the embodiment, and the plane of the depression 20F is square and the cross section is a quadrangular pyramid. FIG. 18 is a plan view of the example, and FIG. 18 is a cross-sectional view thereof. If, 19 is further plan view of another embodiment, FIG. 20 is the depression in the cross section 20
The plane H is a circle, the cross section of which is an arc and further has a depression at the bottom. FIG. 21 is a plan view of still another embodiment, and FIG. FIG. 23 is a plan view of still another embodiment, and FIG. 24 is a cross-sectional view of the embodiment, which is formed only by protrusions 20J.
The effect of increasing the leakage of the liquid film is slightly inferior to that of the recessed shape. Further, the arrangement of the depressions 20 may be as shown in FIGS. In the case of the heat transfer tube having the depression 20 of the embodiment shown in FIG. 1 described above, the heat transfer coefficient inside the tube is also increased. At this time, in order to promote the turbulence of the fluid in the pipe, the depression 20 is not staggered or square as shown in FIGS.
When the size of the depression 20 is changed as shown in 6, even higher effects can be obtained. FIG. 27 is effective in improving the uniformity of the liquid film on the heat transfer tube surface in the tube axis direction. FIG. 28 has the effect of creating a spiral turbulence in the fluid flowing in the pipe, and can improve the performance in the pipe. Further, as shown in FIG. 29, the performance inside the tube can be further enhanced by weakening the regularity of the arrangement of the depressions. As the combination for improving the performance on the outside and inside of the tube, the embodiments shown in FIGS. 30 to 32 are also highly effective. In the case where the heat transfer tube 21 is used upright against gravity and a liquid film flows down inside the tube, the performance can be improved by providing the depression 30 inside the tube as shown in FIG.

【0025】また以上のように構成した伝熱管は、その
上方あるいは側方に熱交換媒体を散布する散布装置を設
け、熱交換媒体が重力によって流下しながら伝熱管表面
において液膜を形成させて熱交換をおこなう熱交換器を
構成することができる。さらに伝熱管表面を流下する熱
交換媒体が、流下と同時に媒体がその液膜表面で接する
気体と物質移動を伴う熱交換をおこなうように構成す
る。またもっとも特殊な場合は、図37に示す吸収器に
採用できる(構成は後述)。特に吸収剤が臭化リチウム
水溶液であり、かつ吸収剤に界面活性剤として有機物質
を添加してある場合は、窪み20の深さを0.6mmか
ら2.0mmとする。また吸収器用の伝熱管表面を流下
する吸収溶液の流れる側の伝熱管の単位長さ当たりの流
量を0.7kg/m.sから0.25kg/m.sとす
る。
The heat transfer tube constructed as described above is provided with a spraying device for spraying a heat exchange medium above or to the side thereof, and a liquid film is formed on the heat transfer tube surface while the heat exchange medium flows down by gravity. A heat exchanger for performing heat exchange can be configured. Further, the heat exchange medium flowing down the surface of the heat transfer tube is configured to perform heat exchange accompanied with mass transfer with the gas in contact with the liquid film surface simultaneously with the flow down. In the most special case, it can be adopted in the absorber shown in FIG. 37 (the configuration will be described later). In particular, when the absorbent is an aqueous solution of lithium bromide and an organic substance is added to the absorbent as a surfactant, the depth of the depression 20 is set to 0.6 mm to 2.0 mm. The flow rate per unit length of the heat transfer tube on the side where the absorbing solution flows down the surface of the heat transfer tube for the absorber is 0.7 kg / m. s to 0.25 kg / m. s.

【0026】次に上記実施例の伝熱管を製造するための
製造方法を図34、図35によって説明する。図34は
伝熱管21の製造過程での形状を示す。本製造方法で
は、あらかじめ窪み加工を施した平板あるいは曲率をも
った板21Aを管状に形成し接する部分を高周波溶接等
で接合することで伝熱管に加工するものである。このよ
うな製造方法で加工をおこなうと窪み20を形成する
際、窪み20の裏側を器具で保持することができ、窪み
20の形成状態を良好とすることができると同時に、加
工後の伝熱管21の肉厚を一様にすることができ、材料
費を最小限に抑えることができる。さらに図35に示す
加工装置は、送りローラ31、31、管成形装置35か
ら構成される。窪み加工ローラ33及び34の位置を入
れ換えることで、窪み20の形成面を容易に管の内面あ
るいは外面に変えることができ、図33の内面に窪み3
0がある伝熱管も同じ装置で製作することができる。
Next, a manufacturing method for manufacturing the heat transfer tube of the above embodiment will be described with reference to FIGS. FIG. 34 shows the shape of the heat transfer tube 21 in the manufacturing process. In this manufacturing method, a flat plate or a plate 21A having a curvature, which has been subjected to indentation in advance, is formed into a tube, and the contacting portions are joined by high-frequency welding or the like so as to be processed into a heat transfer tube. When processing is performed by such a manufacturing method, when forming the depression 20, the back side of the depression 20 can be held by an instrument, and the formation state of the depression 20 can be improved, and at the same time, the heat transfer tube after processing can be obtained. 21 can be made uniform, and material costs can be minimized. Further, the processing device shown in FIG. 35 includes feed rollers 31 and 31, and a tube forming device 35. By changing the positions of the dent processing rollers 33 and 34, the surface on which the dent 20 is formed can be easily changed to the inner surface or the outer surface of the tube.
A heat transfer tube having 0 can be manufactured by the same device.

