JP2011219640A - Magnesium hydroxide-based flame retardant, method for producing the same, and resin composition and molding - Google Patents

Magnesium hydroxide-based flame retardant, method for producing the same, and resin composition and molding Download PDF

Info

Publication number
JP2011219640A
JP2011219640A JP2010091078A JP2010091078A JP2011219640A JP 2011219640 A JP2011219640 A JP 2011219640A JP 2010091078 A JP2010091078 A JP 2010091078A JP 2010091078 A JP2010091078 A JP 2010091078A JP 2011219640 A JP2011219640 A JP 2011219640A
Authority
JP
Japan
Prior art keywords
mass
flame retardant
magnesium hydroxide
colloidal silica
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010091078A
Other languages
Japanese (ja)
Other versions
JP5405379B2 (en
Inventor
Seiji Matsui
誠二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2010091078A priority Critical patent/JP5405379B2/en
Publication of JP2011219640A publication Critical patent/JP2011219640A/en
Application granted granted Critical
Publication of JP5405379B2 publication Critical patent/JP5405379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium hydroxide-based flame retardant satisfying all of resistance to whitening by carbon dioxide gas, mechanical properties, hardness and insulation characteristics.SOLUTION: This flame retardant is obtained by forming, as a first layer, an inorganic film selected from colloidal silica and colloidal alumina at a rate of 0.5-3 mass% in terms of SiOor AlObased on 100 mass% of magnesium hydroxide on the surface of synthetic magnesium hydroxide particle with 8-20 m/g BET specific surface area and 0.5-1.0 μm average particle diameter; and forming, as a second layer, a film comprising an organic silane agent at a rate of 0.5-3 mass% based on 100 mass% of magnesium hydroxide.

Description

本発明は、いわゆるノンハロゲン系難燃剤としての水酸化マグネシウム系難燃剤と、それを含有する難燃性樹脂組成物、及びその成形体に関する。特に、通信ケーブル(光ファイバー、メタル)用のノンハロゲン難燃性被覆材を目的とし、機械特性、硬度、絶縁特性、耐炭酸ガス白化性の要求項目を全て満足した水酸化マグネシウム系難燃剤を提供する。   The present invention relates to a magnesium hydroxide flame retardant as a so-called non-halogen flame retardant, a flame retardant resin composition containing the flame retardant, and a molded body thereof. In particular, for the purpose of non-halogen flame retardant coating materials for communication cables (optical fibers and metals), magnesium hydroxide flame retardants that satisfy all the requirements for mechanical properties, hardness, insulation properties, and carbon dioxide whitening resistance are provided. .

熱可塑性樹脂は、成形加工性や電気絶縁性に優れ、かつ安価であるため、光ファイバーやメタルの通信ケーブル、屋内電力ケーブル、家庭電気製品や自動車等の細物電線等の被覆材に幅広く使用されている。従来、このような用途には、ポリ塩化ビニル系の樹脂が大量に使用されてきた。   Thermoplastic resins are widely used in coating materials such as optical fiber and metal communication cables, indoor power cables, household electrical appliances, and fine electric wires for automobiles, etc. because they are excellent in moldability and electrical insulation and are inexpensive. ing. Conventionally, a large amount of polyvinyl chloride resin has been used for such applications.

しかし、ポリ塩化ビニル系の樹脂を用いたケーブル等は、火災発生時に大量の煙を発生させ、地下街、地下鉄、船舶等の密閉空間においては避難活動や消火活動に支障をきたし、二次災害を起こす可能性があった。それ故、火災時に煙の発生が少なく、燃焼しても一酸化炭素等の有害ガスの発生量も少ない樹脂材料が望まれてきた。更に最近では、ポリ塩化ビニル系の樹脂には、ダイオキシン等の環境問題も懸念され、一層敬遠されるようになり、ノンハロゲン系樹脂として、例えばポリオレフィン系等の樹脂に代替されることが多くなっている。しかし、ポリオレフィン系樹脂は、ポリ塩化ビニル系樹脂に較べて燃えやすく、ポリオレフィン系樹脂を難燃化するために、ノンハロゲン系難燃剤として水酸化マグネシウムを添加することが検討されている。   However, cables using polyvinyl chloride resin, etc., generate a large amount of smoke in the event of a fire, and have hindered evacuation and fire fighting activities in sealed spaces such as underground malls, subways, ships, etc. There was a possibility of waking up. Therefore, there has been a demand for a resin material that generates less smoke during a fire and generates less harmful gas such as carbon monoxide even when burned. More recently, polyvinyl chloride-based resins are concerned about environmental problems such as dioxins, and have come to be further avoided. For example, non-halogen-based resins are often replaced with polyolefin-based resins. Yes. However, polyolefin resins are more flammable than polyvinyl chloride resins, and it has been studied to add magnesium hydroxide as a non-halogen flame retardant in order to make the polyolefin resins flame retardant.

ところで、最近の通信ケーブル(光ファイバー、メタル)用のノンハロゲン難燃性被覆材の特性には要求項目が多く存在するようになった。例えば、難燃性は勿論のこと、機械特性、硬度、絶縁特性、耐炭酸ガス白化性の要求項目も満足させる必要が出てきた。特に、硬度においては、日本の西側を中心に夏場にクマゼミが繁殖し、被覆材中に卵を産む習慣が出来てきた。よって、クマゼミの産卵によって通信用導体(例えば、グラスファイバー導体等)は傷つけられ、通信不良となる問題が起こっている。従って、被覆材としては卵を産み付けないほど硬い材料が望まれている。   By the way, there are many requirements for the characteristics of non-halogen flame retardant coating materials for recent communication cables (optical fibers and metals). For example, it has become necessary to satisfy not only flame retardancy but also requirements for mechanical properties, hardness, insulating properties, and carbon dioxide whitening resistance. In particular, in terms of hardness, it has become customary for bearfish to breed in the summer, mainly in the western part of Japan, and to lay eggs in the covering material. Therefore, there is a problem that communication conductors (for example, glass fiber conductors, etc.) are damaged by the spawning of bearfish, resulting in poor communication. Therefore, a material that is hard enough not to lay eggs is desired as a covering material.

