以下、図面を参照しながら、本発明に係る実施形態としての噴流はんだ付け装置について説明する。
<実施形態>
図1に示す噴流はんだ付け装置100は、電子部品を取り付けたプリント基板1を予備加熱し、予備加熱後のプリント基板1を不活性ガスの雰囲気中に搬送し、不活性ガスの雰囲気中で電子部品をプリント基板1にはんだ付けし、はんだ付け後のプリント基板1を冷却するものである。この例では、噴流はんだ付け装置100にプリント基板1を取り込む側を上流側といい、プリント基板1を取り出す側を下流側という。プリント基板1は上流側から下流側へ搬送されるものとする。プリント基板1の搬送方向は、図1において、白抜き矢印Iに示すように左端側から右端側へ搬送される。
噴流はんだ付け装置100は本体架台101を有している。本体架台101には、搬送部10、熱処理部20、蓋体支持密閉機構30、仕切部材可動機構40、チャンバー50、噴流はんだ槽60、両端ガス供給機構70、蓋体ユニット80、冷却処理部90及びエアーカーテン機構99が備えられる。
本体架台101は、少なくとも、梁枠部材102及び当該梁枠部材102の四隅に脚部103,104及び脚部105,106(図示せず)を有している。梁枠部材102及び脚部103〜106は鉄骨部材から構成される。
梁枠部材102上には搬送部10が設けられる。搬送部10はチャンバー50を貫いてその上流側及び下流側に渡って配置されている。搬送部10は溶融はんだ7の切れを良くするために、本体架台101に対して所定の仰角θを有して斜め取り付けられる。仰角θは、例えば、5°乃至10°程度である。
搬送部10は電子部品を取り付けたプリント基板1をチャンバー50の方向に搬送するものである。電子部品には、抵抗、コンデンサ、ICチップの他に、PGA(Pin Grid Array:PGA)やデュアルパッケージのように、一個の電子部品に多数のリードが設置されているもの、及び、コネクターのように多数のジャックに導通される電極が取り付けられているものを含む。
搬送部10には、無終端状のチェーン部材11及びL字爪状の複数の搬送チャック12を備える。チェーン部材11はプリント基板1の搬送方向の両側に設けられる。搬送チャック12は所定の配置ピッチでチェーン部材11に取り付けられる。当該プリント基板1は、両側の搬送チャック12の間にプリント基板1を挟んで搬送するようにセットされる。
チャンバー50の上流側には熱処理部20が設けられる。熱処理部20は上部に開口部201を有してプリント基板1を熱処理する。もちろん、当該開口部201は所定の複数の蓋体31,32,33,34で密閉するように塞がれる。熱処理部20はトンネル状を成し、例えば、電子部品を取り付けたプリント基板1を所定の温度に加熱する。
この例で、熱処理部20がチャンバー50を基準にしてその上流側の搬送部10を覆うように設けられる。熱処理部20の最上流側には基板搬入口202が設けられる。プリント基板1は基板搬入口202で搬送部10にセットされる。熱処理部20は、例えば、4つの予備加熱ゾーン21,22,23,24(プリヒーターゾーン)から構成される。
熱処理部20では、電子部品を取り付けたプリント基板1を徐々に加熱して最適なはんだ処理温度に加熱するために、予備加熱ゾーン21〜24は、各々加熱雰囲気を形成する。熱処理部20の下流側にはチャンバー50に至る基板連通口203が設けられる。上述の搬送部10は、予備加熱後のプリント基板1を基板連通口203を通過してチャンバー50内に搬送する。熱処理部20には蓋体支持密閉機構30が設けられる。蓋体支持密閉機構30は蓋体31,32,33,34を支持して開口部201を密閉するものである(図2〜図8参照)。
この例で、蓋体31,34には仕切部材可動機構40が設けられる。仕切部材可動機構40は、仕切部材の一例となる複数のラビリンス部43を可動自在に保持するものである(図9〜図13参照)。ラビリンス部43は、外部から熱処理部20に塵埃等が入らないようにすると共に、窒素ガスのチャンバー50内から外部への漏洩を防止する。
熱処理部20の基板連通口203にはチャンバー50(処理容器)が連接して備えられる。チャンバー50内は、不活性ガスが導入され、不活性ガス雰囲気が形成される。不活性ガスには窒素ガス(N2)や、アルゴンガス(Ar)が一般的に使用される。チャンバー50は、不活性ガスの雰囲気中で、電子部品をプリント基板1にはんだ付け処理する。
チャンバー50の下方には、噴流はんだ槽60が設けられる。噴流はんだ槽60は所定の温度に加熱された溶融はんだ7が収容される。噴流はんだ槽60は、窒素ガスの雰囲気中で溶融はんだ7を噴出し、電子部品をプリント基板1にはんだ付け処理する。噴流はんだ槽60は、2系統の噴出ノズル61,62を有している。噴出ノズル61,62はプリント基板1の搬送方向に並べて配置される。
上流側の噴出ノズル61は、溶融はんだを粗く噴流してはんだ付け処理する一次はんだ付け処理時に使用される。下流側の噴出ノズル62は、溶融はんだを細密に噴流してはんだ付け処理する二次はんだ付け処理(仕上げ用)に使用される。噴流はんだ槽60は、例えば、ステンレス(SUS)板を箱状に形成して構成される。噴流はんだ槽60内には、整流板を用いない2台のシリンダー型の噴流ポンプ(以下単にポンプ8,9という)が設けられる。ポンプ8,9には、例えば、全密閉型のスクリューポンプ(インペラポンプ)が使用される。
ポンプ8はモータ68により駆動され、噴流はんだ槽60に収容された溶融はんだ7を所定の圧力にして噴出ノズル61に供給する。ポンプ9はモータ69により駆動され、噴流はんだ槽60に収容された溶融はんだ7を所定の圧力にして噴出ノズル62に供給する。噴出ノズル61,62から噴出される溶融はんだ7は、図24に示す噴流はんだ駆動部66によって制御される。なお、チャンバー50及び噴流はんだ槽60は、はんだ付け処理部を構成する。
この例で、本体架台101の下方であって、噴流はんだ槽60に隣接して両端ガス供給機構70が設けられる。両端ガス供給機構70は、噴流はんだ槽60の液面上に、例えば、窒素ガス(N2)を噴出し、電子部品をはんだ付けする側に、窒素ガス雰囲気を形成する。両端ガス供給機構70は、例えば、ガス供給部71,72、N2ガスタンク74及びノズル管路75を有している。ガス供給部71,72の各々の一端はN2ガスタンク74に接続される。
ガス供給部71の他端はノズル管路75の一端に接続され、ガス供給部72の他端はノズル管路75の他端に接続される。ガス供給部71,72は、噴流はんだ槽60の液面上をノズル管路75を介して窒素ガス雰囲気にするための窒素ガスを個々に調整する。なお、ガス供給部73は、チャンバー50内を窒素ガス雰囲気にするための窒素ガスの流量を調整する(図14〜図19参照)。
チャンバー50の上方には、本例においては、当該チャンバー50上の開口部501(図23参照)を塞ぐ(覆う)ように蓋体ユニット80が着脱自在に取り付けられる。蓋体ユニット80は雰囲気送入口801及び雰囲気排出口802を有している。
この雰囲気送入口801及び雰囲気排出口802には雰囲気清浄化部81が接続される。雰囲気送入口801は、雰囲気清浄化部81でフラックスヒュームが除去された後の窒素ガス雰囲気をチャンバー50内に送入する部分である。雰囲気排出口802は、チャンバー50内でフラックスヒュームを含んだ窒素ガス雰囲気を雰囲気清浄化部81へ排出する部分である(図20〜図25参照)。
雰囲気清浄化部81は、雰囲気排出口802から排出されるフラックスヒュームを含んだ窒素ガス雰囲気を清浄化し、清浄化後の窒素ガス雰囲気を雰囲気送入口801に供給する。例えば、雰囲気清浄化部81は、雰囲気送入口803及び雰囲気排出口804を有した筺体83、及び、当該筺体83内に設けられた複数のパイプ82から構成されている。当該パイプ82の内側には空気(冷気)が通風される。
このフラックスヒュームを含んだ窒素ガス雰囲気(窒素ガス+雰囲気)は筺体83内に導入され、そのパイプ82の外側を通過する際に、フラックスヒュームがパイプ82に当たって冷やされ、フラックスヒュームが結露(凝結)してパイプ82の外側に付着する。これにより、フラックスヒュームと窒素ガス雰囲気とを分離できるようになる。
チャンバー50の下流側には冷却処理部90が設けられる。例えば、冷却処理部90はチャンバー50を基準にしてその下流側の搬送部10を覆うように設けられる。上述の搬送部10は、はんだ付け処理後のプリント基板1を冷却処理部90へ搬送する。冷却処理部90は、搬送部10によって搬送されてくる、電子部品がはんだ付けされたプリント基板1を冷却する。
冷却処理部90は上部に開口部901を有しており、当該開口部901は所定の複数の蓋体91,92で塞がれ、冷却処理部90がトンネル状を構成している。蓋体91,92には、仕切部材可動機構40が備えられ、開口部901と蓋体91,92との間には蓋体支持密閉機構30が備えられている(図7及び図8参照)。