【0027】本発明の伝熱管を用いる吸収冷暖房機の構
成を図36に示す。図36において、吸収冷暖房機は高
温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収
器5、クーリングタワー6、室内空気熱交換器7、冷媒
循環ポンプ8、溶液ポンプ9、冷水ポンプ10、冷水循
環ポンプ11、流量調整弁16、流量調節三方弁16、
冷水量調節弁17及びそれらをつなぐ配管によって構成
される。また前記吸収器5は図37に示すように伝熱管
21、溶液散布装置36から構成される。
FIG. 36 shows the structure of an absorption air conditioner using the heat transfer tube of the present invention. In FIG. 36, the absorption air conditioner includes a high-temperature regenerator 1, a low-temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a cooling tower 6, an indoor air heat exchanger 7, a refrigerant circulation pump 8, a solution pump 9, and cold water. Pump 10, cold water circulation pump 11, flow control valve 16, flow control three-way valve 16,
It is composed of a chilled water amount control valve 17 and a pipe connecting them. The absorber 5 includes a heat transfer tube 21 and a solution spraying device 36 as shown in FIG.

【0028】この高温再生器1より発生した冷媒蒸気
は、吸収器5より吸収溶液ポンプ9を経て低温再生器2
に流入する吸収溶液と熱交換し、吸収溶液から冷媒蒸気
を蒸発させながら凝縮し、液冷媒となって凝縮器3に流
入する。また低温再生器2で蒸発した冷媒蒸気は凝縮器
3内で伝熱管内を流れる冷却水と熱交換し冷却水を加熱
しながら凝縮し液化する。ここで生成される冷媒は蒸発
器4に流入し、伝熱管内を流れる冷水循環ポンプ11よ
り送られる冷水と熱交換して冷水を冷却しながら蒸発
し、吸収器5へ移動する。一方冷水は室内空気熱交換器
7の能力を可変するための複数の冷水量調節弁17によ
り流量をコントロールされながら室内空気熱交換器7に
流入して空気と熱交換し、空気を冷却して加熱され、冷
水循環ポンプ11へ戻る。
The refrigerant vapor generated from the high-temperature regenerator 1 is sent from the absorber 5 via the absorbing solution pump 9 to the low-temperature regenerator 2.
The refrigerant exchanges heat with the absorption solution flowing into the condenser, condenses while evaporating the refrigerant vapor from the absorption solution, and flows into the condenser 3 as a liquid refrigerant. The refrigerant vapor evaporated in the low-temperature regenerator 2 exchanges heat with the cooling water flowing in the heat transfer tube in the condenser 3 and condenses and liquefies while heating the cooling water. The refrigerant generated here flows into the evaporator 4, exchanges heat with cold water sent from the cold water circulation pump 11 flowing in the heat transfer tube, evaporates while cooling the cold water, and moves to the absorber 5. On the other hand, the chilled water flows into the indoor air heat exchanger 7 while controlling the flow rate by a plurality of chilled water amount control valves 17 for changing the capacity of the indoor air heat exchanger 7, and exchanges heat with the air to cool the air. It is heated and returns to the cold water circulation pump 11.

【0029】蒸発器4で発生した冷媒蒸気は吸収器5内
の伝熱管21上を流下する吸収溶液に吸収され、このと
き発生する吸収熱は伝熱管21内を流れる冷却水により
除去される。吸収器5内を流下した吸収溶液は溶液ポン
プ9より流量調整弁12を経て高温再生器1に送られる
と同時に低温再生器2にも送られ、一部流量調整弁13
を経て吸収器5へ再循環される。吸収器5より送られた
吸収溶液は高温再生器1においてボイラ19で加熱さ
れ、一部冷媒蒸気となって低温再生器2へ流入し、一方
濃縮された吸収溶液は低温再生器2より戻る濃縮吸収溶
液と混合し流量調整弁15で流量をコントロールされな
がら吸収器5の溶液散布装置36によって散布され流下
する。
The refrigerant vapor generated in the evaporator 4 is absorbed by the absorbing solution flowing down on the heat transfer tube 21 in the absorber 5, and the generated heat of absorption is removed by the cooling water flowing in the heat transfer tube 21. The absorbing solution that has flowed down in the absorber 5 is sent from the solution pump 9 to the high-temperature regenerator 1 via the flow control valve 12 and also to the low-temperature regenerator 2, and a part of the flow control valve 13
And is recirculated to the absorber 5 through The absorption solution sent from the absorber 5 is heated by the boiler 19 in the high-temperature regenerator 1 and partially flows into the low-temperature regenerator 2 as a refrigerant vapor, while the concentrated absorption solution returns from the low-temperature regenerator 2. It mixes with the absorbing solution and is sprayed down by the solution spraying device 36 of the absorber 5 while the flow rate is controlled by the flow rate adjusting valve 15 to flow down.

