JP2010173870A - 2:1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film - Google Patents

2:1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film Download PDF

Info

Publication number
JP2010173870A
JP2010173870A JP2009015808A JP2009015808A JP2010173870A JP 2010173870 A JP2010173870 A JP 2010173870A JP 2009015808 A JP2009015808 A JP 2009015808A JP 2009015808 A JP2009015808 A JP 2009015808A JP 2010173870 A JP2010173870 A JP 2010173870A
Authority
JP
Japan
Prior art keywords
clay
film
self
water
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009015808A
Other languages
Japanese (ja)
Other versions
JP5476579B2 (en
Inventor
Hyun-Jeong Nam
ヒョンジョン ナム
Takeo Ebina
武雄 蛯名
Akira Ishii
亮 石井
Fujio Mizukami
富士夫 水上
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Chemical Co Ltd
Priority to JP2009015808A priority Critical patent/JP5476579B2/en
Publication of JP2010173870A publication Critical patent/JP2010173870A/en
Application granted granted Critical
Publication of JP5476579B2 publication Critical patent/JP5476579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 2:1 type 3 octahedral synthetic clay capable of obtaining a coating clay film and a self-supporting clay film which have high transparency and high water resistance, and a coating clay film and a self-supporting clay film which have high transparency and high water resistance. <P>SOLUTION: The 2:1 type 3 octahedral synthetic clay contains stevensite which contains Li, Mg and Si in the ranges of Li/Si=0.08-0.17 and Mg/Si=0.65-0.72. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2:1型3八面体合成粘土、透明粘土ゲル、コーティング粘土膜及び自立粘土膜に関する。   The present invention relates to 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film.

ポリマーの低い耐熱性(例えば、最も高い耐熱性を有するイミド樹脂で約350℃)と低いガスバリア性を改善することを目的として、粘土を添加剤として用いるポリマー粘土ナノコンポジットの検討がなされている(例えば特許文献1、2参照)。これらのポリマー粘土ナノコンポジットは、粘土の配合率が高くなるほど耐熱性、ガスバリア性等の性能は向上する。しかし、粘土は成形性に劣るため、成形性を確保するためにはポリマー粘土ナノコンポジット中の粘土の配合率は制限される。   In order to improve the low heat resistance of the polymer (for example, about 350 ° C. with an imide resin having the highest heat resistance) and low gas barrier properties, polymer clay nanocomposites using clay as an additive have been studied ( For example, see Patent Documents 1 and 2). These polymer clay nanocomposites are improved in performance such as heat resistance and gas barrier property as the clay content increases. However, since clay is inferior in moldability, the blending ratio of clay in the polymer clay nanocomposite is limited to ensure moldability.

一方、近年、ポリマー粘土ナノコンポジットの耐熱性、ガスバリア性を超える性能を有する粘土膜が開発されている(例えば、特許文献3、4参照)。特許文献3には、粘土膜の全固形分に対して粘土を90〜100質量%含有し、自立膜として利用可能な機械的強度を有し、350℃以上の高温においてもフレキシブリティーに優れ、高い耐熱性(最大600℃)とガスバリア性(ガス透過係数:3.2×10−11cm−1cmHg−1未満)を達成する粘土膜が開示されている(特許文献3参照)。また、特許文献4には、粘土の含有率が70質量%以上で高いガスバリア性(ガス透過係数:3.2×10−11cm−1cmHg−1未満)を有し、200℃以上を超える高温においても化学的に安定で、透明性を有し(全透過率80%以上)、柔軟な粘土膜が開示されている。これらの粘土膜は、ディスプレイ材料・包装材料・電子デバイス封止材料などとしての使用が期待される。 On the other hand, in recent years, clay films having performance exceeding the heat resistance and gas barrier properties of polymer clay nanocomposites have been developed (see, for example, Patent Documents 3 and 4). Patent Document 3 contains 90 to 100% by mass of clay with respect to the total solid content of the clay film, has mechanical strength that can be used as a self-supporting film, and has excellent flexibility even at a high temperature of 350 ° C or higher. A clay film that achieves high heat resistance (maximum 600 ° C.) and gas barrier properties (gas permeability coefficient: less than 3.2 × 10 −11 cm 2 s −1 cmHg −1 ) is disclosed (see Patent Document 3). Further, Patent Document 4, a high gas barrier property at a content of clay 70 mass% or more (gas permeability coefficient: 3.2 × 10 -11 cm 2 s less than -1 cmHg -1) have, 200 ° C. or higher Disclosed is a clay film that is chemically stable even at high temperatures in excess of the above, has transparency (total transmittance of 80% or more), and is flexible. These clay films are expected to be used as display materials, packaging materials, electronic device sealing materials, and the like.

上記の粘土を主成分とする膜(粘土膜)は、粘土としてスメクタイトを使用している。スメクタイトは水中で膨潤して均一な粘土分散液になり、前記粘土分散液を塗布し、乾燥することによって粘土の層が均一に積層した膜になることが知られている(非特許文献1参照)。上記粘土膜は、粘土単独でも成膜性が高いスメクタイトを用いることで、粘土を多く含有する場合でも、粘土膜の形成が可能となる。   The above-mentioned clay-based film (clay film) uses smectite as clay. It is known that smectite swells in water to form a uniform clay dispersion, and the clay dispersion is applied and dried to form a film in which clay layers are uniformly laminated (see Non-Patent Document 1). ). The clay film can be formed even when the clay film contains a large amount of clay by using smectite having a high film forming property even with clay alone.

水等の分散媒に対するスメクタイトの膨潤性は、粘土膜形成に重要な性質である。しかし、一方で、水等への高い分散性及び膨潤性は、形成した粘土膜の耐水性を低下させる原因となる。そのため、粘土膜中のスメクタイトの含有量を増加させるほど、粘土膜の水蒸気バリア性は低下し、水中で再び分散してしまう問題がある。   The swelling property of smectite with respect to a dispersion medium such as water is an important property for forming a clay film. However, on the other hand, high dispersibility and swellability in water and the like cause a decrease in water resistance of the formed clay film. Therefore, as the content of smectite in the clay film is increased, the water vapor barrier property of the clay film is lowered and there is a problem that it is dispersed again in water.

この問題を解決する方法の一つとして、変性粘土を用いた粘土膜が報告されている(特許文献5参照)。前記変性粘土は、有機カチオンを30質量%未満含有し、粘土の交換性陽イオンの少なくとも50%がリチウムイオンである。変性粘土を用いた粘土膜は、加熱処理をすることによって層間のリチウムが粘土の八面体層内に移動し、層間のイオン成分が減少することにより耐水性が向上する。この耐水性の向上は、層間イオン性物質のうちリチウムイオンを50%以上にすることで顕著となる。   As one method for solving this problem, a clay film using a modified clay has been reported (see Patent Document 5). The modified clay contains less than 30% by mass of organic cations, and at least 50% of the exchangeable cations of the clay are lithium ions. In the clay film using the modified clay, the lithium between layers moves into the octahedral layer of the clay by heat treatment, and the water resistance is improved by reducing the ionic components between the layers. This improvement in water resistance becomes significant when the lithium ion content of the interlayer ionic substance is 50% or more.

上記のような、リチウムイオンの粘土の八面体層内への移動による耐水性の向上は、電荷の主な発生源が八面体層であり、例えば、モンモリロナイトのような、八面体層に空隙がある2八面体粘土に特有な挙動であると報告されている(非特許文献2、3参照)。しかし、2八面体粘土は合成が難しく工業化されておらず、工業用途には主に天然の粘土が使用されている。また、天然の粘土は不純物の混入が避けられず、透明な粘土ゲル又は粘土膜を得ることが出来ない。   As described above, the improvement in water resistance due to the migration of lithium ions into the octahedral layer of the clay is that the main source of charge is the octahedral layer, for example, there are voids in the octahedral layer, such as montmorillonite. It is reported that the behavior is unique to a certain dioctahedral clay (see Non-Patent Documents 2 and 3). However, dioctahedral clay is difficult to synthesize and not industrialized, and natural clay is mainly used for industrial applications. Natural clay is unavoidably mixed with impurities, and a transparent clay gel or clay film cannot be obtained.

一方、2八面体粘土に比べて3八面体粘土は、合成温度が低い等、合成条件が比較的にマイルドであるため、透明な粘土ゲル又は粘土膜を得ることができる純度の高い3八面体粘土が工業的にも合成され、市販されている。そこで、3八面体粘土においても2八面体粘土と同様な原理で耐水性の向上が得られれば、透明で耐水性のある粘土ゲル又は粘土膜の作製が可能となる。   On the other hand, trioctahedral clay is relatively mild compared to dioctahedral clay, such as a low synthesis temperature. Therefore, a highly pure trioctahedral can obtain a transparent clay gel or clay film. Clay is also industrially synthesized and is commercially available. Therefore, in the case of trioctahedral clay, if water resistance can be improved on the same principle as that of dioctahedral clay, a transparent and water-resistant clay gel or clay film can be produced.

3八面体の粘土の一つであるスチブンサイトは八面体層のマグネシウムの一部が欠位した粘土である。従って、電荷の発生源が八面体層であり、八面体層に空隙があるため、2八面体で報告されているような原理から耐水性の向上が期待出来ると考えられる。   Stevensite, one of the three octahedral clays, is a clay in which part of the octahedral magnesium is missing. Therefore, since the charge generation source is the octahedral layer and there are voids in the octahedral layer, it is considered that the improvement in water resistance can be expected from the principle reported for the dioctahedron.

上記したスメクタイトが水等により膨潤する現象は、粘土の層間に水が入り込むことで起きる現象である。膨潤の度合は層間イオンの種類によって異なるが、層間に陽イオンが存在する限り水分の吸収は必ず起きる。特に、ナトリウムイオンは水の吸着力が非常に高いため、層間に水が入り込みやすく、水分に対して無限膨潤を起こす。しかし、ナトリウムイオンはカルシウムイオンと共に、天然のスメクタイトの層間イオンの体表的なイオンであり、天然粘土には必ず含まれている。また、合成粘土でも、ナトリウムが含まれてないスメクタイトは報告された例はほとんどない。   The phenomenon in which the above smectite swells with water or the like is a phenomenon that occurs when water enters between layers of clay. The degree of swelling varies depending on the type of interlayer ions, but as long as there are cations between the layers, moisture absorption will inevitably occur. In particular, sodium ions have a very high water adsorbing power, so that water can easily enter between layers and cause infinite swelling to moisture. However, sodium ions, together with calcium ions, are surface ions of natural smectite interlayer ions, and are always contained in natural clay. In addition, even in synthetic clay, there have been few reported cases of smectite containing no sodium.