冷却処理部90には図示しない空冷ファンが設けられ、電子部品を取り付けたプリント基板1の上下面に窒素ガスや冷風を吹き付けることで、当該プリント基板1に対する冷却処理を施す。冷却処理部90の下流側には外部に至る基板搬出口902が設けられる。冷却後のプリント基板1は基板搬出口902から取り出される。
基板搬出口902にはエアーカーテン機構99が設けられる。エアーカーテン機構99には、クロスフローファン等の送風機904、下側ガイド板905及び上側ガイド板906が設けられる。送風機904は本体架台101に取り付けられる。下側ガイド板905は搬送部10の下方に設けられ、上側ガイド板906は搬送部10の上方に設けられる。下側ガイド板905及び上側ガイド板906は搬送部10の幅方向とほぼ等しい長さを有し、かつ、内面が例えば、R形状を有している。もちろん、下側ガイド板905及び上側ガイド板906はL形状でも、ストレート形状であってもよい。下側ガイド板905及び上側ガイド板906はステンレスや、鉄板等の金属部材や、硬質樹脂から構成される。
例えば、送風機904が上方に空気を吹き出すと、上側ガイド板906は送風機904から受け空気を下方に向くように導く。下側ガイド板905は上方から受けた空気を上方に向くように導く。エアーカーテン機構99は、基板搬出口902に空気を対流させてエアーカーテンを形成する。このエアーカーテンは、送風機904から上側ガイド板906に至る空気が、上側ガイド板906から下側ガイド板905へ、さらに下側ガイド板905から上側ガイド板906に至る対流する空気によるエアーカーテンから構成される。
これにより、エアーカーテン機構99によって、エアーが下側ガイド板905及び上側ガイド板906間を対流(循環)するようになるので、外部から冷却処理部90に塵埃等が入らないようにできると共に、窒素ガスのチャンバー50内から外部への漏洩を防止できるようになる。この結果、窒素ガス資源を効率良く使用できるようになる。
本例において、雰囲気送入口801及び雰囲気排出口802を蓋体ユニット80として構成した場合について説明したが、チャンバー50に一体として設けてもよい。また、本例においては、窒素ガス雰囲気(不活性ガス雰囲気)でのはんだ付けの場合について説明したが、大気雰囲気でのはんだ付けであってもよい。以下は、蓋体ユニット80及び窒素ガス雰囲気(不活性ガス雰囲気)の例について説明する。
続いて、図2を参照して、第1の実施例としての蓋体支持密閉構造例について説明する。図2に示す蓋体支持密閉機構30は蓋体支持密閉構造を成すものであり、噴流はんだ付け装置100の熱処理部20及び冷却処理部90に備えられる。上述した熱処理部20及び冷却処理部90は、図5に示すような断面凹状の長尺溝構造を有している。熱処理部20は溝構造上部に開口部201を有し、冷却処理部90は溝構造上部に開口部901を有している。蓋体支持密閉機構30は開口部201や、開口部901等を密閉するための天板取り付け機構を提供する。
蓋体支持密閉機構30は、4枚の矩形状の蓋体31〜34(図中、蓋体32のみを示す)、2枚の蓋体91,92及び、長尺状の一対の摺動支持部材35a,35bを有して構成される。蓋体32は仕切部材可動機構40を備えないものである。
蓋体32は複数の蓋部材の一例を構成し、その内部は断熱構造を有している。蓋体32の所定の面、この例では、熱処理部20の開口部201に対向させる面には、一対の短尺状の断面櫛刃形を有した係合溝部36a,36bが設けられる。係合溝部36a,36bは蓋体32の所定の面において、プリント基板1の搬送方向に沿って配設される。係合溝部36aには断面櫛刃形を成す複数の凹凸状の溝部位が設けられ、係合溝部36aが多溝レール形状を構成している。溝部位は6本の場合である。係合溝部36bも同様に構成される。蓋体32は、熱処理部20の開口部201上を密閉するように取り扱われる。
上述の蓋体32が取り付けられる摺動支持部材35aは、長尺状の断面櫛刃形を成した被係合溝部37aを有している。この例で、被係合溝部37aには、断面櫛刃形を成す複数の凹凸状の溝部位が設けられ、被係合溝部37aが多溝レール形状を構成している。溝部位は6本の場合である。被係合溝部37bも同様に構成される。摺動支持部材35a,35bは、熱処理部20の開口部201で相互に対峙する辺に沿って配設されている。
蓋体32の係合溝部36a,36bは、摺動支持部材35a,35bの被係合溝部37a,37bに各々嵌合される。例えば、係合溝部36a,36bの凸状の各々の部位が被係合溝部37a,37bの凹状の各々の部位に対応して組み(噛み)合わされる。この例で、係合溝部36a,36bや、被係合溝部37a,37bの凹凸状の噛み合わせ部分には、空気断熱層が構成される。従来方式のシリコンゴム接触面に比べてより断熱効果が向上できるようになった。
なお、係合溝部36a,36bや、被係合溝部37a,37bのレール材質には、アルミニウムや、鉄、ステンレス等が使用される。上下で熱膨張を揃えるために、係合溝部36a,36bや、被係合溝部37a,37b等のレール材質を同じ材質することが好ましい。
続いて、図3〜図6を参照して、蓋体支持密閉機構30の組立例(その1〜4)について説明する。この例では、図2に示した蓋体支持密閉機構30を組み立てる場合を前提とする。まず、図3に示す蓋体32の所定の面に短尺かつ多溝レール状の係合溝部36a,36bを取り付ける。
蓋体32には内部に断熱材(空間でもよい)を設けたものを準備する。係合溝部36a,36bの長さは、蓋体32の長さに等しいものを準備する。係合溝部36a,36bは耐熱性の両面テープや、耐熱性の接着剤を使用して蓋体32の所定の面に貼り付ける。または、係合溝部36a,36bを蓋体32の所定の面にネジ止めする。
次に、図4に示す係合溝部36a,36bを取り付けた蓋体32の小口面の各々に隙間充填部材38a,38bを取り付ける。隙間充填部材38a,38bは係合溝部36a,36bの多溝レール形状の断面及び、蓋体32の隣接面(小口面)を象るように形成する。ここに隣接面とは、2つの蓋体31や、蓋体32等が隣接する側の面をいう。隙間充填部材38a,38bには耐熱性のシリコンゴムシートが使用される。
隙間充填部材38aは係合溝部36a,36bの多溝レール形状の断面及び、蓋体32の小口面を位置合わせした後に、その断面及び小口面に貼り付ける。隙間充填部材38aの貼り付けには、耐熱性の接着剤を使用する。隙間充填部材38bも同様に接合する。なお、隙間充填部材38a,38bは蓋体32側の矩形部分と係合溝部36a,36b側の櫛刃形部分とを分割して構成してもよい。
この例で、隙間充填部材38aは、一方の蓋体32と、隣接する他方の蓋体31との間、及び、一方の蓋体32の係合溝部36a,36bと、隣接する他方の蓋体31の係合溝部36a,36bとの間に設けられて気密を保持する。隙間充填部材38bは、一方の蓋体32と、隣接する他方の蓋体33との間、及び、一方の蓋体32の係合溝部36a,36bと、隣接する他方の蓋体33の係合溝部36a,36bとの間に設けられて気密を保持する。
次に、図5に示す多溝レール状の摺動支持部材35aを熱処理部20の上縁内側の右端部に取り付ける。同様にして、多溝レール状の摺動支持部材35bを熱処理部20の上縁内側の左端部に取り付ける。摺動支持部材35a,35bは、図示しないネジや、留め金等の係合部材でしっかりと熱処理部20の上縁内側に固定する。図1に示した冷却処理部90の側も同様に組み立てる。
その後、図6に示す蓋体32で熱処理部20上の開口部201を覆い被せる。例えば、係合溝部36aの凸状の部位が被係合溝部37aの凹状の部位に対応して組み(噛み)合わされ、係合溝部36bの凸状の部位が被係合溝部37bの凹状の部位に対応して組み合わされる。係合溝部36a,36bや、被係合溝部37a,37bの凹凸状の噛み合わせ部分には、空気断熱層が構成される。
これにより、摺動支持部材35a,35bによって、蓋体32等を摺動自在に支持できるようになる。また、図1に示した矩形状の熱処理部20上の開口部201を4枚の蓋体31〜34(蓋部材)で密閉できるようになる。更に、蓋体32等が摺動可能となったことから、当該蓋体32等を容易に開口部201に取り付けられるばかりか、熱処理部20の点検及び復旧作業を容易に行えるようになる。
続いて、図7(A)、(B)及び図8(A)〜(C)を参照して、蓋体支持密閉機構30の取扱例(その1、2)について説明する。この例では、図7Aに示すように、熱処理部20の開口部201に仕切部材可動機構40の付いた蓋体31及び蓋体34を取り付けると共に、蓋体31と蓋体34との間に仕切部材可動機構40の付いていない蓋体32及び蓋体33を取り付ける場合、及び、冷却処理部90の開口部901に仕切部材可動機構40の付いた蓋体91及び蓋体92を取り付ける場合について説明する。