【0030】クーリングタワー6を流下して冷却された
冷却水は冷却水ポンプ10により吸収器5をへて凝縮器
3に送られるが、流量調節三方弁16によって一部吸収
器5をバイパスして凝縮器3に送られ、クーリングタワ
ー6へ戻ってくる。この時、冷凍負荷の変化に従って、
流量調節三方弁16の開度、クーリンクタワーの送風フ
ァン18の回転数を制御して、冷却水の条件を変化させ
て冷却量を調整する。以上が冷凍サイクルフローであ
る。
The cooling water cooled down the cooling tower 6 is sent to the condenser 3 through the absorber 5 by the cooling water pump 10, but is partially condensed by the three-way valve 16, bypassing the absorber 5. It is sent to the vessel 3 and returns to the cooling tower 6. At this time, according to the change of the refrigeration load,
By controlling the opening of the three-way flow control valve 16 and the rotation speed of the blower fan 18 of the cool link tower, the cooling amount is adjusted by changing the condition of the cooling water. The above is the refrigeration cycle flow.

【0031】上記したような吸収冷暖房機では、蒸発器
4から蒸発した冷媒蒸気は、吸収器5内に水平に設置さ
れた吸収伝熱管21上を重力のみによって流下する吸収
溶液に吸収される。その時、吸収溶液は吸収熱を発生し
て希釈される。吸収溶液は濃度が高く、温度が低いほど
吸収能力が大きいので、伝熱管内を流れる冷却水によっ
て吸収熱を除去し、さらに溶液の温度を下げて吸収能力
を維持している。
In the above-described absorption cooling / heating machine, the refrigerant vapor evaporated from the evaporator 4 is absorbed by the absorption solution flowing down only by gravity on the absorption heat transfer tube 21 installed horizontally in the absorber 5. At that time, the absorption solution generates dilution heat and is diluted. Since the absorption solution has a higher concentration and a lower temperature has a higher absorption capacity, the absorption heat is removed by cooling water flowing in the heat transfer tube, and the absorption temperature is maintained by lowering the temperature of the solution.

【0032】したがって、吸収能力の向上のためには図
1に示すような窪み20で高さが低くかつピッチ(P
d)が大きい形状とし、液膜22の厚さを小さくする必
要がある。またこのような伝熱管表面では液膜の軸方向
の流動を阻害することがないので管表面に液膜がなくな
ることを防ぐ効果があり、結果的吸収能力を向上させる
ことができる。
Therefore, in order to improve the absorption capacity, the height is low and the pitch (P
It is necessary to make the shape d) large and to reduce the thickness of the liquid film 22. In addition, since the flow of the liquid film in the axial direction is not hindered on such a heat transfer tube surface, there is an effect of preventing the liquid film from disappearing on the tube surface, and as a result, the absorption capacity can be improved.

【0033】以上の実施例は伝熱壁が窪みを有する例で
あったが、窪みとは反対に突起を有する実施例もある。
図38は伝熱壁のかかる突起を有する実施例の断面図で
ある。図38において、伝熱壁21Aの壁面には複数の
突起29とその突起間に延びる底部100とを有する。
図39は本発明の伝熱壁のさらに他の実施例の断面図で
ある。図39において、伝熱壁21Aを介して、相互に
熱変換されるべき第1流体と第2流体のうち、第1流体
がその上を流れる第1壁面と、第2流体が流れる第2壁
面とを有し、その第1壁面と第2壁面の少なくとも一方
は、例えば第2壁面は壁面に突起29とその突起間に延
びる底部100とを有する。
Although the above embodiment is an example in which the heat transfer wall has a depression, there is also an embodiment in which a projection is provided opposite to the depression.
FIG. 38 is a sectional view of an embodiment having such projections on the heat transfer wall. In FIG. 38, the wall surface of the heat transfer wall 21A has a plurality of protrusions 29 and a bottom 100 extending between the protrusions.
FIG. 39 is a sectional view of still another embodiment of the heat transfer wall of the present invention. In FIG. 39, of the first fluid and the second fluid to be mutually thermally converted via the heat transfer wall 21A, a first wall surface on which the first fluid flows, and a second wall surface on which the second fluid flows And at least one of the first wall surface and the second wall surface, for example, the second wall surface has a projection 29 on the wall surface and a bottom 100 extending between the projections.

【0034】図40は本発明の伝熱壁のさらに他の実施
例の断面図である。図40において、伝熱壁21を介し
て、相互に熱変換されるべき第1流体と第2流体のう
ち、第1流体がその上を流れる第1壁面と、第2流体が
流れる内壁面とを持つ管を有し、その外壁面と内壁面の
少なくとも一方は、例えば内壁面は壁面に突起29とそ
の突起間に延びる底部100とを有する。
FIG. 40 is a sectional view of still another embodiment of the heat transfer wall of the present invention. In FIG. 40, of the first fluid and the second fluid to be mutually heat-converted via the heat transfer wall 21, the first wall surface on which the first fluid flows, and the inner wall surface on which the second fluid flows At least one of the outer wall surface and the inner wall surface has, for example, the inner wall surface having a projection 29 on the wall surface and a bottom portion 100 extending between the projections.