このように、ナトリウムを含有しない合成粘土の開発が行われなかった理由の一つとしては、ナトリウムの含有が問題になるような産業分野への粘土の利用がなかったことが挙げられる。また、ナトリウムが合成における粘土生成の促進剤の役割をするため、ナトリウムがないと粘土(特にスチブンサイト)の合成が困難とされる(非特許文献4参照)。   As described above, one of the reasons why the development of synthetic clay not containing sodium has not been carried out is that clay has not been used in industrial fields where sodium content becomes a problem. In addition, since sodium serves as an accelerator for clay formation in the synthesis, it is difficult to synthesize clay (particularly, stevensite) without sodium (see Non-Patent Document 4).

粘土を、被膜形成用コーティング液、金属材料の表面コート剤として利用する目的の場合、ナトリウムイオンは基板材料の腐食、塗膜の剥離の原因になる。そこで、ナトリウムイオン含有量を低減させた粘土合成方法として、リチウム型ヘクトライトの合成が報告され(特許文献7)、ナトリウム含有量は0.5wt%以下(一般に市販されているヘクトライトに比べて約10%の量)である合成粘土が開示されている。しかし、この方法ではシリカゾルの原料として珪酸ナトリウム水溶液を使用するため、少量ではあるが、ナトリウムの含有は避けらず、ナトリウムを完全に排除することは困難である。   In the case of using clay as a coating liquid for forming a film and a surface coating agent for a metal material, sodium ions cause corrosion of the substrate material and peeling of the coating film. Therefore, synthesis of lithium-type hectorite has been reported as a clay synthesis method with reduced sodium ion content (Patent Document 7), and the sodium content is 0.5 wt% or less (compared to commercially available hectorite). Synthetic clays are disclosed in amounts of about 10%). However, since this method uses a sodium silicate aqueous solution as a raw material for the silica sol, it is difficult to completely eliminate sodium, although it is unavoidable to contain sodium, although in a small amount.

ナトリウム含有量を低下させたリチウム型スメクタイトを得るもう一つの方法は、イオン交換法があげられる。粘土のイオン交換方法は幾つか挙げられるが、最も一般的に行われている方法としては、リチウムイオンが含まれた溶液にナトリウム型又はカルシウム型粘土を分散させ、粘土の層間イオンと溶液中のイオンとを交換する方法である。リチウムイオンの塩化物(例えば塩化リチウム、硝酸リチウム、硫酸リチウム等)を溶解した溶液に粘土を分散させ攪拌してから濾過する。この作業を何回か繰り返して層間イオンの交換を行う。交換が出来た後は繰り返し水又はアルコール洗浄を行い不純物として付着した塩を取り除く。この塩化物溶液を用いたイオン交換法は、非常に手間が掛かるにも関らず、完全なイオン交換が出来ない。さらに、洗浄し切れない塩化物の不純物の影響が残り、また、洗浄時に粘土も流失するためイオン交換度を高めるほど、純度を高めるほど粘土の収率が激減する問題がある。イオン交換樹脂を用いたイオン交換法も報告されているが(特許文献6)、層間ナトリウムイオンの15%ほどは交換できず、粘土中に残留してしまう。   Another method for obtaining lithium smectite having a reduced sodium content is an ion exchange method. There are several methods for ion exchange of clay, but the most commonly used method is to disperse sodium-type or calcium-type clay in a solution containing lithium ions, and interlaminate ions of clay and This is a method of exchanging ions. Clay is dispersed in a solution in which lithium ion chloride (eg, lithium chloride, lithium nitrate, lithium sulfate, etc.) is dissolved, and then filtered. This operation is repeated several times to exchange interlayer ions. After the replacement, repeat the water or alcohol washing to remove the salt adhering as impurities. Although this ion exchange method using a chloride solution is very time-consuming, complete ion exchange cannot be performed. In addition, the influence of chloride impurities that cannot be washed remains, and the clay is also washed away during washing, so that there is a problem that the yield of clay decreases drastically as the degree of ion exchange increases and the purity increases. Although an ion exchange method using an ion exchange resin has also been reported (Patent Document 6), about 15% of interlayer sodium ions cannot be exchanged and remain in the clay.

米国特許第4739007号公報US Pat. No. 4,733,007 特開昭51−7056号公報JP-A-51-7056 特開2006−77237号公報JP 2006-77237 A 特開2007−63118号公報JP 2007-63118 A 特開2007−277078号公報JP 2007-277078 A 特開2007−302897号公報JP 2007-302897 A 特開平9−249412号公報Japanese Patent Laid-Open No. 9-249412

Clay Science 13 (2007) 159Cray Science 13 (2007) 159 粘土科学討論会講演要旨集31 (1987) 67Abstracts of Lecture Meeting 31 (1987) 67 粘土科学討論会講演要旨集44 (2000) 238Abstracts 44 Annual Meeting of the Japan Society for Clay Science Discussion (2000) 238 鉱物学雑誌14 (1979) 170Journal of mineralogy 14 (1979) 170

本発明は、透明度が高く耐水性が高いコーティング粘土膜及び自立粘土膜を得ることが可能な2:1型3八面体合成粘土を提供することを目的とする。また、本発明は、透明度が高く耐水性が高いコーティング粘土膜及び自立粘土膜を提供することを目的とする。   An object of the present invention is to provide a 2: 1 type 3 octahedral synthetic clay capable of obtaining a coating clay film and a self-supporting clay film having high transparency and high water resistance. Another object of the present invention is to provide a coating clay film and a self-supporting clay film having high transparency and high water resistance.

本発明者等は、鋭意検討した結果、特定の組成を有するスチブンサイトを含むことにより上記課題を解決できることを見出した。   As a result of intensive studies, the present inventors have found that the above problem can be solved by including a stevensite having a specific composition.

すなわち本発明は、下記(1)〜(14)に記載の事項をその特徴とするものである。
(1)Li、Mg及びSiを含み、Li/Si=0.08〜0.17、Mg/Si=0.65〜0.72の範囲であるスチブンサイトを含む2:1型3八面体合成粘土。
(2)Naを含まない(1)に記載の2:1型3八面体合成粘土。
(3)500℃での加熱処理後の吸水率が5%未満である(1)又は(2)に記載の2:1型3八面体合成粘土。
(4)不純物としてのLiが、Li/Si<0.15である(1)〜(3)いずれか一項に記載の2:1型3八面体合成粘土。
(5)上記(1)〜(4)いずれか一項に記載の2:1型3八面体合成粘土及び分散媒として水を含み、チクソトロピー性を有する透明粘土ゲル。
(6)上記(5)に記載の透明粘土ゲルを用いてなるコーティング粘土膜。
(7)透明度が全光線透過率90%以上である(5)に記載のコーティング粘土膜。
(8)400℃以下の加熱処理後の全光線透過率が70%以上である(6)又は(7)に記載のコーティング粘土膜。
(9)加熱処理をすることによって、耐水性が向上することを特徴する(6)〜(8)いずれか一項に記載のコーティング粘土膜。
(10)上記(5)に記載の透明粘土ゲルを用いてなる自立粘土膜。
(11)透明度が全光線透過率80%以上である(10)に記載の自立粘土膜。
(12)厚さ30〜500μmを有する(10)又は(11)に記載の自立粘土膜。
(13)400℃以下の加熱処理後の全光線透過率が70%以上である(10)〜(12)いずれか一項に記載の自立粘土膜。
(14)加熱処理をすることによって、耐水性が向上することを特徴する(10)〜(13)いずれか一項に記載の自立粘土膜。
That is, the present invention is characterized by the following items (1) to (14).
(1) 2: 1 type 3-octahedron synthetic clay containing Li, Mg and Si, and containing stevensite in the range of Li / Si = 0.08 to 0.17 and Mg / Si = 0.65 to 0.72. .
(2) The 2: 1 type 3 octahedral synthetic clay according to (1), which does not contain Na.
(3) The 2: 1 type 3 octahedral synthetic clay according to (1) or (2), wherein the water absorption after heat treatment at 500 ° C. is less than 5%.
(4) The 2: 1 type 3 octahedral synthetic clay according to any one of (1) to (3), wherein Li as an impurity is Li / Si <0.15.
(5) A transparent clay gel having thixotropic properties, comprising 2: 1 type 3 octahedral synthetic clay according to any one of (1) to (4) above and water as a dispersion medium.
(6) A coated clay film formed using the transparent clay gel described in (5) above.
(7) The coated clay film according to (5), wherein the transparency is 90% or more of the total light transmittance.
(8) The coated clay film according to (6) or (7), wherein the total light transmittance after heat treatment at 400 ° C. or lower is 70% or more.
(9) The coated clay film according to any one of (6) to (8), wherein water resistance is improved by heat treatment.
(10) A self-supporting clay film using the transparent clay gel described in (5) above.
(11) The self-supporting clay film according to (10), wherein the transparency is 80% or more of the total light transmittance.
(12) The self-supporting clay film according to (10) or (11) having a thickness of 30 to 500 μm.
(13) The self-supporting clay film according to any one of (10) to (12), wherein the total light transmittance after the heat treatment at 400 ° C. or lower is 70% or more.
(14) The self-supporting clay film according to any one of (10) to (13), wherein water resistance is improved by heat treatment.

本発明によれば、透明度が高く耐水性が高いコーティング粘土膜及び自立粘土膜を得ることが可能な2:1型3八面体合成粘土を得ることが可能となる。また、本発明は、透明度が高く耐水性が高いコーティング粘土膜及び自立粘土膜を得ることが可能となる。   According to the present invention, it is possible to obtain a 2: 1 type 3 octahedral synthetic clay that can obtain a coating clay film and a self-supporting clay film having high transparency and high water resistance. In addition, the present invention makes it possible to obtain a coated clay film and a self-supporting clay film having high transparency and high water resistance.

