JP2011203126A - スポット溶接部の検査方法 - Google Patents

スポット溶接部の検査方法 Download PDF

Info

Publication number
JP2011203126A
JP2011203126A JP2010070920A JP2010070920A JP2011203126A JP 2011203126 A JP2011203126 A JP 2011203126A JP 2010070920 A JP2010070920 A JP 2010070920A JP 2010070920 A JP2010070920 A JP 2010070920A JP 2011203126 A JP2011203126 A JP 2011203126A
Authority
JP
Japan
Prior art keywords
metal plate
laser
reflected
back surface
nugget
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070920A
Other languages
English (en)
Inventor
Yoshikatsu Hirakawa
義勝 平河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010070920A priority Critical patent/JP2011203126A/ja
Publication of JP2011203126A publication Critical patent/JP2011203126A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】スポット溶接部のナゲット部を精度良く検出可能なスポット溶接部の検査方法を提供する。
【解決手段】第一金属板1の表面に送信レーザを照射することにより第一金属板1および第二金属板2の内部に異なる周波数を有する合成されたレーザ超音波を励起させて、前記レーザ超音波の反射波の振幅および中心周波数を検出して、検出した前記中心周波数、および第一データに基づいて、前記レーザ超音波が反射した裏面5の傾斜角度を算出して、算出した裏面5の傾斜角度、検出した前記反射波の振幅、および第二データに基づいて、反射波がナゲット部11を透過したか否かを判定する。
【選択図】図4

Description

本発明は、複数の金属板をスポット溶接することにより形成されるスポット溶接部の検査方法に関し、詳細にはスポット溶接部におけるナゲット部の検出方法に関する。
従来、複数の金属板をスポット溶接することにより形成されるスポット溶接部に超音波を照射してスポット溶接部のナゲット部を検出する技術は公知である(例えば、特許文献1)。
図5に示すように、例えば、ナゲット部100の検出は、(1)スポット溶接された第一金属板110および第二金属板120に対して、第一金属板110側から超音波を照射して、第一金属板110および第二金属板120の内部に超音波を伝播させ、(2)第二金属板120の裏面121で反射した超音波を検出することにより行われる。なお、超音波は音響インピーダンスの違いにより第二金属板120の裏面121で反射する(図5の太線矢印参照)。
しかし、上記反射波の進行方向は、裏面121の傾斜角度により変わる。つまり、裏面121に存在する不均一な形状の圧痕部101で超音波が反射する場合、反射した超音波の進行方向が圧痕部101の傾斜角度に応じて変わる。
これにより、圧痕部101で反射した超音波を精度良く検出できず、圧痕部101上方にナゲット部100がある場合は、ナゲット部100を精度良く検出できなかった。ひいてはナゲット部100の直径Dの定量化を行うことが困難であった。
特開平11−304774号公報
本発明は、スポット溶接部のナゲット部を精度良く検出可能なスポット溶接部の検査方法を提供する。
請求項1に記載のスポット溶接部の検査方法は、
第一金属板と第二金属板とを重ね合わせた状態で両面側から電極で挟んでスポット溶接することにより形成されるナゲット部と、前記ナゲット部の周囲に形成される熱影響部と、第一金属板の外側面となる表面および第二金属板の外側面となる裏面に形成される圧痕部と、を有するスポット溶接部に関して、
前記第一金属板の表面に送信用レーザを照射することにより、前記第一金属板および第二金属板の内部に異なる周波数を有する合成されたレーザ超音波を励起させるとともに、前記第二金属板の裏面にて反射し、前記送信用レーザの照射位置に戻ってきた前記レーザ超音波である反射波を検出することによって、前記ナゲット部を検出するスポット溶接部の検査方法であって、
前記レーザ超音波を様々な傾斜角度の前記裏面で反射させたときの、前記反射波の中心周波数と、前記裏面の傾斜角度と、の対応関係を示す第一データと、
様々な傾斜角度の前記裏面にて反射した前記反射波が前記ナゲット部を透過したときの、前記裏面の傾斜角度と、前記反射波の振幅の範囲と、の対応関係を示す第二データと、
を予め作成しておき、
前記第一金属板の表面に送信レーザを照射することにより前記第一金属板および第二金属板の内部に異なる周波数を有する合成されたレーザ超音波を励起させて、
前記レーザ超音波の反射波の振幅および中心周波数を検出して、
検出した前記中心周波数、および前記第一データに基づいて、前記レーザ超音波が反射した前記裏面の傾斜角度を算出して、
算出した前記裏面の傾斜角度、検出した前記反射波の振幅、および前記第二データに基づいて、前記反射波が前記ナゲット部を透過したか否かを判定する。
請求項2に記載のスポット溶接部の検査方法においては、
前記スポット溶接部において、前記反射波が前記ナゲット部を透過したと判定した範囲から、前記ナゲット部の大きさを算出する。
請求項3に記載のスポット溶接部の検査方法においては、
前記レーザ超音波は、可視光と同様な周波数を有する超音波である。
本発明によれば、スポット溶接部のナゲット部を精度良く検出可能である。
スポット溶接部の検査形態を示す模式図である。 被検査物の裏面で反射しているレーザ超音波を示す図であり、(a)は平らな裏面で反射しており、(b)は傾斜がある裏面で反射している。 (a)は被検査物入射時のレーザ超音波の振幅および中心周波数を示す図であり、(b)は図2(a)に示す平らな裏面からの反射波の振幅および中心周波数を示す図であり、(c)は図2(b)に示す傾斜がある裏面からの反射波の振幅および中心周波数を示す図である。 スポット溶接部の拡大図である。 従来のスポット溶接部の検査形態を示す模式図である。
以下に、本発明の実施形態であるスポット溶接部10の検査方法を用いて検査されるスポット溶接部10の構造について説明する。
図1に示すように、平板形状を有する第一金属板1と第二金属板2とが、上下に重ね合わされた状態で、スポット溶接によって溶着され、スポット溶接部10が形成されている。
スポット溶接部10は、第一金属板1と第二金属板2とがスポット溶接された部分である。スポット溶接は、第一金属板1と第二金属板2とを重ね合わせて、これらを電極(不図示)で両側(上下)から挟んで加圧しつつ通電し、その重ね合わせ面近傍の金属を抵抗発熱により溶融させて、その後、冷却、凝固させることによって行われる。
スポット溶接部10は、ナゲット部11、熱影響部12、および圧痕部13・14を有する。
スポット溶接部10において、ナゲット部11は、第一金属板1と第二金属板2とのスポット溶接時にその重ね合わせ面近傍の金属が溶融して凝固した部分である。ナゲット部11においては、第一金属板1と第二金属板2とが溶着した状態となる。
スポット溶接部10において、熱影響部12は、ナゲット部11の外周に形成されており、スポット溶接時に金属板1・2とが未溶融温度域で加熱され、相変態や結晶粒成長等の組織上の影響を受けた部分である。熱影響部12においては、第一金属板1と第二金属板2とが圧着された状態となる。熱影響部12の左右両側においては、第一金属板1と第二金属板2との間に空気層3が形成されており、第一金属板1と第二金属板2とが非接合の状態となる。
スポット溶接部10の接合強度は、ナゲット部11の大きさ(直径(D)の大きさ)と相関関係にあり、このため、スポット溶接部10の良否はナゲット部11の直径(D)の大きさで評価される。
スポット溶接部10において、圧痕部13・14は、凹形状に形成されており、圧痕部13が第一金属板1の外側面となる表面(上面)4に形成され、圧痕部14が第二金属板2の外側面となる裏面(下面)5に形成されている。表面4・裏面5は、スポット溶接時の金属板1・2において、それぞれの重ね合わせ面に対する裏側の面である。
圧痕部13・14は、スポット溶接時に、金属板1・2が電極で挟圧されることにより形成され、電極先端部の形状に相当する凹み形状を有する。なお、裏面5において、圧痕部14以外の部分(平面部6)は平面形状に形成されている。
本発明の実施形態であるスポット溶接部10の検査方法は、スポット溶接部10におけるナゲット部11を検出する方法である。
前記スポット溶接部10の検査方法は、レーザ超音波計測装置20、および制御装置(不図示)を用いて行われる。
レーザ超音波計測装置20は、公知のレーザ超音波装置であり、被検査物に向けて送信用レーザ(パルスレーザ光)を照射することにより被検査物の内部にレーザ超音波を励起させるとともに、レーザ超音波が励起される送信用レーザ照射位置付近に受信用レーザを照射し、照射した受信用レーザの被検査物からの戻り光量に基づき、励起したレーザ超音波に係る情報(後述する、反射波の振幅、中心周波数等)を検出するものである。
レーザ超音波計測装置20は、第一金属板1の上方に所定間隔を空けて配置されており、第一金属板1の表面4に向けて下方(ナゲット部11の直径方向と直交する方向)にレーザを照射可能である。
レーザ超音波計測装置20は、図示せぬ可動アーム等の操作装置に取り付けられており、第一金属板1の表面4と所定の距離を保ちつつ左右に移動可能である(図1の点線矢印参照)。
レーザ超音波計測装置20から照射された送信用レーザは、第一金属板1の表面4に到達して、第一金属板1内部にレーザ超音波を励起させる。
前記レーザ超音波は広域帯の周波数の合成波、すなわち異なる周波数を有する合成されたレーザ超音波であり、例えばレーザ超音波(送信用レーザ)のパルス幅をピコ秒とすることによって励起される。
なお、レーザ超音波の周波数は、送信用レーザが第一金属板1の表面4に衝突するときに発生する。このときに発生する周波数は照射されるレーザ超音波のパルス幅によって決まる。
励起されるレーザ超音波として、スペクトルを表示させる可視光程度の波長(可視光と同様な(同帯域の)周波数)のレーザ超音波を用いる場合、前記レーザ超音波により同様なスペクトルを表すことが可能である。可視光における波長は360mm〜830mm程度であり、レーザ超音波のパルス幅をピコ秒にすることによって、可視光と同様の範囲の波長のレーザ超音波を用いることが十分可能となる。
レーザ超音波計測装置20において、送信用レーザによって励起されるレーザ超音波は、上記した広域帯の周波数の合成波であり、可視光と同様な周波数を有する超音波である。これにより、図2(a)および図2(b)に示すように、レーザ超音波計測装置20から被検査物30・40に向けて送信用レーザを照射する場合、合成されたレーザ超音波が被検査物30・40内部に励起され、このレーザ超音波が被検査物30・40の裏面31・41に到達して反射するときに分散が起き、分散からスペクトルが発生する。分散されたレーザ超音波は、それぞれの周波数によって反射角度(進行方向)が変わる。また、レーザ超音波の進行方向に対する裏面31・41の状態(傾斜角度)によって、レーザ超音波の散乱状態が変わる。
この場合、レーザ超音波の反射面が、送信用レーザの入射方向に対する直交方向と平行な面である場合(図2(a)に示す場合)のみならず、送信用レーザの入射方向に対する直交方向から傾斜している面である場合(図2(b)に示す場合)であっても、反射時に分散されたレーザ超音波のうちで、送信用レーザの入射面(送信用レーザ照射位置)に向けて進行する(戻ってくる)レーザ超音波(反射波)が存在する。この分散されたレーザ超音波のうちで送信用レーザの入射面に戻ってくる反射波が裏面31・41の傾斜角度の大きさに応じて変わる。従って、裏面31・41の傾斜角度の大きさに応じて、前記入射面に戻ってくる反射波の振幅が変化し、レーザ超音波のうち最も振幅値が大きくなる周波数である中心周波数が変わる。
図3(a)に示すグラフは、入射時におけるレーザ超音波の周波数と振幅との関係を示し、図3(b)に示すグラフは、入射方向に対する直交方向と平行な面にて反射した反射波(図2(a)に示す場合)の周波数と振幅との関係を示し、図3(c)に示すグラフは、入射方向に対する直交方向から傾斜している面にて反射した反射波(図2(b)に示す場合)の周波数と振幅との関係を示しており、図3(b)に示すグラフと図3(c)に示すグラフとでは振幅および中心周波数が異なっている。
図4に示すように、レーザ超音波計測装置20から送信レーザを第一金属板1の表面4(スポット溶接部10)に向けて照射すると、励起されたレーザ超音波は、金属板1・2の内部を伝播し、第二金属板2の裏面5(圧痕部14・平面部6)に到達して反射する(図4の太線矢印参照)。
このときの反射波の振幅および中心周波数は、レーザ超音波が反射する裏面5の傾斜角度の大きさに応じて変わる。
また、レーザ超音波計測装置20から、送信レーザをスポット溶接部10に向けて照射した際に励起されたレーザ超音波は、ナゲット部11を透過する場合と、熱影響部12を透過する場合とでは、振幅の減衰率が異なっており、ナゲット部11を透過する場合の方が熱影響部12を透過する場合よりも減衰率が大きい。こうした両者間での減衰率の差は、ナゲット部11は第一金属板1および第二金属板2が溶融・再凝固した樹枝状結晶を主体とする組織の金属であるのに対し、熱影響部12は第一金属板1および第二金属板2が固相結合されただけで組織の著しい変化がない部分であるためであり、このような組織の差(結晶粒の大きさの違い)等によってあらわれる。
このように、反射波はナゲット部11を透過する方が熱影響部12を透過するよりも、振幅の落ち込みが大きいので、この違いを利用して反射波がナゲット部11を透過したか否かを判定可能である。すなわち、ナゲット部11と熱影響部12との境界を判定可能である。
レーザ超音波計測装置20は制御装置に接続されており、レーザ超音波計測装置20で検出された反射波に係る情報(振幅、中心周波数等)が制御装置に送信されるように構成されている。
前記制御装置は、制御部、および記憶部を備える。
制御部は、レーザ超音波計測装置20から受信した情報に後述する所定の処理を行うことによって、ナゲット部11を検出し、ナゲット部11の直径(D)を算出する。
記憶部は、制御部による各種の演算に用いられるパラメータである第一データ、および第二データを記憶している。
第一データは、反射波が反射してきた裏面5の傾斜角度の大きさを算出するために用いるデータである。
第一データは、レーザ超音波計測装置20の送信用レーザによって励起されたレーザ超音波を様々な傾斜角度の裏面5で反射させたときの、裏面5の傾斜角度と、反射波の中心周波数と、の対応関係を示す。例えば、反射波の中心周波数が(A1)のときは裏面5の傾斜角度が(B1)となり、反射波の中心周波数が(A2)のときは裏面5の傾斜角度が(B2)となる。このように、第一データは、種々の反射波の中心周波数とそれに対応する裏面5の傾斜角度とを示すデータである。
第一データは、レーザ超音波を様々な傾斜角度の裏面5で反射させて、このときの反射波の中心周波数をそれぞれ検出することにより作成される。
第二データは、反射波がナゲット部11を透過したか否か、を判定するために用いるデータである。
第二データは、様々な傾斜角度の裏面5から反射した各反射波がナゲット部11を透過したときの、裏面5の傾斜角度と、反射波の振幅の範囲と、の対応関係を示す。
第二データは、ナゲット部11の上方から送信用レーザを照射して、このときの反射波、すなわちナゲット部11を透過した反射波の振幅を検出することにより作成される。
また、上記したように、反射波の振幅は、裏面5の傾斜角度の大きさに応じて変わるので、第二データは、裏面5の傾斜角度の大きさも考慮して作成される。詳細には、第二データは、様々な傾斜角度の裏面5から反射した各反射波について、それぞれの振幅を検出することで作成される。このように作成された第二データは、裏面5の傾斜角度の大きさと、反射波の振幅の範囲(振幅範囲)と、の対応関係を示すデータとなる。例えば、裏面5の傾斜角度が(B1)のときは振幅範囲が(C11〜C12)となり、裏面5の傾斜角度が(B2)のときは振幅範囲が(C21〜C22)となる。このように、第二データは、種々の反射波の振幅範囲とそれに対応する裏面5の傾斜角度とを示すデータである。
以下では、ナゲット部11を検出して、ナゲット部11の直径(D)を算出するときの手順について(1)〜(5)の順に説明する。
なお、レーザ超音波計測装置20による送信用レーザの照射を、圧痕部14の上方から行うこととする。
また、第一データにおいては、「反射波の中心周波数が(A1)のときは裏面5の傾斜角度が(B1)」と示され、第二データにおいては、「裏面5の傾斜角度が(B1)のときは振幅範囲が(C11〜C12)」と示されていることとする。
(1)レーザ超音波計測装置20からスポット溶接部10に向けて送信用レーザを照射する。これにより励起されたレーザ超音波は圧痕部14で反射して、反射波が上方に伝播する。
(2)レーザ超音波計測装置20は受信用レーザを照射し、この反射波の振幅および中心周波数を検出する。なお、レーザ超音波計測装置20が検出した反射波の振幅を(C13)とし、中心周波数を(A1)とする。
(3)制御部は、レーザ超音波計測装置20から反射波の振幅および中心周波数に係る情報を受信する。制御部は、この受信した中心周波数(A1)と、記憶部に記憶されている上記第一データと、に基づいて圧痕部14の傾斜角度(B1)を算出する。
(4)制御部は、上記(3)で算出した圧痕部14の傾斜角度(B1)と、上記(2)でレーザ超音波計測装置20から受信した反射波の振幅(C13)と、記憶部に記憶されている上記第二データと、に基づいて、送信用レーザ照射位置の下方(送信用レーザの照射方向)のナゲット部11を検出する。
詳細には、制御部は、受信した反射波の振幅(C13)が、第二データに示される条件「傾斜角度(B1)のときは振幅範囲(C11〜C12)」を満たすか否かを判定する。制御部は、反射波の振幅(C13)が、(C11〜C12)内にあるときは反射波がナゲット部11を透過した、すなわちナゲット部11が送信用レーザ照射位置の下方に存在すると判定し、(C11〜C12)内にないときはナゲット部11が送信用レーザ照射位置の下方に存在しないと判定する。
(5)制御部は、上記(1)〜(4)の作業を、レーザ超音波計測装置20の左右の位置をずらしながら行っていく。そして、制御部は、ナゲット部11が送信用レーザ照射位置の下方に存在すると判定した範囲(左右の距離)を、ナゲット部11の直径(D)として算出する。
以上のように構成することで、圧痕部14からの反射波を精度良く検出でき、ナゲット部を精度良く検出可能である。ひいてはナゲット部の直径(D)の定量化を行うことが可能となる。
また、形状が一定でない圧痕部14を含むスポット溶接部10を対象に、検査を行うことが可能である。
1 第一金属板
2 第二金属板
3 空気層
4 表面
5 裏面
10 スポット溶接部
11 ナゲット部
12 熱影響部
13・14 圧痕部
20 レーザ超音波計測装置

Claims (3)

  1. 第一金属板と第二金属板とを重ね合わせた状態で両面側から電極で挟んでスポット溶接することにより形成されるナゲット部と、前記ナゲット部の周囲に形成される熱影響部と、第一金属板の外側面となる表面および第二金属板の外側面となる裏面に形成される圧痕部と、を有するスポット溶接部に関して、
    前記第一金属板の表面に送信用レーザを照射することにより、前記第一金属板および第二金属板の内部に異なる周波数を有する合成されたレーザ超音波を励起させるとともに、前記第二金属板の裏面にて反射し、前記送信用レーザの照射位置に戻ってきた前記レーザ超音波である反射波を検出することによって、前記ナゲット部を検出するスポット溶接部の検査方法であって、
    前記レーザ超音波を様々な傾斜角度の前記裏面で反射させたときの、前記反射波の中心周波数と、前記裏面の傾斜角度と、の対応関係を示す第一データと、
    様々な傾斜角度の前記裏面にて反射した前記反射波が前記ナゲット部を透過したときの、前記裏面の傾斜角度と、前記反射波の振幅の範囲と、の対応関係を示す第二データと、
    を予め作成しておき、
    前記第一金属板の表面に送信レーザを照射することにより前記第一金属板および第二金属板の内部に異なる周波数を有する合成されたレーザ超音波を励起させて、
    前記レーザ超音波の反射波の振幅および中心周波数を検出して、
    検出した前記中心周波数、および前記第一データに基づいて、前記レーザ超音波が反射した前記裏面の傾斜角度を算出して、
    算出した前記裏面の傾斜角度、検出した前記反射波の振幅、および前記第二データに基づいて、前記反射波が前記ナゲット部を透過したか否かを判定する、
    スポット溶接部の検査方法。
  2. 前記スポット溶接部の検査方法においては、
    前記スポット溶接部において、前記反射波が前記ナゲット部を透過したと判定した範囲から、前記ナゲット部の大きさを算出する、
    請求項1に記載のスポット溶接部の検査方法。
  3. 前記レーザ超音波は、可視光と同様な周波数を有する超音波である、
    請求項1または請求項2に記載のスポット溶接部の検査方法。
JP2010070920A 2010-03-25 2010-03-25 スポット溶接部の検査方法 Pending JP2011203126A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070920A JP2011203126A (ja) 2010-03-25 2010-03-25 スポット溶接部の検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070920A JP2011203126A (ja) 2010-03-25 2010-03-25 スポット溶接部の検査方法

Publications (1)

Publication Number Publication Date
JP2011203126A true JP2011203126A (ja) 2011-10-13

Family

ID=44879925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070920A Pending JP2011203126A (ja) 2010-03-25 2010-03-25 スポット溶接部の検査方法

Country Status (1)

Country Link
JP (1) JP2011203126A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205914A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法およびその検査装置
JP2016205915A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法
WO2020012694A1 (ja) * 2018-07-10 2020-01-16 株式会社 東芝 制御方法、検査システム、プログラム、及び記憶媒体
US11561204B2 (en) 2019-08-28 2023-01-24 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
WO2023024741A1 (zh) * 2021-08-23 2023-03-02 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法
US11980975B2 (en) 2019-09-24 2024-05-14 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205914A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法およびその検査装置
JP2016205915A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法
WO2020012694A1 (ja) * 2018-07-10 2020-01-16 株式会社 東芝 制御方法、検査システム、プログラム、及び記憶媒体
JP2020008452A (ja) * 2018-07-10 2020-01-16 株式会社東芝 制御方法、検査システム、プログラム、及び記憶媒体
US20220120715A1 (en) * 2018-07-10 2022-04-21 Kabushiki Kaisha Toshiba Control method, inspection system, and storage medium
US11709151B2 (en) * 2018-07-10 2023-07-25 Kabushiki Kaisha Toshiba Control method, inspection system, and storage medium
US11561204B2 (en) 2019-08-28 2023-01-24 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
US11980975B2 (en) 2019-09-24 2024-05-14 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
WO2023024741A1 (zh) * 2021-08-23 2023-03-02 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法

Similar Documents

Publication Publication Date Title
JP5651533B2 (ja) 溶接検査方法および装置
CA2835899C (en) Three-dimensional matrix phased array spot weld inspection system
CN102294549B (zh) 焊接系统及焊接方法
JP2011203126A (ja) スポット溶接部の検査方法
US20170021446A1 (en) Ultrasonic in-process monitoring and feedback of resistance spot weld quality
CN110431412B (zh) 用于测试点焊的相控阵列探头和方法
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
JP2010500581A (ja) 電気抵抗溶接を利用して作製される溶接点のオンライン超音波検査方法
CN108508087A (zh) 搭接焊缝熔宽检测方法、装置和系统
JP2007101329A (ja) 溶接部溶け込み深さ探査方法及び溶接部溶け込み深さ探査装置
WO2023024741A1 (zh) 基于激光超声的激光点焊微焊点质量检测装置及方法
JP2007057485A (ja) 溶接部可視化装置及び溶接部可視化方法
JPH06265529A (ja) スポット溶接部の評価方法及び装置
JP2008151763A (ja) 溶接部測定方法及び溶接部測定装置
JP4067203B2 (ja) スポット溶接の検査方法
JP4120360B2 (ja) 超音波によるスポット溶接部の評価方法及び装置
JP5053959B2 (ja) 電極チップの接触面積比評価方法、ワークの内部抵抗評価方法、超音波の減衰率評価方法及び電極チップの傾斜状態判別方法
JP2008164397A (ja) 欠陥検出方法及びこれに用いる欠陥検出装置
JP4731358B2 (ja) 超音波によるスポット溶接部の評価方法及び装置
JP6231894B2 (ja) スポット溶接の検査方法及びその装置
JP4614219B2 (ja) レーザ溶接継手の検査方法及び検査装置
JP2682390B2 (ja) 溶接部の超音波探傷装置
JP2010223653A (ja) 構造物の内部状態を測定する測定装置及び測定方法
JP2006126085A (ja) レーザ溶接継手の検査方法及び検査装置
JP2016205914A (ja) スポット溶接部の検査方法およびその検査装置