【0035】さらに、伝熱壁自体が薄い場合、図1〜図
17に示す如き窪みの実施例は、その反対側の面からみ
ると突起を有すことになる。特に薄い平板を利用した伝
熱壁で伝熱管(図34、図35)を形成した場合、管の
外部では窪みが形成され、管の内部では突起が形成され
る。こうした場合の管内部からみての突起の例は、本実
施例の一つに含まれる。こうした伝熱管の場合、先の実
施例の如き窪みピッチと窪み深さとの関係は満足されて
も、されなくてもよい。
Further, when the heat transfer wall itself is thin, the embodiment of the depression as shown in FIGS. 1 to 17 has a projection when viewed from the opposite surface. In particular, when the heat transfer tube (FIGS. 34 and 35) is formed by a heat transfer wall using a thin flat plate, a depression is formed outside the tube and a projection is formed inside the tube. An example of the protrusion from the inside of the tube in such a case is included in one of the present embodiments. In the case of such a heat transfer tube, the relationship between the depression pitch and the depression depth as in the above embodiment may or may not be satisfied.

【0036】図41(a)、(b)は図38から図40
の突起配置の正面とその矢印斜視方向の最短距離仮想線
に沿った突起間底部の形状の一実施例の概略図、図42
(a)、(b)は図38から図40の突起配置の正面と
その矢印斜視方向の最短距離仮想線に沿った突起間底部
の形状の他の実施例の概略図、図43(a)、(b)は
図38から図40の突起配置の正面とその矢印斜視方向
の最短距離仮想線に沿った突起間底部の形状のさらに他
の実施例の概略図であって、図41(a)、(b)と図
42(a)、(b)は突起29が壁面上を流れる流体の
全体的流れ方向に対して相異なる千鳥配列の突起配置
で、図43(a)、(b)は突起29が壁面上を流れる
流体の全体的流れ方向に対して正方配列の突起配列であ
る。
FIGS. 41A and 41B show FIGS.
FIG. 42 is a schematic view of an embodiment of the shape of the bottom between protrusions along the imaginary line of the shortest distance in the front direction of the protrusion arrangement and the arrow perspective direction of FIG.
(A), (b) is a schematic view of another embodiment of the shape of the bottom between protrusions along the shortest distance imaginary line in the perspective direction of the arrow and the front surface of the protrusion arrangement of FIGS. 38 to 40, and FIG. (B) is a schematic view of still another embodiment of the shape of the bottom between protrusions along the shortest distance imaginary line in the perspective direction of the arrow and the front of the protrusion arrangement of FIGS. 38 to 40, and FIG. ), (B) and FIGS. 42 (a), (b) show the staggered arrangement of the protrusions 29 different from each other in the overall flow direction of the fluid flowing on the wall surface, and FIGS. 43 (a), (b) Are projection arrangements in which the projections 29 are squarely arranged with respect to the overall flow direction of the fluid flowing on the wall surface.

【0037】図41(a)、(b)から図43(a)、
(b)のいずれの実施例においても、図41(b)から
図43(b)のいずれの外形形状線と最短距離仮想線は
等しく、図38から図40の伝熱壁21Aの壁面及び伝
熱管21の内壁面で、図41(a)、(b)から図43
(a)、(b)の隣合う突起29(一つの突起とその周
囲の最も近い一個以上の突起)の間の最短距離を通過す
る最短距離仮想線に沿う壁面の突起29の間の底部10
0は、連続的に弯曲する形状を有しており、その上を流
れる流体の全体的流れ方向、即ち伝熱壁21Aの壁面に
平行及び伝熱管21の長手方向軸線方向にほぼ平行な仮
想面(伝熱管21の内壁面が概略的に円筒管形なら仮想
面は円筒形、同じくほぼ角型管形なら仮想面は角型柱
形)に沿って延びず、該仮想面にその一点でのみ接して
該一点から該仮想面より離れる方向に延び、上記仮想面
上を延びる部分を有しない。このような上記最短距離仮
想線に沿う底部100の先細り形状は、伝熱壁21Aの
壁面及び伝熱管21の内壁面側を流れる流体が、底部1
00で伝熱壁21Aの壁面に平行な同一方向及び伝熱管
21の長手方向軸線方向にほぼ平行方向に流れ続けるこ
とを防止し、伝熱壁21Aの壁面及び伝熱管21の内壁
面側を流れる流体を流体の全体的流れ方向に対してほぼ
直角に付勢し、流体の該壁面上での撹拌を促進する。な
お上記最短距離仮想線は突起21及び底部100の形状
によって最短距離仮想面の場合もある。
From FIGS. 41 (a) and (b) to FIG. 43 (a),
In any of the embodiments shown in (b), the outer shape line and the shortest distance imaginary line shown in FIGS. 41 (b) to 43 (b) are equal, and the wall surface of the heat transfer wall 21A shown in FIGS. From the inner wall surface of the heat tube 21, FIG.
(A), (b) The bottom 10 between the projections 29 on the wall surface along the shortest distance imaginary line passing through the shortest distance between the adjacent projections 29 (one projection and one or more projections closest to it).
0 has a continuously curved shape, and is an imaginary plane parallel to the overall flow direction of the fluid flowing thereon, that is, parallel to the wall surface of the heat transfer wall 21A and substantially parallel to the longitudinal axis direction of the heat transfer tube 21. (If the inner wall surface of the heat transfer tube 21 is roughly a cylindrical tube, the imaginary surface is cylindrical, and if the inner tube is almost a square tube, the imaginary surface does not extend along the prism.) The contact point extends in a direction away from the virtual surface from the one point and has no portion extending on the virtual surface. The tapered shape of the bottom 100 along the shortest distance imaginary line is such that the fluid flowing on the wall surface of the heat transfer wall 21A and the inner wall surface of the heat transfer tube 21 is
00 prevents flow in the same direction parallel to the wall surface of the heat transfer wall 21A and in a direction substantially parallel to the longitudinal axis direction of the heat transfer tube 21 and flows on the wall surface of the heat transfer wall 21A and the inner wall surface side of the heat transfer tube 21. The fluid is urged substantially perpendicular to the general flow direction of the fluid to promote agitation of the fluid on the wall. The shortest distance imaginary line may be a shortest distance imaginary surface depending on the shapes of the protrusion 21 and the bottom 100.