実施例1で得られた粘土のXRDパターンである。2 is an XRD pattern of the clay obtained in Example 1. (a)実施例7で得られた粘土のXRDパターンである。 (b)実施例8で得られた粘土のXRDパターンである。 (c)実施例9で得られた粘土のXRDパターンである。(A) It is a XRD pattern of the clay obtained in Example 7. (B) It is a XRD pattern of the clay obtained in Example 8. (C) It is a XRD pattern of the clay obtained in Example 9. 実施例1で得られた自立粘土膜の写真である。2 is a photograph of a self-supporting clay film obtained in Example 1. 実施例1で得られた自立粘土膜の端面のSEM写真である。2 is a SEM photograph of the end face of the self-supporting clay film obtained in Example 1. 実施例1で得られた自立粘土膜を400℃で3時間加熱処理した後、水の中に入れ一晩放置した後の写真である。FIG. 3 is a photograph after the self-supporting clay film obtained in Example 1 was heat-treated at 400 ° C. for 3 hours, then placed in water and left overnight.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の2:1型3八面体合成粘土は、Li、Mg及びSiを含み、Li/Si=0.08〜0.17、Mg/Si=0.65〜0.72の範囲であるスチブンサイトを含むことを特徴とする。また、Li/Siの値は結晶性が高く、より質の高い粘土となる観点から、0.10〜0.17であることが好ましい。   The 2: 1 type 3 octahedral synthetic clay of the present invention contains Li, Mg, and Si, and has a range of Li / Si = 0.08 to 0.17 and Mg / Si = 0.65 to 0.72. It is characterized by including. The value of Li / Si is preferably 0.10 to 0.17 from the viewpoint of high crystallinity and a higher quality clay.

本発明の2:1型3八面体合成粘土は、Li、Mg及びSiを含むが、Siを有する一対の四面体層(四面体シート)が頂点を向かい合わせて配置し、前記一対の四面体層に挟まれるように、Mgを有する八面体層(八面体シート)位置し、層間陽イオンとしてLiを配置した構造となる。 The 2: 1 type 3 octahedron synthetic clay of the present invention contains Li, Mg and Si, and a pair of tetrahedron layers (tetrahedron sheets) having Si are arranged with their apexes facing each other, and the pair of tetrahedra An octahedral layer (octahedron sheet) having Mg is positioned so as to be sandwiched between layers, and Li is arranged as an interlayer cation.

なお、本発明におけるLi/Si及びMg/Siは下記の方法により算出した値を示す。
Li/Siは、合成原料に入れたSiの量に対して、層間イオン又は層内に入ったLiを測定し計算した。層間イオンとしてのLi量は、メチレンブルー吸着法を用いて層間のLiと交換されたメチレンブルーの量を測定し、換算した。一方、層内に入ったLiの量は合成原料に添加したLi量とICP測定で検出されたLi量の差から算出した。Mg/SiはEDX元素分析を用いて測定した。
In the present invention, Li / Si and Mg / Si indicate values calculated by the following method.
Li / Si was calculated by measuring interlayer ions or Li contained in the layer with respect to the amount of Si contained in the synthetic raw material. The amount of Li as interlayer ions was converted by measuring the amount of methylene blue exchanged with Li between layers using the methylene blue adsorption method. On the other hand, the amount of Li entering the layer was calculated from the difference between the amount of Li added to the synthetic raw material and the amount of Li detected by ICP measurement. Mg / Si was measured using EDX elemental analysis.

また、本発明の2:1型3八面体合成粘土はNaを含まないことを特徴とする。Naを含まないとは、得られた粘土の層間イオンをICPによって測定した際に、検出限界値においてもNaが検出されないことであり、測定誤差程度でNaが検出されることは意図しない。2:1型3八面体合成粘土がNaを含まないことによって、層間に存在する陽イオン(層間陽イオン)はほぼ全てがリチウムイオンとなり、加熱処理をすることによって層間のリチウムイオンが粘土の八面体層内に移動し、層間陽イオン成分が減少することにより耐水性が向上する。本発明の2:1型3八面体合成粘土は、例えば、500℃、12時間の加熱をすることによって、耐水性が向上する。すなわち、具体的には、前記加熱処理を施す前の粘土を、温度40℃、湿度90%に設定した恒温高湿庫中に5時間放置した際の吸湿率と、同様の方法にて測定した、500℃、12時間の加熱処理を施した粘土の吸湿率とを比較した際に、加熱処理後の粘土の吸湿率が加熱処理前の粘土の吸湿率と比較して95%以上減少する。   The 2: 1 type 3 octahedral synthetic clay of the present invention is characterized by not containing Na. When it does not contain Na, it means that Na is not detected even at the detection limit value when interlayer ions of the obtained clay are measured by ICP, and it is not intended that Na is detected with a measurement error. Since the 2: 1 type 3 octahedral synthetic clay does not contain Na, almost all cations (interlayer cations) existing between the layers become lithium ions. Water resistance is improved by moving into the face layer and reducing the interlayer cation component. The 2: 1 type 3 octahedral synthetic clay of the present invention is improved in water resistance, for example, by heating at 500 ° C. for 12 hours. Specifically, the clay before the heat treatment was measured by the same method as the moisture absorption rate when left for 5 hours in a constant temperature and high humidity chamber set at a temperature of 40 ° C. and a humidity of 90%. When the moisture absorption rate of the clay subjected to the heat treatment at 500 ° C. for 12 hours is compared, the moisture absorption rate of the clay after the heat treatment is reduced by 95% or more as compared with the moisture absorption rate of the clay before the heat treatment.

耐水性が向上する加熱温度としては、350〜500℃であることが好ましい。リチウムイオンはイオン半径が小さいため、リチウムイオンが上記加熱処理によって粘土の八面体層内に移動し、固定される。この反応は非可逆的な反応であり、一旦、層内に移動したリチウムイオンは、再び粘土の層間に戻ることはなくなる。これによって、粘土の層電荷は低下し、水中で膨潤しにくくなる(耐水性が向上する)。一方、ナトリウムイオンは半径が大きいため、加熱処理を行っても八面体層内に移動することができず、上記のような粘土の層電荷変化は起こらない。このように、本発明の合成粘土は層間にナトリウムイオンが含まれず、ほぼリチウムイオンのみが存在するため、加熱処理によりほぼ全てのリチウムイオンが八面体層内に移動することにより、耐水性の高い粘土が得られるものと考えられる。   The heating temperature for improving water resistance is preferably 350 to 500 ° C. Since lithium ions have a small ion radius, the lithium ions move into the octahedral layer of clay by the heat treatment and are fixed. This reaction is an irreversible reaction, and once the lithium ions move into the layer, they do not return to the clay layer again. This lowers the layer charge of the clay and makes it difficult to swell in water (improves water resistance). On the other hand, since sodium ions have a large radius, they cannot move into the octahedral layer even if heat treatment is performed, and the above-described clay layer charge change does not occur. Thus, since the synthetic clay of the present invention does not contain sodium ions between the layers, and almost only lithium ions exist, almost all lithium ions move into the octahedral layer by heat treatment, and thus have high water resistance. It is thought that clay is obtained.

また、本発明の2:1型3八面体合成粘土は、上記粘土の構成元素としてではなく、不純物として、Li/Si<0.15含まれていてもよい。3八面体粘土の合成は、求める粘土の理論組成比に従って原料を配合し合成を行うのが一般的である。しかし、後述する本発明の2:1型3八面体合成粘土の合成方法の一例においては、理論組成比に従って原料を配合しても、理論組成の粘土の合成が出来ない場合がある。これは、本発明の2:1型3八面体合成粘土の合成方法の一例においては、粘土合成の促進剤として機能するナトリウムを含まない原料を用いるためと考えられる。本発明の2:1型3八面体合成粘土の合成方法の一例においては、層間イオンであるリチウムイオンの量を理論組成比よりも過剰にすることが好ましい。リチウムイオンが過剰の環境下においては、ナトリウムが存在しなくてもスチブンサイトを含む2:1型3八面体粘土が合成できると考えられる。
上記リチウムイオンの過剰な条件下での合成においては、合成後に過剰に存在するリチウムは粘土の構成元素としてではなく、塩の形で生成することになる。このリチウム塩は、合成後に、例えば、洗浄を行うことによって除去しても良いが、洗浄を行わなくても上記範囲内(Li/Si<0.15)であれば本発明の効果に大きく影響を与えない。一方、不純物として含まれるリチウム塩が、Li/Siで0.15以上となると、粘土合成の時粘土の結晶化が妨害される可能性がある。
なお、本発明における不純物としてのLi/Siは下記の方法により算出した値を示す。不純物としてのLi量は、添加したLi量から層間イオンとしてのLiと層内に入ったLiの量を引いた値である。層間イオンとしてのLi量は、メチレンブルー吸着法を用いて層間のLiと交換されたメチレンブルーの量を測定し、換算した。層内に入ったLiの量は合成原料に添加したLi量とICP測定で検出されたLi量の差から算出した。Li/Siは、合成原料に入れたSiの量と不純物としてのLi量の比から計算した。
In addition, the 2: 1 type 3 octahedral synthetic clay of the present invention may contain Li / Si <0.15 as an impurity, not as a constituent element of the clay. In general, trioctahedral clay is synthesized by blending raw materials according to the required theoretical composition ratio of clay. However, in an example of the method for synthesizing the 2: 1 type 3 octahedral synthetic clay of the present invention, which will be described later, even if the raw materials are blended according to the theoretical composition ratio, the clay having the theoretical composition may not be synthesized. This is presumably because the example of the method for synthesizing 2: 1 type 3 octahedral synthetic clay of the present invention uses a sodium-free raw material that functions as an accelerator for clay synthesis. In an example of the method for synthesizing the 2: 1 type 3 octahedral synthetic clay of the present invention, it is preferable to make the amount of lithium ions as interlayer ions excessive from the theoretical composition ratio. In an environment where lithium ions are excessive, it is considered that 2: 1 type 3 octahedral clay containing stevensite can be synthesized without sodium.
In the synthesis of lithium ions under an excessive condition, lithium existing excessively after the synthesis is not formed as a constituent element of clay but is generated in the form of a salt. This lithium salt may be removed after the synthesis, for example, by washing, but if it is within the above range (Li / Si <0.15) without washing, the effect of the present invention is greatly affected. Not give. On the other hand, if the lithium salt contained as an impurity is 0.15 or more in terms of Li / Si, crystallization of the clay may be hindered during clay synthesis.
In addition, Li / Si as an impurity in the present invention indicates a value calculated by the following method. The amount of Li as an impurity is a value obtained by subtracting the amount of Li as interlayer ions and the amount of Li contained in the layer from the amount of added Li. The amount of Li as interlayer ions was converted by measuring the amount of methylene blue exchanged with Li between layers using the methylene blue adsorption method. The amount of Li entering the layer was calculated from the difference between the amount of Li added to the synthesis material and the amount of Li detected by ICP measurement. Li / Si was calculated from the ratio of the amount of Si put into the synthetic raw material and the amount of Li as an impurity.