また特に、耐炭酸ガス白化性においては、水酸化マグネシウム自体が酸と反応しやすいため、それを配合した被覆材が長時間炭酸含水等に曝されると、その表面に塩基性炭酸マグネシウムの形で析出して表面を白化させ、被覆材外観を損なうという問題が起こる。よって、過去より様々な水酸化マグネシウムの表面処理方法が提案されてきた。しかしながら、後述の特許文献1〜3の方法で製造した水酸化マグネシウム系難燃剤は、耐炭酸ガス白化性は満足するものの、機械特性、硬度、絶縁特性までも全て満足するものではなかった。   In particular, in the whitening resistance of carbon dioxide gas, magnesium hydroxide itself easily reacts with an acid. Therefore, when a coating material containing the magnesium hydroxide is exposed to water containing carbonic acid for a long time, the surface of the basic magnesium carbonate is formed on the surface. This causes the problem of precipitation and whitening of the surface, which impairs the appearance of the coating material. Therefore, various surface treatment methods for magnesium hydroxide have been proposed since the past. However, the magnesium hydroxide flame retardant produced by the methods described in Patent Documents 1 to 3 described below, although satisfying carbon dioxide whitening resistance, was not satisfactory in all of mechanical properties, hardness, and insulation properties.

特公平6-2843号JP 6-2843 特開2003-253266号JP2003-253266 特開平10-338818号JP-A-10-338818

この発明の課題は、耐炭酸ガス白化性、引張強度及び伸びの機械特性、硬度、絶縁特性の全てを満足する水酸化マグネシウム系難燃剤とその製造方法、及び水酸化マグネシウム系難燃剤を配合した樹脂組成物と成形体とを提供することにある。   An object of the present invention is to blend a magnesium hydroxide flame retardant satisfying all of carbon dioxide whitening resistance, tensile strength and elongation mechanical properties, hardness, and insulation properties, a manufacturing method thereof, and a magnesium hydroxide flame retardant. It is in providing a resin composition and a molded object.

この発明の水酸化マグネシウム系難燃剤は、
(1)BET比表面積が8〜20m2/g、(2)平均粒子径が0.5〜1.0μmの合成水酸化マグネシウム粒子の表面に、(3)第一層目としてコロイダルシリカ又はコロイダルアルミナより選ばれた無機物皮膜がSiO2又はAl2O3換算で水酸化マグネシウム100質量%に対して0.5〜3質量%の割合で形成され、(4)第二層目として有機シラン剤からなる皮膜が水酸化マグネシウム100質量%に対して0.5〜3質量%の割合で形成されていることを特徴とする。
The magnesium hydroxide flame retardant of this invention is
(1) BET specific surface area of 8 to 20 m 2 / g, (2) On the surface of synthetic magnesium hydroxide particles having an average particle size of 0.5 to 1.0 μm, (3) First layer selected from colloidal silica or colloidal alumina The formed inorganic film is formed at a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide in terms of SiO 2 or Al 2 O 3 , and (4) a film composed of an organosilane agent is water as the second layer. It is formed at a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium oxide.

この発明の水酸化マグネシウム系難燃剤の製造方法は、
(1)BET比表面積が8〜20m2/gで、(2)平均粒子径が0.5〜1.0μmの合成水酸化マグネシウムを水中に乳化させた乳化スラリーを調製し、
前記乳化スラリーに、コロイダルシリカ又はコロイダルアルミナの水溶液を、コロイダルシリカ又はコロイダルアルミナがSiO2又はAl2O3換算で水酸化マグネシウム100質量%に対して0.5〜3質量%の割合となるように添加し、
次いで、有機シラン剤を、水酸化マグネシウム100質量%に対して0.5〜3質量%の割合となるように、前記乳化スラリーに添加することを特徴とする。なお好ましくは有機シラン剤の添加後に乳化スラリーを加温下に保って表面処理し、表面処理後に真空ろ過等によりろ過し、洗浄、乾燥、粉砕する。
The method for producing the magnesium hydroxide flame retardant of the present invention is as follows:
(1) A BET specific surface area of 8 to 20 m 2 / g and (2) an emulsified slurry in which synthetic magnesium hydroxide having an average particle size of 0.5 to 1.0 μm is emulsified in water,
To the emulsified slurry, an aqueous solution of colloidal silica or colloidal alumina is added so that the colloidal silica or colloidal alumina has a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide in terms of SiO 2 or Al 2 O 3. And
Next, the organic silane agent is added to the emulsified slurry so as to have a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide. Preferably, after the addition of the organic silane agent, the emulsified slurry is surface-treated while being heated, and after the surface treatment, it is filtered by vacuum filtration or the like, washed, dried, and pulverized.

この発明はさらに、ポリオレフィン系樹脂100質量部に対し、請求項1に記載の難燃剤を5〜500質量部配合したことを特徴とする難燃性樹脂組成物にある。   The present invention further lies in a flame retardant resin composition characterized in that 5 to 500 parts by mass of the flame retardant according to claim 1 is blended with 100 parts by mass of a polyolefin resin.

この発明はまた、請求項3に記載の難燃性樹脂組成物よりなる成形体にある。   The present invention also resides in a molded article comprising the flame retardant resin composition according to claim 3.