【0038】なお、図41(a)、(b)から図43
(a)、(b)の実施例においても、図39から図40
の伝熱壁21A及び伝熱管21の第1壁面と第2壁面の
距離及び外壁面と内壁面の距離は、突起先端において、
隣合う突起29の間の最短距離仮想線に沿う底部100
の一部においてより大きくするのもよい。また上記第1
壁面と第2壁面の距離、及び外壁面と内壁面の距離は、
突起先端において、該最短距離仮想線から離れた底部1
00のその他の一部においてより小さくしてもよい。
It should be noted that FIGS. 41 (a) and (b)
In the embodiments of (a) and (b), FIGS.
The distance between the first wall surface and the second wall surface and the distance between the outer wall surface and the inner wall surface of the heat transfer wall 21A and the heat transfer tube 21 at the tip of the projection are:
Bottom 100 along the shortest distance imaginary line between adjacent protrusions 29
May be made larger in some of them. In addition, the first
The distance between the wall and the second wall, and the distance between the outer wall and the inner wall,
At the tip of the projection, a bottom 1 away from the shortest imaginary line
Other portions of 00 may be smaller.

【0039】図44は図41から図43の突起配置の斜
視方向の最短距離仮想線に沿った突起間底部の形状のさ
らに他の実施例の概略図である。図44において、この
隣合う突起29の間の上記最短距離仮想線に沿う突起2
9の間の底部100は、不連続に弯曲する形状を有す
る。図45は図43の突起配置のY斜視方向の最短距離
仮想線から離れた突起間底部の形状の他の実施例の概略
図である。図45において、図43の隣合う突起29の
間の上記最短距離仮想線に沿った突起間底部100の深
さh1は図45の上記最短距離仮想線から離れた突起2
9の間の深さh2より小さいことが好適である。
FIG. 44 is a schematic view of still another embodiment of the shape of the bottom between projections along the imaginary line of the shortest distance in the perspective direction of the projection arrangement of FIGS. 41 to 43. In FIG. 44, the protrusion 2 along the shortest distance virtual line between the adjacent protrusions 29 is shown.
The bottom 100 between 9 has a discontinuously curved shape. FIG. 45 is a schematic view of another embodiment of the shape of the bottom between projections, which is away from the shortest imaginary line in the Y perspective direction of the projection arrangement of FIG. 43. In Figure 45, the projections the shortest distance depth h 1 of the protrusions between the bottom 100 along the imaginary line between the projections 29 adjacent the Figure 43 away from the shortest distance phantom line in FIG. 45 2
9 it is preferable smaller than the depth h 2 between.

【0040】図46は図39からの図45の伝熱壁の突
起と反対側の壁面の窪みとその間の区画壁(隔壁)の最
短距離仮想線に沿った形状の一実施例を示す概略断面図
である。図46において、突起29の反対側の複数の窪
み20とその隣合う窪み20の間の区画壁200を有
し、該窪み20の深さ方向において、隣合う窪み20の
間の最短距離仮想線に沿う区画壁(隔壁)200の一部
の窪み底に対する高さh3は、該最短距離仮想線から離
れた区画壁(隔壁)200のその他の一部の窪み底に対
する高さより低くてもよい。
FIG. 46 is a schematic sectional view showing one embodiment of the shape of the depression along the wall opposite to the projection of the heat transfer wall in FIG. 45 from FIG. 39 and the shortest distance imaginary line of the partition wall (partition wall) therebetween. FIG. In FIG. 46, a plurality of dents 20 on the opposite side of the protrusion 29 and a partition wall 200 between the dents 20 adjacent to the dents 20 are provided, and the shortest distance virtual line between the adjacent dents 20 in the depth direction of the dents 20 is provided. the height h 3 for some of the recess bottom of the partition wall (partition wall) 200 along may be lower than the height to the other part of the recess bottom of the outermost short imaginary line from a remote partition wall (partition wall) 200 .