もちろん、蓋体91,92には、蓋体32で説明したような所定の方向に沿って配設された一対の多溝レール状の係合溝部36a,36bが設けられている。蓋体91,92は、冷却処理部90の開口部901上を密閉するように取り扱われる。冷却処理部90の側の摺動支持部材35a,35bも、その開口部901で相互に対峙する辺に沿って配設された一対の多溝レール状の被係合溝部37a,37bを有しており、蓋体91,92を摺動自在に支持する。
これらを取り扱い条件にして、図7Bに示す蓋体34を熱処理部20上の開口部201に位置合わせし、蓋体34を熱処理部20の側の摺動支持部材35a,35bに載置する。その状態で図中、白抜き矢印IIに示す方向に蓋体34を上流側から下流側へスライドして蓋体34の端部をチャンバー50の左端外壁に押し付けて、図示しない係合部材で蓋体34をチャンバー50に固定する。
同様にして、図7Bに示す白抜き矢印IIIの方向に蓋体91を冷却処理部90上の開口部901に位置合わせし、蓋体91を冷却処理部90の側の多溝レール状の摺動支持部材35a,35bに載置する。このとき、蓋体91の多溝レール状の係合溝部36aが摺動支持部材35aの被係合溝部37aに嵌合され、その係合溝部36bが摺動支持部材35bの被係合溝部37bに各々嵌合される。その状態で同図に示す白抜き矢印IVの方向に蓋体91を下流側から上流側へスライドして蓋体91の端部をチャンバー50の右端外壁に押し付けて、図示しない係合部材で蓋体91をチャンバー50に固定する。
次に、図8Aに示す白抜き矢印Vの方向に蓋体33を熱処理部20上の開口部201に位置合わせし、蓋体33を熱処理部20の側の摺動支持部材35a,35bに載置する。その状態で同図に示す白抜き矢印VIの方向に蓋体33を上流側から下流側へスライドして蓋体33の端部を蓋体34の端部に押し付けて、図示しない係合部材で蓋体33を蓋体34に固定する。
同様にして、図8Aに示す白抜き矢印VIIの方向に蓋体92を冷却処理部90上の開口部901に位置合わせし、蓋体92を冷却処理部90の側の摺動支持部材35a,35bに載置する。その状態で蓋体92を下流側から上流側へスライドして蓋体92の端部を蓋体91の端部に押し付けて、図示しない係合部材で蓋体91を蓋体92に固定する。この構造によって、冷却処理部90で蓋体91,92を気密性良く支持できるようになり、かつ、蓋体91,92で気密性良く冷却処理部90を密閉できるようになる。
同様にして、図8Bに示す蓋体32を熱処理部20上の開口部201に位置合わせし、蓋体32を熱処理部20の側の摺動支持部材35a,35bに載置する。その状態で同図に示す白抜き矢印VIIIの方向に蓋体32を上流側から下流側へスライドして蓋体32の端部を蓋体33の端部に押し付けて、図示しない係合部材で蓋体32を蓋体33に固定する。
その後、図8Bに示す白抜き矢印IXの方向に蓋体31を熱処理部20上の開口部201に位置合わせし、蓋体31の端部を蓋体33の端部に押し付けながら、熱処理部20の側の摺動支持部材35a,35bに載置し、図示しない係合部材で蓋体31を蓋体32に固定する。これにより、図8Cに示すように、熱処理部20の開口部201に仕切部材可動機構40の付いた蓋体31及び蓋体34を取り付けると共に、蓋体31と蓋体34との間に仕切部材可動機構40の付いていない蓋体32及び蓋体33を取り付け、及び、冷却処理部90の開口部901に仕切部材可動機構40の付いた蓋体91及び蓋体92を取り付けることができる。
このように第1の実施例としての噴流はんだ付け装置100によれば、蓋体31〜34は各々の所定の方向に沿って配設された一対の係合溝部36a,36bを有している。熱処理部20の側に設けられた摺動支持部材35a,35bは、熱処理部20の開口部201で相互に対峙する辺に沿って配設された一対の被係合溝部37a,37bを有している。
これを前提にして、熱処理部20の開口部201上を4枚の蓋体31,32,33,34で密閉する際に、蓋体31〜蓋体33の係合溝部36aが摺動支持部材35aの被係合溝部37aに嵌合され、その係合溝部36bが摺動支持部材35bの被係合溝部37bに各々嵌合される。
従って、最後の例えば、蓋体31を除く他の蓋体32〜蓋体34を熱処理部20上において、摺動自在に、かつ、気密性良く支持(密閉)すること、及び、最後の蓋体31で気密性良く熱処理部20を密閉できるようになる。
また、蓋体91,92は各々の所定の方向に沿って配設された一対の係合溝部36a,36bを有している。冷却処理部90の側に設けられた摺動支持部材35a,35bは、冷却処理部90の開口部901で相互に対峙する辺に沿って配設された一対の被係合溝部37a,37bを有している。
これを前提にして、冷却処理部90の開口部901上を2枚の蓋体91,92で密閉する際に、蓋体91の係合溝部36aが摺動支持部材35aの被係合溝部37aに嵌合され、その係合溝部36bが摺動支持部材35bの被係合溝部37bに各々嵌合される。
従って、最後に取り付ける蓋体92を除く、蓋体91を冷却処理部90上において、摺動自在に、かつ、気密性良く支持(密閉)すること、及び、最後の蓋体92で気密性良く冷却処理部90を密閉できるようになる。これにより、当該蓋体支持密閉機構30を備えた噴流はんだ付け装置を提供できるようになる。
なお、蓋体31〜34、蓋体91及び92の開口部201,901への取り付け順序は、上記した実施例の順序に限定されることはなく、必要に応じて適宜変更できる。本例においては、蓋体31〜34、蓋体91及び92を取り外し可能な形態で説明したが、これに限られることはなく、ヒンジ機構で開閉可能な形態の蓋体にも適用できる。
続いて、図9及び図10を参照して、第2の実施例としての仕切部材可動構造例及びその組立例について説明する。図9に示す仕切部材可動機構40は、図1に示した噴流はんだ付け装置100の熱処理部20の開口部201を密閉する蓋体31,34及び、冷却処理部90の開口部901を密閉する蓋体91,92に備えられる。
図9において、蓋体31は筺体構造の本体部301を有している。本体部301には図10に示すような仕切部材可動機構40が設けられる。仕切部材可動機構40は、複数のラビリンス部43、1枚の摺動基板44、11本の係止部材47、2本の係止部材48の他に、図10に示す4個の固定部材45a〜45b、断面凹状の2個の梗塞座部材46a,46bを有して構成される。仕切部材可動機構40は、仕切部材の一例を構成するラビリンス部43が外部へ露出する垂れ下がり長さ(以下露出長さL1,L2,L3という:図13参照)を調整するように取り扱われる。
この例では、梗塞座部材46a,46bには所定の形状を有した指標部401が設けられ、本体部301には、指標部401の一端が差し示す位置にスケール部402を有している。指標部401は例えば赤色の三角マークである。
スケール部402には、ラビリンス部43の露出長さL1〜L3を読み取り可能な目盛りが設けられる。目盛りは例えば1mm単位の等分目盛りで黒色で形成される。もちろん、固定側に指標部401を設け、可動側にスケール部402を設けてもよい。これにより、蓋体31を開放せずとも、蓋体31上でラビリンス部43の露出長さL1〜L3を確認できるようになる。
続いて、図10〜図12を参照して、仕切部材可動機構40を含む蓋体31の組立例について説明する。この例では、図12に示す11本のスリット41が下部板304の所定の位置に開口され、スリット41毎にラビリンス部43を通すようになされる。全てのラビリンス部43は摺動基板44に共通して取り付ける。その際にラビリンス部43は列単位毎に摺動基板44のスリット49に挿入する。ラビリンス部43は、その一端が下部板304のスリット41毎に通されて熱処理部20の側に吊設して(垂れ下がる状態で)使用される。
これらを組立条件にして、ラビリンス部43にはその個々が短冊状を有したものを使用する。ラビリンス部43は摺動基板44に対してマトリクス状に配置される。当該ラビリンス部43と隣接するラビリンス部43とは、気密性を向上させるために、各々がオーバーラップして取り付けられることが好ましい。この例では11列×10行の合計110本のラビリンス部43が摺動基板44に取り付けられる。ラビリンス部43は耐熱性のゴム系の樹脂部材から構成される。摺動基板44には、所定の厚みを有した鉄板に11本のスリット49を開口加工したもの使用する。