(1) 水酸化マグネシウムのBET比表面積は8〜20m2/g、好ましくは10〜18m2/g、更に好ましくは12〜16m2/gとする。8m2/g未満だと引張強度と硬度が不足する。20m2/gを超えると、伸びが不足する。
(2) 水酸化マグネシウムの平均粒子径は0.5〜1.0μm、好ましくは0.6〜0.9μm、更に好ましくは0.7〜0.8μmとする。0.5μm未満だと、嵩高くなって難燃剤粉末が樹脂中に充填しにくい。1.0μmを超えると、引張強度と硬度が不足する。
(3) 表面処理剤の第1層目は、コロイダルシリカ又はコロイダルアルミナを使用する。耐炭酸ガス白化性に良い効果を与える。Na等のアルカリ金属イオンの含有量の少ないものが好ましく、Na以外のアルカリ金属イオンは大部分の場合実質的に含まれていないので、以下ではNa+濃度への制限を説明する。コロイダルシリカ又はコロイダルアルミナ溶液中のSiO2又はAl2O3固形分に対するNa+濃度は0.5質量%以下が好ましく、特に好ましくは0.2質量%以下とする。Na含有量が多いものを使用すると、難燃剤粉末中に残留しやすく、これを配合した難燃性樹脂組成物の絶縁特性が不十分となる。コロイダルシリカ又はコロイダルアルミナの処理量は、SiO2又はAl2O3換算で0.5〜3質量%である。0.5質量%未満だと、耐炭酸ガス白化性が不十分となる。3質量%を超えると、Mg(OH)2含有量が低下し、難燃剤としての本来の特性(難燃性)が不十分となる。
(4) 表面処理剤の第2層目は、有機シラン剤を使用する。引張強度や硬度の低下が少なく、コロイダルシリカ又はコロイダルアルミナとの相乗効果で、耐炭酸ガス白化性に大きな効果を与える。有機シラン剤を単独で使用した場合は、耐炭酸ガス白化性が劣る。有機シラン剤の処理量は、0.5〜3質量%である。0.5質量%未満だと、耐炭酸ガス白化性が不十分となる。3質量%を超えると、Mg(OH)2含有量が低下し、難燃剤としての本来の特性(難燃性)が不十分となる。有機シラン剤は、例えば、合成樹脂との化学結合を目的とした有機官能基を有するシラン剤(シランカップリング剤)とし、ビニルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン等のビニル系のシラン、2−エポキシシクロヘキシル−エチルトリメトキシシラン、3−グリシドキシプロピル−トリメトキシシラン,3−グリシドキシプロピル−トリエトキシシラン等のエポキシ系のシラン、p−スチリルトリメトキシシラン等のスチリル系のシラン、3−メタクリロキシプロピルトリメトキシシラン,3−アクリロキシプロピルトリメトキシシラン等のアクリロキシもしくはメタクリロキシ系のシラン,3−アミノプロピルトリメトキシシラン等のアミノ系のシラン,3−クロロプロピルトリメトキシシラン等のクロロアルキル系のシラン,3−メルカプトプロピルトリメトキシシラン等のメルカプト系のシラン,3−イソシアネートプロピルトリエトキシシラン等のイソシアネート系のシラン等がある。その他に、合成樹脂との親和性向上を目的とした有機官能基を有するシラン剤も挙げられ、例えば、デシルトリメトキシシラン(CH3(CH2)9)Si(OCH3)3)等のアルキル系のシランでも良く、アルキル骨格はデシル基に代えてヘキシル基、その他にフェニル基等、任意である。無機材料と化学結合させるための官能基は、メトキシ基(OCH3)3に代えてエトキシ基、クロロ基でも良く、加水分解してシラノール基(Si-OH)を生成し、第1層目のコロイダルシリカ又はコロイダルアルミナと水素結合又は脱水縮合する。
(5) 上記の条件の組合せにより、樹脂成形体とした際に、引張強度が高く、伸びが大きく、硬度が高く、絶縁性に優れ、さらに耐炭酸ガス白化性に優れる水酸化マグネシウム系難燃剤が得られる。
(1) The BET specific surface area of magnesium hydroxide is 8 to 20 m 2 / g, preferably 10 to 18 m 2 / g, more preferably 12 to 16 m 2 / g. If it is less than 8 m 2 / g, the tensile strength and hardness are insufficient. If it exceeds 20 m 2 / g, the elongation is insufficient.
(2) The average particle diameter of magnesium hydroxide is 0.5 to 1.0 μm, preferably 0.6 to 0.9 μm, and more preferably 0.7 to 0.8 μm. If it is less than 0.5 μm, it becomes bulky and it is difficult to fill the flame retardant powder into the resin. If it exceeds 1.0 μm, the tensile strength and hardness are insufficient.
(3) The first layer of the surface treatment agent uses colloidal silica or colloidal alumina. Good effect on carbon dioxide whitening resistance. Those having a low content of alkali metal ions such as Na + are preferred, and alkali metal ions other than Na + are substantially not included in most cases, so the limitation to the Na + concentration will be described below. The Na + concentration with respect to the solid content of SiO 2 or Al 2 O 3 in the colloidal silica or colloidal alumina solution is preferably 0.5% by mass or less, particularly preferably 0.2% by mass or less. If a material having a high Na content is used, it tends to remain in the flame retardant powder, and the insulation properties of the flame retardant resin composition containing this become insufficient. The processing amount of colloidal silica or colloidal alumina is 0.5 to 3% by mass in terms of SiO 2 or Al 2 O 3 . If it is less than 0.5% by mass, the whitening resistance to carbon dioxide gas becomes insufficient. If it exceeds 3% by mass, the Mg (OH) 2 content decreases and the original properties (flame retardant) as a flame retardant become insufficient.
(4) The second layer of the surface treatment agent uses an organosilane agent. There is little decrease in tensile strength and hardness, and it has a great effect on the whitening resistance of carbon dioxide gas by a synergistic effect with colloidal silica or colloidal alumina. When an organic silane agent is used alone, the carbon dioxide whitening resistance is poor. The processing amount of the organosilane agent is 0.5 to 3% by mass. If it is less than 0.5% by mass, the whitening resistance to carbon dioxide gas becomes insufficient. If it exceeds 3% by mass, the Mg (OH) 2 content decreases and the original properties (flame retardant) as a flame retardant become insufficient. The organic silane agent is, for example, a silane agent having an organic functional group for the purpose of chemical bonding with a synthetic resin (silane coupling agent), and vinyl-based materials such as vinyltrimethoxysilane, vinyltrichlorosilane, and vinyltriethoxysilane. Silanes, epoxy silanes such as 2-epoxycyclohexyl-ethyltrimethoxysilane, 3-glycidoxypropyl-trimethoxysilane, 3-glycidoxypropyl-triethoxysilane, and styryls such as p-styryltrimethoxysilane Silanes, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and other acryloxy or methacryloxy silanes, 3-aminopropyltrimethoxysilane and other amino silanes, 3-chloropropyltrimethoxysilane Etc. Roarukiru silane of, mercapto silane such as 3-mercaptopropyltrimethoxysilane, have isocyanate silane such as 3-isocyanate propyl triethoxysilane. In addition, a silane agent having an organic functional group for the purpose of improving the affinity with a synthetic resin can be mentioned, for example, alkyl such as decyltrimethoxysilane (CH 3 (CH 2 ) 9 ) Si (OCH 3 ) 3 ) Silanes of silane may be used, and the alkyl skeleton is arbitrary such as a hexyl group instead of a decyl group and a phenyl group. The functional group for chemically bonding with the inorganic material may be an ethoxy group or a chloro group instead of the methoxy group (OCH 3 ) 3 and hydrolyzes to generate a silanol group (Si-OH). Hydrogen bond or dehydration condensation with colloidal silica or colloidal alumina.
(5) Magnesium hydroxide-based flame retardant with high tensile strength, large elongation, high hardness, excellent insulation, and excellent carbon dioxide whitening resistance when formed into a resin molded body by a combination of the above conditions Is obtained.