本発明の2:1型3八面体合成粘土は、例えば、分散媒として水と混合することにより容易に分散し、チクソトロピー性を有する透明な粘土ゲルを形成することが可能となる。これは、層間イオンとして一価のリチウムイオンを有することに起因する。   The 2: 1 type 3 octahedral synthetic clay of the present invention can be easily dispersed, for example, by mixing with water as a dispersion medium to form a transparent clay gel having thixotropic properties. This is due to having monovalent lithium ions as interlayer ions.

上記粘土ゲルは、基板上に塗布し、静置乾燥することによって、粒子の配向のそろったコーティング粘土膜を形成することが可能となる。コーティング粘土膜を形成可能な基板としては、特に制限はないが、例えば、ほう珪酸ガラス、パイレックス(登録商標)、石英などのガラス類、ステンレス、アルミニウム、鉄、銅などの金属類、アルミナ、ジルコニア、チタニアなどのセラミック類、ポリプロフィレン(PP)、ポリエチレンテレフタレート(PET)、ナフロン(PTEF)などのプラスチック類等が挙げられる。   By applying the clay gel on a substrate and allowing it to stand and dry, it is possible to form a coated clay film with uniform particle orientation. There are no particular restrictions on the substrate on which the coated clay film can be formed. For example, glass such as borosilicate glass, Pyrex (registered trademark), and quartz, metals such as stainless steel, aluminum, iron, and copper, alumina, and zirconia And ceramics such as titania, plastics such as polypropylene (PP), polyethylene terephthalate (PET), and naflon (PTEF).

また、本発明のコーティング粘土膜は、透明度が全光線透過率で90%以上であることが好ましく、400℃以下の加熱処理後においてコーティング膜の全光線透過率が70%以上であることがより好ましい。   Further, the coating clay film of the present invention preferably has a transparency of 90% or more in terms of total light transmittance, and more preferably has a total light transmittance of 70% or more after the heat treatment at 400 ° C. or less. preferable.

なお、コーティング粘土膜の全光線透過率は、濁度計(ヘーズメーター)によって測定することができる。   The total light transmittance of the coating clay film can be measured with a turbidimeter (haze meter).

また、本発明の透明粘土ゲルは、基板上に塗布し、乾燥することによって透明な膜を形成することが可能であるが、例えば、ポリプロフィレン製の基板上に塗布し乾燥させると、乾燥後に、前記基板と形成した膜とを容易に分離することが可能であり、自立粘土膜を作製することができる。本発明の自立粘土膜は、基板から分離された状態でも、ハンドリングできる強度を有することが好ましい。本発明の自立粘土膜の厚み(膜厚)は、基板に塗布した当面粘土ゲルの濃度、透明粘土ゲルの厚み等によって適宜調整することが可能であり、30〜500μmの自立粘土膜の作製が可能であり、ハンドリング強度、透明度等の観点からは30〜150μmの自立粘土膜が好ましい。   In addition, the transparent clay gel of the present invention can be applied on a substrate and dried to form a transparent film. For example, when applied to a substrate made of polypropylene and dried, The substrate and the formed film can be easily separated, and a self-supporting clay film can be produced. The self-supporting clay film of the present invention preferably has a strength capable of being handled even when separated from the substrate. The thickness (film thickness) of the self-supporting clay film of the present invention can be adjusted as appropriate depending on the concentration of the clay gel applied to the substrate for the time being, the thickness of the transparent clay gel, and the like. In view of handling strength, transparency, etc., a self-supporting clay film of 30 to 150 μm is preferable.

また、本発明の自立粘土膜は、透明度が全光線透過率で80%以上であることが好ましく、400℃以下の加熱処理後において自立粘土膜の全光線透過率が70%以上であることがより好ましい。   The self-supporting clay film of the present invention preferably has a transparency of 80% or more in terms of total light transmittance, and after heat treatment at 400 ° C. or less, the self-supporting clay film has a total light transmittance of 70% or more. More preferred.

本発明のコーティング粘土膜及び自立粘土膜は、上記2:1型3八面体合成粘土と同様に耐水性が向上することが好ましい。   It is preferable that the coated clay film and the self-supporting clay film of the present invention have improved water resistance, like the 2: 1 type 3 octahedral synthetic clay.

次に、本発明の2:1型3八面体合成粘土の合成方法の一例を説明する。本発明の2:1型3八面体合成粘土は、水熱法により合成することができる。以下、水熱法の各工程について詳細に説明する。   Next, an example of a method for synthesizing the 2: 1 type 3 octahedral synthetic clay of the present invention will be described. The 2: 1 type 3 octahedral synthetic clay of the present invention can be synthesized by a hydrothermal method. Hereinafter, each process of the hydrothermal method will be described in detail.

(第1工程)
粘土のシリカ源となるケイ素化合物及びマグネシウム源となるマグネシウム化合物を含有する水溶液を調製する。前記水溶液は、例えば、それぞれの化合物を含有する水溶液を常温(15〜25℃)にて混合することによって調整することができる。
(First step)
An aqueous solution containing a silicon compound as a silica source of clay and a magnesium compound as a magnesium source is prepared. The aqueous solution can be adjusted, for example, by mixing an aqueous solution containing each compound at room temperature (15 to 25 ° C.).

ケイ素化合物を含有する水溶液としては、例えば、コロイダルシリカ、アモルファスシリカ、珪酸エチル、二酸化ケイ素等を含有する水溶液または非結晶質シリカが挙げられる。これらは、一種又は二種以上を組み合わせて用いても構わない。一般的には、水ガラスがシリカ源となるが、水ガラスは酸化ナトリウムを9〜10%程度含有するため、本発明の効果が得られにくい傾向があり好ましくない。本発明の粘土の合成においては、原料の段階からナトリウムを含有しない材料を用いることが好ましい。ケイ素化合物を含有する水溶液を調整する際には、pHを5以下とすることが好ましく、必要に応じて、硝酸、塩酸、硫酸等の鉱酸によって調整してもよい。   Examples of the aqueous solution containing a silicon compound include an aqueous solution containing non-crystalline silica, such as colloidal silica, amorphous silica, ethyl silicate, silicon dioxide, and the like. These may be used alone or in combination of two or more. In general, water glass is a silica source, but since water glass contains about 9 to 10% of sodium oxide, the effect of the present invention tends not to be obtained, which is not preferable. In the synthesis of the clay of the present invention, it is preferable to use a material containing no sodium from the raw material stage. When adjusting the aqueous solution containing a silicon compound, the pH is preferably 5 or less, and may be adjusted with a mineral acid such as nitric acid, hydrochloric acid, or sulfuric acid, if necessary.

また、マグネシウム化合物を含有する水溶液としては、例えば、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等を含有する水溶液が挙げられる。これらは、一種又は二種以上を組み合わせて用いても構わない。   Moreover, as an aqueous solution containing a magnesium compound, the aqueous solution containing magnesium chloride, magnesium sulfate, magnesium nitrate etc. is mentioned, for example. These may be used alone or in combination of two or more.

次に、ケイ素化合物及びマグネシウム化合物を含有する水溶液に、常温(15〜25℃)にてアルカリ水溶液を滴下することにより均質複合沈殿物を含む分散液を得る。   Next, an aqueous alkaline solution is dropped into an aqueous solution containing a silicon compound and a magnesium compound at room temperature (15 to 25 ° C.) to obtain a dispersion containing a homogeneous composite precipitate.

アルカリ水溶液としては、例えば、アンモニア水、水酸化リチウム水溶液等が挙げられるが、水酸化リチウム水溶液にはリチウムイオンが含まれるため、粘土の層間イオンの量に影響を及ぼす可能性があるため、アンモニア水を用いることが好ましい。   Examples of the alkaline aqueous solution include ammonia water and a lithium hydroxide aqueous solution. However, since the lithium hydroxide aqueous solution contains lithium ions, it may affect the amount of clay interlayer ions. It is preferable to use water.

アルカリ水溶液の滴下は、撹拌をしながらゆっくりとアルカリ水溶液を混合し、全体に均一な状態とすることが好ましい。また、アルカリ水溶液の滴下は、pHが10以上になるまで行うことが好ましい。滴下終了後、必要に応じて、数時間放置することによって、均質複合沈殿物の生成を充分なものとすることができる。   It is preferable that the alkaline aqueous solution is dripped by slowly mixing the alkaline aqueous solution while stirring to make the entire solution uniform. Moreover, it is preferable to perform dripping of aqueous alkali solution until pH becomes 10 or more. After completion of the dropwise addition, if necessary, it is allowed to stand for several hours to make the formation of a homogeneous composite precipitate sufficient.

