JPH031350B2 - - Google Patents

Info

Publication number
JPH031350B2
JPH031350B2 JP1549182A JP1549182A JPH031350B2 JP H031350 B2 JPH031350 B2 JP H031350B2 JP 1549182 A JP1549182 A JP 1549182A JP 1549182 A JP1549182 A JP 1549182A JP H031350 B2 JPH031350 B2 JP H031350B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
fibrous
aspect ratio
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1549182A
Other languages
Japanese (ja)
Other versions
JPS58134134A (en
Inventor
Akira Okada
Shigeo Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Kagaku Kogyo KK filed Critical Kyowa Kagaku Kogyo KK
Priority to JP1549182A priority Critical patent/JPS58134134A/en
Publication of JPS58134134A publication Critical patent/JPS58134134A/en
Publication of JPH031350B2 publication Critical patent/JPH031350B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、成形適性及び機械的強度の改善され
た難燃性樹脂組成物、該組成物の提供に用いる改
善剤、更には該改善剤の製法に関する。 更に詳しくは、本発明は熱可塑性樹脂100重量
部と、長さ/直径比(アスペクト比)が約5以上
で約20未満であり、BET法比表面積が約20m2
g以下であつて且つ約0.1〜約10μの平均直径及び
約1〜約15μの長さを有する高アスペクト比且つ
低比表面積の繊維状水酸化マグネシウム粒子約10
〜約130重量部を含有することを特徴とする成形
適性及び機械的強度の改善された難燃性樹脂組成
物に関する。 更に、本発明は、上記改善剤の製法にも関す
る。 従来公知の六方晶系板結晶構造を有する水酸化
マグネシウムとは異なつて、従来未知のユニーク
な結晶形状すなわち六方晶系針状結晶構造を有す
る繊維状水酸化マグネシウムが存在すること及び
この新しいタイプの水酸化マグネシウムが容易な
手段で工業的に有利に製造できることが発見さ
れ、すでに、同一出願人によつて出願された(特
開昭54−112400号;対応米国特許No.4246254)。 更、該繊維状水酸化マグネシウムの製造のため
の別法が発見され、すでに同一出願人によつて出
願された(特開昭55−104994号)。 又更に、上記繊維状水酸化マグネシウムとし
て、特定のアスペクト比のものが難燃性樹脂組成
物の機械的強度ならびに難燃性改善剤としてとく
に有用であることが発見され、同一出願人によつ
て出願された(特開昭56−74137号)。 上記特開昭56−74137号には、樹脂100重量部
と、長さ/直径比が約20以上である繊維状水酸化
マグネシウム類及び繊維状ハイドロタルサイト類
よりなる群からえらばれた化合物の少なくとも一
種の約0.5〜約100重量部を含有することを特徴と
する機械的強度の改善された難燃性樹脂組成物及
び該組成物の提供に用いる樹脂配合用機械的強度
ならびに難燃性改善剤、更にはその製法が開示さ
れている。 しかしながら、前記特開昭54−112400号(対応
米国特許No.4246254)、特開昭55−104994号及び特
開昭56−74137号には、高アスペクト比の繊維状
水酸化マグネシウム、その製法、更にはその利用
に関して開示されているが、該高アスペクト比の
繊維状水酸化マグネシウムのBET法比表面積に
関しては全く言及されていない。従つて、当然の
ことながら、これら先行提案には、とくに樹脂配
合用途のための該繊維状水酸化マグネシウムのア
スペクト比とBET法比表面積との両者の相互に
関連した結合因子及びその選択指針に関しては、
全く言及されていない。 本発明者等は、前記特開昭56−74137号に提案
された機械的強度の改善された難燃性樹脂組成物
の一層の改善を達成すべく研究を行つてきた。 その結果、樹脂配合用途に於ては、前記繊維状
水酸化マグネシウムのアスペクト比とBET法比
表面積の結合因子が重要な因子となることを発見
した。更に、該アスペクト比が約5以上で約20未
満であり、BET法比表面積が約20m2/g以下で
あつて且つ約0.1〜約10μの平均直径及び約1〜約
15μの長さを有する高アスペクト比且つ低比表面
積の六方晶系針状結晶構造を有する繊維状水酸化
マグネシウムが、従来公知且つ慣用の六方晶系板
状結晶構造を有する通常の水酸化マグネシウムに
比して、驚くべき改善効果を発揮でき、例えば、
通常の水酸化マグネシウムを約60重量%配合して
得られる衝撃強度に匹敵する衝撃強度を、該高ア
スペクト比且つ低比表面積の繊維状水酸化マグネ
シウムは、その半量の約30重量%の配合で達成で
き、更に、成形品外観、成形圧、成形時流れ、充
填量などに関係する成形適性が顕著に改善され、
樹脂100重量部に対して約130重量部に達する多量
配合が可能となり、優れた機械的強度及び難燃性
を示す組成物が提供できることを発見した。 更に、本発明者等の研究によれば上記のアスペ
クト比が約5以上で約20未満であつて且つBET
法比表面積が約20m2/g以下である高アスペクト
比且つ低比表面積の繊維状水酸化マグネシウムに
は、前記特開昭54−112400号(対応米国特許No.
4246254)、特開昭55−104994号などに具体的に開
示されたところと異なる条件、とくにこれら先行
提案に具体的に開示されたアルカリ量未満のアル
カリ量の採用によつて好適に製造できることが発
見された。例えば、前記特開昭54−112400号の提
案では針状結晶塩基性マグネシウムの化合物のア
ニオンAn-のほぼ当量〜約2倍当量のアルカリ使
用量が例示され、又、前記特開昭55−104994号の
提案でも同様なアルカリ使用量が提案されている
が、上記の本発明で用いる高アスペクト比且つ低
比表面積の繊維状水酸化マグネシウムは、より低
いアルカリ使用量たとえばアニオンAn-の約0.1〜
0.9当量のアルカリの使用量で好適に製造される
ことがわかつた。又、該高アスペクト比且つ低比
表面積の繊維状水酸化マグネシウムは、前記提案
に開示された方法で得られた繊維状水酸化マグネ
シウムに比して、比較的に直径が太くなつている
傾向があり、又、屡々、少割合で普通の六方晶系
板状結晶形状の水酸化マグネシウムが混入した状
態で得られる傾向があるが、それらを分離除去す
る必要はなく、本発明で利用するのに差支えない
こともわかつた。 従つて、本発明の目的は成形適性及び機械的強
度の改善された難燃性樹脂組成物を提供するにあ
る。 本発明の上記目的及び更に多くの他の目的なら
びに利点は、以下の記載から一層明らかとなるで
あろう。 慣用の水酸化マグネシウムは六方晶形板状結晶
形状を有し、光学もしくは電子顕微鏡下の観察で
六角形もしくはその角の部分が丸まつた板状体も
しくはそれらの破片もしくはこれらの集合体の如
き形状の結晶として観察される。 これに対して、本発明で利用する繊維状水酸化
マグネシウム類は、一見して、全く異つた繊維状
形状もしくは針状形状を有する利点で、従来慣用
の水酸化マグネシウム及びハイドロタルサイトと
明瞭に区別できる。 本発明においては、このような繊維状水酸化マ
グネシウム類中、前記特開昭54−112400号に、繊
維状水酸化マグネシウム類についてその測定算出
方法が特定されている電子顕微鏡下1,000倍倍
率の条件で決定された長さ/直径比が約5以上で
約20未満であり、BET法比表面積が約20m2/g
以下であつて且つ約0.1〜約10μの平均直径及び約
1〜約15μの長さのものを選択する。長さ/直径
比が約5以上で約20未満であつても、BET法比
表面積が約20m2/gを超える繊維状水酸化マグネ
シウムの利用は、樹脂の混練、成形時の流れ性を
低下させて、成形物の外観を低下させるととも
に、樹脂と繊維状水酸化マグネシウムとの相溶性
不良により、機械的物性の十分な改良が得られに
くくなる。 又、長さ/直径比が約20以上、たとえば約40以
上の如き繊維状水酸化マグネシウムの利用は、樹
脂の混練、成形時の流れ性を低下させるので、こ
れらの作業性の低下ならびに成形外観を低下させ
るとともに、100重量部以上の量での樹脂への配
合を困難にする。 従つて、本発明においては、長さ/直径比が約
5以上で約20未満、好ましくは約7〜約15程度で
あつて、且つBET法比表面積が約20m2/g以下、
好ましくは約2〜約10m2/gの繊維状水酸化マグ
ネシウムを選択利用する。 本発明で利用する上記繊維状水酸化マグネシウ
ム類は、約0.1〜約10μ程度の平均直径及び約1〜
約15μ程度の長さを有し、且つその長さ/直径比
が約5以上で約20未満であつて且つBET法該表
面積が約20m2/g以下のものである。 該繊維状水酸化マグネシウム類は、アニオン系
界面活性剤で表面処理することができ、屡々、好
ましい結果を与える。このような表面処理に際し
ては、上記の繊維状水酸化マグネシウム類の重量
に基いて、約1〜約10重量%程度のアニオン系界
面活性剤で表面処理することが好ましい。例え
ば、ステアリン酸ソーダの如きアニオン系界面活
性剤の水溶性に、上記繊維状水酸化マグネシウム
類及び繊維状ハイドロタルサイト類よりなる群か
らえらばれた化合物を、充分な撹拌下に加える
か、或いは、その逆に、これら粉末の懸濁液に、
ステアリン酸ソーダの水溶液を加えてこれらの固
体粉末の表面上にアニオン系界面活性剤を化学吸
着させる。このように、表面処理を施した場合は
分散性が向上し、流動性が良好となるので作業性
の改善に有効である。 用いられるアニオン系開面活性剤としては、式
RCOOM(但し、式中、RはC3〜C40のアルキル基
を示し、Mはアルカリ金属原子を示す)で表わさ
れる高級脂肪酸アルカリ塩:式ROSO3M(式中、
RおよびMは上記と同義)で表わされるアルキル
硫酸塩:式RSO3M(式中、RおよびMは上記と
同義)で表わされるアルキルスルホン酸塩:R−
aryl−SO3M(式中、RおよびMは上記したと同
義、arylは例えばベンゼン、トルエン、ナフタリ
ン)で表わされるアルキルアリールスルホン酸
塩:および式
The present invention relates to a flame-retardant resin composition with improved moldability and mechanical strength, an improving agent used to provide the composition, and a method for producing the improving agent. More specifically, the present invention contains 100 parts by weight of a thermoplastic resin, a length/diameter ratio (aspect ratio) of about 5 or more and less than about 20, and a BET specific surface area of about 20 m 2 /
high aspect ratio, low specific surface area fibrous magnesium hydroxide particles having an average diameter of about 0.1 to about 10 microns and a length of about 1 to about 15 microns;
130 parts by weight of a flame retardant resin composition having improved moldability and mechanical strength. Furthermore, the present invention also relates to a method for producing the above-mentioned improving agent. Unlike the conventionally known magnesium hydroxide which has a hexagonal plate crystal structure, there is a fibrous magnesium hydroxide which has a previously unknown unique crystal shape, that is, a hexagonal needle crystal structure, and this new type of magnesium hydroxide. It has been discovered that magnesium hydroxide can be produced industrially and advantageously by easy means, and an application has already been filed by the same applicant (Japanese Patent Application Laid-Open No. 112400/1989; corresponding US Pat. No. 4246254). Furthermore, another method for producing the fibrous magnesium hydroxide has been discovered and has already been filed by the same applicant (Japanese Patent Application Laid-open No. 104994/1983). Furthermore, it has been discovered that the above-mentioned fibrous magnesium hydroxide having a specific aspect ratio is particularly useful as an agent for improving the mechanical strength and flame retardancy of flame-retardant resin compositions. An application was filed (Japanese Patent Application Laid-open No. 74137/1983). JP-A No. 56-74137 discloses that 100 parts by weight of a resin and a compound selected from the group consisting of fibrous magnesium hydroxides and fibrous hydrotalcites having a length/diameter ratio of about 20 or more are disclosed. A flame-retardant resin composition with improved mechanical strength, characterized by containing about 0.5 to about 100 parts by weight of at least one kind, and improved mechanical strength and flame retardancy for resin formulations used to provide the composition. The agent and its manufacturing method are disclosed. However, the aforementioned JP-A-54-112400 (corresponding U.S. Patent No. 4246254), JP-A-55-104994, and JP-A-56-74137 disclose high aspect ratio fibrous magnesium hydroxide, its production method, Further, although the use thereof is disclosed, there is no mention of the BET specific surface area of the high aspect ratio fibrous magnesium hydroxide. Therefore, it is not surprising that these prior proposals are particularly relevant to the interrelated binding factors and selection guidelines for both aspect ratio and BET specific surface area of the fibrous magnesium hydroxide for resin compounding applications. teeth,