【0041】図47は図38から図40の突起配置と突
起形状のさらに他の実施例の概略正面図である。図47
において、図38から図40の伝熱壁21Aの一方向及
び伝熱管21の長手方向即ち管内の流れ方向の突起29
の長さは、伝熱壁21Aの一方向及び伝熱管21の長手
方向に直交する方向における突起29の長さよりも大き
くてもよい。
FIG. 47 is a schematic front view of still another embodiment of the arrangement and shapes of the projections shown in FIGS. FIG.
38 to 40, the protrusion 29 in the one direction of the heat transfer wall 21A and the longitudinal direction of the heat transfer tube 21, that is, the flow direction in the tube.
May be longer than the length of the protrusion 29 in one direction of the heat transfer wall 21A and a direction orthogonal to the longitudinal direction of the heat transfer tube 21.

【0042】図39から図48の伝熱管21は、図33
の伝熱管21と同様に、熱交換器として、図37の吸収
器5及び図36の吸収冷暖房機に用いることができる。
The heat transfer tube 21 shown in FIGS.
37 can be used as the heat exchanger in the absorber 5 of FIG. 37 and the absorption air conditioner of FIG.

【0043】[0043]

【発明の効果】本発明によれば、伝熱壁及び伝熱管を液
膜状に流下する液体の液膜を薄くすることで、熱交換時
の液膜熱抵抗を小さくすることができるので伝熱管の熱
伝達性能を高める。また上記液膜内で吸収現象のように
熱以外の物質移動がある場合、この物質拡散の浸透割合
を大きくすることができるので、吸収能力が高まる。さ
らに伝熱壁及び伝熱管内の流体の撹拌を促進するので、
熱交換を促進する。このような効果により、この伝熱壁
及び伝熱管を用いた熱交換器及び吸収冷暖房機の効率と
性能を高めることができる。
According to the present invention, since the liquid film of the liquid flowing down the heat transfer wall and the heat transfer tube in the form of a liquid film is thinned, the heat resistance of the liquid film at the time of heat exchange can be reduced. Improve the heat transfer performance of heat tubes. In addition, when there is a substance transfer other than heat, such as an absorption phenomenon, in the liquid film, the permeation rate of this substance diffusion can be increased, so that the absorption capacity is increased. Further promotes the stirring of the fluid in the heat transfer wall and heat transfer tube,
Promotes heat exchange. Due to such effects, the efficiency and performance of the heat exchanger and the absorption air conditioner using the heat transfer wall and the heat transfer tube can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の伝熱壁の実施例の断面図である。FIG. 1 is a sectional view of an embodiment of a heat transfer wall of the present invention.

【図2】本発明の伝熱壁表面の液膜形状図である。FIG. 2 is a diagram of a liquid film shape on a heat transfer wall surface according to the present invention.

【図3】本発明の伝熱管の実施例の外観図である。FIG. 3 is an external view of a heat transfer tube according to an embodiment of the present invention.

【図4】本発明の伝熱管と平滑管との性能比較図であ
る。
FIG. 4 is a performance comparison diagram of the heat transfer tube and the smooth tube of the present invention.

【図5】本発明の伝熱壁の実施例の平面図である。FIG. 5 is a plan view of an embodiment of the heat transfer wall of the present invention.

【図6】図5の実施例の断面図である。FIG. 6 is a cross-sectional view of the embodiment of FIG.

【図7】本発明の伝熱壁のさらに他の実施例の平面図で
ある。
FIG. 7 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図8】図7の実施例の断面図である。FIG. 8 is a sectional view of the embodiment of FIG. 7;

【図9】本発明の伝熱壁の他の実施例の平面図である。FIG. 9 is a plan view of another embodiment of the heat transfer wall of the present invention.

【図10】図9の実施例の断面図である。FIG. 10 is a sectional view of the embodiment of FIG. 9;

【図11】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 11 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図12】図11の実施例の断面図である。FIG. 12 is a sectional view of the embodiment of FIG. 11;

【図13】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 13 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図14】図13の実施例の断面図である。FIG. 14 is a cross-sectional view of the embodiment of FIG.

【図15】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 15 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図16】図15の実施例の断面図である。FIG. 16 is a cross-sectional view of the embodiment of FIG.

【図17】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 17 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図18】図17の実施例の断面図である。18 is a sectional view of the embodiment of FIG.

【図19】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 19 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図20】図19の実施例の断面図である。FIG. 20 is a sectional view of the embodiment of FIG. 19;

【図21】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 21 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図22】図21の実施例の断面図である。FIG. 22 is a sectional view of the embodiment of FIG. 21;

【図23】本発明の伝熱壁のさらに他の実施例の平面図
である。
FIG. 23 is a plan view of still another embodiment of the heat transfer wall of the present invention.

【図24】図23の実施例の断面図である。FIG. 24 is a cross-sectional view of the embodiment of FIG.

【図25】本発明の伝熱管の他の実施例の外観図であ
る。
FIG. 25 is an external view of another embodiment of the heat transfer tube of the present invention.

【図26】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 26 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図27】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 27 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図28】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 28 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図29】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 29 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図30】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 30 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図31】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 31 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図32】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 32 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図33】本発明の伝熱管のさらに他の実施例の外観図
である。
FIG. 33 is an external view of still another embodiment of the heat transfer tube of the present invention.

【図34】本発明の伝熱管の製造方法の説明図である。FIG. 34 is an explanatory diagram of the method for manufacturing a heat transfer tube of the present invention.