以下、本発明を、実施例および比較例に基づいて詳細に説明する。ただし、本発明はこれらの例によって何等限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples and comparative examples. However, the present invention is not limited to these examples.

水酸化マグネシウム粒子からなる難燃剤を製造した後、この難燃剤を所定の樹脂に配合して難燃性樹脂組成物を得た。さらにこの組成物を成形して成形体とし、その樹脂物性を評価した。具体的には、以下の通りである。   After producing a flame retardant composed of magnesium hydroxide particles, this flame retardant was blended with a predetermined resin to obtain a flame retardant resin composition. Further, this composition was molded into a molded body, and the physical properties of the resin were evaluated. Specifically, it is as follows.

(難燃剤の製造)
3L容量のポリエチレン製容器に3.8N−HCl溶液を2L入れ、攪拌下に汎用水酸化マグネシウム(以下、「Mg(OH)2」とも記載する)粉末222gを少量ずつ加えながら、全量投入して溶解後、ろ紙No.5Cにて真空ろ過した。なおHClとMg(OH)2は当量で溶解させており、ろ別して得られた人工MgCl2溶液をEDTA滴定法で定量分析した結果、MgCl2濃度で170g/Lであった。この人工MgCl2溶液を1310ml分取し、これに8.3N−NaOH溶液510mlを攪拌下にゆっくりと添加し(Mg2+とOHのモル数比は1:1.8、Mg(OH)2で122g相当析出)、さらに純水を加え、2Lのサスペンジョンを調製した。このサスペンジョンを3L容量のハステロイC-276製接液部を有するオートクレーブ内に流し込み、攪拌下に150℃で5時間の水熱処理を行った。
(Manufacture of flame retardant)
Put 2 L of 3.8N-HCl solution into a 3 L polyethylene container and add 222 g of general-purpose magnesium hydroxide (hereinafter also referred to as “Mg (OH) 2 ”) powder while stirring. Then, it vacuum-filtered with the filter paper No. 5C. HCl and Mg (OH) 2 were dissolved in an equivalent amount, and the artificial MgCl 2 solution obtained by filtration was quantitatively analyzed by EDTA titration method. As a result, the MgCl 2 concentration was 170 g / L. 1310 ml of this artificial MgCl 2 solution was taken, and 510 ml of an 8.3N NaOH solution was slowly added to this with stirring (the molar ratio of Mg 2+ to OH was 1: 1.8, 122 g of Mg (OH) 2 Corresponding precipitation) and pure water were further added to prepare a 2 L suspension. This suspension was poured into an autoclave having a 3 L capacity Hastelloy C-276 wetted part and hydrothermally treated at 150 ° C. for 5 hours with stirring.

水熱処理後のスラリーを真空ろ過後、固形分に対し20倍容量以上の純水で充分洗浄した。その後、再び純水に戻し、Mg(OH)2固形分濃度として100g/Lの乳化スラリーを調整した。この乳化スラリー1Lを2L容量のSUS316製容器に採取し(Mg(OH)2固形分質量として100g相当)、攪拌しながら80℃になるまでスラリーを加温した。その後、80℃で、20質量%濃度のコロイダルシリカ溶液(日産化学工業株式会社製スノーテックスO,溶液中のSiO2固形分に対するNa+濃度は0.2質量%以下)を、Mg(OH)2固形分質量に対しSiO2として1質量%添加した。その後、ビニルトリメトキシシラン(信越化学工業製KBM-1003)をMg(OH)2固形分質量に対しビニルトリメトキシシラン換算で1質量%添加した。添加後に80℃で8時間攪拌して表面処理を行った。表面処理温度は20〜90℃が好ましく、表面処理時間は1〜20時間が好ましい。その後、真空ろ過を行い、Mg(OH)2固形分質量に対し5倍容量以上の純水で洗浄した。洗浄後に乾燥、粉砕してMg(OH)2の粉末(本発明の難燃剤)を得た。表面処理の過程で、コロイダルシリカは全量水酸化マグネシウム表面に付着して第一層目の無機物被膜となり、有機シラン剤は全量コロイダルシリカの表面に付着して第二層目の有機シラン被膜となった。 The slurry after the hydrothermal treatment was subjected to vacuum filtration, and then thoroughly washed with 20 times or more of pure water with respect to the solid content. Thereafter, it was returned again to pure water, and an emulsified slurry having a Mg (OH) 2 solid content concentration of 100 g / L was prepared. 1 L of this emulsified slurry was collected in a 2 L SUS316 container (corresponding to 100 g as the Mg (OH) 2 solid content mass), and the slurry was heated to 80 ° C. while stirring. Thereafter, a colloidal silica solution having a concentration of 20% by mass at 80 ° C. (Snowtex O, manufactured by Nissan Chemical Industries, Ltd., Na + concentration of 0.2% by mass or less with respect to the SiO 2 solid content in the solution) was added to Mg (OH) 2 solid content. 1% by mass as SiO 2 was added to the mass. Thereafter, vinyl trimethoxysilane (KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.) was added in an amount of 1% by mass in terms of vinyl trimethoxysilane with respect to the mass of Mg (OH) 2 solid content. After the addition, the surface treatment was performed by stirring at 80 ° C. for 8 hours. The surface treatment temperature is preferably 20 to 90 ° C., and the surface treatment time is preferably 1 to 20 hours. Thereafter, vacuum filtration was performed, and washing was performed with 5 times or more pure water with respect to the solid mass of Mg (OH) 2 . After washing, drying and pulverization gave Mg (OH) 2 powder (a flame retardant of the present invention). During the surface treatment, the entire amount of colloidal silica adheres to the surface of the magnesium hydroxide to form the first layer inorganic coating, and the organosilane agent adheres to the entire surface of the colloidal silica to form the second layer of organic silane coating. It was.

(難燃性樹脂組成物および成形体の製造)
エチレン−アクリル酸エチル共重合体(日本ポリエチレン株式会社製、商品名:A-1150)100質量部に対し、前記した難燃剤粉末100質量部とカーボン0.5部を配合して混合した後に、ラボプラストミル(東洋精機株式会社製)を用いて、150℃で5分間、回転数50rpmで混練し、150℃でプレス成形を行って各厚みのプレスシートを得た。
(Production of flame retardant resin composition and molded product)
After mixing and mixing 100 parts by mass of the flame retardant powder and 0.5 part of carbon to 100 parts by mass of ethylene-ethyl acrylate copolymer (trade name: A-1150, manufactured by Nippon Polyethylene Co., Ltd.), Laboplast Using a mill (manufactured by Toyo Seiki Co., Ltd.), kneading was performed at 150 ° C. for 5 minutes at a rotation speed of 50 rpm, and press molding was performed at 150 ° C. to obtain press sheets of various thicknesses.