得られた均質複合沈殿物は、水洗浄を繰り返し行うことにより、NH 、NO -、Cl等の副生電解質を充分に除去することが好ましく、例えば、アルカリ水溶液としてアンモニア水を用いた場合は、アンモニア臭が無くなるまで水洗浄を繰り返すことが好ましい。水洗浄は、均質複合沈殿物へ蒸留水を添加後、振盪し、固液分離を行うことが挙げられる。洗浄後の均質複合沈殿物は、水と混合して次工程に用いる分散液とすることができる。 The obtained homogeneous composite precipitate is preferably sufficiently washed with water to sufficiently remove by-product electrolytes such as NH 4 + , NO 3 and Cl . For example, aqueous ammonia is used as an alkaline aqueous solution. If so, it is preferable to repeat the water washing until the ammonia odor disappears. In the water washing, distilled water is added to the homogeneous composite precipitate, followed by shaking and solid-liquid separation. The homogeneous composite precipitate after washing can be mixed with water to form a dispersion used in the next step.

(第2工程)
第1工程にて得られた均質複合沈殿物の分散液に、リチウムイオン源となるリチウム化合物を含有する水溶液を混合し出発原料スラリーを得る。
(Second step)
An aqueous solution containing a lithium compound as a lithium ion source is mixed with the dispersion of the homogeneous composite precipitate obtained in the first step to obtain a starting raw material slurry.

リチウム化合物の水溶液としては、例えば、水酸化リチウム、水酸化リチウム一水和物、水素化リチウム、過酸化リチウム等を含有する水溶液が挙げられる。これらは、一種又は二種以上を組み合わせて用いても構わない。リチウム化合物の添加量は、シリカ源として用いられるケイ素化合物中のSiを4とした場合、リチウム化合物中のLiが、(0.45〜1.20であることが好ましい。Liの添加量が、前記範囲内であれば、後述する第3の工程において洗浄を行わずとも、目的の粘土が得られやすい傾向がある。   Examples of the aqueous solution of the lithium compound include an aqueous solution containing lithium hydroxide, lithium hydroxide monohydrate, lithium hydride, lithium peroxide and the like. These may be used alone or in combination of two or more. The amount of addition of the lithium compound is preferably such that Li in the lithium compound is (0.45 to 1.20) when Si in the silicon compound used as the silica source is 4. If it is in the said range, there exists a tendency for the target clay to be obtained easily, without wash | cleaning in the 3rd process mentioned later.

(第3の工程)
第3の工程は、第2の工程で得られた出発原料スラリーの水熱反応を行う。この工程では、出発原料スラリーをオートクレーブに仕込み、水熱反応をさせる。水熱反応の温度は、100〜300℃であることが好ましい。水熱反応の時間は、24時間以上であることが好ましい。出発原料スラリーをオートクレーブに仕込む前に、また、水熱反応終了後に、必要に応じて、出発原料スラリー中に不純物として含まれるリチウム塩を洗浄することも可能である。
(Third step)
In the third step, the hydrothermal reaction of the starting material slurry obtained in the second step is performed. In this step, the starting material slurry is charged into an autoclave and subjected to a hydrothermal reaction. The temperature of the hydrothermal reaction is preferably 100 to 300 ° C. The hydrothermal reaction time is preferably 24 hours or longer. Before charging the starting material slurry into the autoclave and after completion of the hydrothermal reaction, the lithium salt contained as an impurity in the starting material slurry can be washed as necessary.

(第4の工程)
第3の工程の水熱反応後、オートクレーブ内の内容物を取り出し、15〜150℃の温度で乾燥、適宜粉砕することにより、本発明の2:1型3八面体合成粘土を得ることができる。
(Fourth process)
After the hydrothermal reaction in the third step, the content in the autoclave is taken out, dried at a temperature of 15 to 150 ° C., and appropriately pulverized, whereby the 2: 1 type 3 octahedral synthetic clay of the present invention can be obtained. .

得られた粘土は、EDX、ICP、XRD等の測定を行うことにより、スチブンサイトを含む3八面体粘土であることが確認できる。   The obtained clay can be confirmed to be trioctahedral clay containing stevensite by measuring EDX, ICP, XRD and the like.

具体的には、EDXによって、粘土のSiとMgの比率又は不純物成分を確認することができる。   Specifically, the ratio of Si and Mg or the impurity component of clay can be confirmed by EDX.

ICPによって、層間イオンの種類・量又は層間・層内のLiイオン量を確認することができる。   The type and amount of interlayer ions or the amount of Li ions in the interlayer / layer can be confirmed by ICP.

XRDによって、粘土の種類、配向性、結晶化度、結晶系不純物を確認することができる。   By XRD, the type, orientation, crystallinity, and crystal impurities of the clay can be confirmed.

上記の合成方法によって、得られた2:1型3八面体合成粘土は、上述のように、水等の分散媒と混合することでチクソトロピー性を有する透明粘土ゲルを作製することができる。また、前記透明粘土ゲルを基板に塗布し、乾燥することによってコーティング粘土膜を得ることができ、基板から剥がすことによって自立粘土膜を得ることができる。本発明のコーティング粘土膜及び自立粘土膜は、高い透明性を有し、耐水性に優れたものとなる。   As described above, the 2: 1 type 3 octahedral synthetic clay obtained by the above synthesis method can be mixed with a dispersion medium such as water to produce a transparent clay gel having thixotropy. Moreover, a coating clay film can be obtained by applying the transparent clay gel to a substrate and drying, and a self-supporting clay film can be obtained by peeling off from the substrate. The coated clay film and the self-supporting clay film of the present invention have high transparency and excellent water resistance.

以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

(実施例1)
コロイダルシリカ(Ludox TM 50、SigmaAldrich社製)60gと蒸留水120mlとを混合した分散液に硝酸20mlを添加した。これに硝酸マグネシウム(一級試薬)91gと蒸留水128mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を25.4ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み、200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕し、2:1型3八面体合成粘土を得た。得られた粘土を用いて、下記各種評価を行った。
[2:1型3八面体合成粘土の確認]
XRDのパターン(Bruker/MacScience M21X)から目的の粘土が生成しているかを確認した。得られた粘土の水分散液(2.5wt%)をガラス基板上に滴下し、乾燥してできた粘土膜のXRDパターンを測定した。目的の粘土が得られている場合、図1に示すようなd(001)ピークが2θ=6℃付近に現れるスメクタイトのパターンを示す。このd(001)ピークの有無によって目的の粘土が得られているかどうかを判断した。結果を表1に示す。
[Li/Si及びMg/Siの算出]
下記の方法により、Li/Si及びMg/Siの算出を行った。
Li/Siは、合成原料に入れたSiの量に対して、層間イオン又は層内に入ったLiを測定し計算した。
層間イオンとしてのLi量は、メチレンブルー吸着法を用いて層間のLiと交換されたメチレンブルーの量を測定し、換算した。具体的には、得られた粘土を110℃で1時間乾燥し0.02gを秤量し、濃度1.5×10−6mol/mlのメチレンブルー水溶液30ml中に添加し、撹拌しながら3日間室温にて放置した。その後、孔径0.45μmのフィルターを用いて、粘土と溶液を分離した。分離した溶液0.1mlに蒸留水3mlを添加し希釈した後、希釈溶液のメチレンブルー濃度を測定した。濃度の測定は、分光光度計((株)島津製作所製 MPS−2450)を用い波長665nmで測定し、粘土100gあたりのメチレンブルー吸着量を算出した。ここで算出されたメチレンブルー吸着量を、層間イオンとして存在するLiの量とした。
一方、層内に入ったLiの量は合成原料に添加したLi量とICP測定で検出されたLi量の差から算出した。具体的には、得られた粘土0.1mgを10mlの酢酸アンモニウム溶液(1N)に入れ、100rpmで一晩振とうした。その後、上澄みを孔径0.45μmのフィルターに通して、ICP分析(ICP発光分析装置(セイコー電子(株)製 SPS−1500R))を行った。
Mg/SiはEDX元素分析((株)日立製作所製 S−800)を用いて測定した。
結果を表1に示す。
[不純物としてのLi/Siの算出]
下記の方法により、Li/Siの算出を行った。
不純物としてのLi量は、添加したLi量から層間イオンとしてのLiと層内に入ったLiの量を引いた値である。層間イオンとしてのLi量は、上記と同様にメチレンブルー吸着法を用いて層間のLiと交換されたメチレンブルーの量を測定し、換算した。層内に入ったLiの量は上記と同様に合成原料に添加したLi量とICP測定で検出されたLi量の差から算出した。Li/Siは、合成原料に入れたSiの量と不純物としてのLi量の比から計算した。結果を表1に示す。
[Na含有量]
粘土に含まれているナトリウムイオン量を測定した。酢酸アンモニウム溶液(1N)に得られた粘土0.1mgを入れ、一晩100rpmで振とうした。その後、上澄みをフィルター(気孔0.45μm)に掛けてから、ICP分析(ICP発光分光分析装置(セイコー電子社製/SPS−1500R)を行った。結果を表1に示した。上記装置の検出限界値以下の場合はN.D.と記載した。
[水分散性(透明粘土ゲルの調製)]
得られた粘土を、蒸留水に分散させ、2.5wt%の透明粘土ゲルを得た。水によく分散し、チクソトロピー性を有することが確認された場合は○、分散後、沈殿物の生成が確認された場合は×として水分散性の判断をした。結果を表1に示す。
[成膜性(自立粘土膜の調製)]
上記水分散性評価で得られた透明粘土ゲルをポリプロフィレン容器の中に注ぎ、室温にて自然乾燥した。乾燥した粘土膜を、容器から物理的に剥離することにより、自立粘土膜を得た。得られた自立粘土膜の写真を図3に、その自立粘土膜の端面のSEM写真を図4に示した。なお、SEM写真はHITACHI製/S−800を使用した。成膜性の評価は目視にて下記の基準にて行った。結果を表1に示す。
Example 1
20 ml of nitric acid was added to a dispersion obtained by mixing 60 g of colloidal silica (Ludox ™ 50, manufactured by SigmaAldrich) and 120 ml of distilled water. A solution prepared by mixing 91 g of magnesium nitrate (primary reagent) and 128 ml of distilled water was added thereto, and ammonia water (28% aqueous solution) was slowly added dropwise with stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 25.4 ml of a 10 wt% lithium hydroxide aqueous solution was added to the well-mixed homogeneous composite precipitation dispersion and mixed well to obtain a starting raw material slurry. The starting material slurry was charged into an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized to obtain 2: 1 type 3 octahedral synthetic clay. The following various evaluations were performed using the obtained clay.
[Confirmation of 2: 1 type 3 octahedral synthetic clay]
It was confirmed from the XRD pattern (Bruker / MacScience M21X) whether the target clay was produced. The obtained clay aqueous dispersion (2.5 wt%) was dropped on a glass substrate and dried to measure the XRD pattern of the clay film. When the target clay is obtained, a smectite pattern in which a d (001) peak as shown in FIG. 1 appears in the vicinity of 2θ = 6 ° C. is shown. Whether or not the target clay was obtained was determined based on the presence or absence of the d (001) peak. The results are shown in Table 1.
[Calculation of Li / Si and Mg / Si]
Li / Si and Mg / Si were calculated by the following method.
Li / Si was calculated by measuring interlayer ions or Li contained in the layer with respect to the amount of Si contained in the synthetic raw material.
The amount of Li as interlayer ions was converted by measuring the amount of methylene blue exchanged with Li between layers using the methylene blue adsorption method. Specifically, the obtained clay was dried at 110 ° C. for 1 hour, 0.02 g was weighed, added to 30 ml of a methylene blue aqueous solution having a concentration of 1.5 × 10 −6 mol / ml, and stirred at room temperature for 3 days. Left alone. Thereafter, the clay and the solution were separated using a filter having a pore diameter of 0.45 μm. After diluting 3 ml of distilled water to 0.1 ml of the separated solution, the methylene blue concentration of the diluted solution was measured. The concentration was measured using a spectrophotometer (MPS-2450, manufactured by Shimadzu Corporation) at a wavelength of 665 nm, and the amount of methylene blue adsorbed per 100 g of clay was calculated. The amount of methylene blue adsorption calculated here was the amount of Li existing as interlayer ions.
On the other hand, the amount of Li entering the layer was calculated from the difference between the amount of Li added to the synthetic raw material and the amount of Li detected by ICP measurement. Specifically, 0.1 mg of the obtained clay was put into 10 ml of an ammonium acetate solution (1N) and shaken at 100 rpm overnight. Thereafter, the supernatant was passed through a filter having a pore diameter of 0.45 μm, and ICP analysis (ICP emission analyzer (SPS-1500R manufactured by Seiko Electronics Co., Ltd.)) was performed.
Mg / Si was measured using EDX elemental analysis (S-800, manufactured by Hitachi, Ltd.).
The results are shown in Table 1.
[Calculation of Li / Si as an impurity]
Li / Si was calculated by the following method.
The amount of Li as an impurity is a value obtained by subtracting the amount of Li as interlayer ions and the amount of Li contained in the layer from the amount of added Li. The amount of Li as interlayer ions was converted by measuring the amount of methylene blue exchanged with interlayer Li using the methylene blue adsorption method as described above. The amount of Li entering the layer was calculated from the difference between the amount of Li added to the synthesis raw material and the amount of Li detected by ICP measurement in the same manner as described above. Li / Si was calculated from the ratio of the amount of Si put into the synthetic raw material and the amount of Li as an impurity. The results are shown in Table 1.
[Na content]
The amount of sodium ions contained in the clay was measured. 0.1 mg of the clay obtained was put into an ammonium acetate solution (1N) and shaken at 100 rpm overnight. Thereafter, the supernatant was passed through a filter (pore size: 0.45 μm), and then ICP analysis (ICP emission spectroscopic analyzer (manufactured by Seiko Denshi Co., Ltd./SPS-1500R) was performed. The results are shown in Table 1. Detection of the above device When the value was less than the limit value, it was described as ND.
[Water dispersibility (preparation of transparent clay gel)]
The obtained clay was dispersed in distilled water to obtain a 2.5 wt% transparent clay gel. The water dispersibility was judged as ◯ when it was well dispersed in water and confirmed to have thixotropic properties, and as x when the formation of precipitates was confirmed after dispersion. The results are shown in Table 1.
[Filmability (Preparation of self-supporting clay film)]
The transparent clay gel obtained by the water dispersibility evaluation was poured into a polypropylene container and naturally dried at room temperature. The dried clay film was physically peeled from the container to obtain a self-supporting clay film. The photograph of the obtained self-supporting clay film is shown in FIG. 3, and the SEM photograph of the end face of the self-supporting clay film is shown in FIG. The SEM photograph used was HITACHI / S-800. Evaluation of film formability was made visually according to the following criteria. The results are shown in Table 1.