Not mentioned at all. The present inventors have conducted research in order to further improve the flame retardant resin composition with improved mechanical strength proposed in the above-mentioned Japanese Patent Application Laid-open No. 74137/1983. As a result, it was discovered that the binding factor between the aspect ratio of the fibrous magnesium hydroxide and the BET specific surface area is an important factor in resin compounding applications. Further, the aspect ratio is about 5 or more and less than about 20, the BET specific surface area is about 20 m 2 /g or less, and the average diameter is about 0.1 to about 10 μ and about 1 to about
Fibrous magnesium hydroxide having a hexagonal needle-like crystal structure with a high aspect ratio and low specific surface area having a length of 15μ is different from ordinary magnesium hydroxide having a conventionally known and commonly used hexagonal plate-like crystal structure. In comparison, it can demonstrate surprising improvement effects, for example,
The high aspect ratio, low specific surface area fibrous magnesium hydroxide can achieve impact strength comparable to the impact strength obtained by blending about 60% by weight of ordinary magnesium hydroxide, with about 30% by weight, half of that amount. Furthermore, moldability related to molded product appearance, molding pressure, flow during molding, filling amount, etc. has been significantly improved.
It has been discovered that it is possible to mix a large amount of about 130 parts by weight to 100 parts by weight of resin, and it is possible to provide a composition that exhibits excellent mechanical strength and flame retardancy. Furthermore, according to research by the present inventors, the above aspect ratio is about 5 or more and less than about 20, and BET
Fibrous magnesium hydroxide with a high aspect ratio and a low specific surface area with a specific surface area of about 20 m 2 /g or less is disclosed in the above-mentioned JP-A-54-112400 (corresponding U.S. Patent No.
4246254), JP-A-55-104994, etc., and in particular by adopting an amount of alkali less than the amount of alkali specifically disclosed in these prior proposals. It's been found. For example, in the proposal of JP-A-54-112400, the amount of alkali used is approximately equivalent to about twice the equivalent of the anion A n- of the acicular crystalline basic magnesium compound; Although the proposal in No. 104994 proposes a similar amount of alkali to be used, the fibrous magnesium hydroxide with a high aspect ratio and low specific surface area used in the above-mentioned present invention has a lower amount of alkali to be used, for example, about the amount of anion A n- . 0.1~
It was found that suitable production was achieved using an amount of 0.9 equivalent of alkali. Furthermore, the fibrous magnesium hydroxide having a high aspect ratio and low specific surface area tends to have a relatively thick diameter compared to the fibrous magnesium hydroxide obtained by the method disclosed in the above proposal. However, it is not necessary to separate and remove them, and for use in the present invention. I realized that there was no problem. Therefore, an object of the present invention is to provide a flame-retardant resin composition with improved moldability and mechanical strength. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. Conventional magnesium hydroxide has a hexagonal plate-like crystal shape, and when observed under an optical or electron microscope, it has a shape such as a hexagon, a plate with rounded corners, a fragment thereof, or an aggregate thereof. observed as crystals. On the other hand, the fibrous magnesium hydroxide used in the present invention has the advantage of having a completely different fibrous or acicular shape at first glance, and is clearly distinguishable from conventionally used magnesium hydroxide and hydrotalcite. Can be distinguished. In the present invention, among such fibrous magnesium hydroxides, the measurement and calculation method for fibrous magnesium hydroxides is specified in the above-mentioned Japanese Patent Application Laid-open No. 112400/1983. The length/diameter ratio determined under the following conditions is approximately 5 or more and less than approximately 20, and the BET specific surface area is approximately 20 m 2 /g.
and an average diameter of about 0.1 to about 10 microns and a length of about 1 to about 15 microns. Even if the length/diameter ratio is about 5 or more and less than about 20, the use of fibrous magnesium hydroxide with a BET specific surface area of more than about 20 m 2 /g will reduce the flowability during resin kneading and molding. This deteriorates the appearance of the molded product and makes it difficult to obtain sufficient improvement in mechanical properties due to poor compatibility between the resin and fibrous magnesium hydroxide. In addition, the use of fibrous magnesium hydroxide with a length/diameter ratio of about 20 or more, for example about 40 or more, reduces the flowability during resin kneading and molding, resulting in decreased workability and poor molded appearance. It also makes it difficult to incorporate into resins in amounts of 100 parts by weight or more. Therefore, in the present invention, the length/diameter ratio is about 5 or more and less than about 20, preferably about 7 to about 15, and the BET specific surface area is about 20 m 2 /g or less,
Preferably, about 2 to about 10 m 2 /g of fibrous magnesium hydroxide is selectively utilized. The above-mentioned fibrous magnesium hydroxide used in the present invention has an average diameter of about 0.1 to about 10 μm and a diameter of about 1 to about 10 μm.
It has a length of about 15 μm, a length/diameter ratio of about 5 or more and less than about 20, and a BET surface area of about 20 m 2 /g or less. The fibrous magnesium hydroxides can be surface treated with anionic surfactants, often with favorable results. In such surface treatment, it is preferable to use an anionic surfactant in an amount of about 1 to about 10% by weight based on the weight of the above-mentioned fibrous magnesium hydroxide. For example, a compound selected from the group consisting of fibrous magnesium hydroxides and fibrous hydrotalcites is added to a water-soluble anionic surfactant such as sodium stearate with sufficient stirring, or , conversely, in a suspension of these powders,
Anionic surfactants are chemically adsorbed onto the surface of these solid powders by adding an aqueous solution of sodium stearate. As described above, surface treatment improves dispersibility and improves fluidity, which is effective in improving workability. The anionic surface activator used has the formula
Higher fatty acid alkali salt represented by RCOOM (in the formula, R represents a C 3 to C 40 alkyl group and M represents an alkali metal atom): ROSO 3 M (in the formula,
Alkyl sulfate represented by the formula RSO 3 M (wherein R and M are the same as above): R-
an alkylaryl sulfonate represented by aryl-SO 3 M (wherein R and M have the same meanings as above, and aryl is, for example, benzene, toluene, naphthalene): and the formula