この例で、図10に示す摺動基板44に、ラビリンス部43の各々の他端を取り付けると共に、ラビリンス部43及び摺動基板44から成る中間組立体を本体部301内に組み込むようにする。例えば、11本のスリット49を有した摺動基板44において、そのスリット49毎に、ラビリンス部43の端部をほぼ直角に折るようにその上部で係止部材47により固定する。ここで摺動基板44のスリット49を直角に折るように取り付けられたラビリンス部43の端部を、行方向の一対の係止部材48及び列方向の11本の係止部材47で摺動基板44に井桁に組んで固定するように組み立てる。これにより、ラビリンス部43が固定された摺動基板44から成る中間組立体が得られる。
次に、ラビリンス部43及び摺動基板44から成る中間組立体を本体部301の内部に実装する。図11に示す本体部301は、矩形状の枠部材302及び上部板303と、図12に示す矩形状の下部板304とを有して構成される。本体部301は、その一方の面側を構成する下部板304に、図12に示すような複数のスリット41を有しており、図11に示すような他方の面側を構成する上部板303に、一対の長孔部42a〜42dを有している。
4個の長孔部42a〜42dが上部板303の所定の位置に開口され、長孔部42a〜42d及び、固定部材45a〜45dを介して摺動基板44の摺動位置を設定するようになされる。この例では、摺動基板44の水平方向の動きが、ラビリンス部43の垂直方向の動きに変換される(図13参照)。
これらを組立条件にして、枠部材302と下部板304を組み立てて筺体を作成する。この筺体を構成する本体部301の内部に、上述の摺動基板44から成る中間組立体を実装する。その際に、下部板304の所定の位置に開口された11本のスリット41毎にラビリンス部43を通す。その後、摺動基板44上に上部板303を取り付ける。更に、長孔部42a,42b、梗塞座部材46aを介して固定部材45a,45bを摺動基板44の一方の端部に螺合する。
また、長孔部42c,42d、梗塞座部材46bを介して固定部材45c,45dを摺動基板44の他方の端部に螺合する。固定部材45a〜45dには頭部に滑り止め加工を施したボルトネジが使用される。梗塞座部材46aには、少なくとも、本体部301の長孔部42a〜42dを覆う幅及び長さを有した断面凹状のものを使用する。これにより、当該本体部301の基板搬送方向に対してほぼ平行に摺動基板44を摺動自在に係合できるようになる。その際に、ラビリンス部43の露出長さL1〜L3を調整する。その後、固定部材45a〜45dを固定する。そして、隙間充填部材38a,38bを蓋体31の隣接面に接着する(図4参照)。これにより、図9に示したような仕切部材可動機構40を含む蓋体31が完成する。
このように完成した仕切部材可動機構40を有する蓋体31は、熱処理部20の基板搬入口202の付近(予備加熱ゾーン21)に設けられる。同機構を有する蓋体34は、チャンバー50の基板連通口203の付近(予備加熱ゾーン24)に設けられ、同機構を有する蓋体91は、冷却処理部90の基板連通口903の付近に設けられ、同機構を有する蓋体92は、冷却処理後のプリント基板1を排出する基板搬出口902に設けられる(図7参照)。
続いて、図13(A)〜(B)を参照して、仕切部材可動機構40の動作例について説明する。この例で、仕切部材可動機構40は電子部品の実装高さに対応してラビリンス部43の露出長さL1〜L3を可変できるようにした。ラビリンス部43はスリット41から外部へ、露出長さL1〜L3を有してたれ下がる。
図13Aに示すL1はラビリンス部43の最大の露出長さである。同図に示すV1は固定部材45aの位置に係る最小離隔距離である。最小離隔距離V1は固定部材45aの軸芯から蓋体31の端部に至る距離である。この例では、固定部材45aが最小離隔距離V1に位置する場合にラビリンス部43を最大の露出長さL1に設定できるようになる。
図13Bに示すL2はラビリンス部43の中間の露出長さである。同図に示すV2は、固定部材45aの位置に係る中間離隔距離である。中間離隔距離V2は図13Aに示した位置から右側に固定部材45aが移動された後の固定部材45aの軸芯から蓋体31の端部に至る距離である。この例では、固定部材45aが中間離隔距離V2に位置する場合にラビリンス部43を中間の露出長さL2に設定できるようになる。
図13Cに示すL3はラビリンス部43の最小の露出長さである。同図に示すV3は、固定部材45aの位置に係る最大離隔距離である。最大離隔距離V3は図13Bに示した位置から更に右側に固定部材45aが移動された後の固定部材45aの軸芯から蓋体31の端部に至る距離である。この例では、固定部材45aが最大離隔距離V3に位置する場合にラビリンス部43を最小の露出長さL3に設定できるようになる(L1>L2>L3)。
なお、スリット41から取り込まれたラビリンス部43は、蓋体31の下部板304の内側と摺動基板44との間に引っ張り込む形態で収納される。また、仕切部材可動機構40を有した他の蓋体34,91,92も同様に機能するので、その説明は省略する。
このように第2の実施例としての噴流はんだ付け装置100によれば、仕切部材可動機構40を有した蓋体31,34,91,92を備え、上部に開口部201を有した熱処理部20の側へ垂れ下げるラビリンス部43を電子部品に対応して可動する場合に、一対の固定部材45a〜45dを緩めると、本体部301の長孔部42a〜42dを介して固定されている摺動基板44であって、ラビリンス部43の各々の他端が取り付けられると共に、本体部301内に組み込まれた摺動基板44が、当該本体部301の基板搬送方向に対して摺動自在に係合されるようになる。
従って、長孔部42a〜42dの長さによって規制される範囲内で摺動基板44を移動すると、本体部301のスリット41から熱処理部20の側に垂れ下がるラビリンス部43の長さを自在に調整できるようになる。これにより、プリント基板1に対する電子部品の取り付け高さに対応してラビリンス部43の露出長さL1〜L3を自在に設定できるようになる。
しかも、本発明の仕切部材可動機構40と従来方式のラビリンス高さ調整機構とを比較した場合に、本発明では、従来方式のようなラビリンス部(抵抗体)を支持するラビリンス取付体自体を高さ方向へ移動する機構を省略すること、及び、外気遮断用の手段も省略することができ、従来方式のラビリンス高さ調整機構に比べて本発明の仕切部材可動機構40の簡易化が図れる。
更に、仕切部材可動機構40を有した蓋体31等と熱処理部20の搬送部10の上面との間の距離は、ラビリンス高さ調整を行っても、従来方式に比べて一定なので、ラビリンス高さを調整した後の窒素ガスの導入量もほぼ一定に保つことができる。従来方式は、ラビリンスを垂直方向に上昇させた分の容積に窒素ガスが必要になる。
この例では、ボルトネジ等の固定部材45a〜45dで摺動基板44を固定する場合について説明したが、これに限られることはなく、蓋体31に駆動部を設け、部品の高さを計測した結果に基づいて、当該駆動部により摺動基板44を駆動し、自動的にラビリンス部43の高さを自動調整してもよい。
続いて、図14及び図15を参照して、第3の実施例として両端ガス供給機構70の構成例について説明する。図14に示す両端ガス供給機構70は、図1に示した噴流はんだ付け装置100に備えられる。両端ガス供給機構70は、図1に示した1組のガス供給部71,72と、ノズル管路75と、拡散部材76a,76bから構成される。
ノズル管路75は両端部にガス供給口を有し、かつ、所定の位置に複数のガス噴出口704を有して、窒素ガスを噴流はんだ槽60上の所定の方向に噴出する。例えば、ノズル管路75は、噴流はんだ槽60上の周縁部であって、プリント基板1が搬送される搬送方向とほぼ直交する方向に沿って配設される。ノズル管路75には、両端部から個々に窒素ガスが供給される。ノズル管路75には銅パイプやステンレスパイプ等が使用される。
この例で、噴流はんだ槽60上の周囲縁部には拡散部材76a,76bが備えられ、ノズル管路75から噴出される窒素ガスを噴流はんだ槽60上の周囲縁部に拡散するようになされる。拡散部材76a,76bは、チャンバー50の開口部501の下方に配置される。
図15に示すノズル管路75は、U状部分75a,75b、水平部分75c及び管路接続部701,702,711,712から構成される。この例では水平部分75cに8個のガス噴出口704が開口されている。ガス噴出口704は水平部分75cの中心部位から左右に同一ピッチで4個ずつ一列に並べられている。ガス噴出口704の開口方向は、プリント基板1の搬送方向であって、図中で、斜め右上部である。
U状部分75aの一端は、管路接続部711を介して水平部分75cの一端に接続される。U状部分75aの他端は、管路接続部701に接続される。U状部分75bの一端は、管路接続部712を介して水平部分75cの他端に接続される。U状部分75bの他端は管路接続部702に接続される。管路接続部701,702は、断面L状のアングル架台77に取り付けられる。アングル架台77は図14に示した噴流はんだ槽60上の周縁部に固定される。これにより、ノズル管路75を管路接続部701,702を介してアングル架台77に固定できるようになる。