ハンドリング可能な自立粘土膜:○
膜形成はするが、収縮が大きく塊の状態:△
膜形成せず粉末状態:×
[透明度]
上記成膜性の評価で得られた自立粘土膜を用いて透明度を測定した。透明度は、濁度計(日本電色工業株式会社製/NDH5000)における全光線透過率の測定により評価した。また、水分散性評価で得られた透明粘土膜をスライドガラス上に塗布し、乾燥して得られたコーティング粘土膜を用いて同様の評価を行った。結果を表1に示す。
[耐水性(水中への溶解性)]
成膜性の評価で得られた自立粘土膜を用いて、耐水性の評価を行った。得られた自立粘土膜を400℃で3時間加熱処理した後、水の中に入れ一晩放置し、自立粘土膜が溶けるかどうかを目視にて判断した。水中への溶解が見られない場合を○とし、水中への溶解が見られた場合は×として評価した。結果を表1に示す。
[耐水性(吸湿率変化)]
上記成膜性の評価で得られた自立粘土膜を用いて加熱処理前後の吸湿率を測定した。得られた自立粘土膜を500℃で12時間加熱した後、温度40℃、湿度90%に設定した恒温高湿庫中に5時間放置した。吸水率は、500℃での加熱処理後の自立粘土膜の質量と、恒温高湿庫への放置後の自立粘土膜の質量とを測定し、その質量変化より算出した。
(実施例2)
10wt%に水酸化リチウム水溶液を30.8ml添加し、水熱合成を150℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。
(実施例3)
10wt%に水酸化リチウム水溶液を30.8ml添加し、水熱合成を200℃で24時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。
(実施例4)
10wt%に水酸化リチウム水溶液を30.8ml添加し、水熱合成を200℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。
(実施例5)
10wt%に水酸化リチウム水溶液を33.2ml添加し、水熱合成を200℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(実施例6)
10wt%に水酸化リチウム水溶液を42.2ml添加し、水熱合成を200℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(実施例7)
10wt%に水酸化リチウム水溶液を50.8ml添加し、水熱合成を200℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(実施例8)
10wt%に水酸化リチウム水溶液を58.9ml添加し、水熱合成を200℃で48時間行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(実施例9)
10wt%に水酸化リチウム水溶液を58.9ml添加し、水熱合成を200℃で48時間行い、水熱合成後に生成した反応生成物を取り出し、水洗浄を5回繰り返し行った以外は実施例1と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(実施例10)
アモルファスシリカ(Cab−O−SilM5、Cabot社製)60gと蒸留水600mlとを混合した分散液に硝酸40mlを添加した。これに硝酸マグネシウム(一級試薬)182gと蒸留水256mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を58.0ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。評価は実施例1と同様に行った。
(実施例11)
10wt%に水酸化リチウム水溶液を67.0ml添加し、水熱合成を200℃で48時間行った以外は実施例10と同様に合成を行い、実施例1と同様に評価を行った。
(実施例12)
10wt%に水酸化リチウム水溶液を73.2ml添加し、水熱合成を200℃で48時間行った以外は実施例10と同様に合成を行い、実施例1と同様に評価を行った。
(実施例13)
10wt%に水酸化リチウム水溶液を95.6ml添加し、水熱合成を200℃で48時間行った以外は実施例10と同様に合成を行い、実施例1と同様に評価を行った。
(実施例14)
硝酸マグネシウム(一級試薬)182gと蒸留水182mlとを混合した溶液に珪酸エチル208gを入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を61.6ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。評価は実施例1と同様に行った。
(実施例15)
二酸化珪素n水和物71gと蒸留水600mlとを混合した分散液に硝酸40mlを添加した。これに硝酸マグネシウム(一級試薬)182gと蒸留水256mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を61.6ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。評価は実施例1と同様に行った。
(比較例1)
3号水ガラス(SiO:28%、NaO:9%、小宗化学薬品社製)200gと蒸留水1000mlとを混合した分散液に硝酸70mlを添加した。これに硝酸マグネシウム(一級試薬)182gと蒸留水182mlとを混合した溶液を入れて攪拌しながら、水酸化ナトリウム水溶液(20wt%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄を繰り返した。得られた出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。評価は実施例1と同様に行った。結果を表1に示す。
(比較例2)
コロイダルシリカ(Ludox TM 50、SigmaAldrich社製)60gと蒸留水120mlとを混合した分散液に硝酸20mlを添加した。これに硝酸マグネシウム(一級試薬)91gと蒸留水128mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を16.8ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。比較例2においては粘土が得られなかった。
(比較例3)
10wt%に水酸化リチウム水溶液を84.3ml添加し、水熱合成を200℃で48時間行った以外は比較例2と同様に合成を行い、実施例1と同様に評価を行った。結果を表1に示す。
(比較例4)
アモルファスシリカ(Cab−O−SilM5、Cabot社製)60gと蒸留水600mlとを混合した分散液に硝酸40mlを添加した。これに硝酸マグネシウム(一級試薬)182gと蒸留水256mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10wt%の水酸化リチウム水溶液を19.4ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み,200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕した。比較例4においては粘土が得られなかった。
(比較例5)
10wt%に水酸化リチウム水溶液を38.6ml添加し、水熱合成を200℃で48時間行った以外は比較例4と同様に合成を行った。
Self-supporting clay film that can be handled: ○
Although the film is formed, the shrinkage is large and the lump state is: Δ
Powder state without film formation: ×
[Transparency]
Transparency was measured using the self-supporting clay film obtained by the evaluation of the film forming property. The transparency was evaluated by measuring the total light transmittance with a turbidimeter (Nippon Denshoku Industries Co., Ltd./NDH5000). Moreover, the same evaluation was performed using the coating clay film obtained by apply | coating the transparent clay film obtained by water dispersibility evaluation on a slide glass, and drying. The results are shown in Table 1.
[Water resistance (solubility in water)]
The water resistance was evaluated using the self-supporting clay film obtained by the evaluation of the film formability. The obtained self-supporting clay film was heat-treated at 400 ° C. for 3 hours, then placed in water and allowed to stand overnight, and it was visually determined whether or not the self-supporting clay film was dissolved. The case where dissolution in water was not observed was evaluated as ◯, and the case where dissolution in water was observed was evaluated as ×. The results are shown in Table 1.
[Water resistance (change in moisture absorption)]
The moisture absorption rate before and after the heat treatment was measured using the self-supporting clay film obtained by the evaluation of the film forming property. The obtained self-supporting clay film was heated at 500 ° C. for 12 hours and then left in a constant temperature and high humidity chamber set at a temperature of 40 ° C. and a humidity of 90% for 5 hours. The water absorption was calculated by measuring the mass of the self-supporting clay film after heat treatment at 500 ° C. and the mass of the self-supporting clay film after being left in a constant temperature and high humidity chamber, and calculating the change in mass.
(Example 2)
Synthesis was performed in the same manner as in Example 1 except that 30.8 ml of an aqueous lithium hydroxide solution was added to 10 wt% and hydrothermal synthesis was performed at 150 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1.
(Example 3)
Synthesis was performed in the same manner as in Example 1 except that 30.8 ml of an aqueous lithium hydroxide solution was added to 10 wt% and hydrothermal synthesis was performed at 200 ° C. for 24 hours, and evaluation was performed in the same manner as in Example 1.
Example 4
Synthesis was performed in the same manner as in Example 1 except that 30.8 ml of an aqueous lithium hydroxide solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1.
(Example 5)
Synthesis was performed in the same manner as in Example 1 except that 33.2 ml of lithium hydroxide aqueous solution was added to 10 wt% and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(Example 6)
Synthesis was performed in the same manner as in Example 1 except that 42.2 ml of lithium hydroxide aqueous solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(Example 7)
Synthesis was performed in the same manner as in Example 1 except that 50.8 ml of an aqueous lithium hydroxide solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(Example 8)
Synthesis was performed in the same manner as in Example 1 except that 58.9 ml of an aqueous lithium hydroxide solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
Example 9
Example 1 except that 58.9 ml of lithium hydroxide aqueous solution was added to 10 wt%, hydrothermal synthesis was performed at 200 ° C. for 48 hours, the reaction product generated after hydrothermal synthesis was taken out, and water washing was repeated 5 times. Was synthesized in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(Example 10)
40 ml of nitric acid was added to a dispersion obtained by mixing 60 g of amorphous silica (Cab-O-SilM5, manufactured by Cabot) and 600 ml of distilled water. A solution obtained by mixing 182 g of magnesium nitrate (primary reagent) and 256 ml of distilled water was added thereto, and ammonia water (28% aqueous solution) was slowly added dropwise while stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 58.0 ml of 10 wt% lithium hydroxide aqueous solution was added to the well-washed homogeneous composite precipitation dispersion and mixed well to obtain a starting material slurry. The starting material slurry was charged in an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. Evaluation was performed in the same manner as in Example 1.
(Example 11)
Synthesis was performed in the same manner as in Example 10 except that 67.0 ml of lithium hydroxide aqueous solution was added to 10 wt% and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1.
Example 12
Synthesis was performed in the same manner as in Example 10 except that 73.2 ml of lithium hydroxide aqueous solution was added to 10 wt% and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1.
(Example 13)
Synthesis was performed in the same manner as in Example 10 except that 95.6 ml of an aqueous lithium hydroxide solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1.
(Example 14)
A solution of 182 g of magnesium nitrate (primary reagent) and 182 ml of distilled water was mixed with 208 g of ethyl silicate, and ammonia water (28% aqueous solution) was slowly added dropwise with stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 61.6 ml of a 10 wt% aqueous lithium hydroxide solution was added to the well-mixed homogeneous composite precipitation dispersion and thoroughly mixed to obtain a starting raw material slurry. The starting material slurry was charged in an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. Evaluation was performed in the same manner as in Example 1.
(Example 15)
To a dispersion obtained by mixing 71 g of silicon dioxide n hydrate and 600 ml of distilled water, 40 ml of nitric acid was added. A solution obtained by mixing 182 g of magnesium nitrate (primary reagent) and 256 ml of distilled water was added thereto, and ammonia water (28% aqueous solution) was slowly added dropwise while stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 61.6 ml of a 10 wt% aqueous lithium hydroxide solution was added to the well-mixed homogeneous composite precipitation dispersion and thoroughly mixed to obtain a starting raw material slurry. The starting material slurry was charged in an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. Evaluation was performed in the same manner as in Example 1.
(Comparative Example 1)
70 ml of nitric acid was added to a dispersion obtained by mixing 200 g of No. 3 water glass (SiO 2 : 28%, NaO 2 : 9%, manufactured by Oso Chemical Co., Ltd.) and 1000 ml of distilled water. A solution obtained by mixing 182 g of magnesium nitrate (primary reagent) and 182 ml of distilled water was added thereto, and an aqueous sodium hydroxide solution (20 wt% aqueous solution) was slowly added dropwise while stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, washing with water by repeated addition of distilled water, shaking, and solid-liquid separation was repeated. The obtained starting material slurry was charged into an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(Comparative Example 2)
20 ml of nitric acid was added to a dispersion obtained by mixing 60 g of colloidal silica (Ludox ™ 50, manufactured by SigmaAldrich) and 120 ml of distilled water. A solution prepared by mixing 91 g of magnesium nitrate (primary reagent) and 128 ml of distilled water was added thereto, and ammonia water (28% aqueous solution) was slowly added dropwise with stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 16.8 ml of a 10 wt% aqueous lithium hydroxide solution was added to the well-washed homogeneous composite precipitation dispersion and mixed well to obtain a starting raw material slurry. The starting material slurry was charged in an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. In Comparative Example 2, no clay was obtained.
(Comparative Example 3)
Synthesis was performed in the same manner as in Comparative Example 2 except that 84.3 ml of lithium hydroxide aqueous solution was added to 10 wt% and hydrothermal synthesis was performed at 200 ° C. for 48 hours, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(Comparative Example 4)
40 ml of nitric acid was added to a dispersion obtained by mixing 60 g of amorphous silica (Cab-O-SilM5, manufactured by Cabot) and 600 ml of distilled water. A solution obtained by mixing 182 g of magnesium nitrate (primary reagent) and 256 ml of distilled water was added thereto, and ammonia water (28% aqueous solution) was slowly added dropwise while stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 19.4 ml of 10 wt% lithium hydroxide aqueous solution was added to the well-washed homogeneous composite precipitation dispersion and mixed well to obtain a starting material slurry. The starting material slurry was charged in an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized. In Comparative Example 4, no clay was obtained.
(Comparative Example 5)
Synthesis was performed in the same manner as in Comparative Example 4 except that 38.6 ml of an aqueous lithium hydroxide solution was added to 10 wt%, and hydrothermal synthesis was performed at 200 ° C. for 48 hours.