【式】 (式中、RおよびMは上記したと同義)で表わ
されるスルホコハク酸エステル塩式 ROSO3HN(C2H4OH)3(式中、Rは上記と同
義)で表わされるアルキル硫酸エステル塩:式
[Formula] Sulfosuccinic acid ester salt represented by (wherein R and M have the same meanings as above) Alkyl sulfuric acid represented by ROSO 3 HN(C 2 H 4 OH) 3 (wherein R has the same meanings as above) Ester salt: formula

【式】(式中、Rは上記と同義で表 わされるアルキルリン酸塩:式 RNH2CH3COOM(式中、RおよびMは上記と
同義)で表わされるアルキルアミン酢酸塩:等が
ある。 このような界面活性剤の具体例としては、ステ
アリン酸ソーダ、ステアリン酸カリ、オレイン酸
ソーダ、オレイン酸カリ、パルミチン酸ソーダ、
パルミチン酸カリ、ラウリン酸ソーダ、ラウリン
酸カリ、ベヘニン酸カリ、ラウリルベンゼンスル
ホン酸ソーダ、オクタデシ硫酸カリ、ラウリルス
ルホン酸ソーダ、ジナトリウム・2−スルホエチ
ル・α−スルホステアレ−トラウリル硫酸トリエ
タノールアミン、ステアリルアミンアセテートナ
トリウム、ステアリルアミンオレエートカリウ
ム、ラウリルリン酸塩、イゲポンT、イゲポン
A、ウルトラボン、などをあげることができる。 本発明組成物においては、熱可塑性樹脂100重
量部に対して、前述の如き繊維状水酸化マグネシ
ウム粒子約10〜約130重量部、一層好ましくは約
30〜約120重量部を含有せしめる。 このような組成物に利用する熱可塑性樹脂の例
としては、たとえば、エチレン、プロピレン、ブ
テン−1その他のα−オレフイン類の重合体もし
くは共重合体類;このようなα−オレフインの一
種もしくは複数種と共役もしくは非共役ジエン類
との共重合体類;ポリスチレンもしくはスチレン
系共重合体たとえばABS樹脂塩化ビニル重合体
もしくは共重合体樹脂;ポリエステルもしくはコ
ーポリエステル類;ポリカーボネート樹脂類;ポ
リアミド樹脂類;ポリサルホン系樹脂類、ポリブ
チレンテレフタレート樹脂類;ポリアセタール樹
脂類;フツ素樹脂;これらのブレンド樹脂などを
あげることができる。 本発明の成形適性及び機械的強度の改善された
難燃性樹脂組成物は、上記例示の如き樹脂類と前
記例示の如き繊維状水酸化マグネシウム類の少な
くとも一種の約10〜約130重量部のほかに、他の
添加剤類を含有することができる。 このような他の添加剤類の例としては、例え
ば、繊維状でない通常の水酸化マグネシウム、水
酸化アルミニウム、塩基性炭酸マグネシウム、繊
維状ハイドロタルサイト類もしくは繊維状でない
通常のハイドロタルサイト類の如き難燃剤類;例
えば、カーボンブラツク、フタロシアニン、キナ
クリドン、インドリン、アゾ系顔料、酸化チタ
ン、カドミウム系顔料、黄鉛、弁柄、四三酸化鉄
の如き着色剤類;例えば、ジ−t−ブチル−p−
クレゾール、ジステアリルチオジプロピオネー
ト、ジラウリルチオジプロピオネート、ジステア
リルチオジプロピオネート、β−オクチルチオプ
ロピオン酸、2,2′−メチレン−ビス(4−メチ
ル−6−t−ブチルフエノール)の如き抗酸化剤
類;例えば、ステアリン酸カルシウム、ステアリ
ン酸亜鉛、ブチルステアレート、エチレンビスス
テアロアミド、マイクロワツクス、ポリエチレン
ワツクス、ステアリン酸アミド、パルミチン酸ア
ミドの如き潤滑剤類例えば、有機酸エステルもし
くはその誘導体類系可塑剤、無機酸エステル系可
塑剤、炭化水素誘導体系可塑剤の如き可塑剤類;
例えば、酸化アンチモン、スズ化合物、バナジン
化合物の如き難燃助剤類;例えば、2−ヒドロキ
シ−4−オクトキシベンゾフエノン、2(2′−ヒ
ドロキシ−5−メチルフエニル)ベンゾトリアゾ
ール、エチル−2−シアノ−3,8−ジフエニル
アクリレートの如き紫外線吸収剤類;例えば、タ
ルク、マイカ、バラストナイト、ケイ酸カルシウ
ム、ケイ酸アルミニウム、炭酸カルシウム、アス
ベスト、グラスフアイバー、酸化マグネシウム、
カオリンクレー、パイロフイライト、二酸化チタ
ン、セリサイトの如き充填剤類;などの如き添加
剤を例示することができる。 このような他の添加剤類の使用量は適宜に選択
できるが、例えば樹脂の重量に基いて約0.1%〜
約40%の難燃剤類、約0.1%〜第10%の着色剤類、
約0.1〜約10%の抗酸化剤類、約0.1%〜約5%の
潤滑剤類約0.1%〜約50%の可塑剤類、約0.1%〜
約10%の難燃助剤類、約0.1%〜約5%の紫外線
吸収剤類、約10%〜約100%の充填剤類の如き使
用量を例示することができる。 本発明組成物は、前述の如き樹脂類、繊維状水
酸化マグネシウム及び所望により前記例示の如き
他の添加剤類をできるだけ均一に混合することに
より形成することができる。混合手段それ自体は
適宜に選択できる。このような混合手段として
は、例えば、ロール、バンバリーミキサー、ニー
ダー、一軸押出機、二軸押出機、ヘンシエルミキ
サー等の通常の混練法を適用することが出来る。 本発明方法で用いる繊維状水酸化マグネシウム
や繊維状ハイドロタルサイト類は、例えば下記の
ような方法で製造することができる。 繊維状水酸化マグネシウムは、下記式、 Mg(OH)2ox・An- x・mH2O 但し式中、An-は1価又は2価のアニオン (n=1又は2)を示し、xは0.2≦x≦ 0.5であり、mは0<m≦2である。 で表わされる針状結晶形の塩基性マグネシウム化
合物を、該化合物に対して不活性で且つ該化合物
を溶解しない液体媒体中で、上記アニオンAn-
約0.5〜0.9当量のアルカリと、約100℃以上の温
度で接触させて水熱処理することにより製造でき
る。この際、該針状結晶形の塩基性マグネシウム
化合物を、該化合物がその針状結晶を失わない条
件下に、該化合物の結晶水の一部が脱離するよう
に乾燥し、この乾燥処理物を上記液体媒体中でア
ルカリ処理することにより製造することもでき
る。 前者の態様においては、該針状塩基性マグネシ
ウム化合物を乾燥することなく、水又は含水低級
アルコール等の液体媒体中に入れ、上記アニオン
An-の約0.5〜0.9当量、より好ましくは約0.5〜0.8
当量のアルカリと、約100℃以上の温度で接触さ
せることにより、繊維状水酸化マグネシウムを製
造することが出来る。 後者の態様においては、針状塩基性マグネシウ
ム化合物の結晶水の一部が脱離するが全部が失わ
れてしまわない程度に乾燥処理したのち、上記同
様にアルカリ処理して繊維状水酸化マグネシウム
を製造することができる。乾燥は、塩基性マグネ
シウム化合物の針状形状が失われてしまわない程
度に乾燥できる任意の手段を採用でき、例えば、
熱風乾燥、真空乾燥、キルン乾燥、スプレー乾
燥、流動層乾燥、の如き公知の任意の手段を採用
することができる。 アルカリ処理に利用するアルカリの例として
は、例えば水酸化ナトリウム、水酸化カリウムの
如きアルカリ金属水酸化物、アンモニア、水酸化
カルシウム、水酸化アンモニウムなどの如き無機
アルカリ類をあげることができる。 アルカリ処理は、上記の如き液体媒体中に、前
記の如き乾燥処理を施した若しくは施してない針
状塩基性マグネシウム化合物を懸濁させて、アル
カリと作用させることにより容易に行うことがで
きる。例えば、予めアルカリを添加溶解せしめた
媒体中に該マグネシウム化合物を添加懸濁せしめ
てもよいし、或は又、両者を同時に添加懸濁せし
めてもよいし、更には、該マグネシウム化合物を
添加懸濁せしめた系にアルカリを添加して接触せ
しめてもよい。反応時間としては、例えば約10分
〜第10時間の如き時間を例示できる。このアルカ
リ処理によつて、前記式の針状結晶塩基性マグネ
シウム化合物のアニオンAn-がOH−に置換して、
アスペクト比が約5以上で約20未満であつて且つ
BET法比表面積が約20m2/g以下の繊維状水酸
化マグネシウム粒子を形成させることができる。 以下、実施例により本発明の数態様について、
更に詳しく説明する。 実施例 1−3 2Mol/の濃度を有する塩化マグネシウム水
溶液200に酸化マグネシウム1.7Kgを加え、撹拌
しながら約60℃まで加熱した。その後、加熱を止
め、室温まで放冷した。その結果生成した約2Kg
の針状外形を有する塩基性塩化マグネシウム(X
線分析の結果、この化合物は、Mg3(OH)3Cl・
4H2Oであることが確認された)を別し、水洗
した後、約30の水に再懸濁した。この系に約
2Mol/の水酸化ナトリウム水溶液を、該塩基
性塩化マグネシウムのClに対し、0.6当量に相当
する量加え、容量50のオートクレーブに移し、
約180℃で4時間水熱処理を行つた。 その後、過、水洗、乾燥した結果、約1.4Kg
gの電子顕微鏡による測定でアスペクト比が約
12、直径が約0.5μ、そしてBET比表面積が6
m2/gの水酸化マグネシウムが得られた。この化
合物が水酸化マグネシウムであることは、X線分
析により確かめられた。 以上の方法で得られた高アスペクト比の水酸化
マグネシウム1Kgを温水(約60℃)10に懸濁さ
せ、撹拌しながら、約20gのオレイン酸ナトリウ
ムを含有する約1の温水(約60℃)を加え、約
10分間撹拌を継続し、該高アスペクト比水酸化マ
グネシウムの表面を、オレイン酸イオンでコーテ
イングした。この後、過、水洗し、乾燥した。 この様にして、得られた、高アスペクト比の表
面コーテイング処理物を、第1表に示す配合比
で、ポリプロピレンに加え、混合後、約220℃で
押出機を通して、溶融混練し、約120℃で1時間
乾燥したペレツトを、約230℃で厚さ約3mmのテ
ストピースを成形した。 比較例 1 実施例1に於て、同様のプロセスで得られた針
状外形を有する塩基性塩化マグネシウム約2Kgを
水に懸濁した後、約2mol/の水酸化ナトリウ
ム水溶液を、該塩基性塩化マグネシウムのClに対
し、1.6当量に相当する量加え、約25℃で2時間
弱い撹拌を行つた。その結果、約1.4Kgの電子顕
微鏡による測定でアスペクト比が約50で、直径が
約0.07μ、BET比表面積が16m2/gの水酸化マグ
ネシウムが得られた。この水酸化マグネシウムを
水洗して、水に再懸濁した後、実施1と同様の操
作で、オレイン酸ソーダによる表面処理を行つ
た。この処理物を第1表に示す配合比で、実施例
1と同じ要領でポリプロピレンに配合しテストし
た。 比較例 2 実施例1に於て、得られた針状外形の水酸化マ
グネシウムのClに対し、1.2当量に相当する量の
約2Mol/の水酸化ナトリウムを加え、その後、
120℃で4時間水熱処理を行つた。その結果電子
顕微鏡による観察の結果アスペクト比が17で、直
径が0.08μ、BET比表面積が28m2/gの水酸化マ
グネシウムが得られた。この水酸化マグネシウム
を、実施例1と同じ要領でオレイン酸ソーダによ
り表面処理した。この処理物を第1表に示す配合
比でポリプロピレンに配合し、実施例1と同様に
溶融混練、成形した。 実施例 4 約4mol/の塩化マグネシウム水溶液10に
酸化マグネシウムを約4.8Kg加え、撹拌しながら、
80℃まで加熱した。その後、室温まで放冷し、約
2日熟成して、針状外形を有する塩基性塩化マグ
ネシウム(Mg2(OH)3Cl・3H2O)が生成した。
この物をさらに、約2Mol/の塩化マグネシウ
ムの水溶液に加え、熟成し、結晶をさらに十分発
達させた後、別、水洗し、さらに水に懸濁した
後、約2mol/の水酸化ナトリウムを、Clに対
し、0.5当量加えて、170℃で、5時間オートクレ
ーブで水熱処理を行つた。 その後、過、水洗した。得られた化合物は、
電子顕微鏡による観察の結果、アスペクト比が約
13、直径が約0.7μ、そして、BET比表面積が3
m2/gの水酸化マグネシウムであつた。 この高アスペクト比の水酸化マグネシウム1Kg
を、水10に懸濁した後、25gのイゲポンT
(CH3(CH27CH=CH(CH27CON(CH3
CH2CH2SO3Na)を含有する水溶液1を該懸
濁液に加え、約40℃で、撹拌しながら、約30分間
継続した。 この後、適宜、過、水洗、乾燥、粉砕した。
この物を第1表に示す配合比で、ナイロン−6に
混合し、約23℃で押出機を通し、溶融混練し、ペ
レツトを作り、このペレツトを約120℃で真空乾
燥した後、約240℃で射出成形した。 実施例 5 実施例1で得られた高アスペクト比の水酸化マ
グネシウム1Kgを約10の約70℃の温水に加え
て、撹拌しつつ、約40gのステアリン酸カリウム
を含有する約70℃の温水溶液1を加え、さら
に、約10分間撹拌を継続する。この後、過、水
洗、乾燥、粉砕した後、第1表に示す配合比で、
硬質ポリ塩化ビニル(800)に、三塩基性硫酸
鉛2重量部、カルシウムステアレート0.5重量部
とともに加え、約170℃で押出機を通し、ペレツ
トを作り120℃で2時間このペレツトを乾燥し、
約180℃で射出成形した。 実施例 6 実施例1で得られたオレイン酸ソーダ処理高ア
スペクト比の水酸化マグネシウムを、エチレンと
プロピレンの共重合物に第1表に示す配合比で混
合し、約220℃で押出機を通し、ペレツトを作つ
た後、約120℃で1時間乾燥した後、約230℃で射
出成形した。 実施例 7 mol/の硫酸マグネシウム2に、酸化マグ
ネシウムを120g加えた懸濁液を容量5のオー
トクレーブに入れ、170℃で6時間水熱処理を行
つた。得られた化合物は、針状結晶外形を有する
式Mg6(OH)10SO4・3H2Oで表わされる塩基性硫
酸マグネシウムであつた。この化合物を過、水
洗後、水に懸濁し、SO4に対し、0.9当量の
4Mol/の水酸化カリウムを加え、170℃で6時
間オートクレーブにより水熱処理を行つた。得ら
れた化合物は、電子顕微鏡による測定の結果、ア
スペクト比が8、直径が0.8μの繊維状結晶外形を
示した。またこの化合物は、X線による分析の結
果、水酸化マグネシウムであり、また、その
BET比表面積は11m2/gであつた。 この化合物1Kgを、水10に加え、撹拌しなが
ら、10gのラウリルベンゼンスルホン酸ソーダの
水溶液1を加え、更に約20分間、撹拌を継続し
た。その後、過、水洗、乾燥、粉砕した。この
粉末を、第1表に示す配合比で、高密度ポリエチ
レン、に加え、混合した後、押出機を約240℃で
通し、ペレツトを作り、これを約120℃で1時間
乾燥した後、250℃で射出成形した。 下記第1表において実施例1〜7で使用された
水酸化マグネシウムはその直径及び長さが、全て
本発明の範囲を満足していた。
[Formula] (In the formula, R is represented by the same meaning as above) Alkyl phosphate: An alkylamine acetate represented by the formula RNH 2 CH 3 COOM (In the formula, R and M are the same as above): etc. Specific examples of such surfactants include sodium stearate, potassium stearate, sodium oleate, potassium oleate, sodium palmitate,
Potassium palmitate, sodium laurate, potassium laurate, potassium behenate, sodium laurylbenzenesulfonate, potassium octadecylsulfonate, sodium laurylsulfonate, disodium/2-sulfoethyl/α-sulfostearate-traurylsulfate triethanolamine, stearylamine Examples include sodium acetate, potassium stearylamine oleate, lauryl phosphate, Igepon T, Igepon A, and Ultrabon. In the composition of the present invention, about 10 to about 130 parts by weight of the above-mentioned fibrous magnesium hydroxide particles, more preferably about 100 parts by weight of the thermoplastic resin, are used.
30 to about 120 parts by weight. Examples of thermoplastic resins used in such compositions include polymers or copolymers of ethylene, propylene, butene-1, and other α-olefins; one or more of such α-olefins; Copolymers of species with conjugated or non-conjugated dienes; polystyrene or styrenic copolymers such as ABS resins vinyl chloride polymers or copolymer resins; polyesters or copolyesters; polycarbonate resins; polyamide resins; polysulfone Examples include polybutylene terephthalate resins; polyacetal resins; fluorine resins; blend resins thereof. The flame-retardant resin composition of the present invention with improved moldability and mechanical strength comprises about 10 to about 130 parts by weight of at least one of the above-exemplified resins and the above-exemplified fibrous magnesium hydroxides. In addition, other additives may be included. Examples of such other additives include, for example, non-fibrous normal magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, fibrous hydrotalcites, or non-fibrous normal hydrotalcites. Flame retardants such as carbon black, phthalocyanine, quinacridone, indoline, azo pigments, titanium oxide, cadmium pigments, colorants such as yellow lead, red iron tetroxide; for example di-t-butyl -p-
Cresol, distearylthiodipropionate, dilaurylthiodipropionate, distearylthiodipropionate, β-octylthiopropionic acid, 2,2'-methylene-bis(4-methyl-6-t-butylphenol) Antioxidants such as calcium stearate, zinc stearate, butyl stearate, ethylene bisstearamide, microwax, polyethylene wax, stearamide, palmitamide; lubricants such as organic acids; Plasticizers such as ester or derivative plasticizers, inorganic acid ester plasticizers, and hydrocarbon derivative plasticizers;
For example, flame retardant aids such as antimony oxide, tin compounds, vanadine compounds; for example, 2-hydroxy-4-octoxybenzophenone, 2(2'-hydroxy-5-methylphenyl)benzotriazole, ethyl-2- UV absorbers such as cyano-3,8-diphenylacrylate; for example, talc, mica, ballastonite, calcium silicate, aluminum silicate, calcium carbonate, asbestos, glass fiber, magnesium oxide,
Examples of additives include fillers such as kaolin clay, pyrofluorite, titanium dioxide, and sericite; and the like. The amount of these other additives to be used can be selected as appropriate, but for example, from about 0.1% to 1% based on the weight of the resin.
About 40% flame retardants, about 0.1% to 10% colorants,
About 0.1% to about 10% antioxidants, about 0.1% to about 5% lubricants, about 0.1% to about 50% plasticizers, about 0.1% to about 5%
Examples of amounts used include about 10% flame retardant aids, about 0.1% to about 5% ultraviolet absorbers, and about 10% to about 100% fillers. The composition of the present invention can be formed by mixing as uniformly as possible the resins described above, fibrous magnesium hydroxide, and, if desired, other additives such as those exemplified above. The mixing means itself can be selected as appropriate. As such a mixing means, for example, ordinary kneading methods such as a roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a Henschel mixer, etc. can be applied. The fibrous magnesium hydroxide and fibrous hydrotalcites used in the method of the present invention can be produced, for example, by the following method. Fibrous magnesium hydroxide has the following formula: Mg(OH) 2ox・A n- x・mH 2 O In the formula, A n- represents a monovalent or divalent anion (n=1 or 2). , x is 0.2≦x≦0.5, and m is 0<m≦2. A basic magnesium compound in the form of needle crystals represented by is mixed with an alkali of about 0.5 to 0.9 equivalents of the anion A n- in a liquid medium that is inert to the compound and does not dissolve the compound, and about 100 It can be produced by contacting and hydrothermally treating at a temperature of ℃ or higher. At this time, the basic magnesium compound in the form of acicular crystals is dried under conditions such that the compound does not lose its acicular crystals so that part of the crystal water of the compound is eliminated, and the dried product is dried. It can also be produced by alkali treatment in the above liquid medium. In the former embodiment, the acicular basic magnesium compound is placed in a liquid medium such as water or a water-containing lower alcohol without drying, and the anion
About 0.5-0.9 equivalents of A n- , more preferably about 0.5-0.8
Fibrous magnesium hydroxide can be produced by contacting it with an equivalent amount of alkali at a temperature of about 100°C or higher. In the latter embodiment, after drying the acicular basic magnesium compound to such an extent that some of the crystallization water is removed but not all of it is lost, the fibrous magnesium hydroxide is treated with an alkali in the same manner as above. can be manufactured. For drying, any method capable of drying the basic magnesium compound to such an extent that the acicular shape is not lost can be used, for example,
Any known means such as hot air drying, vacuum drying, kiln drying, spray drying, and fluidized bed drying can be employed. Examples of the alkali used in the alkali treatment include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic alkalis such as ammonia, calcium hydroxide, and ammonium hydroxide. The alkali treatment can be easily carried out by suspending the acicular basic magnesium compound, which may or may not have been subjected to the drying treatment as described above, in a liquid medium as described above, and allowing the suspension to interact with an alkali. For example, the magnesium compound may be added and suspended in a medium to which an alkali has been added and dissolved in advance, or both may be added and suspended at the same time. An alkali may be added and brought into contact with the cloudy system. The reaction time may be, for example, about 10 minutes to 10 hours. By this alkali treatment, the anion A n- of the acicular basic magnesium compound of the above formula is replaced with OH-,
The aspect ratio is about 5 or more and less than about 20, and
Fibrous magnesium hydroxide particles having a BET specific surface area of about 20 m 2 /g or less can be formed. Hereinafter, some embodiments of the present invention will be described with reference to Examples.
It will be explained in more detail. Example 1-3 1.7 kg of magnesium oxide was added to 200 mg of an aqueous magnesium chloride solution having a concentration of 2 mol/2, and heated to about 60° C. while stirring. Thereafter, heating was stopped and the mixture was allowed to cool to room temperature. Approximately 2 kg was generated as a result.
Basic magnesium chloride (X
As a result of line analysis, this compound is Mg 3 (OH) 3 Cl・
4H 2 O) was separated, washed with water, and then resuspended in approx. This system has about
Add 2Mol/aqueous sodium hydroxide solution in an amount equivalent to 0.6 equivalent to the basic magnesium chloride Cl, and transfer to an autoclave with a capacity of 50.
Hydrothermal treatment was performed at about 180°C for 4 hours. After that, it was filtered, washed with water, and dried.The result was approximately 1.4Kg.
As measured by an electron microscope, the aspect ratio of g is approximately
12, diameter is approximately 0.5μ, and BET specific surface area is 6
m 2 /g of magnesium hydroxide was obtained. It was confirmed by X-ray analysis that this compound was magnesium hydroxide. 1 kg of high aspect ratio magnesium hydroxide obtained by the above method was suspended in warm water (approximately 60°C), and while stirring, the mixture was suspended in warm water (approximately 60°C) containing approximately 20 g of sodium oleate. Add approx.
Stirring was continued for 10 minutes, and the surface of the high aspect ratio magnesium hydroxide was coated with oleate ions. After that, it was filtered, washed with water, and dried. The high aspect ratio surface coated product obtained in this way was added to polypropylene at the compounding ratio shown in Table 1, and after mixing, it was melt-kneaded through an extruder at about 220°C. The pellets, which had been dried for 1 hour at about 230°C, were molded into test pieces with a thickness of about 3 mm. Comparative Example 1 In Example 1, about 2 kg of basic magnesium chloride having a needle-like external shape obtained by the same process was suspended in water, and then about 2 mol/aqueous sodium hydroxide solution was added to the basic magnesium chloride. An amount equivalent to 1.6 equivalents of magnesium was added to Cl, and the mixture was stirred gently at about 25° C. for 2 hours. As a result, about 1.4 kg of magnesium hydroxide was obtained, which had an aspect ratio of about 50, a diameter of about 0.07 μm, and a BET specific surface area of 16 m 2 /g as measured by an electron microscope. After washing this magnesium hydroxide with water and resuspending it in water, the surface treatment with sodium oleate was performed in the same manner as in Example 1. This treated product was blended with polypropylene at the blending ratio shown in Table 1 in the same manner as in Example 1 and tested. Comparative Example 2 In Example 1, about 2 mol/sodium hydroxide, which is equivalent to 1.2 equivalents, was added to the Cl of the obtained needle-shaped magnesium hydroxide, and then,
Hydrothermal treatment was performed at 120°C for 4 hours. As a result, observation using an electron microscope revealed that magnesium hydroxide had an aspect ratio of 17, a diameter of 0.08 μm, and a BET specific surface area of 28 m 2 /g. This magnesium hydroxide was surface-treated with sodium oleate in the same manner as in Example 1. This treated product was blended with polypropylene at the blending ratio shown in Table 1, and melt-kneaded and molded in the same manner as in Example 1. Example 4 About 4.8 kg of magnesium oxide was added to about 4 mol/magnesium chloride aqueous solution 10, and while stirring,
Heated to 80°C. Thereafter, it was allowed to cool to room temperature and aged for about 2 days, producing basic magnesium chloride (Mg 2 (OH) 3 Cl.3H 2 O) having a needle-like external shape.
This material was further added to an aqueous solution of about 2 mol/magnesium chloride, aged, and the crystals were sufficiently developed, then washed separately with water, further suspended in water, and then added with about 2 mol/ml of sodium hydroxide. 0.5 equivalent to Cl was added and hydrothermal treatment was performed in an autoclave at 170°C for 5 hours. After that, it was filtered and washed with water. The obtained compound is
As a result of observation using an electron microscope, the aspect ratio is approximately
13, the diameter is about 0.7μ, and the BET specific surface area is 3
m 2 /g of magnesium hydroxide. This high aspect ratio magnesium hydroxide 1Kg
After suspending in 10 g of water, 25 g of Igepon T
(CH 3 (CH 2 ) 7 CH=CH (CH 2 ) 7 CON (CH 3 )
An aqueous solution 1 containing CH 2 CH 2 SO 3 Na) was added to the suspension and continued at about 40° C. with stirring for about 30 minutes. Thereafter, the mixture was filtered, washed with water, dried, and crushed as appropriate.
This material was mixed with nylon-6 at the compounding ratio shown in Table 1, passed through an extruder at about 23°C, melted and kneaded to make pellets, and dried in vacuum at about 120°C. Injection molded at ℃. Example 5 1 kg of high aspect ratio magnesium hydroxide obtained in Example 1 was added to about 70° C. hot water with stirring to prepare a hot water solution at about 70° C. containing about 40 g of potassium stearate. 1 and continue stirring for about 10 minutes. After this, after filtering, washing with water, drying, and pulverizing, the mixture ratio shown in Table 1 is used.
Added to hard polyvinyl chloride (800) along with 2 parts by weight of tribasic lead sulfate and 0.5 parts by weight of calcium stearate, passed through an extruder at about 170°C to form pellets, and dried the pellets at 120°C for 2 hours.
Injection molded at approximately 180°C. Example 6 The sodium oleate treated high aspect ratio magnesium hydroxide obtained in Example 1 was mixed with a copolymer of ethylene and propylene at the blending ratio shown in Table 1, and the mixture was passed through an extruder at about 220°C. After making pellets, they were dried at about 120°C for 1 hour and then injection molded at about 230°C. Example 7 A suspension obtained by adding 120 g of magnesium oxide to 2 mol/mol of magnesium sulfate was placed in an autoclave with a capacity of 5 and subjected to hydrothermal treatment at 170° C. for 6 hours. The resulting compound was basic magnesium sulfate of the formula Mg 6 (OH) 10 SO 4 .3H 2 O with a needle-like crystalline shape. After filtering and washing this compound with water, suspend it in water and add 0.9 equivalents to SO 4 .
4Mol/potassium hydroxide was added, and hydrothermal treatment was performed in an autoclave at 170°C for 6 hours. As a result of measurement using an electron microscope, the obtained compound exhibited a fibrous crystal external shape with an aspect ratio of 8 and a diameter of 0.8 μm. Furthermore, as a result of X-ray analysis, this compound was found to be magnesium hydroxide.
The BET specific surface area was 11 m 2 /g. 1 kg of this compound was added to 10 g of water, and while stirring, 10 g of an aqueous solution 1 of sodium laurylbenzenesulfonate was added, and stirring was continued for about 20 minutes. Thereafter, it was filtered, washed with water, dried, and crushed. This powder was added to high-density polyethylene at the mixing ratio shown in Table 1, mixed, passed through an extruder at about 240°C to form pellets, dried at about 120°C for 1 hour, Injection molded at ℃. In Table 1 below, the diameter and length of the magnesium hydroxide used in Examples 1 to 7 all satisfied the scope of the present invention.

【表】 例5

比較例 3 実施例1と同様にして得られた塩基性塩化マグ
ネシウムを水に懸濁し、これに、2ml/の水酸
化ナトリウム水溶液を該塩基性塩化マグネシウム
のClに対し、0.4当量加え、オートクレーブによ
り、170℃で4時間水熱処理を行つた。その後、
過、水洗し、続いて、実施例1と同じ要領によ
り、オレイン酸ソーダで表面処理し、更に続い
て、脱水乾燥した。この様にして得られた、直径
0.5μm、長さ1.0μm、アスペクト比2の水酸化マ
グネシウムを第2表に示す配合比で、ポリプロピ
レンに加え、実施例1と同様の操作を行つて、テ
ストピースを作成し、評価した。その結果を第2
表に示す。 比較例 4−5 実施例1に於て、ポリプロピレン100重量部に
対し、配合する水酸化マグネシウムを、2重量
部/比較例41と200重量部(比較例5)に変更し
た以外は、同様に行つた。その評価結果を第2表
に示す。 比較例 6 2Mol/の硝酸マグネシウム水溶液200に、
1Mol/の水酸化カルシウムを120ml加え、撹拌
しながら、温度を約30℃に維持して、12時間反応
を継続した。その後、得られた塩基性硝酸マグネ
シウムを別後、水洗し、再び水に懸濁した。こ
れに2Mol/の水酸化ナトリウムを該塩基性硝
酸マグネシウムの硝酸に対し、2.0当量加え、約
95℃で1時間加熱した。 得られた水酸化マグネシウムを、実施例1と同
じ要領で、オレイン酸ソーダにより、水酸化マグ
ネシウムに対し、約3重量%のオレイン酸ソーダ
を加えて、表面処理を行つた。 この水酸化マグネシウムは、直径が0.05μm、
長さが0.9μm、アスペクト比が18、BET比表面
積が20m2/gであつた。この水酸化マグネシウム
を第2表に示す配合比で、ポリプロピレンに配合
し、物性を評価した。その結果を第2表に示す。
[Table] Example 5

Comparative Example 3 Basic magnesium chloride obtained in the same manner as in Example 1 was suspended in water, 0.4 equivalents of 2 ml/aqueous sodium hydroxide solution was added to the Cl of the basic magnesium chloride, and the suspension was autoclaved. , hydrothermal treatment was performed at 170°C for 4 hours. after that,
After filtering and washing with water, the surface was treated with sodium oleate in the same manner as in Example 1, and then dehydrated and dried. The diameter obtained in this way
Magnesium hydroxide having a length of 0.5 μm, a length of 1.0 μm, and an aspect ratio of 2 was added to polypropylene at the compounding ratio shown in Table 2, and the same operation as in Example 1 was performed to prepare a test piece and evaluate it. The second result is
Shown in the table. Comparative Example 4-5 Same as in Example 1 except that the magnesium hydroxide blended was changed to 2 parts by weight/Comparative Example 41 and 200 parts by weight (Comparative Example 5) with respect to 100 parts by weight of polypropylene. I went. The evaluation results are shown in Table 2. Comparative Example 6 Into 200 2Mol/magnesium nitrate aqueous solution,
120 ml of 1Mol/calcium hydroxide was added, and the reaction was continued for 12 hours while stirring and maintaining the temperature at about 30°C. Thereafter, the obtained basic magnesium nitrate was separated, washed with water, and suspended in water again. To this, add 2.0 equivalents of 2Mol/sodium hydroxide to the nitric acid of the basic magnesium nitrate, and
Heated at 95°C for 1 hour. The obtained magnesium hydroxide was surface-treated with sodium oleate in the same manner as in Example 1 by adding about 3% by weight of sodium oleate to the magnesium hydroxide. This magnesium hydroxide has a diameter of 0.05μm,
The length was 0.9 μm, the aspect ratio was 18, and the BET specific surface area was 20 m 2 /g. This magnesium hydroxide was blended with polypropylene at the blending ratio shown in Table 2, and the physical properties were evaluated. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部と、長さ/直径比
(アスペクト比)が約5以上で約20未満であり、
BET法比表面積が約20m2/g以下であつて且つ
約0.1〜約10μの平均直径及び約1〜約15μの長さ
を有する高アスペクト比且つ低比表面積の繊維状
水酸化マグネシウム粒子約10〜約130重量部を含
有することを特徴とする成形適性及び機械的強度
の改善された難燃性樹脂組成物。 2 該繊維状水酸化マグネシウム粒子が、アニオ
ン系界面活性剤で表面処理されたものである特許
請求の範囲第1項記載の組成物。 3 該樹脂がオレフイン系樹脂もしくはそのブレ
ンド物である特許請求の範囲第1項もしくは第2
項記載の組成物。
[Claims] 1. 100 parts by weight of a thermoplastic resin and a length/diameter ratio (aspect ratio) of about 5 or more and less than about 20,
About 10 high aspect ratio, low specific surface area fibrous magnesium hydroxide particles having a BET specific surface area of about 20 m 2 /g or less, an average diameter of about 0.1 to about 10 μ, and a length of about 1 to about 15 μ. A flame-retardant resin composition with improved moldability and mechanical strength, characterized in that it contains about 130 parts by weight. 2. The composition according to claim 1, wherein the fibrous magnesium hydroxide particles are surface-treated with an anionic surfactant. 3. Claim 1 or 2, wherein the resin is an olefin resin or a blend thereof.
Compositions as described in Section.
JP1549182A 1982-02-04 1982-02-04 Flame retardant resin composition having improved molding suitability and mechanical strength Granted JPS58134134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1549182A JPS58134134A (en) 1982-02-04 1982-02-04 Flame retardant resin composition having improved molding suitability and mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1549182A JPS58134134A (en) 1982-02-04 1982-02-04 Flame retardant resin composition having improved molding suitability and mechanical strength

Publications (2)

Publication Number Publication Date
JPS58134134A JPS58134134A (en) 1983-08-10
JPH031350B2 true JPH031350B2 (en) 1991-01-10

Family

ID=11890261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1549182A Granted JPS58134134A (en) 1982-02-04 1982-02-04 Flame retardant resin composition having improved molding suitability and mechanical strength

Country Status (1)

Country Link
JP (1) JPS58134134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050222A1 (en) * 2010-10-12 2012-04-19 協和化学工業株式会社 High-aspect-ratio magnesium hydroxide
WO2018123915A1 (en) * 2016-12-28 2018-07-05 協和化学工業株式会社 Laminated film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068372B2 (en) * 1985-02-09 1994-02-02 協和化学工業株式会社 Vinyl chloride resin composition
JPS62115048A (en) * 1985-11-13 1987-05-26 Idemitsu Petrochem Co Ltd Polyolefin resin composition
US4885328A (en) * 1989-03-31 1989-12-05 Shell Oil Company Flame retardant compositions
IL112385A (en) * 1994-01-21 1998-08-16 Flamemag International Gie Process for preparing a flame retardant magnesium hydroxide
CN1319860C (en) * 1998-12-14 2007-06-06 协和化学工业株式会社 Magnesium hydroxide particles, flame retardant resin composition and formed products thereof
JP5052748B2 (en) * 2004-12-22 2012-10-17 古河電気工業株式会社 Flame retardant resin composition and molded article using the same
JP5183873B2 (en) * 2004-12-22 2013-04-17 古河電気工業株式会社 Flame retardant resin composition and molded body using the same
MX2014008754A (en) * 2012-01-20 2014-08-27 Kyowa Chem Ind Co Ltd Thermal conduction enhancer.
EP2837672B1 (en) * 2012-04-10 2016-08-31 Kyowa Chemical Industry Co., Ltd Composite flame retardant, resin composition, and molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050222A1 (en) * 2010-10-12 2012-04-19 協和化学工業株式会社 High-aspect-ratio magnesium hydroxide
CN103237761A (en) * 2010-10-12 2013-08-07 协和化学工业株式会社 High-aspect-ratio magnesium hydroxide
JP5839602B2 (en) * 2010-10-12 2016-01-06 協和化学工業株式会社 High aspect ratio magnesium hydroxide
WO2018123915A1 (en) * 2016-12-28 2018-07-05 協和化学工業株式会社 Laminated film
JP2018103581A (en) * 2016-12-28 2018-07-05 三共ポリエチレン株式会社 Laminated film

Also Published As

Publication number Publication date
JPS58134134A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US4098762A (en) Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
EP0052868B1 (en) Fire-retarding resin composition and fire retardant composition
US4085088A (en) Fire-retarding thermoplastic resin composition
JPS601241A (en) Flame-retardant resin composition
US4145404A (en) Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
US5143965A (en) Magnesium hydroxide having fine, plate-like crystalline structure and process therefor
JP3299921B2 (en) Acid-resistant thermoplastic resin composition containing magnesium hydroxide
JP3592334B2 (en) Flame retardant products
JPH062843B2 (en) Flame retardant and flame retardant resin composition
JPH031350B2 (en)
JP5394380B2 (en) Flame retardant resin composition
KR20010006442A (en) A Polymeric Composite Material With Improved Flame Resistance
JPS6139986B2 (en)
TWI276669B (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
JP3499716B2 (en) Acid resistant magnesium hydroxide particle flame retardant and flame retardant resin composition
EP1651333B1 (en) Particulate inorganic solids treated with organophosphinic compounds
KR20100024280A (en) Method of synthesizing hydrotalcite and stibilizer using the hydrotalcite
JPH01131262A (en) Plastic magnet composition
WO2001004214A1 (en) Flame-retardant polyketone resin composition and molded article
JPH02212532A (en) Polypropylene composite material reinforced with granulated fibrous magnesium oxysulfate
JP3146000B2 (en) Flame retardant composition
EP0564576A1 (en) Magnesium hydroxide having stacked layer, crystalline structure and process therefor
JPS60243155A (en) Flame-retardant thermoplastic resin composition
JPS6136538B2 (en)
JP2885358B2 (en) Magnesium hydroxide solid solution, its production and use