(分析・評価方法)
難燃剤および成形体について、以下のようにして分析および評価を行った。実施例1および後述する実施例2〜9について、結果を表1に示す。また、後述する比較例1〜10について、結果を表2に示す。
(1)BET比表面積と平均粒子径の測定
水熱処理後、洗浄、乾燥、粉砕して得られた水酸化マグネシウム粉末の、BET比表面積を窒素吸着法で測定し、平均粒子径をレーザー回折散乱式粒度分布計(日機装株式会社製マイクロトラックHRA)で測定した。
(2)引張試験
JIS-K-7113に準拠し、前記の2mm厚プレスシートを2号形ダンベル状に打ち抜いたものを使用し、試験速度200mm/minにて行った。目標値は、引張強度で1.3kgf/mm2以上、伸びで300%以上とした。
(3)硬度
JIS-K-7215に準拠し、前記の2mm厚プレスシートをデュロメーター/Dタイプにて硬度(ショアD)を測定した。目標値は、ショアDで40以上とした。
(4)絶縁特性(体積固有抵抗)
JIS-K-6911に準拠し、前記の2mm厚プレスシート(縦130mm×横130mm)を、温度30℃、相対湿度50 %の雰囲気下で3時間放置してから、固有抵抗測定電極を用いて500Vの電圧をかけ、1分間充電した後の体積抵抗値を測定し、体積固有抵抗値に換算した。目標値は、体積固有抵抗値で1×1014Ω・cm以上とした。
(5)耐炭酸ガス白化性(炭酸ガス質量増加率)
前記の2mm厚プレスシート(縦20mm×横20 mm)を、純水30ml を張った50mlビーカーに入れ、この容器をデシケータに入れ、連続で炭酸ガス流速100ml/minにて通気させた。その状態のまま、25℃で5日間炭酸ガスを接触させた後、このビーカー内の純水を120℃で12時間加熱蒸発させ、成型体の質量増加率を測定した。質量増加するものほど塩基性炭酸マグネシウムが多く生成したことになり、耐炭酸ガス白化性に劣ることになる。目標値は、質量増加率で+0.5%以下とした。
(Analysis and evaluation method)
About a flame retardant and a molded object, it analyzed and evaluated as follows. The results are shown in Table 1 for Example 1 and Examples 2 to 9 described later. The results are shown in Table 2 for Comparative Examples 1 to 10 described later.
(1) Measurement of BET specific surface area and average particle diameter After hydrothermal treatment, the BET specific surface area of magnesium hydroxide powder obtained by washing, drying and grinding is measured by nitrogen adsorption method, and the average particle diameter is measured by laser diffraction scattering. The particle size was measured with a particle size distribution analyzer (Microtrack HRA manufactured by Nikkiso Co., Ltd.).
(2) Tensile test
In accordance with JIS-K-7113, the above-mentioned 2 mm-thick press sheet was punched into a No. 2 type dumbbell, and the test speed was 200 mm / min. The target values were 1.3 kgf / mm 2 or more for tensile strength and 300% or more for elongation.
(3) Hardness
In accordance with JIS-K-7215, the hardness (Shore D) of the 2 mm thick press sheet was measured with a durometer / D type. The target value was 40 or more on Shore D.
(4) Insulation characteristics (volume resistivity)
In accordance with JIS-K-6911, leave the above 2mm thick press sheet (length 130mm x width 130mm) in an atmosphere at a temperature of 30 ° C and a relative humidity of 50% for 3 hours, and then use the resistivity measuring electrode. A voltage of 500 V was applied and the volume resistance value after charging for 1 minute was measured and converted to a volume resistivity value. The target value was a volume resistivity of 1 × 10 14 Ω · cm or more.
(5) Carbon dioxide gas whitening resistance (carbon dioxide mass increase rate)
The 2 mm-thick press sheet (20 mm long × 20 mm wide) was placed in a 50 ml beaker filled with 30 ml of pure water, and the container was placed in a desiccator and continuously vented at a carbon dioxide gas flow rate of 100 ml / min. In this state, carbon dioxide was contacted at 25 ° C. for 5 days, and then the pure water in the beaker was heated and evaporated at 120 ° C. for 12 hours, and the mass increase rate of the molded body was measured. The more the mass increases, the more basic magnesium carbonate is produced, and the carbon dioxide whitening resistance is poor. The target value was + 0.5% or less in mass increase rate.

Figure 2011219640
Figure 2011219640

Figure 2011219640
Figure 2011219640

水熱処理の温度を170℃にした以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。   Except that the temperature of the hydrothermal treatment was set to 170 ° C., the same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

水熱処理の温度を130℃にした以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。   Except that the hydrothermal treatment temperature was set to 130 ° C., the same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

20質量%濃度のコロイダルシリカ溶液を、Mg(OH)2固形分質量に対しSiO2として0.5質量%添加した以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。 A flame retardant powder was prepared and analyzed in the same manner as in Example 1 except that a 20 mass% colloidal silica solution was added in an amount of 0.5 mass% as SiO 2 with respect to the Mg (OH) 2 solid mass.・ Evaluated.

20質量%濃度のコロイダルシリカ溶液を、Mg(OH)2固形分質量に対しSiO2として3質量%添加した以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。 A flame retardant powder was prepared and analyzed in the same manner as in Example 1 except that 3% by mass of 20% by mass colloidal silica solution was added as SiO 2 to the Mg (OH) 2 solid mass.・ Evaluated.

ビニルトリメトキシシランをMg(OH)2固形分質量に対し0.5質量%添加した以外は、実施例1と同様な操作を行って(1質量%のコロイダルシリカ含有)、難燃剤粉末を作成し、分析・評価を行った。 Except for adding 0.5% by mass of vinyltrimethoxysilane to 2 % by mass of Mg (OH) 2 , the same operation as in Example 1 (containing 1% by mass of colloidal silica) was performed to prepare a flame retardant powder, Analyzed and evaluated.

ビニルトリメトキシシランをMg(OH)2固形分質量に対し3質量%添加した以外は、実施例1と同様な操作を行って(1質量%のコロイダルシリカ含有)、難燃剤粉末を作成し、分析・評価を行った。 Except for adding 3% by mass of vinyltrimethoxysilane to 2 % by mass of Mg (OH) 2 in the same manner as in Example 1 (containing 1% by mass of colloidal silica), a flame retardant powder was prepared, Analyzed and evaluated.