実施例で得られた粘土は、図1に示すようなd(001)ピークが2θ=6°付近に現れるスメクタイトのパターンを示し、目的の2:1型3八面体合成粘土が得られたことが分かった。実施例7、8の場合、上記ピーク以外に、リチウムイオンに起因する鋭いピークが現れた(図2(a)(b))。また、このリチウムイオンに起因するピークは、水熱反応後に洗浄を行った実施例9では消失したことから(図2(c))、過剰のリチウムイオンが共存していてもある範囲であれば、粘土の特性に影響を与えず、また、これは、合成後の洗浄によって除去が可能であることが示された。
実施例でられた粘土は、水分散性評価において、チクソトロピー性を有する透明なゲルが得られた。一方、比較例2〜5の粘土は、水分散性評価において、粘土の沈殿が見られた。
実施例で得られた粘土は、成膜性の評価において、透明な粘土膜が形成し、図4に示すような規則的な積層構造となった。一方、比較例2〜5の粘土は、成膜性評価において、乾燥後に、白い粉末状、又は、乾燥中に収縮し厚みのある白い塊となった。
実施例で得られた粘土は、耐水性の評価において、水に溶けることなく、形状を維持していた。一方、比較例1の粘土は、水に溶解し、耐水性は見られなかった。
実施例2〜4では、本発明の本発明の2:1型3八面体合成粘土の合成方法の一例における好ましいLi添加量の範囲内で水熱法の条件(水熱反応温度、水熱反応時間)を変化させたが、他の実施例と同等の水分散性、成膜性を有する粘土が合成でき、他の実施例と同等の透明性及び耐水性を有するコーティング粘土膜及び自立粘土膜が形成できた。
実施例10〜15では、本発明の本発明の2:1型3八面体合成粘土の合成方法の一例における好ましいLi添加量の範囲内で、リチウムイオン源となるリチウム化合物として、アモルファスシリカ、珪酸エチル及び二酸化珪素n水和物を用いて合成を行った。その結果、コロイダルシリカを用いた場合と同等の水分散性、成膜性を有する粘土が合成でき、他の実施例と同等の透明性及び耐水性を有するコーティング粘土膜及び自立粘土膜が得られた。
The clay obtained in the example showed a smectite pattern in which the d (001) peak as shown in FIG. 1 appears in the vicinity of 2θ = 6 °, and the desired 2: 1 type 3 octahedral synthetic clay was obtained. I understood. In Examples 7 and 8, a sharp peak due to lithium ions appeared in addition to the above peaks (FIGS. 2A and 2B). In addition, since the peak due to the lithium ion disappeared in Example 9 in which washing was performed after the hydrothermal reaction (FIG. 2 (c)), if the excess lithium ion coexists, It has been shown that it does not affect the properties of the clay and can be removed by post-synthesis washing.
In the clays obtained in the examples, a transparent gel having thixotropic properties was obtained in the water dispersibility evaluation. On the other hand, the clays of Comparative Examples 2 to 5 showed clay precipitation in the evaluation of water dispersibility.
In the evaluation of film formability, the clay obtained in the examples formed a transparent clay film, and had a regular laminated structure as shown in FIG. On the other hand, the clays of Comparative Examples 2 to 5 were white powdery after drying or were shrunk during drying to form a thick white lump in film forming property evaluation.
In the evaluation of water resistance, the clay obtained in the example maintained its shape without dissolving in water. On the other hand, the clay of Comparative Example 1 was dissolved in water and water resistance was not observed.
In Examples 2 to 4, the conditions of the hydrothermal method (hydrothermal reaction temperature, hydrothermal reaction) are within the preferable Li addition amount in an example of the synthesis method of the 2: 1 type 3 octahedral synthetic clay of the present invention of the present invention. The clay having the same water dispersibility and film formability as those of the other examples can be synthesized, and the coated clay film and the self-supporting clay film having the same transparency and water resistance as those of the other examples. Was formed.
In Examples 10 to 15, amorphous silica and silicic acid are used as lithium compounds to be a lithium ion source within the preferable Li addition amount range in one example of the method for synthesizing the 2: 1 type 3 octahedral synthetic clay of the present invention. Synthesis was performed using ethyl and silicon dioxide n-hydrate. As a result, it is possible to synthesize clay having water dispersibility and film formability equivalent to those obtained when colloidal silica is used, and to obtain a coated clay film and a self-supporting clay film having transparency and water resistance equivalent to those of other examples. It was.