管路接続部701,702はノズル管路75の両端部でガス供給口を構成する。管路接続部701は図示しないガス管路に接続されてガス供給部71に接続され、窒素ガスが供給される。管路接続部702も図示しないガス管路に接続されてガス供給部72に接続され、窒素ガスが供給される。上記のU状部分75a,75b、水平部分75cは一本のパイプから形成してもよい。このように構成すると、管路接続部711,712が不要となる。
このようなノズル管路75を噴流はんだ槽60上に配設すると、プリント基板1のはんだ付け完了直前、直後のいわゆるビールバックポイントにおいて、所定の方向に搬送されるプリント基板1の幅方向に窒素ガスを噴射できるようになる。例えば、ガス供給部71,72によって、P1=P2で窒素ガスを均等にプリント基板1の幅方向に噴出できるようになる。
この例で、ノズル管路75は、両端部からガス噴出口704に至る部分の一部が噴流はんだ槽60内に導かれて浸漬される迂回構造を有する。例えば、U状部分75a,75bが噴流はんだ槽60内に浸漬する構造となされる。このようにノズル管路75を構成すると、ガス噴出口404から窒素ガスを噴出する前に当該窒素ガスを予備加熱できるようになる。
この例では、管路接続部702に隣接して管路接続部703がアングル架台77に取り付けられる。管路接続部703には、窒素ガス検出用の開放管路78が接続される。開放管路78は噴流はんだ槽60上の窒素ガスの濃度を測定するために設けられる。開放管路78は窒素ガスを取り込む開放口708を有している。開放口708は、プリント基板1の搬送方向であって、その下流側に向くように設定されている。この開放口708を下流側に向くようにしたのは、拡散部材76a内の窒素ガスをより正確に測定することと、開放口708に溶融はんだ7が入り込まないようにするためである。
続いて、図16及び図17を参照して、拡散部材76a,76b、その周辺部の構成例及びその機能例について説明する。図16に示すチャンバー50は箱体を有し、その箱体の上下左右に開口部を有している。上部側の開口部501には、後述する蓋体ユニット80が組み合わされる。下部側の開口部502には噴流はんだ槽60が組み合わされる。左部側の開口部503(基板連通口203)には熱処理部20が組み合わされる。右部側の開口部504(基板連通口903)には冷却処理部90が組み合わされる。
この例で、噴流はんだ槽60上の周囲縁部には拡散部材76a,76bが備えられる。拡散部材76a,76bは、チャンバー50の開口部502の下面側に取り付けられる。開口部502の下面側には仕切壁部58が設けられ、拡散部材76aは仕切壁部58に沿って取り付けられる。拡散部材76a,76bには折り曲げ加工を施した鉄板やステンレス板等が使用される。
上述した拡散部材76aは、図17に示すようにノズル管路75を包含する形態で組み立てられる。拡散部材76aは、ノズル管路75から噴出される窒素ガスを所定の方向、例えば、ビールバックポイントに導く傾斜案内部位721を含む仕切壁部722を有し、傾斜案内部位721及び仕切壁部722に開口されたガス拡散用の複数の孔部706,707を含む拡散構造を有している。孔部706は傾斜案内部位721に設けられ、孔部707は仕切壁部722に設けられる(図18参照)。また、仕切壁部722は噴流はんだ槽60の溶融はんだ7内に常時浸漬させるように設けられている。これは窒素ガス雰囲気の濃度の変化を避けるためである。
図17において、窒素ガスは図中、矢印に示すように、拡散部材76aの内側において、ノズル管路75のガス噴出口704から仕切壁部722と対峙する側又は傾斜案内部位721に隣接する側に向けて噴出される。このガス噴出口704の向きは、直接、窒素ガスが噴流はんだ槽60の液面に吹き罹らないようにするためである。
また、図中の分離壁部79は所定の厚みを有した板金部材から構成され、ノズル管路75の水平部分75cのほぼ中心部位に対向する位置であって、チャンバー50の下方の仕切壁部58から突出するように設けられる。分離壁部79は、ノズル管路45の左側の4個のガス噴出口704から噴出された窒素ガスの拡散領域と、右側の4個のガス噴出口704から噴出された窒素ガスの拡散領域とを分離(画定)するように機能する。
なお、拡散部材76bも同様に構成されるので、その説明を省略する。このような拡散部材76a,76bを備えると、ビールバックポイントに窒素ガスを噴射することができると共に、窒素ガスを噴流はんだ槽60上の周囲縁部の方向へ、より柔軟に拡散できるようになる。
この例では、図16に示すように、ガス噴出部の一例を構成する2つの蒲鉾状の拡散ノズル51,52がチャンバー50内に設けられ、噴流はんだ槽60の上部側からもチャンバー内に窒素ガスを噴出するようになされる。拡散ノズル51は、ノズル管路505、拡散板507及びノズル本体部509を有して構成される。ノズル本体部509は筒体を半分に切断したような断面円弧状を有しており、その切断部分が開口部となされる。図中、二点鎖線で示す部分は、ラビリンス(仕切)部材であり、チャンバー50内でも、その上部から下部へ垂れ下がっている。必要に応じて、適宜、部分的にまたは全部削除しても良い。
ノズル管路505はノズル本体部509内に包含され、ノズル管路505は、一対のブラケット53に回転自在に係合される。ブラケット53はノズル管路505を軸体とした軸受け機能を有している。ブラケット53はチャンバー50内のL状の垂下部55に取り付けられる。ノズル管路505はガス供給部73に接続される。拡散板507は、図示しないガス噴出用の複数の孔部を有しており、ノズル本体部509の開口部分を覆うように取り付けられる。
拡散ノズル52は、ノズル管路506、拡散板508及びノズル本体部510を有して構成される。ノズル本体部510は筒体を半分に切断したような断面円弧状を有しており、その切断部分が開口部となされる。ノズル管路506はノズル本体部510内に包含され、ノズル管路506は、一対のブラケット54に回転自在に係合される。ブラケット54はノズル管路506を軸体とした軸受け機能を有している。
ブラケット54はチャンバー50内のL状の垂下部56に取り付けられる。ノズル管路506はガス供給部73に接続される。拡散板508は、図示しないガス噴出用の複数の孔部を有しており、ノズル本体部510の開口部分を覆うように取り付けられる。なお、図中、θ1,θ2は拡散角度である。
例えば、拡散角度θ1は図中の一点鎖線に示す水平基線と、破線に示す拡散中心基線との間の角度である。拡散中心基線は拡散ノズル51において、ノズル管路505の管中心と、拡散板507の幅方向の中心を結ぶ線分である。拡散ノズル52についても同様に定義される。これらの構造により、拡散ノズル51,52はブラケット53,54を基準にして、拡散角度θ1,θ2を自在に調整できるようになる。
続いて、図18を参照して、ノズル管路75の制御例について説明する。図18に示すノズル管路75の制御系によれば、入力部64及び供給制御部605を有して、ガス供給部71,72の制御を実行する。
入力部64は、実装分布情報(以下実装分布データD64という)を入力するように操作される。実装分布データD64は、プリント基板1に取り付けられる電子部品の実装分布を示すデータである。例えば、実装分布データD64は、プリント基板1の搬送方向と直交する幅方向において、当該プリント基板1の幅を中心部分で2分する左右の領域に分布するはんだ付け箇所の数や、プリント基板1に実装される電子部品の高さ等の情報である。実装分布データD64は入力部64から供給制御部605へ出力される。
入力部64には供給制御部605が接続される。供給制御部605は、窒素ガスの供給圧力を実装分布データD64に対応して調整するようにガス供給部71,72を制御する。窒素ガスは、ノズル管路75の各々一端部から供給される。供給制御部605は、実装分布データD64に対応して供給制御信号S71,S72を生成する。
この例で、ノズル管路75の一端部へ供給する窒素ガスの加圧力をP1とし、当該ノズル管路75の他端部へ供給する窒素ガスの加圧力をP2としたとき、供給制御部605は、実装分布データD64が、プリント基板1に均等に電子部品を取り付ける内容の実装分布を示す場合に、窒素ガスの加圧力をP1=P2となるような供給制御信号S71,S72を生成する。このような供給制御信号S71をガス供給部71に出力し、供給制御信号S72をガス供給部72に出力する。
また、実装分布データD64が、プリント基板1の一端(例えば、左端)部側に片寄って電子部品を取り付ける内容の実装分布を示す場合に、窒素ガスの加圧力をP1>P2となるような供給制御信号S71,S72を生成する。このような供給制御信号S71をガス供給部71に出力し、供給制御信号S72をガス供給部72に出力する。
更に、実装分布データD64が、プリント基板1の他端(右端)部側に片寄って電子部品を取り付ける内容の実装分布を示す場合に、窒素ガスの加圧力をP1<P2となるよう供給制御信号S71,S72を生成する。このような供給制御信号S71をガス供給部71に出力し、供給制御信号S72をガス供給部72に出力して、当該ガス供給部71,72を制御する。
ガス供給部71は、供給制御信号S71に基づいてノズル管路75の一端部から窒素ガスを供給する。ガス供給部72は、供給制御信号S72に基づいてノズル管路75の他端部から窒素ガスを供給する。これにより、個々のガス供給部71,72からノズル管路75の両端部に窒素ガスを個々に供給できるようになる。
ここで、図19A及びBを参照して、ガス供給部71,72及びノズル管路75と電気回路等の関係例について説明する。図19Aに示す窒素ガス供給系は、図19Bに示すような抵抗r,抵抗Rを梯子状に接続した電気回路に置き換えて動作を考察することができる。
図19Aに示す窒素ガス供給系のガス供給部71,72及びN2ガスタンク74は、図19Bに示す梯子状の電気回路の両端部から電流(窒素ガス)を供給する直流電源E1,E2に対応している。大気がGND(大地)に対応している。
ノズル管路75に開口された8個(a,b,c,d,e,f,g,h点)のガス噴出口704は、電気回路の抵抗Rに対応する。窒素ガス供給系のノズル管路75の総抵抗は、電気回路の抵抗Σrに対応する。抵抗rはガス噴出口704間、例えば、E1−a間、a−b間、b−c間・・・g−h間、h−E2間等の抵抗に相当する。抵抗Rは抵抗rに比べて大きい(R>>r)。
窒素ガス供給系で、窒素ガスの加圧力をP1=P2に設定したとき、すなわち、電気回路の直流電源をE1=E2に設定した場合は、重ね合わせの理により、d−e点間には電流が流れないので、8個のa,b,c,d,e,f,g,h点から各々GNDに均等に電流(窒素ガス)が流れる。
一方、窒素ガス供給系で、窒素ガスの加圧力をP1>P2に設定したとき、すなわち、電気回路の直流電源をE1>E2に設定した場合は、重ね合わせの理により、d−e点間には実線の矢印に示す方向に電流が流れるので、右側半分の4個のe,f,g,h点から各々GNDに流れる電流(窒素ガス)に比べて、左側半分の4個のa,b,c,d点から各々GNDへ流れる電流(窒素ガス)が多くなる。
反対に、窒素ガスの加圧力をP1<P2に設定したとき、すなわち、電気回路の直流電源をE1<E2に設定した場合は、重ね合わせの理により、d−e点間には破線の矢印に示す方向に電流が流れるので、左側半分の4個のa,b,c,d点から各々GNDへ流れる電流(窒素ガス)に比べて、右側半分の4個のe,f,g,h点から各々GNDに流れる電流(窒素ガス)が多くなる。
このように第3の実施例としての噴流はんだ付け装置100によれば、両端ガス供給機構70を備え、供給制御部605がプリント基板1に取り付けられる電子部品の実装分布データD64に対応して、ノズル管路75の一端部から供給する窒素ガスの供給圧力を調整するように、個々のガス供給部71,72を制御する。
この調整制御によって、電子部品の実装分布に対応した窒素ガスを噴流はんだ槽60上の所定の方向に噴出することができる。これにより、プリント基板1の搬送方向を基準にして、電子部品が当該プリント基板1の一方の側に片寄って実装されている場合、電子部品が片寄って実装された側に多く窒素ガスを噴出できるようになる。また、開放管路78でサンプリングされた窒素ガスの濃度を測定し、その測定結果に基づいて供給制御部605を介して窒素ガスの濃度(流量)を調整することもできる。
続いて、図20〜図23を参照して、第4の実施例としての蓋体ユニット80の構成例及びその機能例について説明する。図20に示す蓋体ユニット80は噴流はんだ付け装置100のチャンバー50上に取り付けられる。この例では、拡散ノズル51,52を内包するチャンバー50の上方側に、蓋体ユニット80が取り付けられる。蓋体ユニット80は、スリット付きの筺体構造(扁平筺体空間)の本体部84を有している。
本体部84には雰囲気送入口801及び雰囲気排出口802が設けられる。雰囲気送入口801及び雰囲気排出口802は、プリント基板1の搬送方向に対してほぼ平行に設けられる。例えば、雰囲気送入口801は、プリント基板1を搬送する方向とほぼ直交する面であって、本体部84の一方の側面に設けられ、雰囲気排出口802は、本体部84の一方の側面に対向する他方の面に設けられる。
雰囲気送入口801にはL状の吸気管88が接続され、フラックスヒュームを除去した窒素ガスを含む雰囲気が供給される。雰囲気排出口802にもL状の排気管89が接続され、フラックスヒュームを含んだ雰囲気が排出される。このように吸気管88,89を蓋体ユニット80の側面に配置したことで、管路部材等が垂直方向へ延在する事態が避けられ、噴流はんだ装置100の全体高さを低く設計できるようになった。
本体部84の底面部位にはスリット806が設けられる。蓋体ユニット80は、スリット806を介して、チャンバー50内からフラックスヒュームを含んだ雰囲気を取り込むようになされる。スリット806の数は、その幅及び長さにもよるが、例えば、5乃至10本程度である。
この例で、本体部84の内側において、雰囲気送入口801の下流側には、2枚の第1の整流板85a,85b(フィルタ壁)が設けられる。雰囲気排出口802の上流側にも2枚の第2の整流板85c,85dが設けられる。整流板85a〜85dの各々には複数の孔部が設けられる。整流板85a,85bは、フラックスヒュームを除去した窒素ガスを含む雰囲気を複数の孔部に通すことで、その流れを整えるように機能する。整流板85c,85dは、フラックスヒュームを含んだ雰囲気を複数の孔部に通すことで、その流れを整えるように機能する。
この例で、本体部84の雰囲気送入口801の側の面に第1の取っ手(以下ハンドル87aという)が設けられ、本体部84の雰囲気排出口802の側の面に第2の取っ手(以下ハンドル87bという)が設けられる。ハンドル87a,87bは、点検時、蓋体ユニット80を持ち運び易くするために、蓋体ユニット80の左側面の手前側と、右側面の奥側とに取り付けられる。これにより、当該蓋体ユニット80を対角線上で把持できるようになる。
本体部84の上部には天板部材86が取り付けられる。天板部材86には点検用の窓部805が設けられ、蓋体ユニット80の内部を目視点検できるようになっている。窓部805には耐熱ガラスが使用される。
続いて、図21及び図22を参照して、蓋体ユニット80の組立例(その1、2)について説明する。この例では、図20に示した蓋体ユニット80を組み立てる場合を前提とする。まず、本体部84を準備する。本体部84を得るために、所定の大きさで上部が開放された、鉄板やステンレス等の金属製の箱体を準備する。この箱体の所定の位置に、雰囲気送入口801、雰囲気排出口802及びスリット806を形成する。雰囲気送入口801は、吸気管88の管径と一致する大きさに本体部84の右側面を開口する。
雰囲気排出口802は、排気管89の管径と一致する大きさに本体部84の左側面を開口する。更に本体部84の側面であって、対角線上にハンドル用のネジ孔を形成する。スリット806は本体部84の底部に複数のライン状の開口部を形成することで得られる。
本体部84が準備できたら、本体部84に吸気管88及び排気管89を接続する。この例で、雰囲気送入口801に吸気管88を電気又はガス溶接により接合する。同様にして、雰囲気排出口802に排気管89を接合する。その後、整流板85a〜85dを取り付ける。整流板85a〜85dには、所定の大きさの鉄板やステンレス板等に複数の孔部や格子状部位を形成したものを使用する。
そして、本体部84にハンドル87a,87bを取り付ける。ハンドル87a,87bには、例えば、丸棒材をコ状に折り曲げ、その両端部に雄ネジを施したものを準備する。ハンドル87a,87bは本体部84の側面に予め開口されたネジ孔に挿通し、本体部84の内側で雌ネジにより固着する。これにより、ハンドル87a,87bを対角線上に取り付けることができる。
その後、本体部84に天板部材86を取り付ける。天板部材86を得るために、天板用の鉄板やステンレス板等に窓部用の開口部を形成する。この開口部に窓部805を取り付ける。窓部805には耐熱ガラスを使用する。窓部805を取り付けた天板部材86が準備できたら、天板部材86を本体部84に位置合わせした後、図示しないビス等により、天板部材86を本体部84にネジ止めする。これにより、図20に示した蓋体ユニット80が完成する。
図21で完成した蓋体ユニット80をチャンバー50上に取り付ける。このとき、蓋体ユニット80のスリット806の側をチャンバー50の開口部501に位置合わせする。その後、排気管89と吸気管路811とを接続する。吸気管路811は雰囲気清浄化部81から予め立ち上げて置くとよい。更に、吸気管88と排気管路812とを接続する。排気管路812はファン813から立ち上げて置くとよい。ファン813には送風機が使用される。これにより、蓋体ユニット80と、チャンバー50、雰囲気清浄化部81及びファン813とを組み上げることができる。
続いて、図23を参照して、本発明に係るフラックスヒューム除去方法について、蓋体ユニット80の動作例を説明する。この例では、電子部品を取り付けた予備加熱後のプリント基板1を窒素ガスの雰囲気中に搬送し、当該雰囲気中でプリント基板1に電子部品をはんだ付けする場合であって、図23に示す蓋体ユニット80、雰囲気清浄化部81及びファン813を使用して、はんだ付け処理中に発生したフラックスヒュームを除去する場合を前提とする。
これらをフラックスヒューム除去条件にして、噴流はんだ付け装置100では、図23に示すチャンバー50内で発生したフラックスヒュームを含んだ雰囲気を蓋体ユニット80の雰囲気排出口802から、排気管89及び吸気管路811を経由して雰囲気清浄化部81へ排出する。
そして、蓋体ユニット80から排出される雰囲気を雰囲気清浄化部81で清浄化してフラックスヒュームを除去する。フラックスヒュームは雰囲気清浄化部81で結露(凝結)されてパイプ82に付着する。フラックスヒューム除去後の窒素ガスを含んだ雰囲気(窒素ガス雰囲気)は、雰囲気清浄化部81から、排気管路812及び吸気管88を経由し、雰囲気送入口801を介して蓋体ユニット80に供給される。
更に、新たにチャンバー内で生じたフラックスヒュームを含んだ窒素ガスをスリット806を通して蓋体ユニット80内に取り込む。その際に、フラックスヒュームを含んだ雰囲気をフラックスヒューム除去後の雰囲気の流れ方向に合流させて雰囲気清浄化部81へ排出する。これらの一連の工程により、チャンバー50内で順次発生したフラックスヒュームを除去できるようになる。
続いて、図24を参照して、噴流はんだ付け装置100の制御系の構成例について説明する。図24に示す噴流はんだ付け装置100の制御系によれば、入力部64及び供給制御部605の他に、搬送駆動部14、モニタ16、予熱駆動部25,制御部65、噴流はんだ駆動部66、冷却駆動部93、エアーカーテン駆動部95、ヒューム除去駆動部97が備えられる。これらは制御部65に接続される。
モニタ16は噴流はんだ付け処理に係る設定画面等を表示データD16に基づいて表示する。モニタ16には、例えば、タッチパネル付きの液晶表示装置が使用される。タッチパネルは、入力部64の一部を構成する。表示データD16には、プリント基板1にはんだ付けされる電子部品の高さ情報や、プリント基板1にはんだ付けされる電子部品の実装分布情報等が含まれる。この他に、電子部品がはんだ付けされる基板の枚数情報、はんだ付け処理条件を示す設定情報等である。
制御部65は、所定の制御プログラムに基づいて生成した搬送駆動データD14を搬送駆動部14に出力して搬送制御を実行する。同様にして、予備加熱制御データD25を予熱駆動部25に出力して予備加熱制御を実行する。同様に、はんだ槽制御データD66を噴流はんだ駆動部66に出力して噴流はんだ制御を実行する。同様にして、冷却制御データD93を冷却駆動部93に出力して冷却制御を実行する。
制御部65は同様にして、カーテン制御データD95をエアーカーテン駆動部95に出力してモータ制御を実行する。同様にして、ヒューム除去制御データD97をヒューム除去駆動部97に出力してモータ制御を実行する。同様に、実装分布データD64を供給制御部605に出力して窒素ガス供給制御を実行する。
搬送駆動部14は制御部65から入力した搬送駆動データD14に基づいてモータ制御信号S15を生成する。搬送駆動部14には搬送部10を駆動するモータ15が接続される。モータ15はモータ制御信号S15を入力してチェーン部材11等を駆動する。チェーン部材11の搬送チャック12にセットされたプリント基板1は、予備加熱ゾーン21,22,23,24等を通過して順次チャンバー50内に搬送される。
予熱駆動部25は制御部65から入力した予備加熱制御データD25に基づいて発熱制御信号S21〜S24を生成する。予熱駆動部25には複数のヒーター(発熱体)が接続される。この例では、ヒーターは4つの予備加熱ゾーン21〜24に配置される(図1参照)。予備加熱ゾーン21は、発熱制御信号S21に基づいて発熱する。予備加熱ゾーン22は、発熱制御信号S22に基づいて発熱する。予備加熱ゾーン23は、発熱制御信号S23に基づいて発熱する。予備加熱ゾーン24は、発熱制御信号S24に基づいて発熱する。これらの発熱によって、プリント基板1が予備加熱処理される。
噴流はんだ駆動部66は制御部65から入力したはんだ槽制御データD66に基づいて発熱制御信号S67、モータ制御信号S68及びS69を生成する。噴流はんだ駆動部66にはヒーター67及び2個のモータ68,69が接続される。ヒーター67は、発熱制御信号S67に基づいて発熱し、噴流はんだ槽60を所定の温度に加熱する。モータ68はモータ制御信号S68に基づいて噴出ノズル61に溶融はんだ7を噴流させる。モータ69はモータ制御信号S69に基づいて噴出ノズル62に溶融はんだ7を噴流させる。
冷却駆動部93は制御部65から入力した冷却制御データD93に基づいてモータ制御信号S94を生成する。冷却駆動部93にはファン用のモータ94が接続される。モータ94は、モータ制御信号S94に基づいて図示しないファンを回転する。これにより、電子部品をはんだ付けした後のプリント基板1が冷却される。
エアーカーテン駆動部95は制御部65から入力したカーテン制御データD95に基づいてモータ制御信号S96を生成する。エアーカーテン駆動部95には送風用のモータ96が接続される。モータ96は、モータ制御信号S96に基づいて図1に示したシロッコ型のファンを回転する。これにより、基板搬出口902に対流(循環する)エアーカーテンを形成できるようになる。
ヒューム除去駆動部97は制御部65から入力したヒューム除去制御データD97に基づいてモータ制御信号S98を生成する。ヒューム除去駆動部97には、ポンプ駆動用のモータ98が接続される。モータ98は、モータ制御信号S98に基づいて図1に示したポンプを駆動する。これにより、フラックスヒュームを除去した窒素ガスをチャンバー50に送入できるようになる。
供給制御部605は制御部65から入力した実装分布データD64や、図示しないN2センサから出力されるN2濃度検知信号S17等に基づいて供給制御信号S71,S72,S73,S74を生成する。供給制御部605には、4つのガス供給部71,72,73,741が接続される。ガス供給部71は、供給制御信号S71に基づいて窒素ガスの供給圧力をP1に調整する。ガス供給部72は、供給制御信号S72に基づいて窒素ガスの供給圧力をP2に調整する。これにより、ノズル管路75に供給する窒素ガスを調整できるようになる。
ガス供給部73は、供給制御信号S73に基づいて窒素ガスの供給圧力をP3に調整する。また、ガス供給部741は、供給制御信号S74に基づいて窒素ガスの供給圧力をP4に調整する。これにより、冷却処理部90において、電子部品を取り付けたプリント基板1の上下面に窒素ガスを吹き付けることで、当該プリント基板1に対する冷却処理が施される。これらにより、噴流はんだ付け装置100の制御系を構成する。
続いて、図25を参照して、ガス供給制御方法を含む噴流はんだ付け装置100の動作例について説明する。この例では、電子部品を取り付けたプリント基板1を窒素ガスの雰囲気中に搬送し、当該雰囲気中でプリント基板1に電子部品をはんだ付けする噴流はんだ付け装置100において、両端部に管路接続部701,702(ガス供給口)を有し、かつ、所定の位置にガス噴出口704を有したノズル管路75の両端部から窒素ガスを供給する場合を前提とする。
また、電子部品の高さ情報に対応して、仕切部材可動機構40のラビリンス部43の露出長さを予めL1〜L3の範囲内に調整する。ラビリンス部43の露出長さは、プリント基板1の処理ロット単位に見直して設定する。更に、電子部品の実装分布に対応して窒素ガスの供給圧力P1,P2を調整する。窒素ガスの供給圧力P1,P2の調整量も、プリント基板1の処理ロット単位に見直して設定する。
これらを噴流はんだ付け処理条件として、図25に示すフローチャートのステップST1で、制御部65は電子部品の実装分布データD64を入力する。このとき、ユーザはモニタ16を見ながら入力部64を操作して、プリント基板1にはんだ付けする電子部品の高さ情報や、当該電子部品の実装分布情報等を入力する。もちろん、噴流はんだ付け処理を施すプリント基板1の枚数情報も入力する。この枚数情報は、噴流はんだ付け処理を施したプリント基板1の枚数をカウントする際に、目標値として設定される。
次に、ステップST2で制御部65はノズル管路75へ供給する窒素ガスの供給圧力P1,P2を調整するように供給制御部605を制御する。このとき、供給制御部605は電子部品の実装分布データD64に対応して当該窒素ガスの供給圧力を個々に調整する。例えば、供給制御部605は、電子部品の実装分布データD64に対応した窒素ガスの供給圧力をガス供給部71,72に個々に設定する。
電子部品がプリント基板1の一方の側に片寄って実装されている場合は、片寄って実装されている側の窒素ガスを多くするために、供給圧力をP1>P2に設定する。反対に、電子部品がプリント基板1の他方の側に片寄って実装されている場合は、片寄って実装されている側の窒素ガスを多くするために、供給圧力をP1<P2に設定する。
そして、ガス供給部71は、供給制御信号S71に基づいて窒素ガスの供給圧力をP1に調整する。ガス供給部72は、供給制御信号S72に基づいて窒素ガスの供給圧力をP2に調整する。ガス供給部73は、供給制御信号S73に基づいて窒素ガスの供給圧力をP3に調整する。これにより、個々のガス供給部71,72から噴流はんだ槽60上のノズル管路75の両端部に窒素ガスを最適に供給できるようになる。この結果、噴流はんだ槽60上のプリント基板1において、電子部品が少ない側に比べて、電子部品が多く取り付けられた側に十分な不活性ガスを拡散できるようになる。また、チャンバー50内の拡散ノズル51,52に窒素ガスを供給できるようになる。
次に、ステップST3で制御部65は、電子部品を取り付けたプリント基板1を搬入するように搬送駆動部14を制御する。このとき、ユーザはプリント基板1を搬送チャック12にセットする。搬送駆動部14では搬送駆動データD14に基づいてモータ制御信号S15が生成される。モータ制御信号S15は搬送駆動部14からモータ15に出力される。モータ15はモータ制御信号S15を入力して、チェーン部材11等を駆動する。これにより、搬送チャック12にセットされたプリント基板1が熱処理部20へ搬送されるようになる。
次いで、ステップST4で制御部65は、電子部品を取り付けたプリント基板1を予備加熱処理するように予熱駆動部25を制御する。予熱駆動部25では、予備加熱制御データD25に基づいて発熱制御信号S21〜S24が生成される。発熱制御信号S21〜S24はそれぞれ対応する4つの予備加熱ゾーン21〜24(図1参照)に出力される。
予備加熱ゾーン21は、発熱制御信号S21に基づいて発熱し、例えば、温度100℃を維持する。予備加熱ゾーン22は、発熱制御信号S22に基づいて発熱し、例えば、温度140℃を維持する。予備加熱ゾーン23は、発熱制御信号S23に基づいて発熱し、温度180℃する。予備加熱ゾーン24は、発熱制御信号S24に基づいて発熱し、温度220℃を維持する。これらの予備加熱ゾーン21〜24によって、プリント基板1が予備加熱処理される。
そして、ステップST5で制御部65は、電子部品をプリント基板1に噴流はんだ付け処理するように噴流はんだ駆動部66を制御する。噴流はんだ駆動部66では、はんだ槽制御データD66に基づいて発熱制御信号S67、モータ制御信号S68及びS69が生成される。ヒーター67は、発熱制御信号S67に基づいて発熱し、噴流はんだ槽60を所定の温度に加熱する。
モータ68はモータ制御信号S68に基づいてポンプ8を駆動する。ポンプ8が噴出ノズル61に溶融はんだ7を加圧送出すると、噴出ノズル61は、ポンプ8から供給される所定の圧力の溶融はんだ7を表面張力によって盛り上がるように噴出する。モータ69はモータ制御信号S69に基づいてポンプ9を駆動する。ポンプ9が噴出ノズル62に溶融はんだ7を加圧送出すると、噴出ノズル62も、ポンプ9から供給される所定の圧力の溶融はんだ7を表面張力によって盛り上がるように噴出する。
このとき、ノズル管路75の両端部において、個々に調整された窒素ガスが噴流はんだ槽60上に拡散される。このような窒素雰囲気の中で、電子部品がプリント基板1にはんだ付け処理される。その際に、チャンバー50内で発生したフラックスヒュームを含んだ雰囲気は、蓋体ユニット80の雰囲気排出口802から雰囲気清浄化部81へ排出される。雰囲気清浄化部81は、蓋体ユニット80から排出されるフラックスヒュームを含んだ雰囲気を清浄化する。
このとき、ヒューム除去駆動部97ではヒューム除去制御データD97に基づいてモータ制御信号S98が生成される。モータ制御信号S98はヒューム除去駆動部97からファン駆動用のモータ98に出力される。モータ98は、モータ制御信号S98に基づいて図1に示したファン813を駆動する。そして、フラックスヒューム除去後の窒素ガスを含んだ雰囲気を雰囲気送入口801を介して蓋体ユニット80に供給する。これにより、フラックスヒュームを除去した窒素ガスを含んだ雰囲気(窒素ガス雰囲気)をチャンバー50に送入できるようになる。
蓋体ユニット80内では、新たにチャンバー50内で生じたフラックスヒュームを含んだ雰囲気を取り込む。フラックスヒュームを含んだ窒素ガス雰囲気は、フラックスヒューム除去後の雰囲気の流れ方向、すなわち、プリント基板1の搬送方向とほぼ平行する方向に合流して雰囲気清浄化部81へ排出されるようになる。
そして、ステップST6で制御部65は、電子部品がはんだ付けされたプリント基板1を冷却するように冷却駆動部93を制御する。冷却駆動部93では冷却制御データD93に基づいてモータ制御信号S94が生成される。モータ制御信号S94は冷却駆動部93からファン用のモータ94に出力される。モータ94は、モータ制御信号S94に基づいて図示しないファンを回転する。これにより、電子部品をはんだ付けした後のプリント基板1が冷却される。
次に、ステップST7で制御部65は、電子部品がはんだ付けされたプリント基板1を排出するように搬送駆動部14を制御する。このとき、搬送駆動部14は、冷却処理部90から基板搬出口902へプリント基板1を搬送する。ユーザは基板搬出口902で、搬送チャック12からプリント基板1を取り外す。もちろん、搬送チャック12からプリント基板1を取り外す機能を搬送駆動部14に設けてもよい(排出処理)。
また、エアーカーテン駆動部95ではカーテン制御データD95に基づいてモータ制御信号S96が生成される。モータ制御信号S96はエアーカーテン駆動部95から送風用のモータ96へ出力される。モータ96は、モータ制御信号S96に基づいて送風機904を回転することにより、基板搬出口902に循環式のエアーカーテンを形成できるようになる。
そして、ステップST8で制御部65は全てのプリント基板1の噴流はんだ付け処理を終了したか否かを判別する。制御部65は、噴流はんだ付け処理を施したプリント基板1の枚数をカウントするので、先に設定された目標枚数から現在のカウント数を差し引くことで、残りのプリント基板1の枚数を計算する。残りのプリント基板1の枚数はモニタ16に表示される。
従って、残りの枚数が存在する場合は、全てのプリント基板1の噴流はんだ付け処理を終了していないので、ステップST3に戻って上述した処理を繰り返す。残りの枚数がゼロになった場合は、全てのプリント基板1の噴流はんだ付け処理を終了したので、噴流はんだ付け処理に係る制御を終了する。
このように第4の実施例としての噴流はんだ付け装置100によれば、電子部品を取り付けた予備加熱後のプリント基板1を窒素ガスの雰囲気中に搬送し、当該雰囲気中で電子部品をプリント基板1に噴流はんだ付けする場合であって、チャンバー50上には蓋体ユニット80が備えられ、当該蓋体ユニット80において、その雰囲気送入口801がプリント基板1を搬送する方向とほぼ直交する面であって、本体部84の一方の側面に設けられ、雰囲気排出口802が本体部84の一方の側面に対向する他方の面に設けられる。
この構造によって、雰囲気送入口801や、ガス送出口等を本体部84の上面に設ける場合に比べて蓋体ユニット80の低筺体化を図ることができる。これにより、メンテナンス時、チャンバー50上で蓋体ユニット80を容易に取り外したり、その復旧時に容易に取り付けることができる。しかも、はんだ付け処理部内を作業性良く容易に点検したり、作業性良く容易に清掃できるようになる。
また、本発明に係るフラックスヒューム除去方法によれば、蓋体ユニット80において、フラックスヒュームを含んだ雰囲気をフラックスヒューム除去後の窒素ガスを含んだ雰囲気の流れ方向に合流させて雰囲気清浄化部81へ排出するようになされる。この構成によって、雰囲気送入口801や、雰囲気排出口802等を本体部84の上面に設ける場合に比べてフラックスヒュームを含んだ雰囲気を蓋体ユニット80から雰囲気清浄化部81へ効率良く排出できるようになる。これにより、雰囲気の消費量を低減できるので、フラックスヒュームを効率良く除去できるようになる。