コロイダルシリカ溶液の代わりに、20質量%濃度のコロイダルアルミナ溶液(日産化学工業株式会社製アルミナゾル520、溶液中のAl2O3固形分に対するNa+濃度は0.2質量%以下)を、Mg(OH)2固形分質量に対しAl2O3として1質量%添加した以外は、実施例1と同様な操作を行って(1質量%のビニルトリメトキシシラン含有)、難燃剤粉末を作成し、分析・評価を行った。 Instead of colloidal silica solution, 20 mass% colloidal alumina solution (Nissan Chemical Industry Co., Ltd. alumina sol 520, Na + concentration relative to Al 2 O 3 solid content in the solution is 0.2 mass% or less), Mg (OH) 2 Except for adding 1% by mass as Al 2 O 3 based on the mass of the solid content, the same operation as in Example 1 (containing 1% by mass of vinyltrimethoxysilane) was carried out to prepare a flame retardant powder for analysis and evaluation. Went.

ビニルトリメトキシシランの代わりに、デシルトリメトキシシラン(信越化学工業株式会社製KBM-3103C)をMg(OH)2固形分質量に対し1質量%添加した以外は、実施例1と同様な操作を行って(1質量%のコロイダルシリカ含有)、難燃剤粉末を作成し、分析・評価を行った。 Instead of vinyltrimethoxysilane, decyltrimethoxysilane (KBM-3103C manufactured by Shin-Etsu Chemical Co., Ltd.) was added in an amount of 1% by mass with respect to the mass of Mg (OH) 2 solid content. (1% by mass of colloidal silica), a flame retardant powder was prepared and analyzed and evaluated.

(比較例1)
水熱処理の温度を190℃にした以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 1)
Except that the hydrothermal treatment temperature was set to 190 ° C., the same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例2)
水熱処理の温度を110℃にした以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 2)
Except that the temperature of the hydrothermal treatment was changed to 110 ° C., the same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例3)
ビニルトリメトキシシランを添加しなかった以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 3)
Except that no vinyltrimethoxysilane was added, the same operation as in Example 1 was carried out to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例4)
20質量%濃度のコロイダルシリカ溶液を添加しなかった以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 4)
Except for not adding the 20 mass% colloidal silica solution, the same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例5)
実施例1の合成により得られたMg(OH)2乳化スラリー1Lを2L容量のSUS316製容器に採取し(Mg(OH)2固形分質量として100g相当)、攪拌しながら80℃になるまでスラリーを加温した。その後、3号ケイ酸ナトリウム(JIS K1408)を、Mg(OH)2固形分質量に対しSiO2として1質量%添加後、スラリーのpHが9になるまで、硫酸を1時間かけて加え、デシルトリメトキシシラン(信越化学工業株式会社製KBM-3103C)をMg(OH)2固形分質量に対し1質量%添加し、80℃で8時間攪拌して表面処理を行った以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 5)
1 L of Mg (OH) 2 emulsified slurry obtained by the synthesis of Example 1 was collected in a 2 L capacity SUS316 container (corresponding to 100 g as the mass of Mg (OH) 2 solid content) and stirred until it reached 80 ° C. with stirring. Was warmed. Then, after adding 1 mass% of No. 3 sodium silicate (JIS K1408) as SiO 2 to Mg (OH) 2 solid mass, sulfuric acid was added over 1 hour until the pH of the slurry became 9, and decyl Example 1 except that 1% by mass of trimethoxysilane (KBM-3103C manufactured by Shin-Etsu Chemical Co., Ltd.) was added at 1% by mass based on the mass of Mg (OH) 2 and stirred for 8 hours at 80 ° C. The same operation was performed to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例6)
3号ケイ酸ナトリウムをMg(OH)2固形分質量に対しSiO2として3質量%添加した以外は、比較例5と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。なお硫酸はスラリーのpHが9になるまで添加した。
(Comparative Example 6)
A flame retardant powder was prepared, analyzed and evaluated in the same manner as in Comparative Example 5 except that No. 3 sodium silicate was added in an amount of 3% by mass as SiO 2 with respect to the solid mass of Mg (OH) 2. It was. Sulfuric acid was added until the pH of the slurry reached 9.

(比較例7)
デシルトリメトキシシランに代えて、ビニルトリメトキシシランをMg(OH)2固形分質量に対し1質量%添加した以外は、比較例5と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 7)
In place of decyltrimethoxysilane, except for adding 1% by mass of vinyltrimethoxysilane to the mass of Mg (OH) 2 solid content, the same operation as in Comparative Example 5 was performed to prepare a flame retardant powder, and the analysis・ Evaluated.

(比較例8)
デシルトリメトキシシランをMg(OH)2固形分質量に対し3質量%添加した以外は、比較例5と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 8)
A flame retardant powder was prepared, analyzed and evaluated in the same manner as in Comparative Example 5 except that 3% by mass of decyltrimethoxysilane was added to the mass of Mg (OH) 2 solid content.

(比較例9)
実施例1の合成により得られたMg(OH)2乳化スラリー1Lを2L容量のSUS316製容器に採取し(Mg(OH)2固形分質量として100g相当)、NaOHを固形分で20.6g加え攪拌分散させた後、濃度10g/Lの塩化アルミニウム・6水塩水溶液をMg(OH)2固形分質量に対しAl2O3として0.9質量%を30分かけて添加後、30分攪拌保持させた。その後、80℃まで加温し、充分な攪拌下に、オレイン酸ナトリウム水溶液をMg(OH)2固形分質量に対し0.3質量%添加し、30分攪拌して表面処理を行った以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 9)
1 L of the Mg (OH) 2 emulsified slurry obtained by the synthesis of Example 1 was collected in a 2 L capacity SUS316 container (corresponding to 100 g as the mass of Mg (OH) 2 solid content), and 20.6 g of NaOH in solid content was added and stirred. After the dispersion, an aluminum chloride hexahydrate aqueous solution having a concentration of 10 g / L was added as Al 2 O 3 over 30 minutes with respect to the Mg (OH) 2 solid mass, and 0.9 mass% was added over 30 minutes, followed by stirring and holding for 30 minutes. . After that, it was heated to 80 ° C, and with sufficient stirring, an aqueous solution of sodium oleate was added in an amount of 0.3% by weight based on the solid mass of Mg (OH) 2 and the surface treatment was carried out with stirring for 30 minutes. The same operation as in Example 1 was performed to prepare a flame retardant powder, which was analyzed and evaluated.

(比較例10)
実施例1の合成により得られたMg(OH)2乳化スラリー1Lを2L容量のSUS316製容器に採取し(Mg(OH)2固形分質量として100g相当)、攪拌しながら80℃になるまでスラリーを加温した。その後、濃度10g/Lで温度80℃に調整したステアリルアルコールリン酸エステルのナトリウム塩(モノエステル:ジエステル=1:1モル比)の水溶液を、Mg(OH)2固形分質量に対し3質量%添加し、30分攪拌して表面処理を行った以外は、実施例1と同様な操作を行って、難燃剤粉末を作成し、分析・評価を行った。
(Comparative Example 10)
1L of Mg (OH) 2 emulsified slurry obtained by the synthesis of Example 1 was collected in a 2L capacity SUS316 container (corresponding to 100g as the mass of Mg (OH) 2 solid content) and stirred until it reached 80 ° C while stirring. Was warmed. Then, an aqueous solution of sodium salt of stearyl alcohol phosphate adjusted to a temperature of 80 ° C. at a concentration of 10 g / L (monoester: diester = 1: 1 molar ratio) was 3% by mass relative to the solid mass of Mg (OH) 2 A flame retardant powder was prepared, analyzed and evaluated in the same manner as in Example 1 except that the surface treatment was performed by adding and stirring for 30 minutes.

なお、表には示さなかったが、難燃性について酸素指数を測定したが(JIS-K-7201)、実施例および比較例の何れの成型体も、目標の26ポイント以上であり問題なかった。   Although not shown in the table, the oxygen index was measured for flame retardancy (JIS-K-7201), but any of the molded bodies of Examples and Comparative Examples had a target of 26 points or more and had no problem. .

実施例1〜9から、コロイダルシリカとコロイダルアルミナはほぼ同等で、有機シラン剤は、ビニルトリメトキシシラン等の合成樹脂との化学結合を目的とした有機官能基を有するシラン剤に限らず、デシルトリメトキシシラン等の合成樹脂との親和性向上を目的とした有機官能基を有するシラン剤でも良いことが分かる。実施例1〜3と比較例1,2から、適切な引張強度と伸び、及び硬度を得るには、水酸化マグネシウムのBET比表面積と平均粒子径が重要であることが分かる。実施例1と比較例3とから、有機シラン剤を欠く場合、耐炭酸ガス白化性が不十分となることが分かる。比較例4から、有機シラン剤を含んでいてもコロイダルシリカまたはコロイダルアルミナの被覆層を欠く場合も、同様に耐炭酸ガス白化性が不十分であることが分かる。実施例4〜7等と比較例5〜7とから、コロイダルシリカまたはコロイダルアルミナと有機シラン剤との間には相乗作用があり、この組合せで適切な引張強度と硬度とが得られることが分かる。さらに、ケイ酸ナトリウムを用いたり(比較例5〜8)、水酸化アルミニウム皮膜を析出させるのためにNaOHを用いると(比較例9)、体積固有抵抗が低下することが分かる。   From Examples 1 to 9, colloidal silica and colloidal alumina are almost the same, and the organic silane agent is not limited to a silane agent having an organic functional group for the purpose of chemical bonding with a synthetic resin such as vinyltrimethoxysilane. It turns out that the silane agent which has an organic functional group for the purpose of affinity improvement with synthetic resins, such as trimethoxysilane, may be sufficient. From Examples 1 to 3 and Comparative Examples 1 and 2, it can be seen that the BET specific surface area and average particle diameter of magnesium hydroxide are important for obtaining appropriate tensile strength, elongation, and hardness. From Example 1 and Comparative Example 3, it can be seen that the whitening resistance to carbon dioxide gas is insufficient when the organosilane agent is lacking. From Comparative Example 4, it can be seen that even when an organic silane agent is contained, the carbon dioxide gas whitening resistance is also insufficient when the coating layer of colloidal silica or colloidal alumina is lacking. From Examples 4 to 7 and Comparative Examples 5 to 7, it can be seen that there is a synergistic effect between colloidal silica or colloidal alumina and the organosilane agent, and appropriate tensile strength and hardness can be obtained by this combination. . Furthermore, it can be seen that the volume resistivity decreases when sodium silicate is used (Comparative Examples 5 to 8) or NaOH is used to deposit an aluminum hydroxide film (Comparative Example 9).

Claims (4)

(1)BET比表面積が8〜20m2/g、(2)平均粒子径が0.5〜1.0μmの合成水酸化マグネシウム粒子の表面に、(3)第一層目としてコロイダルシリカ又はコロイダルアルミナより選ばれた無機物皮膜がSiO2又はAl2O3換算で水酸化マグネシウム100質量%に対して0.5〜3質量%の割合で形成され、(4)第二層目として有機シラン剤からなる皮膜が水酸化マグネシウム100質量%に対して0.5〜3質量%の割合で形成されていることを特徴とする、水酸化マグネシウム系難燃剤。 (1) BET specific surface area of 8 to 20 m 2 / g, (2) On the surface of synthetic magnesium hydroxide particles having an average particle size of 0.5 to 1.0 μm, (3) First layer selected from colloidal silica or colloidal alumina The formed inorganic film is formed at a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide in terms of SiO 2 or Al 2 O 3 , and (4) a film composed of an organosilane agent is water as the second layer. A magnesium hydroxide-based flame retardant, which is formed at a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium oxide. (1)BET比表面積が8〜20m2/gで、(2)平均粒子径が0.5〜1.0μmの合成水酸化マグネシウムを水中に乳化させた乳化スラリーを調製し、
前記乳化スラリーに、コロイダルシリカ又はコロイダルアルミナの水溶液を、コロイダルシリカ又はコロイダルアルミナがSiO2又はAl2O3換算で水酸化マグネシウム100質量%に対して0.5〜3質量%の割合となるように添加し、
次いで、有機シラン剤を、水酸化マグネシウム100質量%に対して0.5〜3質量%の割合となるように、前記乳化スラリーに添加することを特徴とする、水酸化マグネシウム系難燃剤の製造方法。
(1) A BET specific surface area of 8 to 20 m 2 / g and (2) an emulsified slurry in which synthetic magnesium hydroxide having an average particle size of 0.5 to 1.0 μm is emulsified in water,
To the emulsified slurry, an aqueous solution of colloidal silica or colloidal alumina is added so that the colloidal silica or colloidal alumina has a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide in terms of SiO 2 or Al 2 O 3. And
Subsequently, the organosilane agent is added to the emulsified slurry so as to have a ratio of 0.5 to 3% by mass with respect to 100% by mass of magnesium hydroxide.
ポリオレフィン系樹脂100質量部に対し、請求項1に記載の難燃剤を5〜500質量部配合したことを特徴とする難燃性樹脂組成物。   5. A flame retardant resin composition comprising 5 to 500 parts by mass of the flame retardant according to claim 1 per 100 parts by mass of a polyolefin resin. 請求項3に記載の難燃性樹脂組成物よりなる成形体。   The molded object which consists of a flame-retardant resin composition of Claim 3.
JP2010091078A 2010-04-12 2010-04-12 Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body Expired - Fee Related JP5405379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091078A JP5405379B2 (en) 2010-04-12 2010-04-12 Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091078A JP5405379B2 (en) 2010-04-12 2010-04-12 Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body