Claims (14)

Li、Mg及びSiを含み、Li/Si=0.08〜0.17、Mg/Si=0.65〜0.72の範囲であるスチブンサイトを含む2:1型3八面体合成粘土。   2: 1 type 3 octahedron synthetic clay containing Li, Si and 0.07 to 0.17, and stevensite containing Mg / Si = 0.65 to 0.72. Naを含まない請求項1に記載の2:1型3八面体合成粘土。   The 2: 1 type 3 octahedral synthetic clay according to claim 1, which does not contain Na. 500℃での加熱処理後の吸水率が5%未満である請求項1又は2に記載の2:1型3八面体合成粘土。   The 2: 1 type 3 octahedral synthetic clay according to claim 1 or 2, wherein the water absorption after the heat treatment at 500 ° C is less than 5%. 不純物としてのLiが、Li/Si<0.15である請求項1〜3いずれか一項に記載の2:1型3八面体合成粘土。   The 2: 1 type 3 octahedral synthetic clay according to any one of claims 1 to 3, wherein Li as an impurity is Li / Si <0.15. 請求項1〜4いずれか一項に記載の2:1型3八面体合成粘土及び分散媒として水を含み、チクソトロピー性を有する透明粘土ゲル。   A transparent clay gel having thixotropic properties, comprising 2: 1 type 3 octahedral synthetic clay according to any one of claims 1 to 4 and water as a dispersion medium. 請求項5に記載の透明粘土ゲルを用いてなるコーティング粘土膜。   A coated clay film using the transparent clay gel according to claim 5. 透明度が全光線透過率90%以上である請求項5に記載のコーティング粘土膜。   The coated clay film according to claim 5, wherein the transparency is 90% or more of the total light transmittance. 400℃以下の加熱処理後の全光線透過率が70%以上である請求項6又は7に記載のコーティング粘土膜。   The coated clay film according to claim 6 or 7, wherein the total light transmittance after heat treatment at 400 ° C or lower is 70% or more. 加熱処理をすることによって、耐水性が向上することを特徴する請求項6〜8いずれか一項に記載のコーティング粘土膜。   The coated clay film according to any one of claims 6 to 8, wherein the water resistance is improved by heat treatment. 請求項5に記載の透明粘土ゲルを用いてなる自立粘土膜。   A self-supporting clay film using the transparent clay gel according to claim 5. 透明度が全光線透過率80%以上である請求項10に記載の自立粘土膜。   The self-supporting clay film according to claim 10, wherein the transparency is 80% or more of the total light transmittance. 厚さ30〜500μmを有する請求項10又は11に記載の自立粘土膜。   The self-supporting clay film according to claim 10 or 11, having a thickness of 30 to 500 µm. 400℃以下の加熱処理後の全光線透過率が70%以上である請求項10〜12いずれか一項に記載の自立粘土膜。   The self-supporting clay film according to any one of claims 10 to 12, wherein the total light transmittance after heat treatment at 400 ° C or lower is 70% or more. 加熱処理をすることによって、耐水性が向上することを特徴する請求項10〜13いずれか一項に記載の自立粘土膜。   The self-supporting clay film according to any one of claims 10 to 13, wherein water resistance is improved by heat treatment.
JP2009015808A 2009-01-27 2009-01-27 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film Expired - Fee Related JP5476579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015808A JP5476579B2 (en) 2009-01-27 2009-01-27 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015808A JP5476579B2 (en) 2009-01-27 2009-01-27 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film

Publications (2)

Publication Number Publication Date
JP2010173870A true JP2010173870A (en) 2010-08-12
JP5476579B2 JP5476579B2 (en) 2014-04-23

Family

ID=42705207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015808A Expired - Fee Related JP5476579B2 (en) 2009-01-27 2009-01-27 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film

Country Status (1)

Country Link
JP (1) JP5476579B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057486A (en) * 2009-09-08 2011-03-24 Hitachi Chem Co Ltd Synthetic smectite, method for manufacturing the same, and composite film
JP2012148946A (en) * 2011-01-21 2012-08-09 Hitachi Chemical Co Ltd Synthetic smectite paste, synthetic smectite self-supporting film, synthetic smectite film, and method for producing synthetic smectite film
JP2012177102A (en) * 2011-01-31 2012-09-13 Sumitomo Chemical Co Ltd Inorganic layered compound dispersion and production method of multilayer structure
JP2012193088A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2012193750A (en) * 2011-03-14 2012-10-11 Japan Matekkusu Kk Inorganic fiber clay composite material and method of manufacturing the same, and gasket or packing made of the composite material
JP2013053011A (en) * 2011-08-31 2013-03-21 National Institute Of Advanced Industrial Science & Technology Precursor and method for synthesizing clay using the same as raw material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130499A (en) * 1976-04-26 1977-11-01 Nl Industries Inc Syntethic gellin agent containing numectite type clay and process for preparing same
JPS6186414A (en) * 1984-10-05 1986-05-01 Onoda Kagaku Kogyo Kk Preparation of silicate
JPS63185811A (en) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol Synthetic porous material and production thereof
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay
JP2008247695A (en) * 2007-03-30 2008-10-16 Hitachi Chem Co Ltd Synthetic clay material and clay film
JP2008247719A (en) * 2007-03-30 2008-10-16 Hitachi Chem Co Ltd Clay film and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130499A (en) * 1976-04-26 1977-11-01 Nl Industries Inc Syntethic gellin agent containing numectite type clay and process for preparing same
JPS6186414A (en) * 1984-10-05 1986-05-01 Onoda Kagaku Kogyo Kk Preparation of silicate
JPS63185811A (en) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol Synthetic porous material and production thereof
JP2007277078A (en) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology Film using denatured clay
JP2008247695A (en) * 2007-03-30 2008-10-16 Hitachi Chem Co Ltd Synthetic clay material and clay film
JP2008247719A (en) * 2007-03-30 2008-10-16 Hitachi Chem Co Ltd Clay film and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057486A (en) * 2009-09-08 2011-03-24 Hitachi Chem Co Ltd Synthetic smectite, method for manufacturing the same, and composite film
JP2012148946A (en) * 2011-01-21 2012-08-09 Hitachi Chemical Co Ltd Synthetic smectite paste, synthetic smectite self-supporting film, synthetic smectite film, and method for producing synthetic smectite film
JP2012177102A (en) * 2011-01-31 2012-09-13 Sumitomo Chemical Co Ltd Inorganic layered compound dispersion and production method of multilayer structure
JP2012193750A (en) * 2011-03-14 2012-10-11 Japan Matekkusu Kk Inorganic fiber clay composite material and method of manufacturing the same, and gasket or packing made of the composite material
JP2012193088A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2013053011A (en) * 2011-08-31 2013-03-21 National Institute Of Advanced Industrial Science & Technology Precursor and method for synthesizing clay using the same as raw material

Also Published As

Publication number Publication date
JP5476579B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5476579B2 (en) 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film
Wang et al. Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration
JP2009107907A (en) Synthetic smectite and dispersion liquid containing this, clay film, waterproof film, and method of producing synthetic smectite and waterproof film
JP2008247719A (en) Clay film and its manufacturing method
WO2012127889A1 (en) Spherical magnesium hydroxide particle, spherical magnesium oxide particle, and method for producing same
WO2014126075A1 (en) Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
JP4785134B2 (en) Acid acceptor with improved electrical insulation, composition containing the same and molded article thereof
MX2013004813A (en) Synthesis of sodium titanate.
JP2011051845A (en) Method for manufacturing lithium-exchanged clay wherein interlayer ion in clay is exchanged for lithium ion
JP5212965B2 (en) Synthetic clay material and clay film
KR102447052B1 (en) Silicate coating and method for manufacturing the same
CN101607722A (en) A kind of synthetic method of magnesium hydrate hexagonal nano-flake
JP2008290913A (en) Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet
JP2012121777A (en) Method for producing synthetic clay and clay film using rice husk ash
Aizawa et al. Preparation of spherical apatite particles by the homogeneous precipitation method in the presence of magnesium ions and their ion-exchange properties
JP2006306677A (en) New zirconium phosphate
JP4939021B2 (en) Coated magnesium hydroxide, method for producing the same, and resin composition for electronic component material containing the same
JP5713257B2 (en) Synthetic smectite paste, synthetic smectite free-standing film, synthetic smectite film, and method for producing synthetic smectite film
JP2667978B2 (en) Synthetic porous body and method for producing the same
JP2006306676A (en) New zirconium phosphate
OKADA et al. Crystal growth of a hectorite-like layered silicate on monodisperse spherical silica particles with different diameters
JP2013010056A (en) Heavy metal ion adsorbent and manufacturing method thereof
JP5397807B2 (en) Synthetic smectite, method for producing the same, and composite film
WO2022185648A1 (en) Powder, filler, composition, and filler production method
JP6621291B2 (en) Method for producing water-swellable layered silicate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5476579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees