JP2007261923A - Magnesium hydroxide-based powder, its manufacturing method, resin composition and molding - Google Patents

Magnesium hydroxide-based powder, its manufacturing method, resin composition and molding Download PDF

Info

Publication number
JP2007261923A
JP2007261923A JP2006093009A JP2006093009A JP2007261923A JP 2007261923 A JP2007261923 A JP 2007261923A JP 2006093009 A JP2006093009 A JP 2006093009A JP 2006093009 A JP2006093009 A JP 2006093009A JP 2007261923 A JP2007261923 A JP 2007261923A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
compound
mass
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006093009A
Other languages
Japanese (ja)
Other versions
JP5078270B2 (en
Inventor
Seiji Matsui
誠二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2006093009A priority Critical patent/JP5078270B2/en
Publication of JP2007261923A publication Critical patent/JP2007261923A/en
Application granted granted Critical
Publication of JP5078270B2 publication Critical patent/JP5078270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnesium hydroxide-based powder which does not hydrolyze an ester resin when blended with the ester resin. <P>SOLUTION: The magnesium hydroxide-based powder is obtained by forming a covering layer of a mixture of an Si compound and an Al compound on a synthesized magnesium hydroxide particle, which has the BET specific surface area of ≥0.1 m<SP>2</SP>/g and <1 m<SP>2</SP>/g and the average particle size of >5 μm and ≤20 μm and the [101]/[001] peak intensity ratio of which is ≥0.9 when measured by an X-ray diffraction method, by the ratio of 0.2-10 mass% ((the Si compound)+(the Al compound)) in terms of SiO<SB>2</SB>and Al<SB>2</SB>O<SB>3</SB>to 100 mass% magnesium hydroxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エステル系樹脂等に配合する水酸化マグネシウム系粉体やその製造方法、及び得られた樹脂組成物や成形体に関する。   The present invention relates to a magnesium hydroxide-based powder blended in an ester-based resin and the like, a method for producing the same, and the obtained resin composition and molded body.

エステル結合を有する合成樹脂(以下エステル系樹脂)には、ポリ乳酸樹脂やポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂等があり、エステル結合を有する合成エラストマーも含まれる。ところでノンハロゲン難燃剤や耐トラッキング剤には、一般に水酸化アルミニウムや水酸化マグネシウムが使用されているが、水酸化アルミニウムは樹脂の高温加工時の脱水分解による発泡が懸念される。また、アルカリ表面を有さないシリカは、エステル系樹脂の耐加水分解性は良いが、難燃剤や耐トラッキング剤としては、効果を発揮しない。次に発明者は、水酸化マグネシウムをエステル系樹脂に配合すると、水酸化マグネシウム表面がアルカリ性のため、樹脂を加水分解することがあることを見出した。   Synthetic resins having ester bonds (hereinafter referred to as ester resins) include polylactic acid resins, polybutylene terephthalate resins, polyethylene terephthalate resins, and polycarbonate resins, and also include synthetic elastomers having ester bonds. By the way, although aluminum hydroxide and magnesium hydroxide are generally used for non-halogen flame retardants and tracking resistance agents, aluminum hydroxide is concerned about foaming due to dehydration decomposition during high-temperature processing of the resin. Silica having no alkali surface has good hydrolysis resistance of the ester-based resin, but does not exhibit an effect as a flame retardant or tracking resistance. Next, the inventors have found that when magnesium hydroxide is blended with an ester-based resin, the surface of the magnesium hydroxide is alkaline and the resin may be hydrolyzed.

この発明の基本的課題は、エステル系樹脂を加水分解しない水酸化マグネシウム系粉体とその製造方法、及びこの水酸化マグネシウム系粉体を配合した樹脂組成物と成形体を提供することにある。   A basic object of the present invention is to provide a magnesium hydroxide-based powder that does not hydrolyze an ester-based resin, a method for producing the same, and a resin composition and a molded body that contain this magnesium hydroxide-based powder.

この発明の水酸化マグネシウム系粉体は、BET比表面積が0.1m2/g以上1m2/g未満で、平均粒子径が5μm超20μm以下、 X線回折における[101]/[001]ピーク強度比が0.9以上の合成水酸化マグネシウム粒子に、Si化合物とAl化合物との混合被覆層を、SiO2とAl2O3換算の合計量で水酸化マグネシウム100質量%に対して、0.2〜10質量%の割合で形成したものである。
好ましくは、水酸化マグネシウム系粉体は、BET比表面積が0.1m2/g〜0.8m2/g、平均粒子径が5.5μm〜20μmとする。
なおこの明細書で、水酸化マグネシウム系粉体に関する記載は、文脈上不自然でない限り、その製造方法や樹脂組成物及び成形体にもそのまま当てはまる。
The magnesium hydroxide powder of the present invention has a BET specific surface area of 0.1 m 2 / g or more and less than 1 m 2 / g, an average particle diameter of more than 5 μm and 20 μm or less, and [101] / [001] peak intensity in X-ray diffraction ratio to 0.9 or more synthetic magnesium hydroxide particles, a mixed coating layer of Si compound and Al compound, relative to 100 wt% of magnesium hydroxide in a total amount of SiO 2 and Al 2 O 3 in terms of 0.2 to 10 mass % Formed.
Preferably, the magnesium-based powder hydroxide, BET specific surface area of 0.1m 2 /g~0.8m 2 / g, an average particle diameter of the 5.5Myuemu~20myuemu.
In this specification, the description regarding the magnesium hydroxide-based powder also applies to the production method, the resin composition, and the molded body as it is unless the context is unnatural.

好ましくは、前記Si化合物とAl化合物の混合被覆層を形成した水酸化マグネシウム粒子が、さらに硬化油、脂肪酸エステル、シランカップリング剤、シリコンオイル、リン酸エステル、界面活性剤、高分子凝集剤の少なくとも1種により、水酸化マグネシウム100質量%に対して0.1〜10質量%の割合で表面処理されている。   Preferably, the magnesium hydroxide particles in which the mixed coating layer of the Si compound and the Al compound is further formed of hardened oil, fatty acid ester, silane coupling agent, silicon oil, phosphate ester, surfactant, and polymer flocculant. Surface treatment is performed at a ratio of 0.1 to 10% by mass with respect to 100% by mass of magnesium hydroxide by at least one kind.

また好ましくは、前記Si化合物はケイ酸ソーダ、コロイダルシリカおよびこれらの前駆体からなる群の少なくとも1種の化合物であり、前記Al化合物は塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、アルミン酸ソーダ、アルミナゾルおよびこれらの前駆体からなる群の少なくとも1種の化合物である。   Preferably, the Si compound is at least one compound of the group consisting of sodium silicate, colloidal silica, and precursors thereof, and the Al compound is aluminum chloride, aluminum sulfate, aluminum nitrate, sodium aluminate, alumina sol and At least one compound of the group consisting of these precursors.

この発明の水酸化マグネシウム系粉体の製造方法では、
水酸化マグネシウム粒子の原料として、水酸化マグネシウムあるいは酸化マグネシウムの水懸濁液、もしくは、塩化マグネシウム、硫酸マグネシウムあるいは硝酸マグネシウムの水溶液を用い、
該水酸化マグネシウム粒子の原料が、水酸化マグネシウムあるいは酸化マグネシウムの水懸濁液の場合は、水酸化リチウムもしくは水酸化ナトリウムを、OH-/Mg2+のモル比で5以上添加して湿式粉砕し、
該水酸化マグネシウム粒子の原料が、塩化マグネシウム、硫酸マグネシウムあるいは硝酸マグネシウムの水溶液の場合は、水酸化リチウムもしくは水酸化ナトリウムを、OH-/Mg2+のモル比で5以上添加し、
何れの場合も、水酸化リチウムもしくは水酸化ナトリウムの添加後に、200〜270℃で水熱処理することにより、
BET比表面積が0.1m2/g以上1m2/g未満で、平均粒子径が5μm超20μm以下、 X線回折における[101]/[001]ピーク強度比が0.9以上の合成水酸化マグネシウム粒子とし、
得られた合成水酸化マグネシウムを表面処理し、Si化合物とAl化合物との混合被覆層を、SiO2とAl2O3換算の合計量で水酸化マグネシウム100質量%に対して、0.2〜10質量%の割合で形成する。
In the method for producing a magnesium hydroxide powder of the present invention,
As a raw material for magnesium hydroxide particles, an aqueous suspension of magnesium hydroxide or magnesium oxide, or an aqueous solution of magnesium chloride, magnesium sulfate or magnesium nitrate,
When the raw material of the magnesium hydroxide particles is an aqueous suspension of magnesium hydroxide or magnesium oxide, wet pulverization is performed by adding lithium hydroxide or sodium hydroxide in a molar ratio of OH / Mg 2+ of 5 or more. And
When the raw material of the magnesium hydroxide particles is an aqueous solution of magnesium chloride, magnesium sulfate or magnesium nitrate, lithium hydroxide or sodium hydroxide is added in a molar ratio of OH / Mg 2+ of 5 or more,
In either case, after addition of lithium hydroxide or sodium hydroxide, by hydrothermal treatment at 200-270 ° C,
Synthetic magnesium hydroxide particles having a BET specific surface area of 0.1 m 2 / g or more and less than 1 m 2 / g, an average particle diameter of more than 5 μm and 20 μm or less, and a [101] / [001] peak intensity ratio in X-ray diffraction of 0.9 or more ,
Surface treatment of the obtained synthetic magnesium hydroxide, mixed coating layer of Si compound and Al compound, 0.2-10 mass with respect to 100 mass% of magnesium hydroxide in the total amount of SiO 2 and Al 2 O 3 conversion Form at a rate of%.

またこの発明の樹脂組成物は、エステル結合を有する合成樹脂100質量部に対し、請求項1〜3のいずれかに記載の水酸化マグネシウム系粉体を5〜500質量部配合したものである。
またこの発明は、請求項5に記載の樹脂組成物の成形体にある。
Moreover, the resin composition of this invention mix | blends 5-500 mass parts of magnesium hydroxide type powder in any one of Claims 1-3 with respect to 100 mass parts of synthetic resins which have an ester bond.
Moreover, this invention exists in the molded object of the resin composition of Claim 5.

水酸化マグネシウム粒子のBET比表面積は0.1m2/g以上で1m2/g未満に限られ、好ましくは0.1m2/g〜0.8m2/gとする。BET比表面積が0.1m2/g未満の場合は、充分な難燃性が得られない。逆に、1m2/g以上の場合は、表面処理剤による均一な被覆が施されないため、水酸化マグネシウム粒子のpHが高く、水酸化マグネシウム表面のアルカリ性によってエステル系樹脂が加水分解してしまい、樹脂組成物のハンドリングが低下し、樹脂本来の特性(耐衝撃性等)の低下も懸念される。また、耐酸性も低い。 BET specific surface area of the magnesium hydroxide particles is limited to less than 1 m 2 / g at 0.1 m 2 / g or more, preferably 0.1m 2 /g~0.8m 2 / g. When the BET specific surface area is less than 0.1 m 2 / g, sufficient flame retardancy cannot be obtained. On the contrary, in the case of 1 m 2 / g or more, since the uniform coating with the surface treatment agent is not performed, the pH of the magnesium hydroxide particles is high, and the ester resin is hydrolyzed by the alkalinity of the magnesium hydroxide surface, The handling of the resin composition is lowered, and there is a concern that the original characteristics (impact resistance, etc.) of the resin may be lowered. Moreover, acid resistance is also low.

水酸化マグネシウム粒子の平均粒子径は5μm超で20μm以下に限られ、好ましくは5.5μm〜20μmとする。平均粒子径が20μmを超える場合は、充分な難燃性が得られず、逆に、5μm以下の場合は、表面処理剤による均一な被覆が施されないためpHが高く、水酸化マグネシウム表面のアルカリ性によって、エステル系樹脂が加水分解してしまい、樹脂組成物のハンドリングが低下し、樹脂本来の特性(耐衝撃性等)の低下も懸念される。また、耐酸性も低い。   The average particle size of the magnesium hydroxide particles is more than 5 μm and limited to 20 μm or less, and preferably 5.5 μm to 20 μm. When the average particle size exceeds 20 μm, sufficient flame retardancy cannot be obtained. Conversely, when the average particle size is 5 μm or less, since the uniform coating with the surface treatment agent is not performed, the pH is high and the alkalinity of the magnesium hydroxide surface is high. As a result, the ester-based resin is hydrolyzed, the handling of the resin composition is lowered, and there is a concern that the original properties (impact resistance, etc.) of the resin are lowered. Moreover, acid resistance is also low.

X線回折における[101]/[001]ピーク強度比は0.9以上に限られる。X線回折における[101]/[001]ピーク強度比が0.9未満の場合は、表面処理剤による均一な被覆が施されないためpHが高く、水酸化マグネシウム表面のアルカリ性によって、エステル系樹脂が加水分解してしまい、樹脂組成物のハンドリングが低下し、樹脂本来の特性(耐衝撃性等)の低下も懸念される。また、耐酸性も低い。   The [101] / [001] peak intensity ratio in X-ray diffraction is limited to 0.9 or more. When the [101] / [001] peak intensity ratio in X-ray diffraction is less than 0.9, since the uniform coating with the surface treatment agent is not applied, the pH is high, and the ester resin is hydrolyzed due to the alkalinity of the magnesium hydroxide surface. As a result, the handling of the resin composition is lowered, and there is a concern that the original properties (impact resistance, etc.) of the resin are lowered. Moreover, acid resistance is also low.

表面処理については、シリカとアルミナを混合した無機物で水酸化マグネシウム粒子を予め表面処理すれば、エステル系樹脂の耐加水分解性や耐トラッキング性が向上する。さらに耐酸性、加工性、金型離型性等を向上させる目的で、Si化合物とAl化合物との混合被覆層の上に、硬化油、脂肪酸エステル、シランカップリング剤、シリコンオイル、リン酸エステル、界面活性剤、高分子凝集剤の少なくとも1種で表面処理してもよい。   As for the surface treatment, hydrolysis treatment and tracking resistance of the ester resin can be improved if the magnesium hydroxide particles are previously surface treated with an inorganic material obtained by mixing silica and alumina. Furthermore, hardened oil, fatty acid ester, silane coupling agent, silicon oil, phosphate ester on the mixed coating layer of Si compound and Al compound for the purpose of improving acid resistance, workability, mold releasability, etc. The surface treatment may be performed with at least one of a surfactant and a polymer flocculant.

硬化油としては、牛脂硬化油、ヒマシ硬化油等がある。
脂肪酸エステルとしては、例えば多価アルコールの脂肪酸エステルや高級脂肪酸エステルがある。多価アルコールの脂肪酸エステルとしては、グリセリン−モノステアレート、グリセリン−ジステアレート、グリセリン−モノオレート、グリセリン−ジオレート、が挙げられる。高級脂肪酸エステルとしてはステアリン酸、オレイン酸、パルミチン酸、リノール酸、ラウリン酸、カプリン酸、ベヘニン酸、モンタン酸等のメチルエステル、エチルエステル、n−プロピルエステル、iso−プロピルエステル、ブチルエステル、オクチルエステル、ラウリルエステル、ステアリルエステル、ベヘニルエステル等が挙げられる。
Examples of the hardened oil include beef fat hardened oil and castor hardened oil.
Examples of fatty acid esters include fatty acid esters of higher polyhydric alcohols and higher fatty acid esters. Examples of fatty acid esters of polyhydric alcohols include glycerin-monostearate, glycerin-distearate, glycerin-monooleate, and glycerin-diolate. Examples of higher fatty acid esters include stearic acid, oleic acid, palmitic acid, linoleic acid, lauric acid, capric acid, behenic acid, montanic acid, and other methyl esters, ethyl esters, n-propyl esters, iso-propyl esters, butyl esters, octyls. Examples include esters, lauryl esters, stearyl esters, and behenyl esters.

シリコンオイルとしては、未変性シリコンオイルと変性シリコンオイルがある。未変性シリコンオイルとしては、ポリシロキサンの側鎖の一部がフェニル基であるメチルフェニルシリコンオイル、ポリシロキサンの側鎖の一部が水素原子であるメチルハイドロジェエンシリコンオイル等が挙げられる。また、変性シリコンオイルとしてはとしては、アルコキシ変性、アミノ変性、カルボキシ変性、エポキシ変性、シラザン変性、フェノール変性、カルビノール変性、メタクリル変性、メルカプト変性、ポリエーテル変性、メチルスチリル変性、アルキル変性、高級脂肪酸エステル変性、フッ素変性、親水性特殊変性等が挙げられる。上記シリコンオイルは、1種単独あるいは2種以上を組み合わせて用いることができる。   Silicon oil includes unmodified silicone oil and modified silicone oil. Examples of the unmodified silicone oil include methylphenyl silicone oil in which part of the side chain of polysiloxane is a phenyl group, and methylhydrogen silicone oil in which part of the side chain of polysiloxane is a hydrogen atom. Examples of the modified silicone oil include alkoxy modification, amino modification, carboxy modification, epoxy modification, silazane modification, phenol modification, carbinol modification, methacryl modification, mercapto modification, polyether modification, methylstyryl modification, alkyl modification, and higher grades. Examples include fatty acid ester modification, fluorine modification, and hydrophilic special modification. The silicone oil can be used alone or in combination of two or more.

シランカップリング剤としては、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等のメタクリロキシ系、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン等のビニル系、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ系、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ系がある。上記シランカップリング剤は、1種単独あるいは2種以上を組み合わせて用いることができる。   Examples of the silane coupling agent include γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, methacryloxy series such as γ-methacryloxypropyltriethoxysilane, vinyltri Vinyl series such as methoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N beta (aminoethyl) .gamma.-aminopropyltriethoxysilane, .gamma.-aminopropyltrimethoxysilane, .gamma.-aminopropyltriethoxysilane, there are amino-based, such as N- phenyl--γ- aminopropyltrimethoxysilane. The said silane coupling agent can be used individually by 1 type or in combination of 2 or more types.

リン酸エステルとしては、モノ及びジ−飽和アルコールのリン酸エステル、例えば、モノ−ステアリルアシッドホスフェイト、ジ−ステアリルアシッドホスフェイト、モノ−ラウリルアシッドホスフェイト、ジ−ラウリルアシッドホスフェイト、モノ−ミリスチルアシッドホスフェイト、ジ−ミリスチルアシッドホスフェイト、モノ−パルミチルアシッドホスフェイト、ジ−パルミチルアシッドホスフェイト、モノ−アラキルアシッドホスフェイト、ジ−アラキルアシッドホスフェイト、モノ−ベヘルアシッドホスフェイト、ジ−ベヘルアシッドホスフェイト、モノ−リグノセリルアシッドホスフェイト、ジ−リグノセリルアシッドホスフェイトやその金属塩(Na、K、Al、Ca、Mg、Zn、Ba)等があり、モノ及びジ−飽和アルコールのリン酸エステルの1種類もしくはそれらの混合物を使用しても良い。   Phosphoric esters include phosphate esters of mono and di-saturated alcohols such as mono-stearyl acid phosphate, di-stearyl acid phosphate, mono-lauryl acid phosphate, di-lauryl acid phosphate, mono-myristyl Acid Phosphate, Di-Myristyl Acid Phosphate, Mono-Palmityl Acid Phosphate, Di-Palmityl Acid Phosphate, Mono-Arakil Acid Phosphate, Di-Arakil Acid Phosphate, Mono-Beher Acid Phosphate , Di-beher acid phosphate, mono-lignoseryl acid phosphate, di-lignoseryl acid phosphate and metal salts thereof (Na, K, Al, Ca, Mg, Zn, Ba), etc., mono and di -Saturated alcohol It may be used one type or a mixture thereof phosphate ester le.

界面活性剤 としては、例えば、アニオン系のステアリルアルコール、オレイルアルコール等の高級アルコールの硫酸エステル塩、ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エステル結合硫酸エステル塩、エステル結合スルホネート、アミド結合スルホン酸塩、エーテル結合スルホン酸塩、エーテル結合アルキルアリルスルホン酸塩、エステル結合アルキルアリルスルホン酸塩、アミド結合アルキルアリルスルホン酸塩等や、非イオン系のグリセリン脂肪酸エステルまたはソルビタン脂肪酸エステルが挙げられる。   Examples of the surfactant include sulfate esters of higher alcohols such as anionic stearyl alcohol and oleyl alcohol, sulfate esters of polyethylene glycol ether, amide bond sulfate esters, ester bond sulfate esters, ester bond sulfonates, amides. Examples include bonded sulfonates, ether-bonded sulfonates, ether-bonded alkyl allyl sulfonates, ester-bonded alkyl allyl sulfonates, amide-bonded alkyl allyl sulfonates, and nonionic glycerin fatty acid esters or sorbitan fatty acid esters. It is done.

高分子凝集剤は、ノニオン系、アニオン系、カチオン系の3種類に大別される。ノニオン系高分子凝集剤は、例えばポリアクリルアミド等が挙げられる。アニオン系高分子凝集剤は、例えばアクリルアミド・アクリル酸ナトリウム共重合物等が挙げられる。カチオン系高分子凝集剤は、例えばアクリルアミド・ジメチルアミノエチルアクリレートメチルクロライド4級塩の共重合物等が挙げられる。   Polymer flocculants are roughly classified into three types: nonionic, anionic and cationic. Examples of nonionic polymer flocculants include polyacrylamide. Examples of the anionic polymer flocculant include acrylamide / sodium acrylate copolymer. Examples of the cationic polymer flocculant include a copolymer of acrylamide / dimethylaminoethyl acrylate methyl chloride quaternary salt.

この発明の水酸化マグネシウム系粉体をエステル系樹脂に配合すると、優れた難燃性が得られると共に、エステル系樹脂を加水分解することが無く、従って樹脂本来の特性を活かすことができ、また樹脂組成物のハンドリング性も低下せず、さらに耐酸性も高い。   When the magnesium hydroxide powder of the present invention is blended with an ester resin, excellent flame retardancy is obtained, the ester resin is not hydrolyzed, and the original characteristics of the resin can be utilized. The handling property of the resin composition is not lowered and the acid resistance is also high.

以下に本発明を実施するための最適実施例を示すが、本発明はこれに限定されるものではない。   Although the optimal example for implementing this invention is shown below, this invention is not limited to this.

水酸化マグネシウム粒子をSi化合物とAl化合物の混合被覆層で被覆したサンプル粉末を製造した後、エステル結合を有する樹脂に配合して、樹脂組成物にする場合の樹脂の加水分解性を調べた。さらに、この樹脂組成物を成形する場合のハンドリング性や成形体の難燃性および耐トラッキング性を評価した。   A sample powder in which magnesium hydroxide particles were coated with a mixed coating layer of an Si compound and an Al compound was manufactured, and then blended with a resin having an ester bond to examine the hydrolyzability of the resin when it was made into a resin composition. Furthermore, the handling property in the case of molding this resin composition and the flame retardancy and tracking resistance of the molded product were evaluated.

実施例1
サンプル粉末の製造
BET比表面積が30m2/g、平均粒子径が5.3μmの水酸化マグネシウム100gが含まれる水懸濁液に、NaOHフレークを800g添加して(OH-/Mg2+モル比=11.7)、さらに純水を加えて1.5Lの液量に調整した。これに直径3mmのジルコニアボールを1kg投入して、攪拌下に回転数650rpmで15分間湿式粉砕した。その後、懸濁液よりジルコニアボールを取り除いて、2L容量ニッケル製オートクレーブ内に流し込み、攪拌下で270℃、10時間の水熱処理を行った。水熱処理後のスラリーを真空ろ過後、固形分に対し20倍容以上の水で充分洗浄した。その後、再び水に戻して乳化し、室温、攪拌下にて、アルミン酸ナトリウム及びコロイダルシリカの混合水溶液を固形分に対し、Al2O3換算で1質量%およびSiO2換算で1質量%添加して1時間表面被覆処理した。その後、真空ろ過、水洗(固形分に対して20倍容以上)、乾燥、粉砕して水酸化マグネシウム系粉体のサンプル粉末を得た。Si化合物やAl化合物の存在形態は主としてSiO2とAl2O3あるいはこれらの水酸化物である。以下この試料を実施例1とする。
Example 1
Production of sample powder
To an aqueous suspension containing 100 g of magnesium hydroxide having a BET specific surface area of 30 m 2 / g and an average particle size of 5.3 μm, 800 g of NaOH flakes were added (OH / Mg 2+ molar ratio = 11.7), and Pure water was added to adjust the liquid volume to 1.5 L. 1 kg of zirconia balls having a diameter of 3 mm was added thereto, and wet pulverized for 15 minutes at 650 rpm with stirring. Thereafter, zirconia balls were removed from the suspension and poured into a 2 L nickel autoclave, and hydrothermal treatment was performed at 270 ° C. for 10 hours with stirring. The slurry after the hydrothermal treatment was vacuum filtered, and then thoroughly washed with 20 times or more volume of water relative to the solid content. Then, it is emulsified by returning to water again, and at room temperature under stirring, a mixed aqueous solution of sodium aluminate and colloidal silica is added to the solid content by 1% by mass in terms of Al 2 O 3 and 1% by mass in terms of SiO 2 Then, the surface coating treatment was performed for 1 hour. Thereafter, vacuum filtration, washing with water (more than 20 times the solid content), drying and pulverization were performed to obtain a sample powder of magnesium hydroxide powder. The existence form of Si compound or Al compound is mainly SiO 2 and Al 2 O 3 or a hydroxide thereof. Hereinafter, this sample is referred to as Example 1.

難燃性樹脂組成物および成形体の製造
ポリ乳酸樹脂100質量部に対し、前記したサンプル粉末100質量部を配合して混合した後に、ラボプラストミル(東洋精機株式会社製)を用いて、180℃で5分間、回転数50rpmで混練し、150℃で金型プレス成形を行い、酸素指数法による燃焼試験用の成形体A-1号形(長さ150mm、幅6.5mm、厚さ3mm)を得た。難燃性樹脂成形体の製造条件は、以下共通である。
Production of Flame Retardant Resin Composition and Molded Body After blending and mixing 100 parts by mass of the sample powder as described above with 100 parts by mass of polylactic acid resin, 180 labs were used using a lab plast mill (manufactured by Toyo Seiki Co., Ltd.). Kneaded at 50 ° C for 5 minutes at a rotation speed of 50rpm, performed die press molding at 150 ° C, and molded product A-1 for combustion test by oxygen index method (length 150mm, width 6.5mm, thickness 3mm) Got. The production conditions for the flame-retardant resin molded body are the same in the following.

耐トラッキング性樹脂組成物および成形体の製造
PBT樹脂100質量部に対し、前記したサンプル粉末30質量部を配合して混合した後に、ブレンダーで20分混合した後、射出成形機にて340℃で長さ100mm、幅100mm、厚さ3mmのシートを成形した。耐トラッキング性樹脂成形体の製造条件は、以下共通である。
Production of tracking-resistant resin composition and molded body
After blending and mixing 30 parts by mass of the above-mentioned sample powder with 100 parts by mass of PBT resin, mixing for 20 minutes with a blender, and then using an injection molding machine at 340 ° C, length 100 mm, width 100 mm, thickness 3 mm A sheet was formed. The manufacturing conditions for the tracking-resistant resin molding are the same in the following.

分析・評価方法
サンプル粉末、樹脂組成物および成形体について、以下のようにして分析および評価を行った。実施例1および後述の実施例2〜10について結果を表1に示し、後述の各比較例について結果を表2に示す。
Analysis / Evaluation Method The sample powder, resin composition, and molded body were analyzed and evaluated as follows. The results are shown in Table 1 for Example 1 and Examples 2 to 10 described later, and the results are shown in Table 2 for each Comparative Example described later.

BET比表面積、平均粒子径および[101]/[001]ピーク強度比の測定
サンプル粉末のBET比表面積は、試料粉末を窒素吸着法によって測定し、粒度分布は、試料粉末をエタノールに懸濁させ、超音波で3分間分散処理した後に、レーザー回折法により測定した。また、X線回折における[101]/[001]ピーク強度比は、理学電気株式会社製X線回折装置(CuのKα線、40kV、50mA)を用い、[101]のピーク強度(2θ=38.0°)及び[001]のピーク強度(2θ=18.6°)を測定して求めた。
Measurement of BET specific surface area, average particle diameter and [101] / [001] peak intensity ratio The BET specific surface area of the sample powder was measured by the nitrogen adsorption method, and the particle size distribution was determined by suspending the sample powder in ethanol. The dispersion was treated with ultrasonic waves for 3 minutes and then measured by a laser diffraction method. In addition, the [101] / [001] peak intensity ratio in X-ray diffraction was measured using an X-ray diffractometer (Cu Kα ray, 40 kV, 50 mA) manufactured by Rigaku Corporation, and the peak intensity of [101] (2θ = 38.0 °) and [001] peak intensity (2θ = 18.6 °) was measured.

サンプル粉末のpHおよび耐酸性評価
サンプル粉末のpHおよび耐酸性試験は、電位差滴定法を用いた。即ち、実施例1で調製したサンプル粉末1.0gを、ポリエチレングリコールモノラウリルエーテル(n=25)の0.1質量%水溶液100ml中に添加し、スターラーで5分間攪拌後、超音波で10分間分散処理して懸濁液を調製した。この懸濁液を恒温槽で25℃に保持し、N2ガスでバブリングしながら、自動滴定装置(京都電子工業株式会社製AT-400)を用いて、0.1mol/L硝酸水溶液を0.1ml/min(水酸化マグネシウム1molに対して、水素イオンとして0.6mmol/min)の速度で滴下し、ガラス電極を用いて滴定溶液中のpHを測定することにより、滴定曲線を得た。硝酸滴下前のpHはサンプル粉末本来のpHを意味し、このpHが低い程、水酸化マグネシウムのアルカリ表面が表面処理剤で緻密に被覆されており、結果的に樹脂の耐加水分解性を効率的に抑制する。硝酸滴下前のpHは7.0以下であることが好ましい。一方、硝酸10ml滴下後のpHは粉末の耐酸性を示しており、硝酸10ml滴下後のpHは3.0以下であると耐酸性が高く、好ましい。
Evaluation of pH and acid resistance of sample powder The potentiometric titration method was used for the pH and acid resistance test of the sample powder. That is, 1.0 g of the sample powder prepared in Example 1 was added to 100 ml of a 0.1% by mass aqueous solution of polyethylene glycol monolauryl ether (n = 25), stirred for 5 minutes with a stirrer, and then dispersed for 10 minutes with ultrasound. A suspension was prepared. While maintaining this suspension at 25 ° C. in a thermostatic bath and bubbling with N 2 gas, using an automatic titrator (AT-400, manufactured by Kyoto Electronics Industry Co., Ltd.), 0.1 mol / L nitric acid aqueous solution was added at 0.1 ml / L A titration curve was obtained by dropping dropwise at a rate of min (0.6 mmol / min as hydrogen ions per 1 mol of magnesium hydroxide) and measuring the pH in the titration solution using a glass electrode. The pH before dropping nitric acid means the original pH of the sample powder. The lower the pH, the denser the alkali surface of magnesium hydroxide is coated with the surface treatment agent, resulting in more efficient hydrolysis resistance of the resin. Suppress it. The pH before nitric acid dropping is preferably 7.0 or less. On the other hand, the pH after dropping 10 ml of nitric acid indicates the acid resistance of the powder, and the pH after dropping 10 ml of nitric acid is preferably 3.0 or less because of high acid resistance.

樹脂の加水分解性評価
前記したポリ乳酸樹脂とサンプル粉末をラボプラストミルで混練する際の混練トルクを測定し、ポリ乳酸樹脂の加水分解性を評価した。加水分解が進行すると、樹脂そのものの混練トルクよりも樹脂組成物の混練トルクが低下して、樹脂組成物が液状になる。具体的には、混練開始時から5分後のトルクが、19N・m以上なら加水分解は進行しておらず○とし、19N・m以下なら加水分解が進行しており×とした。
Evaluation of Hydrolyzability of Resin The kneading torque when kneading the polylactic acid resin and the sample powder with a lab plast mill was measured to evaluate the hydrolyzability of the polylactic acid resin. As the hydrolysis proceeds, the kneading torque of the resin composition is lower than the kneading torque of the resin itself, and the resin composition becomes liquid. Specifically, when the torque after 5 minutes from the start of kneading is 19 N · m or more, hydrolysis was not progressed, and when the torque was 19 N · m or less, hydrolysis was progressing and X was marked.

樹脂組成物のハンドリング性評価
前記したポリ乳酸樹脂あるいはPBT樹脂とサンプル粉末を配合した樹脂組成物の成形時のハンドリング性を評価した。樹脂の加水分解が進行したものは、高温での樹脂組成物が液状となり、チキソ性が高く、ハンドリング性が悪化する。ハンドリング性が良いものは○、ハンドリング性が悪いものは×とした。
Evaluation of Handling Property of Resin Composition The handling property at the time of molding of a resin composition containing the above-mentioned polylactic acid resin or PBT resin and sample powder was evaluated. In the case where the hydrolysis of the resin has progressed, the resin composition at high temperature becomes liquid, the thixotropy is high, and the handling property is deteriorated. Those with good handling properties were marked with ◯, and those with poor handling properties were marked with ×.

成形体の酸素指数
前記したポリ乳酸樹脂組成物の成形体について、JISK 7201に準拠して酸素指数を測定した。酸素指数が高いと難燃性が高いことを意味し、例えば、前記の配合において、UL-94規格の垂直燃焼試験(V-1)に合格できる酸素指数の目安としては、38.0以上であることが好ましい。
Oxygen Index of Molded Body The oxygen index of the molded body of the polylactic acid resin composition described above was measured according to JISK 7201. A high oxygen index means high flame retardancy. For example, in the above formula, the oxygen index that can pass the UL-94 standard vertical combustion test (V-1) is 38.0 or more. Is preferred.

成形体の耐トラッキング性
前記したPBT樹脂組成物の成形体について、IEC60112に準拠して相対トラッキング指数(CTI値)を測定した。CTI値は発火に至るまでの電圧を表し、数値が大きいほど電気特性が良好で、絶縁性が高く発火しにくい材料であるので好ましい。
Tracking Resistance of Molded Body The relative tracking index (CTI value) of the molded body of the PBT resin composition described above was measured according to IEC60112. The CTI value represents the voltage until ignition, and the larger the value, the better the electrical characteristics and the better the insulating property and the less likely to ignite.

実施例2
MgCl2・6H2Oを360g秤量し、純水1Lを加えて攪拌し、MgCl2水溶液を調製した。このMgCl2水溶液を攪拌下に、NaOHフレークを790g添加し(OH-/Mg2+モル比=11.2)、さらに純水を加え、1.5Lのサスペンジョンを調製した。このサスペンジョンを2L容量ニッケル製オートクレーブ内に流し込み、攪拌下で250℃、10時間の水熱処理を行った。水熱処理後のスラリーを真空ろ過後、固形分に対し20倍容以上の水で充分洗浄した。その後、再び水に戻して乳化し、室温、攪拌下にて、アルミナゾル及び珪酸ソーダの混合水溶液を水酸化マグネシウム換算固形分に対し、Al2O3換算で1質量%およびSiO2換算で1質量%添加して1時間表面被覆処理した以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 2
360 g of MgCl 2 .6H 2 O was weighed, 1 L of pure water was added and stirred to prepare an MgCl 2 aqueous solution. While stirring this MgCl 2 aqueous solution, 790 g of NaOH flakes were added (OH / Mg 2+ molar ratio = 11.2), and pure water was further added to prepare a 1.5 L suspension. The suspension was poured into a 2 L nickel autoclave and hydrothermally treated for 10 hours at 250 ° C. with stirring. The slurry after the hydrothermal treatment was vacuum filtered, and then thoroughly washed with 20 times or more volume of water relative to the solid content. Thereafter, the mixture was again emulsified in water, and at room temperature and under stirring, the mixed aqueous solution of alumina sol and sodium silicate was 1% by mass in terms of Al 2 O 3 and 1% by mass in terms of SiO 2 with respect to the solid content in terms of magnesium hydroxide. A sample powder and a molded body were produced by performing the same operation as in Example 1 except that the surface coating treatment was performed for 1 hour by adding%, and analysis and evaluation were performed.

実施例3
BET比表面積が40m2/g、平均粒子径が3.2μmの酸化マグネシウム69gと、LiOH・H2Oを400g添加して(OH-/Mg2+モル比=5.6)、水を加えて1.5L液量に調整した。これに直径3mmのジルコニアボールを1kg投入して、攪拌下に回転数650rpmで15分間湿式粉砕した。その後、懸濁液よりジルコニアボールを取り除いて、2L容量ニッケル製オートクレーブ内に流し込み、攪拌下で200℃、10時間の水熱水和反応を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 3
BET specific surface area of 40 m 2 / g, an average particle diameter of magnesium oxide 69g of 3.2 .mu.m, the LiOH · H 2 O was added 400g (OH - / Mg 2+ molar ratio = 5.6), 1.5 L by adding water The liquid volume was adjusted. 1 kg of zirconia balls having a diameter of 3 mm was added thereto, and wet pulverized for 15 minutes at 650 rpm with stirring. Thereafter, the zirconia balls were removed from the suspension, poured into a 2 L nickel autoclave, and subjected to a hydrothermal hydration reaction at 200 ° C. for 10 hours under stirring, and the same operation as in Example 1 was performed. Sample powders and compacts were manufactured and analyzed and evaluated.

実施例4
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理した液を80℃に加温後、さらに温度80℃で濃度1質量%の牛脂硬化油水懸濁液を用いて、牛脂硬化油を固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 4
After heating the liquid surface-treated with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 1 to 80 ° C., further using a beef tallow oil suspension with a concentration of 1 mass% at a temperature of 80 ° C. A sample powder and a molded body were produced by performing the same operation as in Example 1 except that the surface treatment was performed by adding 1% by mass to the solid content, and analysis and evaluation were performed.

実施例5
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理した液を80℃に加温後、さらに温度80℃で濃度1質量%のステアリン酸モノグリセライド水懸濁液を用いて、ステアリン酸モノグリセライドを固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 5
The liquid surface-treated with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 1 was heated to 80 ° C., and then a stearic acid monoglyceride aqueous suspension having a concentration of 1 mass% at a temperature of 80 ° C. was used. A sample powder and a molded body were produced by performing the same operations as in Example 1 except that the surface treatment was performed by adding 1% by mass of monoglyceride to the solid content, and analysis and evaluation were performed.

実施例6
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理した液を80℃に加温後、さらに温度80℃で濃度1質量%のモノステアリル燐酸ナトリウムとジステアリル燐酸ナトリウム混合物水溶液を用いて、モノステアリル燐酸ナトリウムとジステアリル燐酸ナトリウム混合物を固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 6
The liquid surface-treated with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 1 was heated to 80 ° C., and further, an aqueous solution of sodium monostearyl phosphate and sodium distearyl phosphate having a concentration of 1% by mass at a temperature of 80 ° C. was used. The sample powder and the molded body were manufactured in the same manner as in Example 1 except that the surface treatment was performed by adding 1% by mass of the sodium monostearyl phosphate and sodium distearyl phosphate to the solid content. Analysis and evaluation were performed.

実施例7
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理した液に、さらに酢酸でpH=3に調製した濃度1質量%のγ-メタクリロキシプロピルトリメトキシシラン水溶液を用いて、γ-メタクリロキシプロピルトリメトキシシランを固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 7
In the solution obtained by surface coating with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 1, a γ-methacryloxypropyltrimethoxysilane aqueous solution having a concentration of 1% by mass adjusted to pH = 3 with acetic acid was used. Except for adding 1% by mass of methacryloxypropyltrimethoxysilane to the solid content and performing surface treatment, the same operations as in Example 1 were performed to produce sample powders and compacts, which were then analyzed and evaluated. It was.

実施例8
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面処理した液に、さらにメチルハイドロジェンシリコンオイルを用いて、メチルハイドロジェンシリコンオイルを固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 8
To the liquid surface-treated with the mixed aqueous solution of sodium aluminate and colloidal silica in Example 1, methyl hydrogen silicone oil was further used, and the surface treatment was performed by adding 1% by mass of methyl hydrogen silicone oil to the solid content. A sample powder and a molded body were produced by performing the same operation as in Example 1 except that the analysis was performed and the evaluation was performed.

実施例9
実施例1でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理した液に、さらにアクリルアミド・アクリル酸ナトリウム共重合物を用いて、アクリルアミド・アクリル酸ナトリウム共重合物を固形分に対して1質量%添加して表面処理を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Example 9
In the solution obtained by surface coating with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 1, an acrylamide / sodium acrylate copolymer was further used in an amount of 1% by mass with respect to the solid content. A sample powder and a molded body were produced by performing the same operations as in Example 1 except that the surface treatment was performed by adding%, and analysis and evaluation were performed.

比較例1
BET比表面積が40m2/g、平均粒子径が3.2μmの酸化マグネシウム69gと、LiOH・H2Oを150g添加して(OH-/Mg2+モル比=2.1)、水を加えて1.5L液量に調整した。これに直径3mmのジルコニアボールを1kg投入して、攪拌下に回転数650rpmで15分間湿式粉砕した。その後、懸濁液よりジルコニアボールを取り除いて、2L容量ニッケル製オートクレーブ内に流し込み、攪拌下で190℃、10時間の水熱水和反応を行った以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 1
BET specific surface area of 40 m 2 / g, an average magnesium oxide particle diameter of 3.2 .mu.m 69 g, and 150g added LiOH · H 2 O (OH - / Mg 2+ molar ratio = 2.1), 1.5 L by adding water The liquid volume was adjusted. 1 kg of zirconia balls having a diameter of 3 mm was added thereto, and wet pulverized for 15 minutes at 650 rpm with stirring. Thereafter, the zirconia balls were removed from the suspension, poured into a 2 L nickel autoclave, and subjected to a hydrothermal hydration reaction at 190 ° C. for 10 hours under stirring. Sample powders and compacts were manufactured and analyzed and evaluated.

比較例2
BET比表面積が2.5m2/g、平均粒子径が13.7μm、X線回折における[101]/[001]ピーク強度比が0.21の天然ブルーサイト粉砕品100gを純水1Lに攪拌下に懸濁した。この懸濁液に、室温、攪拌下にて、アルミン酸ナトリウム及びコロイダルシリカの混合水溶液を固形分に対し、Al2O3換算で1質量%およびSiO2換算で1質量%添加して1時間表面被覆処理した液を80℃に加温後、さらに温度80℃で濃度1質量%の牛脂硬化油水懸濁液を用いて、牛脂硬化油を固形分に対して1質量%添加して表面処理を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 2
100 g of ground natural brucite with a BET specific surface area of 2.5 m 2 / g, an average particle size of 13.7 μm, and a [101] / [001] peak intensity ratio of 0.21 in X-ray diffraction is suspended in 1 L of pure water with stirring. did. To this suspension, a mixed aqueous solution of sodium aluminate and colloidal silica was added at 1% by mass in terms of Al 2 O 3 and 1% by mass in terms of SiO 2 with stirring at room temperature for 1 hour. Heat the surface-coated liquid to 80 ° C, and then add 1% by weight of beef fat hardened oil to the solid content at a temperature of 80 ° C using a beef tallow oil suspension with a concentration of 1% by weight. To produce sample powders and compacts for analysis and evaluation.

比較例3
MgCl2・6H2Oを360g秤量し、純水1Lを加えて攪拌し、MgCl2水溶液を調製した。このMgCl2水溶液を攪拌下に、8.3NのNaOH水溶液を383mL添加し(OH-/Mg2+モル比=1.8)、さらに純水を加え、1.5Lのサスペンジョンを調製した。このサスペンジョンを2L容量ニッケル製オートクレーブ内に流し込み、攪拌下で140℃、5時間の水熱処理を行った。水熱処理後のスラリーを真空ろ過後、固形分に対し20倍容以上の水で充分洗浄した。その後、再び水に戻して乳化し、室温、攪拌下にて、アルミン酸ナトリウム及びコロイダルシリカの混合水溶液を固形分に対し、Al2O3換算で1質量%およびSiO2換算で1質量%添加して1時間表面被覆処理し、さらにメチルハイドロジェンシリコンオイルを用いて、メチルハイドロジェンシリコンオイルを固形分に対して1質量%添加して表面処理を行いサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 3
360 g of MgCl 2 .6H 2 O was weighed, 1 L of pure water was added and stirred to prepare an MgCl 2 aqueous solution. While stirring this MgCl 2 aqueous solution, 383 mL of 8.3N NaOH aqueous solution was added (OH / Mg 2+ molar ratio = 1.8), and pure water was further added to prepare a 1.5 L suspension. This suspension was poured into a 2 L nickel autoclave and hydrothermally treated at 140 ° C. for 5 hours with stirring. The slurry after the hydrothermal treatment was vacuum filtered, and then thoroughly washed with 20 times or more volume of water relative to the solid content. Then, it is emulsified by returning to water again, and at room temperature under stirring, a mixed aqueous solution of sodium aluminate and colloidal silica is added to the solid content by 1% by mass in terms of Al 2 O 3 and 1% by mass in terms of SiO 2 1 hour surface coating treatment, and then using methyl hydrogen silicone oil to add 1% by mass of methyl hydrogen silicone oil to the solid content, surface treatment to produce sample powder and molded body, analysis And evaluated.

比較例4
表面被覆処理をしなかった以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 4
A sample powder and a molded body were produced in the same manner as in Example 1 except that the surface coating treatment was not performed, and analysis and evaluation were performed.

比較例5
実施例5でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理しなかった以外は(ステアリン酸モノグリセライドでのみ表面処理した)、実施例5と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 5
Except that the surface coating treatment was not performed with the mixed aqueous solution of sodium aluminate and colloidal silica in Example 5 (surface treatment was performed only with stearic acid monoglyceride), the same operations as in Example 5 were performed to produce sample powders and molded products. Analysis and evaluation.

比較例6
実施例9でアルミン酸ナトリウムおよびコロイダルシリカの混合水溶液で表面被覆処理しなかった以外は(アクリルアミド・アクリル酸ナトリウム共重合物でのみ表面処理した)、実施例9と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 6
A sample powder was prepared in the same manner as in Example 9, except that the surface coating was not performed with a mixed aqueous solution of sodium aluminate and colloidal silica in Example 9 (surface treatment was performed only with an acrylamide / sodium acrylate copolymer). And a molded object was manufactured and analyzed and evaluated.

比較例7
比較例7のサンプル粉末は、市販の亜鉛固溶型複合水酸化マグネシウム(ZnO含有量で25質量%)を用いて樹脂組成物の成形体を製造した以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 7
The sample powder of Comparative Example 7 was prepared in the same manner as in Example 1 except that a molded product of the resin composition was produced using a commercially available zinc solid solution type composite magnesium hydroxide (ZnO content: 25% by mass). To produce sample powders and compacts for analysis and evaluation.

比較例8
比較例8のサンプル粉末は、市販の球状シリカ(電気化学株式会社製FB-910) を用いて樹脂組成物の成形体を製造した以外は、実施例1と同様な操作を行ってサンプル粉末および成形体を製造し、分析および評価を行った。
Comparative Example 8
The sample powder of Comparative Example 8 was prepared by performing the same operation as in Example 1 except that a molded product of the resin composition was produced using commercially available spherical silica (FB-910 manufactured by Electrochemical Co., Ltd.). Molded bodies were manufactured and analyzed and evaluated.

Figure 2007261923
Figure 2007261923

Figure 2007261923
Figure 2007261923

Claims (6)

BET比表面積が0.1m2/g以上1m2/g未満で、平均粒子径が5μm超20μm以下、 X線回折における[101]/[001]ピーク強度比が0.9以上の合成水酸化マグネシウム粒子に、Si化合物とAl化合物との混合被覆層を、SiO2とAl2O3換算の合計量で水酸化マグネシウム100質量%に対して、0.2〜10質量%の割合で形成した水酸化マグネシウム系粉体。 Synthetic magnesium hydroxide particles having a BET specific surface area of 0.1 m 2 / g or more and less than 1 m 2 / g, an average particle diameter of more than 5 μm and 20 μm or less, and a [101] / [001] peak intensity ratio in X-ray diffraction of 0.9 or more , Magnesium hydroxide-based powder in which a mixed coating layer of Si compound and Al compound is formed at a ratio of 0.2 to 10% by mass with respect to 100% by mass of magnesium hydroxide as a total amount in terms of SiO 2 and Al 2 O 3 body. 前記Si化合物とAl化合物の混合被覆層を形成した水酸化マグネシウム粒子が、さらに硬化油、脂肪酸エステル、シランカップリング剤、シリコンオイル、リン酸エステル、界面活性剤、高分子凝集剤の少なくとも1種により、水酸化マグネシウム100質量%に対して0.1〜10質量%の割合で表面処理されていることを特徴とする、請求項1に記載の水酸化マグネシウム系粉体。 The magnesium hydroxide particles forming the mixed coating layer of the Si compound and the Al compound are further at least one of hardened oil, fatty acid ester, silane coupling agent, silicon oil, phosphate ester, surfactant, and polymer flocculant. The magnesium hydroxide powder according to claim 1, wherein the surface treatment is performed at a ratio of 0.1 to 10% by mass with respect to 100% by mass of magnesium hydroxide. 前記Si化合物はケイ酸ソーダ、コロイダルシリカおよびこれらの前駆体からなる群の少なくとも1種の化合物であり、前記Al化合物は塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、アルミン酸ソーダ、アルミナゾルおよびこれらの前駆体からなる群の少なくとも1種の化合物であることを特徴とする、請求項1に記載の水酸化マグネシウム系粉体。 The Si compound is at least one compound selected from the group consisting of sodium silicate, colloidal silica, and precursors thereof, and the Al compound is aluminum chloride, aluminum sulfate, aluminum nitrate, sodium aluminate, alumina sol, and precursors thereof. The magnesium hydroxide-based powder according to claim 1, which is at least one compound of the group consisting of: 水酸化マグネシウム粒子の原料として、水酸化マグネシウムあるいは酸化マグネシウムの水懸濁液、もしくは、塩化マグネシウム、硫酸マグネシウムあるいは硝酸マグネシウムの水溶液を用い、
該水酸化マグネシウム粒子の原料が、水酸化マグネシウムあるいは酸化マグネシウムの水懸濁液の場合は、水酸化リチウムもしくは水酸化ナトリウムを、OH-/Mg2+のモル比で5以上添加して湿式粉砕し、
該水酸化マグネシウム粒子の原料が、塩化マグネシウム、硫酸マグネシウムあるいは硝酸マグネシウムの水溶液の場合は、水酸化リチウムもしくは水酸化ナトリウムを、OH-/Mg2+のモル比で5以上添加し、
何れの場合も、水酸化リチウムもしくは水酸化ナトリウムの添加後に、200〜270℃で水熱処理することにより、
BET比表面積が0.1m2/g以上1m2/g未満で、平均粒子径が5μm超20μm以下、 X線回折における[101]/[001]ピーク強度比が0.9以上の合成水酸化マグネシウム粒子とし、
得られた合成水酸化マグネシウムを表面処理し、Si化合物とAl化合物との混合被覆層を、SiO2とAl2O3換算の合計量で水酸化マグネシウム100質量%に対して、0.2〜10質量%の割合で形成する、水酸化マグネシウム系粉体の製造方法。
As a raw material for magnesium hydroxide particles, an aqueous suspension of magnesium hydroxide or magnesium oxide, or an aqueous solution of magnesium chloride, magnesium sulfate or magnesium nitrate,
When the raw material of the magnesium hydroxide particles is an aqueous suspension of magnesium hydroxide or magnesium oxide, wet pulverization is performed by adding lithium hydroxide or sodium hydroxide in a molar ratio of OH / Mg 2+ of 5 or more. And
When the raw material of the magnesium hydroxide particles is an aqueous solution of magnesium chloride, magnesium sulfate or magnesium nitrate, lithium hydroxide or sodium hydroxide is added in a molar ratio of OH / Mg 2+ of 5 or more,
In either case, after addition of lithium hydroxide or sodium hydroxide, by hydrothermal treatment at 200-270 ° C,
Synthetic magnesium hydroxide particles having a BET specific surface area of 0.1 m 2 / g or more and less than 1 m 2 / g, an average particle diameter of more than 5 μm and 20 μm or less, and a [101] / [001] peak intensity ratio in X-ray diffraction of 0.9 or more ,
Surface treatment of the obtained synthetic magnesium hydroxide, mixed coating layer of Si compound and Al compound, 0.2-10 mass with respect to 100 mass% of magnesium hydroxide in the total amount of SiO 2 and Al 2 O 3 conversion The manufacturing method of the magnesium hydroxide type powder formed in the ratio of%.
エステル結合を有する合成樹脂100質量部に対し、請求項1〜3のいずれかに記載の水酸化マグネシウム系粉体を5〜500質量部配合したことを特徴とする、樹脂組成物。 A resin composition comprising 5 to 500 parts by mass of the magnesium hydroxide-based powder according to any one of claims 1 to 3 with respect to 100 parts by mass of a synthetic resin having an ester bond. 請求項5に記載の樹脂組成物の成形体。 A molded article of the resin composition according to claim 5.
JP2006093009A 2006-03-30 2006-03-30 Magnesium hydroxide powder and method for producing the same, and resin composition and molded body Active JP5078270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093009A JP5078270B2 (en) 2006-03-30 2006-03-30 Magnesium hydroxide powder and method for producing the same, and resin composition and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093009A JP5078270B2 (en) 2006-03-30 2006-03-30 Magnesium hydroxide powder and method for producing the same, and resin composition and molded body

Publications (2)

Publication Number Publication Date
JP2007261923A true JP2007261923A (en) 2007-10-11
JP5078270B2 JP5078270B2 (en) 2012-11-21

Family

ID=38635279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093009A Active JP5078270B2 (en) 2006-03-30 2006-03-30 Magnesium hydroxide powder and method for producing the same, and resin composition and molded body

Country Status (1)

Country Link
JP (1) JP5078270B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286668A (en) * 2008-05-30 2009-12-10 Konoshima Chemical Co Ltd Magnesium hydroxide-based thermally conductive filler, method for producing the same, thermally conductive resin composition and molded product
JP2011219640A (en) * 2010-04-12 2011-11-04 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant, method for producing the same, and resin composition and molding
WO2012008596A1 (en) * 2010-07-13 2012-01-19 協和化学工業株式会社 Flame retardant, resin composition containing same, and molded article thereof
EP2441803A1 (en) 2010-10-12 2012-04-18 Shin-Etsu Chemical Co., Ltd. Flame retardant organopolysiloxane composition
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor
JP2020040859A (en) * 2018-09-12 2020-03-19 神島化学工業株式会社 Magnesium hydroxide particles and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336472A (en) * 2004-04-28 2005-12-08 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant and method for producing the same, and flame-retardant resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286668A (en) * 2008-05-30 2009-12-10 Konoshima Chemical Co Ltd Magnesium hydroxide-based thermally conductive filler, method for producing the same, thermally conductive resin composition and molded product
JP2011219640A (en) * 2010-04-12 2011-11-04 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant, method for producing the same, and resin composition and molding
WO2012008596A1 (en) * 2010-07-13 2012-01-19 協和化学工業株式会社 Flame retardant, resin composition containing same, and molded article thereof
JPWO2012008596A1 (en) * 2010-07-13 2013-09-09 協和化学工業株式会社 Method for improving tensile strength of resin composition
EP2441803A1 (en) 2010-10-12 2012-04-18 Shin-Etsu Chemical Co., Ltd. Flame retardant organopolysiloxane composition
JP2012082310A (en) * 2010-10-12 2012-04-26 Shin-Etsu Chemical Co Ltd Flame retardant organopolysiloxane composition
CN102585505A (en) * 2010-10-12 2012-07-18 信越化学工业株式会社 Flame retardant organopolysiloxane composition
CN102585505B (en) * 2010-10-12 2015-08-26 信越化学工业株式会社 flame retardant organopolysiloxane composition
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor
JP2020040859A (en) * 2018-09-12 2020-03-19 神島化学工業株式会社 Magnesium hydroxide particles and method for producing the same
JP7132800B2 (en) 2018-09-12 2022-09-07 神島化学工業株式会社 Magnesium hydroxide particles and method for producing the same

Also Published As

Publication number Publication date
JP5078270B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4947612B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition
JP5078270B2 (en) Magnesium hydroxide powder and method for producing the same, and resin composition and molded body
EP2557066A1 (en) Mg-ti-al composite metal hydroxide having a laminated structure, and a production method therefor
JP5570077B2 (en) Columnar zinc oxide particles and method for producing the same
KR101763500B1 (en) Flame retardant agent, flame-retardant composition, and molded article
WO2014155764A1 (en) Magnesium oxide particles, resin composition, rubber composition, and molded article
JP5370682B2 (en) Zn-Mg-Al hydrotalcite-type particle powder and resin composition containing the Zn-Mg-Al hydrotalcite-type particle powder
JP4106928B2 (en) Flame retardant, method for producing the same, and flame retardant resin composition containing the same
JPWO2006115043A1 (en) Acid zirconia sol and method for producing the same
WO2008026308A1 (en) Silicic acid coated hydrotalcite particle powder, stabilizers for chlorine-containing resins made by using the powder, and chlorine-containing resin compositions
JP2017082163A (en) Composite additive containing magnesium hydroxide particle
JP5394380B2 (en) Flame retardant resin composition
KR101007888B1 (en) Oxide-like hydrotalcite and manufacturing process thereof
JP5122183B2 (en) Calcium titanate fine particles and electrostatic recording toner
JP2008169397A (en) Flame retardant, method for producing it, and flame retardant resin composition containing the same
JPH031350B2 (en)
JP2659508B2 (en) Method for producing additive-containing magnesium hydroxide and method for producing additive-containing magnesium oxide using the same
JP2007261922A (en) Anhydrous magnesium carbonate-based powder, resin composition and molding
JPWO2015182305A1 (en) Heat resistant aluminum hydroxide and method for producing the same
JPWO2018047841A1 (en) Fine particle composite metal hydroxide, calcined product thereof, method for producing the same, and resin composition therefor
JP4071943B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and water-resistant flame retardant resin composition using the same
US8920550B2 (en) Hydrophobization agent and use for the surface treatment of mineral matter particles
JPWO2018198650A1 (en) Alumina hydrate particles, flame retardant, resin composition and electric wire / cable
ES2604318T3 (en) Chlorine-containing resin composition with suppression of foaming defect
JP2004225033A (en) Electrical insulation property improver and resin composition improved in electrical insulation property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150