[第1実施形態]
図1は、本発明の金属板製造装置の第1実施形態を示す正面断面概略図である。この装置10Aは、1種の金属溶湯から単層の金属板を製造するための装置であり、単ロール法を採用している。
装置10Aは、第1ロール1及び第1プール3Aを備えている。
第1ロール1は、その表面11に接触した金属溶湯を冷却しながら回転するようになっており、すなわち、第1ロール1は、その表面11に半凝固状態乃至凝固状態の金属層を形成しながらその金属層を伴って回転し、回転しながらその金属層を完全凝固させるようになっている。第1ロール1は、その表面11に接触した金属溶湯を冷却するための冷却機構(図示せず)を有している。その冷却機構としては、冷却水がロール内部を循環することにより冷却機能を発揮する「水冷式」を採用しているが、他の機構を採用してもかまわない。また、第1ロール1の外部に冷却機構を備えていれば、第1ロール1の内部に冷却機構を有していなくてもよい。
第1プール3Aは、金属溶湯を貯めることができるように、第1ロール1の表面11と、第1ロール1の回転方向(矢印R1方向)前方に位置する第1前プレート(以下「第1スクレイパー」と称する)5Aと、第1ロール1の回転方向後方に位置する後部材31と、両サイド部材32と、で囲まれている。
後部材31は、製作が安価で設置が簡単なため、ここでは、プレートで構成されているが、第1プール3Aの後壁を構成できるならば、他の部材でもよい。後部材31の先端縁311は、第1プール3A内に貯められた金属溶湯が後方へ漏れるのを防止できる距離まで、第1ロール1の表面11に近接している。後部材31の先端縁311は、第1ロール1の回転を許容する限りにおいて、第1ロール1の表面11に当接してもよいが、回転する第1ロール1との摩擦によって互いに摩耗しないようにするには、第1ロール1の表面11に当接していない方が好ましい。
図2は、図1のII矢視部分図である。両サイド部材32は、ここでは、プレートで構成されているが、第1プール3Aの両側壁を構成できるならば、他の部材でもよい。また、両サイド部材32は、図1に示した位置に固定されていなくてもよい。具体的には、第1ロール1の端に、円盤又はリング状の両サイド部材32を、第1ロール1の鍔となるように取り付けてもよい。サイド部材32は、図1に示されるように、第1スクレイパー5Aと後部材31との間に空間を確保できる長さSを、有している。サイド部材32の内面321は、第1プール3A内に貯めた金属溶湯が第1ロール1の両側に漏れるのを防止できる距離まで、第1ロール1の側面12に近接している。サイド部材32の内面321は、第1ロール1の回転を許容する限りにおいて、第1ロール1の側面12に当接してもよいが、回転する第1ロール1との摩擦によって互いに摩耗しないようにするには、第1ロール1の側面12に当接していない方が好ましい。
そして、第1スクレイパー5Aは、第1プール3Aの前壁を構成するように、プレートを加工して設けられている。第1スクレイパー5Aは、図1の断面図に示したように、ここでは、断面が、折り曲げ形態を有しているが、直線又は円弧状の形態を有していてもよい。第1スクレイパー5Aは、その先端が鈍角に折れ曲がっており、折れ曲がった箇所から先端が、先端部51Aになっている。そして、第1スクレイパー5Aは、先端部51Aと第1ロール1の表面11との間の距離HAが変わり得るように、可動に設けられている。具体的には、第1スクレイパー5Aは、基端部52Aにて、水平軸521A回り(矢印Y方向)に回動自在に支持されており、これにより、距離HAが可変となっている。また、第1スクレイパー5Aは、距離HAが小さくなる方向(矢印Y1方向)に回動するように、常時付勢されている。具体的には、第1スクレイパー5Aの基端部52Aには、紐61Aを介して所定重量の錘6Aが連結されており、第1スクレイパー5Aは、錘6Aによって、矢印Y1方向に回動するように、常時、一定の力で引っ張られている。これにより、第1スクレイパー5Aの先端部51Aは、第1ロール1の表面11に向かって、常時、一定の力で付勢されている。なお、この一定の力とは、第1プール3Aに注湯される金属溶湯の半凝固状態における硬さに相当する力であり、金属層の半凝固状態表面の固相率の低い部分を掻き取りながら金属層を平坦に均す程度の力である。第1スクレイパー5Aに対する付勢は、距離HAが変わっても、常時、一定の力で付勢できるので、且つ、装置を簡易に構成できるので、錘の力で行うのが好ましいが、同様の効果が得られるのであれば、油圧など、他の機構を採用してもよい。
第1スクレイパー5Aの先端部51Aは、第1ロール上の半凝固状態乃至凝固状態の金属層に接するが、この金属層はロール面と平行であるため、先端部51Aが、この金属層に、線接触ではなく、面接触するためには、第1ロール1と先端部51Aの裏面(ロール側の面)とのなす角度は30度未満であることが必要であり、より好ましくは角度が0、すなわち平行である。また、先端部51Aの長さは、5mm以上30mm以下がよく、10mm以上20mm以下が好ましい。これは、先端部51Aの長さが短すぎれば、面接触の効果が弱くなり、長すぎれば、伸びた先端部の上に凝固物が堆積する恐れがあるためである。また、先端部の裏面は、平面が好ましいが、平面性を実質的に損なわない範囲で曲率半径の大きな凸面になっていてもよい。
図3は、第1スクレイパー5Aの一部断面部分図である。第1スクレイパー5Aは、芯材531の表面が2種類の保護材料532、533で二重に覆われた構成を、採用している。芯材531には、鋼板を採用しているが、材質を特に限定するものではなく、他の金属の板を採用してもよい。芯材531の表面には、金属溶湯と反応しないために、また、スクレイパーからの熱伝導により金属溶湯の温度低下を防ぐために、保護材料が平面性を損なわない範囲の厚さで付設されている。保護材料532、533には、シリカ、アルミナシリカなどのクロスシートが使用できる。
次に、上記構成の装置10Aの作動について、図4を参照しながら、説明する。なお、図4では、両サイド部材32の図示を省略している。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら(第1注湯工程)、装置10Aを起動させる。そうすると、第1ロール1が、所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転する(第1冷却工程)。なお、第1金属層41は、第1ロール1の表面11側から、凝固状態へと変化していく。また、後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離L1(図1)は、半凝固状態表面を有する第1金属層41が形成され得る距離に、設定されている。そして、第1ロール1は、第1金属層41が、第1スクレイパー5Aの先端部51Aと第1ロール1の表面11との間を通過した後、すなわち、第1スクレイパー5Aを越えた後は、回転しながら第1金属層41を更に冷却して完全凝固させる。こうして、第1金属溶湯4Aが完全凝固してなる金属板40Aが、得られる。
ところで、半凝固状態表面を有する第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける(第1スクレイピング工程)。すなわち、第1スクレイパー5Aの先端部51Aは、第1金属層41の厚さに追従する。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。
したがって、装置10Aによれば、第1スクレイパー5Aの先端部51Aが第1金属層41の半凝固状態表面に一定の力で面的に当接し続けるので、鋳巣や組成の偏りが発生しやすい第1金属層41の半凝固状態表面を掻き取るとともに、第1金属層41を一定の厚さに調整できる。したがって、本発明の装置によれば、鋳巣や偏析がなく、表面が平滑であり、且つ、板厚分布が略均一な、単層の金属板40Aを、得ることができる。
特に、溶湯としてマグネシウムを含有するアルミニウム合金を用いた場合、ロール法を用いた鋳造では、溶湯が凝固収縮を起こしやすく、凝固収縮が起こると結晶粒間に隙間ができるため、鋳巣が発生しやすい。しかし、第1スクレイパー5Aで第1金属層41表面近傍の鋳巣の発生しやすい部位を掻き取るため、鋳巣がない単層のアルミマグネシウム合金の金属板40Aを、得ることができる。
また、第1スクレイパー5Aの先端部51Aが、上記作動においては、第1金属層41の表面に面接触する。それ故、先端部51Aは、第1金属層41の表面に確実に当接する。したがって、装置10Aによれば、第1スクレイパー5Aの上述した機能を、より良好に発揮できる。
更に、第1スクレイパー5Aの表面が保護材料532、533で覆われているので、上記作動においては、第1金属溶湯4Aの温度低下が防止され、また、第1金属溶湯4Aが第1スクレイパー5Aの表面に固着してしまうのが防止される。したがって、装置10Aによれば、この点からも、第1スクレイパー5Aの上述した機能を、より良好に発揮でき、しかも、金属板40Aの生産効率を向上できる。
[第2実施形態]
図5は、本発明の金属板製造装置の第2実施形態を示す正面断面概略図である。この装置10Bは、2種の金属溶湯から2層のクラッド金属板を製造するための装置であり、単ロール法を採用している。
装置10Bは、第1ロール1、第1プール3A、及び第2プール3Bを、備えている。
第1ロール1は、第1実施形態の第1ロール1と同じ構成を有している。
第1プール3Aは、第1実施形態の第1プール3Aと同じ構成を有している。
第2プール3Bは、金属溶湯を貯めることができように、第1スクレイパー5Aと、両サイド部材32と、第1スクレイパー5Aより第1ロール1の回転方向(矢印R1方向)前方に設けられた第2前プレート(以下「第2スクレイパー」と称する)5Bと、第1ロール1の表面11と、で囲まれている。
第1スクレイパー5Aは、第1実施形態の第1スクレイパー5Aと同じ構成を有している。
第2スクレイパー5Bは、第2プール3Bの前壁を構成している。第2スクレイパー5Bは、第1スクレイパー5Aと同様の形態を有しており、先端部51Bと第1ロール1の表面11との間の距離HBが変わり得るように、可動に設けられている。具体的には、第2スクレイパー5Bは、基端部52Bにて、水平軸521B回り(矢印Y方向)に回動自在に支持されており、これにより、距離HBが可変となっている。また、第2スクレイパー5Bは、距離HBが小さくなる方向(矢印Y1方向)に回動するように、常時付勢されている。具体的には、第2スクレイパー5Bの基端部52Bには、紐61Bを介して所定重量の錘6Bが連結されており、第2スクレイパー5Bは、錘6Bによって、矢印Y1方向に回動するように、常時、一定の力で引っ張られている。これにより、第2スクレイパー5Bの先端部51Bは、第1ロール1の表面11に向かって、常時、一定の力で付勢されている。なお、この一定の力とは、第2プール3Bに注湯される金属溶湯の半凝固状態における硬さに相当する力であり、金属層の半凝固状態表面の固相率の低い部分を掻き取りながら金属層を平坦に均す程度の力である。第2スクレイパー5Bに対する付勢は、距離HBが変わっても、常時、一定の力で付勢できるので、且つ、装置を簡易に構成できるので、錘の力で行うのが好ましいが、同様の効果が得られるのであれば、油圧など、他の機構を採用してもよい。
第2スクレイパー5Bの先端部51Bが、上記金属層に面接触するためには、第1実施形態の第1スクレイパー5Aと同様に、第1ロール1と先端部51Bの裏面(ロール側の面)とのなす角度は、30度未満であることが必要であり、より好ましくは角度が0、すなわち平行である。また、先端部51Bの長さは、5mm以上30mm以下がよく、10mm以上20mm以下が好ましい。これは、先端部51Bの長さが短すぎれば、面接触の効果が弱くなり、長すぎれば、伸びた先端部の上に凝固物が堆積する恐れがあるためである。先端部51Bの裏面は、平面が好ましいが、平面性を実質的に損なわない範囲で曲率半径の大きな凸面になっていてもよい。
また、第2スクレイパー5Bは、第1スクレイパー5A(図3)と同様に、芯材531の表面が2種類の保護材料532、533で二重に覆われた構成を、採用している。
後部材31は、第1実施形態の後部材31と同じ構成を有している。
両サイド部材32は、第1実施形態の両サイド部材32と同じ構成を有しているが、第2プール3Bの両側壁も構成できるように、拡張して設けられている。又は、第1実施形態で具体例を示したような、鍔付きの第1ロール1を採用してもよい。
次に、上記構成の装置10Bの作動について、図6を参照しながら、説明する。なお、図6では、両サイド部材32の図示を省略している。また、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下である。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら、装置10Bを起動させる。そうすると、第1ロール1が、所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転する。なお、第1金属層41は、第1ロール1の表面11側から凝固状態へと変化していく。また、第1ロール1における後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離L1(図6)は、半凝固状態表面を有する第1金属層41が形成され得る距離に、設定されている。
そして、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2プール3B内の第2金属溶湯4Bが、第1金属層41に接触して、第1金属層41を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、第1金属層41表面には、第2金属溶湯4Bの半凝固状態の第2金属層42が形成され、第2金属層42は、第1ロール1の回転に伴って、第1金属層41と共に移動する。そして、第1金属層41及び第2金属層42は、第1ロール1の回転に伴って、更に冷却される。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、が接合してなるクラッド金属板40Bが、得られる。
ところで、第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層42は、第1金属層41の平坦な表面に、形成されることとなる。
一方、第2金属層42が第2スクレイパー5Bを越える時には、第2スクレイパー5Bの先端部51Bが第2金属層42の表面に一定の力で面的に当接し続ける。これにより、第2金属層42の半凝固状態表面が掻き取られながら均されるとともに、第2金属層42が一定の厚さに調整される。
したがって、装置10Bによれば、第1金属層401と第2金属層402との界面が明瞭であり、且つ、第1金属層401及び第2金属層402の、厚さ分布が略均一な、2層のクラッド金属板40Bを、得ることができる。
また、第2スクレイパー5Bの先端部51Bが、上記作動においては、第2金属層42の表面に面接触する。それ故、先端部51Bは、第2金属層42の表面に確実に当接する。したがって、装置10Bによれば、第2スクレイパー5Bの上述した機能を、より良好に発揮できる。
更に、第2スクレイパー5Bの表面が保護材料532、533で覆われているので、上記作動においては、第2金属溶湯4Bの温度低下が防止され、また、第2金属溶湯4Bが第2スクレイパー5Bの表面に固着してしまうのが防止される。したがって、装置10Bによれば、この点からも、第2スクレイパー5Bの上述した機能を、より良好に発揮でき、しかも、金属板40Bの生産効率を向上できる。
なお、第1スクレイパー5Aによるその他の作用効果は、第1実施形態の場合と同じである。
[第3実施形態]
図7は、本発明の金属板製造装置の第3実施形態を示す正面断面概略図である。この装置10Cは、2種の金属溶湯から2層のクラッド金属板を製造するための装置であり、双ロール法を採用している。
装置10Cは、第1ロール1、第2ロール2、第1プール3A、及び第2プール3Bを、備えている。
第1ロール1は、第1実施形態の第1ロール1と同じ構成を有している。
第2ロール2は、第1スクレイパー5Aより第1ロール1の回転方向(矢印R1方向)前方において、第1ロール1に対向して配置されており、且つ、第1ロール1に向けて(すなわち矢印A方向に)付勢されて設けられている。例えば、第2ロール2は、ばね付勢されている。
上記第2ロール2は、第1ロール1の直径と同じものでも良いが、小径ロールの方が安価であるため、且つ、第1プール3A及び第2プール3Bを備えるための空間を広く確保できるため、第1ロール1の直径より小さい直径のロールを採用している。また、第2ロール2は、第1ロール1とは反対方向(矢印R2方向)に回転するように、それぞれ単独で駆動されるように、設けられており、更に、両ロール1、2は、ロール表面11、21における周速が、同じになるように、設定されている。具体的には、駆動モーターを2台用いた方式、いわゆるツインドライブ方式を採用することにより、これを達成できる。また、両ロール1、2が同径の場合は、それぞれ単独で駆動されるように、設けられていなくてもよい。これには、いわゆるシングルドライブ方式が採用できる。
更に、第2ロール2も、第1ロール1と同様に、その表面11に接触した金属溶湯を冷却するための冷却機構(図示せず)を有している。その冷却機構としては、冷却水がロール内部を循環することにより冷却能を発揮する「水冷式」を、採用しているが、他の方式を採用してもかまわない。また、第2ロール2の外部に冷却機構を備えていれば、第2ロール2の内部に冷却機構を有していなくてもよい。
第1プール3Aは、第1実施形態の第1プール3Aと同じ構成を有している。
第2プール3Bは、金属溶湯を貯めることができるように、第2ロール2の表面21と、第1スクレイパー5Aと、両サイド部材32と、第1ロール1の表面11と、で囲まれている。
第1スクレイパー5Aは、第1実施形態の第1スクレイパー5Aと同じ構成を有している。
後部材31は、第1実施形態の後部材31と同じ構成を有している。
両サイド部材32は、第1実施形態の両サイド部材32と同じ構成を有しているが、第2プール3Bの両側壁も構成できるように、拡張して設けられている。又は、第1実施形態で具体例を示したような、鍔付きの第1ロール1を採用してもよい。
次に、上記構成の装置10Cの作動について、図8を参照しながら、説明する。なお、図8では、両サイド部材32の図示を省略している。また、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下である。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら(第1注湯工程)、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら(第2注湯工程)、装置10Bを起動させる。そうすると、第1ロール1と第2ロール2が、所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転し(第1冷却工程)、また、第2ロール2が、その表面21に接触している第2プール3B内の第2金属溶湯4Bを冷却して半凝固状態乃至凝固状態の第2金属層42を形成しながら第2金属層42を伴って回転する(第2冷却工程)。なお、第1金属層41は、第1ロール1の表面11側から、凝固状態へと変化していき、また、第2金属層42は、第2ロール2の表面21側から、凝固状態へと変化していく。また、第1ロール1における後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離L1(図7)は、半凝固状態を有する第1金属層41が形成され得る距離に、設定されており、また、第2ロール2における第2プール3Bの液面から両ロール1、2のキス点までの円周距離L2は、半凝固状態を有する第2金属層42が形成され得る距離に、設定されている。
そして、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2ロール2の回転に伴って移動して来た第2金属層42が、第1金属層41に、接触していく。そして、接触した両金属層41、42が、両ロール1、2によって接合されるとともに、両ロール1、2によって更に冷却される(仕上げ工程)。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、が接合してなるクラッド金属板40Cが、得られる。
ところで、半凝固状態を有する第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける(第1スクレイピング工程)。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層42は、第1金属層41の平坦な表面に、形成されることとなる。このとき、仕上げ工程における接合性が向上するので、第1金属層41の半凝固状態表面の固相率の低い部分を掻き取り、第1金属層41の半凝固状態表面を、流動性が低い半凝固状態にしておくのがよい。
したがって、装置10Cによれば、第1金属層401と第2金属層402との界面が明瞭であり、且つ、第1金属層401及び第2金属層402の厚さ分布が略均一な、2層のクラッド金属板40Cを、得ることができる。なお、界面が明瞭であるとは、金属溶湯同士の混合や反応がない状態を言う。
また、第1スクレイパー5Aの先端部51Aが、上記作動においては、第1金属層41の表面に面接触する。それ故、先端部51Aは、第1金属層41の表面に確実に当接する。したがって、装置10Cによれば、第1スクレイパー5Aの上述した機能を、より良好に発揮できる。
更に、第1スクレイパー5Aへの付勢力を調節することによって、第1金属層41の半凝固状態部分の固相率を調節して、第1金属層41の半凝固状態表面を、流動性が低い半凝固状態にしておくことにより、融点が低い第2金属溶湯4Bの注湯温度を、融点が高い第1金属溶湯4Aの液相線温度より低くした場合においても、金属溶等同士が混合や反応をせずに接合界面が明瞭で、且つ、接合界面に隙間が発生せずに接合界面の密着性の高い、良好なクラッド金属板を得ることができる。これにより、融点が低い第2金属溶湯4Bを、第2金属溶湯4Bの液相線より高くとも液相線に近い温度でも注湯できるので、第2金属溶湯4Bがガスを吸収しないで健全性を保ち、且つ、第2金属溶湯4Bが急冷凝固されて微細な組織を形成するので、できたクラッド金属板の延性が優れている。この場合、融点が高い第1金属溶湯4Aへの、及び、両ロール1、2への、熱負荷も、小さくなる。よって、装置の冷却機能への負担を減らすことができる。
更に、第1スクレイパー5Aの表面が保護材料532、533で覆われているので、上記作動においては、第1金属溶湯4A及び第2金属溶湯4Bの温度低下が防止され、また、第1金属溶湯4A及び第2金属溶湯4Bが第1スクレイパー5Aの表面に固着してしまうのが防止される。したがって、装置10Cによれば、この点からも、第1スクレイパー5Aの上述した機能を、より良好に発揮でき、しかも、金属板40Cの生産効率を向上できる。
[第4実施形態]
図9は、本発明の金属板製造装置の第4実施形態を示す正面断面概略図である。この装置10Dは、2種又は3種の金属溶湯から3層のクラッド金属板を製造するための装置であり、双ロール法を採用している。
装置10Dは、第1ロール1、第2ロール2、第1プール3A、第2プール3B、及び第3プール3Cを、備えている。
第1ロール1は、第1実施形態の第1ロール1と同じ構成を有している。
第2ロール2は、第3実施形態の第2ロール2と同じ構成を有している。
第1プール3Aは、第1実施形態の第1プール3Aと同じ構成を有している。
第2プール3Bは、金属溶湯を貯めることができように、第1スクレイパー5Aと、両サイド部材32と、第1スクレイパー5Aより第1ロール1の回転方向(矢印R1方向)前方に設けられた第2前プレート(以下「第2スクレイパー」と称する)5Bと、第1ロール1の表面11と、第2ロール2の表面21と、で囲まれている。
第3プール3Cは、金属溶湯を貯めることができように、第2ロール2の表面21と、第2スクレイパー5Bと、両サイド部材32と、で囲まれている。
第1スクレイパー5Aは、第1実施形態の第1スクレイパー5Aと同じ構成を有している。
第2スクレイパー5Bは、第2プール3Bの前壁と第3プール3Cの後壁とを兼ねており、プレートを加工して設けられている。第1スクレイパー5Bは、図9の断面図に示したように、ここでは、断面が、折り曲げ形態を有しているが、直線又は円弧状の形態を有していてもよい。第2スクレイパー5Bは、その先端が鈍角に折れ曲がっており、折れ曲がった箇所から先端が、先端部51Bになっている。そして、第1スクレイパー5Bは、先端部51Bと第2ロール1の表面21との間の距離HBが変わり得るように、可動に設けられている。具体的には、第2スクレイパー5Bは、基端部52Bにて、水平軸521B回り(矢印Y方向)に回動自在に支持されており、これにより、距離HBが可変となっている。また、第2スクレイパー5Bは、距離HBが小さくなる方向(矢印Y2方向)に回動するように、常時付勢されている。具体的には、第2スクレイパー5Bの基端部52Bには、紐61Bを介して所定重量の錘6Bが連結されており、第2スクレイパー5Bは、錘6Bによって、矢印Y2方向に回動するように、常時、一定の力で引っ張られている。これにより、第2スクレイパー5Bの先端部51Bは、第2ロール2の表面21に向かって、常時、一定の力で付勢されている。なお、この一定の力とは、第3プール3Cに注湯される金属溶湯の半凝固状態における硬さに相当する力であり、金属層の半凝固状態表面の固相率の低い部分を掻き取りながら金属層を平坦に均す程度の力である。第2スクレイパー5Bに対する付勢は、装置を簡易に構成できるので、錘の力で行っているが、油圧など、他の機構を採用してもよい。
第2スクレイパー5Bの先端部51Bが、上記金属層に面接触するためには、第1実施形態の第1スクレイパー5Aと同様に、第2ロール2と先端部51Bの裏面(ロール側の面)とのなす角度は、30度未満であることが必要であり、より好ましくは角度が0、すなわち平行である。また、先端部51Bの長さは、5mm以上30mm以下がよく、10mm以上20mm以下が好ましい。これは、先端部51Bの長さが短すぎれば、面接触の効果が弱くなり、長すぎれば、伸びた先端部の上に凝固物が堆積する恐れがあるためである。先端部51Bの裏面は、平面が好ましいが、平面性を実質的に損なわない範囲で曲率半径の大きな凸面になっていてもよい。
また、第2スクレイパー5Bは、第1スクレイパー5A(図3)と同様に、芯材531の表面が2種類の保護材料532、533で二重に覆われた構成を、採用している。
後部材31は、第1実施形態の後部材31と同じ構成を有している。
両サイド部材32は、第1実施形態の両サイド部材32と同じ構成を有しているが、第2プール3B及び第3プール3Cの、両側壁も構成できるように、拡張して設けられている。又は、第1実施形態で具体例を示したような、鍔付きの第1ロール1を採用してもよい。
次に、上記構成の装置10Dの作動について、図10を参照しながら、説明する。なお、図10では、両サイド部材32の図示を省略している。また、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下であり、また、第3プール3Cに注湯する第3金属溶湯4Cの融点は、第2金属溶湯4Bの融点以上である。第1金属溶湯4Aと第3金属溶湯4Cとは、同じでもよい。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら(第1注湯工程)、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら(第2注湯工程)、及び、第3プール3Cに第3金属溶湯4Cを注湯しながら(第3注湯工程)、装置10Cを起動させる。そうすると、第1ロール1と第2ロール2が、所定速度で回転するとともに冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転し(第1冷却工程)、また、第2ロール2が、その表面21に接触している第3プール3C内の第3金属溶湯4Cを冷却して半凝固状態乃至凝固状態の第3金属層43を形成しながら第3金属層43を伴って回転する(第2冷却工程)。なお、第1金属層41は、第1ロール1の表面11側から、凝固状態へと変化していき、また、第3金属層43は、第2ロール2の表面21側から、凝固状態へと変化していく。また、第1ロール1における後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離L1(図9)は、半凝固状態表面を有する第1金属層41が形成され得る距離に、設定されており、また、第2ロール2における第3プール3Cの液面から両ロール1、2のキス点までの円周距離L3は、半凝固状態表面を有する第3金属層43が形成され得る距離に、設定されている。
そして、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2プール3B内の第2金属溶湯4Bが、第1金属層41に接触して、第1金属層41を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、第1金属層41表面には、第2金属溶湯4Bの半凝固状態の第2金属層421が形成され、第2金属層421は、第1ロール1の回転に伴って、第1金属層41と共に移動する。一方、第3金属層43が、第2ロール2の回転に伴って移動して第2スクレイパー5Bを越えると、第2プール3B内の第2金属溶湯4Bが、第3金属層43に接触して、第3金属層43を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、第3金属層43表面には、第2金属溶湯4Bの半凝固状態の第2金属層422が形成され、第2金属層422は、第2ロール2の回転に伴って、第3金属層43と共に移動する。なお、第1ロール1における第1スクレイパー5Aの先端部51Aから両ロール1、2のキス点までの円周距離L2は、半凝固状態の第2金属層421、422が形成され得る距離に、設定されている。
そして、両ロール1、2の回転に伴って、第2金属層421と第2金属層422とが接触していき、第1金属層41と第2金属層421と第2金属層422と第3金属層43とが、両ロール1、2によって接合されるとともに、両ロール1、2によって更に冷却される(仕上げ工程)。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、第3金属溶湯4Cが完全凝固してなる第3金属層403と、が接合してなるクラッド金属板40Dが、得られる。
ところで、第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける(第1スクレイピング工程)。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層421は、第1金属層41の平坦な表面に、形成されることとなる。
一方、第3金属層43が第2スクレイパー5Bを越える時には、第2スクレイパー5Bの先端部51Bが第3金属層43の表面に一定の力で当接し続ける(第2スクレイピング工程)。これにより、第3金属層43の半凝固状態表面が掻き取られながら均されるとともに、第3金属層43が一定の厚さに調整される。したがって、第2金属層422は、第3金属層43の平坦な表面に、形成されることとなる。このとき、仕上げ工程における接合性が向上するので、第1金属層41及び第3金属層43の半凝固状態表面の固相率の低い部分を掻き取り、両金属層41、43の半凝固状態表面を、流動性が低い半凝固状態にしておくのがよい。
したがって、装置10Dによれば、第1金属層401と第2金属層402と第3金属層403との各界面が明瞭であり、且つ、第1金属層401、第2金属層402、及び第3金属層403の、厚さ分布が略均一な、3層のクラッド金属板40Dを、得ることができる。
しかも、金属層間の界面が明瞭であるので、第2金属溶湯4Bの融点が第1金属溶湯4A及び第3金属溶湯4Cの融点以下であっても、良品のクラッド金属板を得ることができる。
また、第2スクレイパー5Bの先端部51Bは、上記作動においては、第3金属層43の表面に面接触する。それ故、先端部51Bは、第3金属層43の表面に確実に当接する。したがって、装置10Dによれば、第2スクレイパー5Bの上述した機能を、より良好に発揮できる。
更に、第1スクレイパー5Aへの付勢力を調節することによって、第1金属層41及び第3金属層43の半凝固状態部分の固相率を調節して、両金属層の半凝固状態表面を流動性が低い半凝固状態にしておくことにより、融点が低い第2金属溶湯4Bの注湯温度を、融点が高い第1金属溶湯4A及び第3金属溶湯4Cの液相線温度より低くした場合においても、金属溶等同士が混合や反応をせずに接合界面が明瞭で、且つ、接合界面に隙間が発生せずに接合界面の密着性の高い、良好なクラッド金属板を得ることができる。これにより、融点が低い第2金属溶湯4Bを、第2金属溶湯4Bの液相線より高くとも液相線に近い温度でも注湯できるので、第2金属溶湯4Bがガスを吸収しないで健全性を保ち、且つ、第2金属溶湯4Bが急冷凝固されて微細な組織を形成するので、できたクラッド金属板の延性が優れている。この場合、融点が高い第1金属溶湯4A及び第3金属溶湯4Cへの、及び、両ロール1、2への、熱負荷も、小さくなる。よって、装置の冷却機能への負担を減らすことができる。
更に、第2スクレイパー5Bの表面が保護材料532、533で覆われているので、上記作動においては、第2金属溶湯4B及び第3金属溶湯4Cの温度低下が防止され、また、第2金属溶湯4B及び第3金属溶湯4Cが第2スクレイパー5Bの表面に固着してしまうのが防止される。したがって、装置10Dによれば、この点からも、第2スクレイパー5Bの上述した機能を、より良好に発揮でき、しかも、金属板40Dの生産効率を向上できる。
なお、第1スクレイパー5Aによるその他の作用効果は、第3実施形態の場合と同じである。
[第5実施形態]
図11は、本発明の金属板製造装置の第5実施形態を示す正面断面概略図である。この装置10Eは、3種又は4種の金属溶湯から4層のクラッド金属板を製造するための装置であり、双ロール法を採用している。
装置10Eは、第1ロール1、第2ロール2、第1プール3A、第2プール3B、第3プール3C、及び第4プール3Dを、備えている。
第1ロール1は、第1実施形態の第1ロール1と同じ構成を有している。
第2ロール2は、第3実施形態の第2ロール2と同じ構成を有している。
第1プール3Aは、第1実施形態の第1プール3Aと同じ構成を有している。
第2プール3Bは、金属溶湯を貯めることができように、第1スクレイパー5Aと、両サイド部材32と、第1スクレイパー5Aより第1ロール1の回転方向(矢印R1方向)前方に設けられた第2前プレート(以下「第2スクレイパー」と称する)5Bと、第1ロール1の表面11と、で囲まれている。
第3プール3Cは、金属溶湯を貯めることができように、第2スクレイパー5Bと、両サイド部材32と、第2スクレイパー5Bより第1ロール1の回転方向(矢印R1方向)前方に設けられた第3前プレート(以下「第3スクレイパー」と称する)5Cと、第1ロール1の表面11と、第2ロール2の表面21と、で囲まれている。
第4プール3Dは、金属溶湯を貯めることができように、第2ロール2の表面21と、第3スクレイパー5Cと、両サイド部材32と、で囲まれている。
第1スクレイパー5Aは、第1実施形態の第1スクレイパー5Aと同じ構成を有している。
第2スクレイパー5Bは、第1スクレイパー5Aと同じ構成を有している。
第3スクレイパー5Cは、第4実施形態の第2スクレイパー5Bと同じ構成を有している。なお、第3スクレイパー5Cには、紐61Cを介して錘6Cが連結されている。
後部材31は、第1実施形態の後部材31と同じ構成を有している。
両サイド部材32は、第1実施形態の両サイド部材32と同じ構成を有しているが、第2プール3B、第3プール3C、及び第4プール3Dの、両側壁も構成できるように、拡張して設けられている。又は、第1実施形態で具体例を示したような、鍔付きの第1ロール1を採用してもよい。
上記構成の装置10Eは、次のように作動する。なお、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下であり、また、第3プール3Cに注湯する第3金属溶湯4Cの融点は、第2金属溶湯4Bの融点以下であり、第4プール3Dに注湯する第4金属溶湯4Dの融点は、第3金属溶湯4Cの融点以上である。第1金属溶湯4Aと第4金属溶湯4Dとは、同じでもよい。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら、及び、第3プール3Cに第3金属溶湯4Cを注湯しながら、及び、第4プール3Dに第4金属溶湯4Dを注湯しながら、装置10Eを起動させる。そうすると、第1ロール1と第2ロール2が、所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転し、また、第2ロール2が、その表面21に接触している第4プール3D内の第4金属溶湯4Dを冷却して半凝固状態乃至凝固状態の第4金属層44を形成しながら第4金属層44を伴って回転する。なお、第1金属層41は、第1ロール1の表面11側から、凝固状態へと変化していき、また、第4金属層44は、第2ロール2の表面21側から、凝固状態へと変化していく。また、第1ロール1における後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離L1(図11)は、半凝固状態表面を有する第1金属層41が形成され得る距離に、設定されており、また、第2ロール2における第4プール3Dの液面から両ロール1、2のキス点までの円周距離L4は、半凝固状態表面を有する第4金属層44が形成され得る距離に、設定されている。
そして、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2プール3B内の第2金属溶湯4Bが、第1金属層41に接触して、第1金属層41を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、第1金属層41表面には、第2金属溶湯4Bの半凝固状態の第2金属層42が形成され、第2金属層42は、第1ロール1の回転に伴って、第1金属層41と共に移動する。なお、第1ロール1における第1スクレイパー5Aの先端部51Aから第2スクレイパー5Bの先端部51Bまでの円周距離L2(図11)は、半凝固状態の第2金属層42が形成され得る距離に、設定されている。
そして、第2金属層42が、第1ロール1の回転に伴って移動して第2スクレイパー5Bを越えると、第3プール3C内の第3金属溶湯4Cが、第2金属層42に接触して、第2金属層42を金属結合可能な温度まで加熱するとともに、第3金属溶湯4C自体は冷却される。これにより、第2金属層42表面には、第3金属溶湯4Cの半凝固状態の第3金属層431が形成され、第3金属層431は、第1ロール1の回転に伴って、第2金属層42と共に移動する。
一方、第4金属層44が、第2ロール2の回転に伴って移動して第3スクレイパー5Cを越えると、第3プール3C内の第3金属溶湯4Cが、第4金属層44に接触して、第4金属層44を金属結合可能な温度まで加熱するとともに、第3金属溶湯4C自体は冷却される。これにより、第4金属層44表面には、第3金属溶湯4Cの半凝固状態の第3金属層432が形成され、第3金属層432は、第2ロール2の回転に伴って、第4金属層44と共に移動する。なお、第1ロール1における第2スクレイパー5Bの先端部51Bから両ロール1、2のキス点までの円周距離L3(図9)は、半凝固状態の第3金属層431、432が形成され得る距離に、設定されている。
そして、両ロール1、2の回転に伴って、第3金属層431と第3金属層432とが接触していき、第1金属層41と第2金属層42と第3金属層431と第3金属層432と第4金属層44とが、両ロール1、2によって接合されるとともに、両ロール1、2によって更に冷却される。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、第3金属溶湯4Cが完全凝固してなる第3金属層403と、第4金属溶湯4Dが完全凝固してなる第4金属層404と、が接合してなるクラッド金属板40Eが、得られる。
ところで、第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層42は、第1金属層41の平坦な表面に、形成されることとなる。
また、第2金属層42が第2スクレイパー5Bを越える時には、第2スクレイパー5Bの先端部51Bが第2金属層42の表面に一定の力で面的に当接し続ける。これにより、第2金属層42の半凝固状態表面が掻き取られながら均されるとともに、第2金属層42が一定の厚さに調整される。したがって、第3金属層431は、第2金属層42の平坦な表面に、形成されることとなる。
一方、第4金属層44が第3スクレイパー5Cを越える時には、第3スクレイパー5Cの先端部51Cが第4金属層44の表面に一定の力で面的に当接し続ける。これにより、第4金属層44の半凝固状態表面が掻き取られながら均されるとともに、第4金属層44が一定の厚さに調整される。したがって、第3金属層432は、第4金属層44の平坦な表面に、形成されることとなる。
したがって、装置10Eによれば、第1金属層401と第2金属層402と第3金属層403と第4金属層404の各界面が明瞭であり、且つ、第1金属層401、第2金属層402、第3金属層403、及び第4金属層404の、厚さ分布が略均一な、4層のクラッド金属板40Eを、得ることができる。
なお、第1スクレイパー5A及び第2スクレイパー5Bは、上記実施形態の第1スクレイパー5Aと同様の作用効果を発揮する。また、第3スクレイパー5Cは、第4実施形態の第2スクレイパー5Bと同様の作用効果を発揮する。
[第6実施形態]
図12は、本発明の金属板製造装置の第6実施形態を示す正面断面概略図である。この装置10Fは、2種又は3種の金属溶湯から3層のクラッド金属板を製造するための装置であり、双ロール法を採用している。
装置10Fは、第1ロール1、第2ロール2、第1プール3A、第2プール3B、及び第3プール3Cを、備えている。
第1ロール1及び第2ロール2は、同じ大きさを有しており、水平方向において対向して配置されている。第1ロール1は、図において時計回りに(矢印R1方向に)回転するように、設けられており、第2ロール2は、図において反時計回りに(矢印R2方向に)回転するように、設けられている。
第1ロール1は、その表面11に接触した金属溶湯を冷却するための冷却機構(図示せず)を有しており、その表面11に接触した金属溶湯を冷却しながら回転するようになっている。したがって、第1ロール1は、金属溶湯の半凝固状態乃至凝固状態の金属層を形成しながらその金属層を伴って回転し、回転しながらその金属層を完全凝固させるようになっている。冷却機構は、例えば、冷却水がロール内部を循環することにより冷却機能を発揮する「水冷式」が、好ましい。第2ロール2も、第1ロール1と同じ構成及び機能を有している。
第1プール3Aは、金属溶湯を貯めることができるように、第1ロール1の表面11と、第1ロール1の回転方向(矢印R1方向)前方に位置する第1前プレート(以下「第1スクレイパー」と称する)5Aと、第1ロール1の回転方向後方に位置する後部材31Aと、両サイド部材(図示せず)と、で囲まれている。
後部材31Aは、第1実施形態の後部材31と同じ構成を有している。
第1スクレイパー5Aは、第1実施形態の第1スクレイパー5Aと同じ構成を有している。
第3プール3Cは、金属溶湯を貯めることができるように、第2ロール2の表面21と、第2ロール2の回転方向(矢印R2方向)前方に位置する第2前プレート(以下「第2スクレイパー」と称する)5Bと、第2ロール2の回転方向後方に位置する後部材31Bと、両サイド部材(図示せず)と、で囲まれている。第3プール3Cは、第1プール3Aに対して、左右対象の構造を有している。なお、第2スクレイパー5Bは、第4実施形態の第2スクレイパー5Bと同じである。
第2プール3Bは、金属溶湯を貯めることができるように、第1ロール1の表面11と、第2ロール2の表面21と、第1スクレイパー5Aと、第2スクレイパー5Bと、両サイド部材(図示せず)と、で囲まれている。
両サイド部材は、第1実施形態の両サイド部材32と同じ構成を有しているが、第2プール3B、及び第3プール3Cの、両側壁も構成できるように、拡張して設けられている。
上記構成の装置10Fは、次のように作動する。なお、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下であり、また、第3プール3Cに注湯する第3金属溶湯4Cの融点は、第2金属溶湯4Bの融点以上である。第1金属溶湯4Aと第3金属溶湯4Cとは、同じでもよい。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら、及び、第3プール3Cに第3金属溶湯4Cを注湯しながら、装置10Fを起動させる。そうすると、第1ロール1と第2ロール2が、所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転し、また、第2ロール2が、その表面21に接触している第3プール3C内の第3金属溶湯4Cを冷却して半凝固状態乃至凝固状態の第3金属層43を形成しながら第3金属層43を伴って回転する。なお、第1金属層41は、第1ロール1の表面11側から、凝固状態へと変化していき、また、第3金属層43は、第2ロール2の表面21側から、凝固状態へと変化していく。また、第1ロール1における後部材31Aの下端縁311Aから第1スクレイパー5Aの先端部51Aまでの円周距離L1(図12)は、半凝固状態表面を有する第1金属層41が形成され得る距離に、設定されており、また、第2ロール2における後部材31Bの下端縁311Bから第2スクレイパー5Bの先端部51Bまでの円周距離L3(図12)は、半凝固状態表面を有する第3金属層43が形成され得る距離に、設定されている。
そして、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2プール3B内の第2金属溶湯4Bが、第1金属層41に接触して、第1金属層41を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。一方、第3金属層43が、第2ロール2の回転に伴って移動して第2スクレイパー5Bを越えると、第2プール3B内の第2金属溶湯4Bが、第3金属層43に接触して、第3金属層43を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、第1金属層41と第3金属層43との間に、第2金属溶湯4Bの半凝固状態の第2金属層42が形成される。なお、第1ロール1における第1スクレイパー5Aの先端部51Aから両ロール1、2のキス点までの円周距離L2は、半凝固状態の第2金属層42が形成され得る距離に、設定されている。第2ロール2における円周距離L2も同じである。
そして、第2金属層42は、両ロール1、2の回転に伴って、第1金属層41及び第3金属層43と共に移動していき、第1金属層41と第2金属層42と第3金属層43とが、両ロール1、2によって接合されるとともに、両ロール1、2によって更に冷却される。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、第3金属溶湯4Cが完全凝固してなる第3金属層403と、が接合してなるクラッド金属板40Fが、得られる。
ところで、第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層42は、第1金属層41の平坦な表面に、形成されることとなる。
また、第3金属層43が第2スクレイパー5Bを越える時には、第2スクレイパー5Bの先端部51Bが第3金属層43の表面に一定の力で面的に当接し続ける。これにより、第3金属層43の半凝固状態表面が掻き取られながら均されるとともに、第3金属層43が一定の厚さに調整される。したがって、第2金属層42は、第3金属層43の平坦な表面に、形成されることとなる。
したがって、装置10Fによれば、第1金属層401と第2金属層402と第3金属層403との各界面が明瞭であり、且つ、第1金属層401、第2金属層402、及び第3金属層403の、厚さ分布が略均一な、3層のクラッド金属板40Fを、得ることができる。
[第7実施形態]
図13は、本発明の金属板製造装置の第7実施形態を示す正面断面概略図である。この装置10Gは、3種又は4種の金属溶湯から5層のクラッド金属板を製造するための装置である。
装置10Gは、第1ロール1、第2ロール2、第1プール3A、第2プール3B、及び第3プール3Cを、備えた下装置部FAと、第3ロール6、第4ロール7、及び第4プール3Dを、備えた上装置部FBと、を備えている。
下装置部FAは、第6実施形態の装置10Fと同じ構成を有している。
上装置部FBにおいて、第3ロール6及び第4ロール7は、同じ大きさを有しているが、そうでなくてもよく、また、水平方向において対向して配置されているが、そうでなくてもよい。第3ロール6は、図において時計回りに(矢印R1方向に)回転するように、設けられており、第4ロール7は、図において反時計回りに(矢印R2方向に)回転するように、設けられている。第3ロール6及び第4ロール7は、両ロール6、7の間の間隙81が下装置部FAの第2ロール2の幅方向中央の真上に位置するように、配置されているが、ガイド等を使用することにより、そのように真上に配置しなくてもよい。
第3ロール6は、その表面61に接触した金属溶湯を冷却するための冷却機構(図示せず)を有しており、その表面61に接触した金属溶湯を冷却しながら回転するようになっている。したがって、第3ロール6は、金属溶湯の半凝固状態乃至凝固状態の金属層を形成しながらその金属層を伴って回転し、回転しながらその金属層を完全凝固させるようになっている。冷却機構は、例えば、冷却水がロール内部を循環することにより冷却機能を発揮する「水冷式」が、好ましい。第4ロール7も、第3ロール6と同じ構成及び機能を有している。
第4プール3Dは、金属溶湯を貯めることができるように、第3ロール6の表面61と、第4ロール7の表面71と、両サイド部材(図示せず)と、で囲まれている。
上記構成の装置10Gは、次のように作動する。なお、第2プール3Bに注湯する第2金属溶湯4Bの融点は、第1プール3Aに注湯する第1金属溶湯4Aの融点以下であり、また、第3プール3Cに注湯する第3金属溶湯4Cの融点は、第2金属溶湯4Bの融点以上であり、第4プール3Dに注湯する第4金属溶湯4Dの融点は、第2金属溶湯4Bの融点以上である。第1金属溶湯4Aと第3金属溶湯4Cと第4金属溶湯4Dは、同じでもよい。
まず、第1プール3Aに第1金属溶湯4Aを注湯しながら、及び、第2プール3Bに第2金属溶湯4Bを注湯しながら、及び、第3プール3Cに第3金属溶湯4Cを注湯しながら、及び、第4プール4Cに第4金属溶湯4Dを注湯しながら、装置10Gを起動させる。そうすると、全ロール1、2、6、7が、各々所定速度で回転するとともに、冷却機能が作動する。これにより、第1ロール1が、その表面11に接触している第1プール3A内の第1金属溶湯4Aを冷却して半凝固状態乃至凝固状態の第1金属層41を形成しながら第1金属層41を伴って回転し、また、第2ロール2が、その表面21に接触している第3プール3C内の第3金属溶湯4Cを冷却して半凝固状態乃至凝固状態の第3金属層43を形成しながら第3金属層43を伴って回転する。また、一方では、第3ロール6及び第4ロール7が、その表面61、71に接触している第4プール3D内の第4金属溶湯4Dを冷却して半凝固状態の第4金属層44を形成しながら第4金属層44を伴って回転する。なお、両ロール6、7における第3プール3Cの液面から両ロール6、7のキス点までの円周距離L4は、半凝固状態の第4金属層44が形成され得る距離に、設定されている。そして、第4金属層44は、両ロール6、7によって接合される。
一方、第1金属層41が、第1ロール1の回転に伴って移動して第1スクレイパー5Aを越えると、第2プール3B内の第2金属溶湯4Bが、第1金属層41に接触して、第1金属層41を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、半凝固状態の第2金属層421が、形成され、第1ロール1の回転に伴って、第1金属層41と共に移動する。
また、第3金属層43が、第2ロール2の回転に伴って移動して第2スクレイパー5Bを越えると、第3プール3C内の第3金属溶湯4Cが、第3金属層43に接触して、第3金属層43を金属結合可能な温度まで加熱するとともに、第2金属溶湯4B自体は冷却される。これにより、半凝固状態の第2金属層422が、形成され、第2ロール2の回転に伴って、第3金属層43と共に移動する。
一方、第4金属層44が、両ロール6、7の回転に伴って下方に移動し、第2プール3B内を通過して、第2金属層421と第2金属層422との間に至る。
そして、第4金属層44が、第2金属層421と第2金属層422とを金属結合可能な温度まで加熱するとともに、第4金属層44自体は冷却される。これにより、第1金属層41と第2金属層421と第4金属層44と第2金属層422と第3金属層43とが、共に移動していき、両ロール1、2によって接合されるとともに、両ロール1、2によって更に冷却される。
これにより、第1金属溶湯4Aが完全凝固してなる第1金属層401と、第2金属溶湯4Bが完全凝固してなる第2金属層402と、第4金属溶湯4Dが完全凝固してなる第3金属層403と、第2金属溶湯4Bが完全凝固してなる第4金属層404と、第3金属溶湯4Cが完全凝固してなる第5金属層405と、が接合してなるクラッド金属板40Gが、得られる。
ところで、第1金属層41が第1スクレイパー5Aを越える時には、第1スクレイパー5Aの先端部51Aが第1金属層41の表面に一定の力で面的に当接し続ける。これにより、第1金属層41の半凝固状態表面が掻き取られながら均されるとともに、第1金属層41が一定の厚さに調整される。したがって、第2金属層421は、第1金属層41の平坦な表面に、形成されることとなる。
また、第3金属層43が第2スクレイパー5Bを越える時には、第2スクレイパー5Bの先端部51Bが第3金属層43の表面に一定の力で面的に当接し続ける。これにより、第3金属層43の半凝固状態表面が掻き取られながら均されるとともに、第3金属層43が一定の厚さに調整される。したがって、第2金属層422は、第3金属層43の平坦な表面に、形成されることとなる。
したがって、装置10Gによれば、第1金属層401と第2金属層402と第3金属層403と第4金属層404と第5金属層405との各界面が明瞭であり、且つ、第1金属層401、第2金属層402、第3金属層403、第4金属層404、及び第5金属層405の、厚さ分布が略均一な、5層のクラッド金属板40Gを、得ることができる。
[別の実施形態]
(1)スクレイパーを付勢する機構としては、錘を用いる機構に限るものではなく、例えば、油圧機構でもよい。
(2)スクレイパーは、製作が容易である故にプレートを折り曲げ加工して製作されているが、金属溶湯のプールの壁を構成することができ、且つ、先端部を設けることができれば、他の部材でもよい。
(3)スクレイパーは、芯材のみで構成されてもよい。但し、その場合のスクレイパーの材質は、金属溶湯に対して無反応性である必要がある。具体的な材料としては、アルミナファイバー、ゾノライト系ケイ酸カルシウム、ケイ酸カルシウムなどがある。
[第1実施例]
本実施例は、図1乃至図4に示される第1実施形態に相当している。本実施例における実施条件は、次のとおりである。
(実施条件)
・第1ロール1
・ロールシェル材質…SS400
・ロール直径…1500mm
・ロール幅W1(図2)…50mm
・金属板冷却速度…100℃/秒 以上
・第1金属溶湯4A
・材料…6022合金(Al−Si系合金);融点655℃
・注湯温度…680℃
・第1スクレイパー5A
・形態…図1の断面概略図に示したような折り曲げ形態を有したもの
・材質…鋼板を、シリカクロスで覆い、更にアルミナシリカクロスで覆ったもの
・先端部51Aの長さ…1.5cm
・錘6A…0.5kg
・第1ロール1の回転速度(周速)…20m/分
・凝固距離L1…110mm
なお、凝固距離L1とは、後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離である。
(結果)
(1)得られた薄板の表面を観察した。その結果、表面が平滑であり、且つ、板厚分布が圧延可能なほどに均一であった。
(2)得られた薄板について、「180度曲げ試験」及び「引張試験」を行った。
(2-1) 180度曲げ試験
・得られた薄板を、鋳造方向(第1ロール1の回転方向)に対して0度の向きに折り曲げて、薄板の表面と裏面とについて割れの有無を調査した。その結果、いずれの面にも、割れは発見されなかった。
・得られた薄板を、上記鋳造方向に対して90度の向きに折り曲げて、薄板の表面と裏面とについて割れの有無を調査した。その結果、いずれの面にも、割れは発見されなかった。
(2-2) 引張試験
・得られた薄板を、厚さ1mmまで冷間圧延し、430℃で1時間焼鈍し、水焼き入れし、T4処理した。試験片形状は、7号試験片とした。「引張強さ」、「0.2%耐力」、及び「伸び」を測定した。その結果、「引張強さ」は248MPaであり、「0.2%耐力」は115MPaであり、「伸び」は32%であった。これは、自動車ボディパネル材としての使用に耐え得るものであった。
(変形例)
注湯温度を、6022合金の液相線温度655℃の近傍である665℃として、上記と同様に実施したところ、同様の結果が得られた。
[第2実施例]
本実施例は、図9及び図10に示される第4実施形態に相当している。本実施例における実施条件は、次のとおりである。
(実施条件)
・第1ロール1
・ロールシェル材質…SS400
・ロール直径…1500mm
・ロール幅W1…50mm
・金属板冷却速度…100℃/秒 以上
・第2ロール2
・ロールシェル材質…銅
・ロール直径…250mm
・ロール幅W1…50mm
・ばね荷重…18N
・金属板冷却速度…100℃/秒 以上
・第1金属溶湯4A
・材料…3M01合金(Al−Mn系合金);
固相線温度:628℃、液相線温度:655℃
・注湯温度…700℃
・第2金属溶湯4B
・材料…4045合金(Al−Si系合金);
固相線温度:577℃、液相線温度:590℃
・注湯温度…610℃
・第3金属溶湯4C
・材料…3M01合金(Al−Mn系合金);
固相線温度:628℃、液相線温度:655℃
・注湯温度…750℃
・第1スクレイパー5A及び第2スクレイパー5B
・形態…図9の断面概略図に示したような折り曲げ形態を有したもの
・材質…鋼板を、シリカクロスで覆い、更にアルミナシリカクロスで覆ったもの
・先端部51A及び51Bの長さ…1.5cm
・錘6A…0.5kg
・錘6B…0.5kg
・第1ロール1及び第2ロール2の回転速度(周速)…20m/分
・凝固距離L1…110mm
・凝固距離L2…100mm
・凝固距離L3…80mm
なお、凝固距離L1とは、後部材31の下端縁311から第1スクレイパー5Aの先端部51Aまでの円周距離である。凝固距離L2とは、第1スクレイパー5Aの先端部51Aから両ロール1、2のキス点までの円周距離である。凝固距離L3とは、第3プール3Cの液面から第2スクレイパー5Bの先端部51Bまでの円周距離である。
(結果)
得られた薄板の界面を観察した。その結果、第1金属層と第2金属層と第3金属層との各界面に、金属溶湯の混合や反応は発見されなかった。すなわち、いずれの界面も、明瞭であった。
注目すべきは、第2金属溶湯4Bの注湯温度が、第1金属溶湯4A及び第3金属溶湯4Cの、液相線温度以下及び固相線温度以下でも、接合が可能であったことである。これは、スクレイパーで掻かれた後の第1金属層41及び第3金属層43の表面を、流動性の低い半凝固状態にしておいたからである。したがって、第2実施例で得られたクラッド金属板は、図14に示されるように、第3金属層403と第2金属層402との接合面が明瞭であり、当然に、第1金属層401と第2金属層402との接合面も明瞭である。この効果は、スクレイパーが、金属層の表面を平滑にするだけでなく、金属層の表面の固相率を調節して、流動性の低い半凝固状態にしておくことによって、初めて可能になったものであり、本発明の特徴である。これに対して、スクレイパーで掻かれた後の第1金属層41及び第3金属層43の表面が、固相状態である場合には、図15に示されるように、第3金属層503と第2金属層502との接合面に隙間600ができた。
(変形例)
第2金属溶湯4Bの注湯温度を、4055合金の液相線温度590℃の近傍である595℃として、上記と同様に実施したところ、同様の結果が得られた。
注目すべきは、第2金属溶湯4Bの注湯温度が、その合金の液相線温度近傍の低い温度でも接合できたことである。このように、第2金属溶湯4Bの注湯温度が低いために、第2金属溶湯4Bがガスを吸収しないで健全性を保ち、且つ、第2金属溶湯4Bが急冷凝固されて微細な組織を形成するので、できたクラッド金属板の延性が向上する。また、装置の冷却機能への負担を減らすことができるという利点もある。