【図35】本発明の伝熱管の製造方法の説明図である。FIG. 35 is an explanatory diagram of the method for manufacturing a heat transfer tube of the present invention.

【図36】吸収冷暖房機の構成図である。FIG. 36 is a configuration diagram of an absorption cooling / heating machine.

【図37】本発明の伝熱管を用いた吸収器の外観図であ
る。
FIG. 37 is an external view of an absorber using the heat transfer tube of the present invention.

【図38】本発明の伝熱壁のさらに他の実施例の断面図
である。
FIG. 38 is a sectional view of still another embodiment of the heat transfer wall of the present invention.

【図39】本発明の伝熱壁のさらに他の実施例の断面図
である。
FIG. 39 is a sectional view of still another embodiment of the heat transfer wall of the present invention.

【図40】本発明の伝熱管のさらに他の実施例の断面図
である。
FIG. 40 is a sectional view of still another embodiment of the heat transfer tube of the present invention.

【図41】(a)、(b)は本発明による熱交換手段の
突起配置と最短距離仮想線に沿った突起間底部の形状の
一の実施例を示す概略図である。
41 (a) and (b) are schematic diagrams showing one embodiment of the arrangement of the protrusions of the heat exchange means and the shape of the bottom between protrusions along the imaginary line of the shortest distance according to the present invention.

【図42】(a)、(b)は本発明による熱交換手段の
突起配置と最短距離仮想線に沿った突起間底部の形状の
他の実施例を示す概略図である。
FIGS. 42 (a) and 42 (b) are schematic views showing another embodiment of the arrangement of the projections of the heat exchange means and the shape of the bottom between projections along the imaginary line of the shortest distance according to the present invention.

【図43】(a)、(b)は本発明による熱交換手段の
突起配置と最短距離仮想線に沿った突起間底部の形状の
さらに他の実施例を示す概略図である。
FIGS. 43 (a) and (b) are schematic views showing still another embodiment of the arrangement of the projections of the heat exchange means and the shape of the bottom between the projections along the imaginary line of the shortest distance according to the present invention.

【図44】本発明による最短距離仮想線に沿った突起間
底部の形状のさらに他の実施例を示す概略図である。
FIG. 44 is a schematic view showing still another embodiment of the shape of the bottom between protrusions along the shortest distance virtual line according to the present invention.

【図45】最短距離仮想線から離れた突起間底部の形状
を示す概略図である。
FIG. 45 is a schematic view showing the shape of the bottom between protrusions separated from the shortest distance virtual line.

【図46】本発明による窪みとその間の隔壁の最短距離
仮想線に沿った形状を示す、概略図である。
FIG. 46 is a schematic view showing a shape of a depression according to the present invention and a partition wall therebetween along a virtual line of the shortest distance.

【図47】本発明による熱交換手段の突起配置と突起形
状のもう一つの実施例を示す概略図である。
FIG. 47 is a schematic view showing another embodiment of the protrusion arrangement and the protrusion shape of the heat exchange means according to the present invention.