Publications (2)

Publication Number Publication Date
JP2011219640A true JP2011219640A (en) 2011-11-04
JP5405379B2 JP5405379B2 (en) 2014-02-05

Family

ID=45037030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091078A Expired - Fee Related JP5405379B2 (en) 2010-04-12 2010-04-12 Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body

Country Status (1)

Country Link
JP (1) JP5405379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115078A1 (en) * 2012-02-03 2013-08-08 神島化学工業株式会社 Halogen-free flame retardant, method for producing same, resin composition, molded article, and molded part
CN113831600A (en) * 2021-10-20 2021-12-24 甘肃坤远节能环保科技发展有限公司 Magnesium-based flame retardant formula and preparation method thereof
CN114316368A (en) * 2021-12-30 2022-04-12 江西广源化工有限责任公司 Preparation method of aluminum hydroxide/magnesium hydroxide composite inorganic flame retardant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320219A (en) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd Magnesium hydroxide coated with silica and its production
JPH02289420A (en) * 1989-04-27 1990-11-29 Ube Chem Ind Co Ltd Magnesium hydroxide particle
JPH11181305A (en) * 1997-10-01 1999-07-06 Kyowa Chem Ind Co Ltd Flame-retardant resin composition
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition
JP2007217475A (en) * 2006-02-14 2007-08-30 Konoshima Chemical Co Ltd Flame retardant, flame retardant resin composition and molded product
JP2007261923A (en) * 2006-03-30 2007-10-11 Konoshima Chemical Co Ltd Magnesium hydroxide-based powder, its manufacturing method, resin composition and molding
JP2008169397A (en) * 2008-02-14 2008-07-24 Sakai Chem Ind Co Ltd Flame retardant, method for producing it, and flame retardant resin composition containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320219A (en) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd Magnesium hydroxide coated with silica and its production
JPH02289420A (en) * 1989-04-27 1990-11-29 Ube Chem Ind Co Ltd Magnesium hydroxide particle
JPH11181305A (en) * 1997-10-01 1999-07-06 Kyowa Chem Ind Co Ltd Flame-retardant resin composition
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition
JP2007217475A (en) * 2006-02-14 2007-08-30 Konoshima Chemical Co Ltd Flame retardant, flame retardant resin composition and molded product
JP2007261923A (en) * 2006-03-30 2007-10-11 Konoshima Chemical Co Ltd Magnesium hydroxide-based powder, its manufacturing method, resin composition and molding
JP2008169397A (en) * 2008-02-14 2008-07-24 Sakai Chem Ind Co Ltd Flame retardant, method for producing it, and flame retardant resin composition containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115078A1 (en) * 2012-02-03 2013-08-08 神島化学工業株式会社 Halogen-free flame retardant, method for producing same, resin composition, molded article, and molded part
JPWO2013115078A1 (en) * 2012-02-03 2015-05-11 神島化学工業株式会社 Non-halogen flame retardant, its production method, resin composition, molded body and molded part
TWI488951B (en) * 2012-02-03 2015-06-21 Konoshima Chemical A halogen-free flame retardant, a method for producing the same, a resin composition, a molded body and a molded part
CN113831600A (en) * 2021-10-20 2021-12-24 甘肃坤远节能环保科技发展有限公司 Magnesium-based flame retardant formula and preparation method thereof
CN114316368A (en) * 2021-12-30 2022-04-12 江西广源化工有限责任公司 Preparation method of aluminum hydroxide/magnesium hydroxide composite inorganic flame retardant
CN114316368B (en) * 2021-12-30 2023-06-27 江西广源化工有限责任公司 Preparation method of aluminum hydroxide/magnesium hydroxide composite inorganic flame retardant

Also Published As

Publication number Publication date
JP5405379B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4947612B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition
CN103524913B (en) A kind of Flame-retardant oil-resistant aging-resistant thermoplastic elastomer cable material
EP1942173B1 (en) Flame retardant, flame-retardant resin composition and molded body
JP4997704B2 (en) Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof
JP2013189522A (en) Flame retardant, flame-retardant composition, and wire and cable
JP5405379B2 (en) Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body
JP4106928B2 (en) Flame retardant, method for producing the same, and flame retardant resin composition containing the same
JP4807501B2 (en) Flame retardant polypropylene resin composition
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP3885551B2 (en) Flame retardant having high effective surface area, method for producing the same and flame retardant resin composition containing the same
CN106029571B (en) Magnesia, conducting filler and containing its heat conductive resin composition and magnesia manufacturing method
WO2014128993A1 (en) Flame retardant agent, flame-retardant composition, and molded article
JP3765511B2 (en) Flame retardant cable
JPWO2004065300A1 (en) Magnesium hydroxide, magnesium hydroxide/silica composite particles, method for producing them, method for surface treatment thereof, resin composition using the same, electric wire
JP5078270B2 (en) Magnesium hydroxide powder and method for producing the same, and resin composition and molded body
JP2008169397A (en) Flame retardant, method for producing it, and flame retardant resin composition containing the same
JP2010173870A (en) 2:1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film
JP4366364B2 (en) Flame retardant, flame retardant resin composition and molded article
AU2010276774A1 (en) Fluororesin film and method for producing same
WO2004067646A1 (en) Composite pigment composition containing silica
CN114656160A (en) High-light-transmission mildew-proof glass and preparation method thereof
JP2006232980A (en) Method for producing surface coated flame-retardant particle
JP6778320B2 (en) Alumina hydrate particles, flame retardants, resin compositions and electric wires / cables
JP3444732B2 (en) Flame retardant composition for chlorine-containing polymer and resin composition containing the same
WO2021131596A1 (en) Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

LAPS Cancellation because of no payment of annual fees