【図48】窪みの形状を変えた伝熱管及び窪みなし平滑
管の性能測定結果の説明図である。
FIG. 48 is an explanatory diagram of performance measurement results of a heat transfer tube having a different shape of a depression and a smooth tube without a depression.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 クーリングタワー 7 室内空調器 8 冷媒ポンプ 9 溶液ポンプ 10 冷却水ポンプ 11 冷水循環ポンプ 12、13、14、15 流量調整弁 16 流量調節三方弁 17 冷水量調節弁 18 送風ファン 19 ボイラ 20、20A〜20I 窪み 20J 突起 21 伝熱管 21A 伝熱壁 22 液膜 29 突起 31 送りローラ 32 平板 33 窪み加工ローラ 35 管成形装置 36 溶液散布装置 100 底部 200 区画壁 DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Cooling tower 7 Indoor air conditioner 8 Refrigerant pump 9 Solution pump 10 Cooling water pump 11 Cold water circulation pump 12, 13, 14, 15 Flow control valve 16 Flow control Three-way valve 17 Cold water control valve 18 Blower fan 19 Boiler 20, 20A to 20I Depression 20J Projection 21 Heat transfer tube 21A Heat transfer wall 22 Liquid film 29 Projection 31 Feed roller 32 Flat plate 33 Depression processing roller 35 Tube forming device 36 Solution spraying device 100 Bottom 200 compartment wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 富久 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 塚田 佐武郎 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (56)参考文献 特開 昭64−46546(JP,A) 特開 昭53−17589(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28F 1/12 F28F 1/40 F28F 1/42 F25B 37/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohisa Ouchi 502, Kandatecho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. Inside the factory (72) Inventor Sakuro Tsukada 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Prefecture Inside the Tsuchiura factory of Hitachi Cable, Ltd. (56) References JP-A-64-46546 (JP, A) JP-A-53-17589 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) F28F 1/12 F28F 1/40 F28F 1/42 F25B 37/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の流体が流れる第1の表面と第2の
流体が流れる第2の表面とを有し、第1の流体と第2の
流体との間で熱交換する熱交換器において、前記第1の
表面と前記第2の表面の少なくともいずれかに、少なく
とも2個の窪みを、窪み間に隔壁部をそれぞれ形成し、
この隔壁部の窪み底部からの高さは、隣り合う窪みの最
短距離仮想線上において、他の場所におけるより低いこ
とを特徴とする熱交換器。
1. A heat exchanger having a first surface through which a first fluid flows and a second surface through which a second fluid flows, and exchanging heat between the first fluid and the second fluid. In at least one of the first surface and the second surface, at least two depressions, a partition portion is formed between the depressions,
A heat exchanger characterized in that the height of the partition from the bottom of the depression is lower on the imaginary line of the shortest distance between adjacent depressions than in other places.
【請求項2】 前記第1の表面と前記第2の表面が伝熱
管の内面と外面とをなすことを特徴とする請求項1に記
載の熱交換器。
2. The heat exchanger according to claim 1, wherein the first surface and the second surface form an inner surface and an outer surface of the heat transfer tube.
【請求項3】 蒸発器、吸収器、再生器、凝縮機を備
え、吸収溶液と冷媒とを用いる吸収冷暖房機において、
請求項1又は2に記載の熱交換器を吸収器に用いたこと
を特徴とする吸収冷暖房機。
3. An absorption air conditioner comprising an evaporator, an absorber, a regenerator, and a condenser, wherein an absorption solution and a refrigerant are used.
An absorption air conditioner using the heat exchanger according to claim 1 as an absorber.
【請求項4】 前記吸収溶液は臭化リチウム水溶液であ
り、この吸収溶液に界面活性剤を添加したことを特徴と
する請求項3に記載の吸収冷暖房機。
4. The absorption air conditioner according to claim 3, wherein the absorption solution is an aqueous solution of lithium bromide, and a surfactant is added to the absorption solution.
【請求項5】 前記吸収器には伝熱管が配設されてお
り、この伝熱管の外表面を流下する吸収溶液の流量は、
伝熱管の単位長さ当たり0.25kg/m・sから0.
7kg/m・sであることを特徴とする請求項4に記載
の吸収冷暖房機。
5. A heat transfer tube is provided in the absorber, and the flow rate of the absorbing solution flowing down the outer surface of the heat transfer tube is:
0.25 kg / m · s per unit length of heat transfer tube
The absorption cooler / heater according to claim 4, wherein the pressure is 7 kg / m · s.
JP06025712A 1993-02-24 1994-02-23 Heat exchangers and absorption air conditioners Expired - Fee Related JP3091071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06025712A JP3091071B2 (en) 1993-02-24 1994-02-23 Heat exchangers and absorption air conditioners

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-35170 1993-02-24
JP3517093 1993-02-24
JP06025712A JP3091071B2 (en) 1993-02-24 1994-02-23 Heat exchangers and absorption air conditioners

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32442999A Division JP3266886B2 (en) 1993-02-24 1999-11-15 Heat transfer tube

Publications (2)

Publication Number Publication Date
JPH06307788A JPH06307788A (en) 1994-11-01
JP3091071B2 true JP3091071B2 (en) 2000-09-25

Family

ID=26363374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06025712A Expired - Fee Related JP3091071B2 (en) 1993-02-24 1994-02-23 Heat exchangers and absorption air conditioners

Country Status (1)

Country Link
JP (1) JP3091071B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541922C2 (en) * 1995-11-10 1997-11-27 Ws Waermeprozesstechnik Gmbh Ceramic recuperator for a recuperator burner
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
WO2006002224A2 (en) * 2004-06-22 2006-01-05 The Trustees Of Dartmouth College Pulse systems and methods for detaching ice
WO2009122474A1 (en) 2008-03-31 2009-10-08 川崎重工業株式会社 Cooling structure for gas turbine combustor
JP5404541B2 (en) * 2010-07-07 2014-02-05 三菱電機株式会社 Heat exchanger and hot water supply apparatus provided with the same
CN107081054A (en) * 2017-06-13 2017-08-22 武汉立为工程技术有限公司 A kind of dish-like flue gas even distribution device in wet desulphurization absorption tower

Also Published As

Publication number Publication date
JPH06307788A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
US5577555A (en) Heat exchanger
US6098420A (en) Absorption chiller and heat exchanger tube used the same
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3266886B2 (en) Heat transfer tube
JP2627381B2 (en) Absorption refrigerator
JPH09152289A (en) Absorption refrigerating machine
JPH1078265A (en) Air-cooled absorption air conditioner
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JP3138010B2 (en) Absorption refrigerator
JP3199287B2 (en) Heat exchanger tubes for heat exchangers
JP2779565B2 (en) Absorption refrigerator
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JPH11132683A (en) Hot and chilled water generator with absorber
JPH0245727Y2 (en)
WO2022138018A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
JPH0961080A (en) Turbo freezer
JP3042486B2 (en) Absorption refrigeration equipment
KR0177571B1 (en) Evaporation coil of absorption refrigerating apparatus
JPH10213387A (en) Heat transfer tube
JP3236721B2 (en) Regenerator for absorption refrigerator
KR100562565B1 (en) flooded evaporator in chiller
JPH11108501A (en) Evaporator for absorption-type refrigerating machine
KR950005849B1 (en) Absorption type warm and cool water machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees