JP2011195759A - Method for manufacturing fuel oil c - Google Patents

Method for manufacturing fuel oil c Download PDF

Info

Publication number
JP2011195759A
JP2011195759A JP2010066399A JP2010066399A JP2011195759A JP 2011195759 A JP2011195759 A JP 2011195759A JP 2010066399 A JP2010066399 A JP 2010066399A JP 2010066399 A JP2010066399 A JP 2010066399A JP 2011195759 A JP2011195759 A JP 2011195759A
Authority
JP
Japan
Prior art keywords
oil
heavy oil
hydrogen sulfide
heavy
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010066399A
Other languages
Japanese (ja)
Inventor
Takehiko Takahashi
武彦 高橋
Tatsuya Hayasaka
辰也 早坂
Kako Fujiyama
賀子 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010066399A priority Critical patent/JP2011195759A/en
Publication of JP2011195759A publication Critical patent/JP2011195759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a fuel oil C which is reduced in the concentration of hydrogen sulfide contained in a base material for use in fuel oil C.SOLUTION: The method comprises adding 0.01-2.0 vol.%, based on the fuel oil C whole amount, of water to a fuel oil C base material selected from the bottom oil obtained from an atmospheric distillation apparatus, the bottom oil obtained from a vacuum distillation apparatus, the residual oil obtained from a bottom oil desulfurization apparatus, the residual oil obtained from a fluid catalytic cracking, and the extracted oil.

Description

本発明はC重油の製造方法に関し、詳しくは、C重油基材中に含まれる硫化水素濃度を低減し、かつC重油から発生する硫化水素量を低減したC重油の製造方法に関する。   The present invention relates to a method for producing C heavy oil, and more particularly to a method for producing C heavy oil in which the concentration of hydrogen sulfide contained in a C heavy oil base material is reduced and the amount of hydrogen sulfide generated from C heavy oil is reduced.

C重油は、ボイラー等の外燃機器燃料、大型船舶や発電用などのディーゼル機器燃料、ガスタービン等の燃焼機器の燃料として広く用いられる。
C重油を製造する場合の基材としては、常圧残油(常圧蒸留装置から得られる塔底油(AR))、残油脱硫重油、減圧残油(減圧蒸留装置から得られる塔底油(VR))、スラリー油、エキストラクト油等が挙げられ、これに必要に応じ粘度調整用油(カッター材)を適量配合してC重油を製造する。これらのC重油基材のうち、特に重質な減圧残油には硫化水素が含まれる可能性が比較的高い。硫化水素は毒性があり、船舶のハッチ内には滞留した硫化水素が予想以上に高濃度となることがあり、安全上硫化水素の濃度を低減することが望まれている。
C重油基材中の硫化水素濃度の低減には薬品を使用する方法も米国を中心に行われているが、薬品が高価であり、継続的に使用するには必ずしも経済的に最適ではない。
なお、特許文献1(特許第3608095号公報)及び特許文献2(特開2002−146364号公報)には、水素化脱硫触媒を用いて重質油を水素化処理することにより硫黄含有量を低減する方法が開示されており、通常は重質油中の硫黄含有量を低減する方法が行われている。硫黄含有量を低減することにより、硫化水素の発生はある程度抑制される。しかし、原油の種類によっては硫化水素が発生しやすいものもあり、水素化処理では硫黄含有量はある程度低減できても、硫化水素含有量を低減できない場合もあり、船舶のハッチに滞留する硫化水素濃度を満足できる程度に低減することは難しく、常圧蒸留装置で処理する原油の種類及び各種原油の混合比率が制約を受けざるを得なかった。
したがって、硫化水素の発生しやすい原油を常圧蒸留装置で処理しても、硫化水素の発生を抑制でき、各種C重油基材を使用して製造したC重油を船舶用に用いてもハッチに滞留する硫化水素濃度を抑制することができるC重油が望まれている。
以上の背景から、安価かつ確実にC重油中の硫化水素濃度及びC重油から発生する硫化水素量を低減できる方法の開発が望まれている。
C heavy oil is widely used as fuel for external combustion equipment such as boilers, diesel equipment fuel for large ships and power generation, and combustion equipment such as gas turbines.
As base materials for producing C heavy oil, atmospheric residual oil (column bottom oil (AR) obtained from an atmospheric distillation apparatus), residual oil desulfurized heavy oil, vacuum residual oil (column bottom oil obtained from a vacuum distillation apparatus) (VR)), slurry oil, extract oil, and the like, and if necessary, an appropriate amount of viscosity adjusting oil (cutter material) is blended to produce C heavy oil. Among these C heavy oil base materials, the possibility of containing hydrogen sulfide is relatively high in particularly heavy vacuum residue. Hydrogen sulfide is toxic, and hydrogen sulfide staying in a ship's hatch may become higher than expected, and it is desired to reduce the concentration of hydrogen sulfide for safety.
In order to reduce the hydrogen sulfide concentration in the C heavy oil base, chemicals are also used mainly in the United States, but the chemicals are expensive and not always economically optimal for continuous use.
In Patent Document 1 (Japanese Patent No. 36060895) and Patent Document 2 (Japanese Patent Laid-Open No. 2002-146364), the sulfur content is reduced by hydrotreating heavy oil using a hydrodesulfurization catalyst. A method for reducing the sulfur content in heavy oil is usually performed. By reducing the sulfur content, the generation of hydrogen sulfide is suppressed to some extent. However, some types of crude oil are prone to generate hydrogen sulfide, and even though the hydrogen content can reduce the sulfur content to some extent, the hydrogen sulfide content may not be reduced. It was difficult to reduce the concentration to a satisfactory level, and the type of crude oil to be processed by the atmospheric distillation apparatus and the mixing ratio of various crude oils had to be restricted.
Therefore, even if crude oil, which is prone to generate hydrogen sulfide, is treated with an atmospheric distillation device, the generation of hydrogen sulfide can be suppressed, and even if C heavy oil manufactured using various C heavy oil base materials is used for ships, it is a hatch. A C heavy oil capable of suppressing the concentration of staying hydrogen sulfide is desired.
From the above background, development of a method capable of reducing the hydrogen sulfide concentration in C heavy oil and the amount of hydrogen sulfide generated from C heavy oil at low cost is desired.

特許第3608095号公報Japanese Patent No. 36008095 特開2002−146364号公報JP 2002-146364 A

本発明はこのような実情に鑑みてなされたものであり、C重油基材中の硫化水素を低減することが可能な方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the method which can reduce the hydrogen sulfide in C heavy oil base material.

C重油に硫化水素が溶解している原因としては、常圧蒸留装置から得られる塔底油(AR)、減圧蒸留装置から得られる塔底油(VR)、残油脱硫装置から得られる残油(RDSボトム)、流動接触分解装置から得られる残油(スラリー油)に比較的含有している可能性が高いこと、及び減圧蒸留装置のボトム温度を下げることで塔底油中の硫化水素濃度が低下することから判断して、減圧蒸留装置など各装置のボトム部分での熱分解反応により硫化水素が生成していると推測される。一般に、この熱分解反応はある程度の緩和は可能であるが、減圧蒸留装置を例にとれば、加熱炉出口温度を下げるなど減圧軽油の収率を大きく犠牲にすることなしには恒常的に硫化水素の生成を抑制することは難しい。   The reason why hydrogen sulfide is dissolved in C heavy oil is that the bottom oil (AR) obtained from the atmospheric distillation apparatus, the bottom oil (VR) obtained from the vacuum distillation apparatus, and the residual oil obtained from the residual oil desulfurization apparatus (RDS bottom), the possibility that it is relatively contained in the residual oil (slurry oil) obtained from the fluid catalytic cracker, and the hydrogen sulfide concentration in the bottom oil by lowering the bottom temperature of the vacuum distillation unit It is presumed that hydrogen sulfide is generated by the thermal decomposition reaction at the bottom part of each apparatus such as a vacuum distillation apparatus. In general, this thermal decomposition reaction can be moderated to some extent. However, if a vacuum distillation apparatus is used as an example, it is constantly sulfided without sacrificing the yield of vacuum gas oil, such as by lowering the furnace outlet temperature. It is difficult to suppress the production of hydrogen.

本発明者らは鋭意検討を行った結果、原油を精製して得られるC重油基材中の硫化水素濃度を低減し、かつC重油から発生する硫化水素量を低減したC重油の製造方法を見出し、本発明を完成させるに至った。
すなわち、本発明は、C重油基材に水をC重油全量基準で0.01〜2.0容量%添加することを特徴とする、硫化水素濃度および発生する硫化水素量が低減されたC重油の製造方法に関する。
また、本発明は、C重油基材が、常圧蒸留装置から得られる塔底油、減圧蒸留装置から得られる塔底油、残油脱硫装置から得られる残油、流動接触分解装置から得られる残油およびエキストラクト油から選ばれることを特徴とする前記記載のC重油の製造方法に関する。
さらに、本発明は、50℃における動粘度が30〜3000mm/s、引火点が60℃以上、15℃における密度が0.90〜1.01g/cm、硫黄分が4.5質量%以下であることを特徴とする前記記載の方法で製造したC重油に関する。
As a result of intensive studies, the inventors of the present invention have developed a method for producing C heavy oil in which the hydrogen sulfide concentration in the C heavy oil base material obtained by refining crude oil is reduced and the amount of hydrogen sulfide generated from the C heavy oil is reduced. The headline and the present invention have been completed.
That is, the present invention is a C heavy oil having a reduced hydrogen sulfide concentration and a generated hydrogen sulfide amount, characterized in that water is added to a C heavy oil base in an amount of 0.01 to 2.0% by volume based on the total amount of C heavy oil. It relates to the manufacturing method.
In the present invention, the C heavy oil base material is obtained from a bottom oil obtained from an atmospheric distillation apparatus, a bottom oil obtained from a vacuum distillation apparatus, a residual oil obtained from a residual oil desulfurization apparatus, and a fluid catalytic cracking apparatus. The present invention relates to the method for producing C heavy oil as described above, which is selected from residual oil and extract oil.
Furthermore, the present invention has a kinematic viscosity at 50 ° C. of 30 to 3000 mm 2 / s, a flash point of 60 ° C. or higher, a density at 15 ° C. of 0.90 to 1.01 g / cm 3 , and a sulfur content of 4.5 mass%. The present invention relates to C heavy oil produced by the above-described method, which is as follows.

本発明の方法により、原油を精製して得られるC重油基材中の硫化水素濃度を低減させることができ、硫化水素濃度が低くかつ発生する硫化水素量が低減されたC重油を製造することが可能となる。   By the method of the present invention, it is possible to reduce the hydrogen sulfide concentration in the C heavy oil base material obtained by refining crude oil, and to produce C heavy oil having a low hydrogen sulfide concentration and a reduced amount of generated hydrogen sulfide. Is possible.

以下、本発明について詳細に説明する。
本発明のC重油の製造方法は、C重油基材に特定量の水を添加することを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing C heavy oil of the present invention is characterized by adding a specific amount of water to a C heavy oil base material.

C重油基材としては、常圧蒸留装置から得られる塔底油、減圧蒸留装置から得られる塔底油、残油脱硫装置から得られる残油、流動接触分解装置から得られる残油およびエキストラクト油から選ばれる少なくとも1種のC重油基材が用いられる。これらのC重油基材は、1種を単独で用いてもよく、2種以上併用して用いることができる。   As the C heavy oil base material, the bottom oil obtained from the atmospheric distillation apparatus, the bottom oil obtained from the vacuum distillation apparatus, the residual oil obtained from the residual oil desulfurization apparatus, the residual oil and extract obtained from the fluid catalytic cracking apparatus At least one C heavy oil base selected from oil is used. These C heavy oil bases may be used alone or in combination of two or more.

ここで、常圧蒸留装置から得られる塔底油とは、常圧蒸留装置で原油を常圧において蒸留して得られる残油である(常圧残油ともいう。)。減圧蒸留装置から得られる塔底油とは、減圧蒸留装置で常圧残油を減圧下で蒸留して得られる残油である(減圧残油ともいう。)。残油脱硫装置から得られる残油とは、残油脱硫装置において常圧残油または減圧残油を脱硫したときに得られる残油である。流動接触分解装置から得られる残油とは、残油脱硫装置から得られる残油等を流動接触分解装置で分解して得られる残油である(スラリー油ともいう。)。エキストラクト油とは、潤滑油原料用減圧蒸留装置からの留分を、溶剤抽出法により抽出分離したもののうち潤滑油に適さない芳香族成分のことである。   Here, the tower bottom oil obtained from the atmospheric distillation apparatus is a residual oil obtained by distilling crude oil at an atmospheric pressure with an atmospheric distillation apparatus (also referred to as an atmospheric residue). The tower bottom oil obtained from the vacuum distillation apparatus is a residual oil obtained by distilling atmospheric residual oil under reduced pressure using a vacuum distillation apparatus (also referred to as vacuum residual oil). The residual oil obtained from the residual oil desulfurization apparatus is a residual oil obtained when the atmospheric residual oil or the vacuum residual oil is desulfurized in the residual oil desulfurization apparatus. The residual oil obtained from the fluid catalytic cracker is a residual oil obtained by cracking residual oil obtained from the residual oil desulfurizer with a fluid catalytic cracker (also referred to as slurry oil). Extract oil is an aromatic component that is not suitable for lubricating oil among the fractions extracted from the vacuum distillation apparatus for lubricating oil raw material by solvent extraction.

なお、C重油基材の粘度を調整する目的で、これらのC重油基材に必要に応じ粘度調整用油(カッター材ともいう。)を適量混合することもできる。
かかる粘度調整用油としては、常圧蒸留装置から得られる直留軽油、流動接触分解装置から得られる分解軽油等が挙げられる。粘度調整用油の配合比率は、所望するC重油の動粘度に適合するように、使用するC重油基材及び粘度調整用油自体の動粘度により適宜決められる。
In addition, for the purpose of adjusting the viscosity of the C heavy oil base material, an appropriate amount of viscosity adjusting oil (also referred to as a cutter material) can be mixed with the C heavy oil base material as necessary.
Examples of the viscosity adjusting oil include straight run light oil obtained from an atmospheric distillation apparatus, cracked light oil obtained from a fluid catalytic cracking apparatus, and the like. The blending ratio of the viscosity adjusting oil is appropriately determined depending on the kinematic viscosity of the C heavy oil base material used and the viscosity adjusting oil itself so as to match the desired kinematic viscosity of the C heavy oil.

本発明の方法において、C重油基材に水を添加する方法については特に限定はないが、
例えば、水分の沸騰しない温度条件において水を添加する、水と油の混合を確実にするためにミキサーを用いるなどの方法を用いることが望ましい。
また、C重油基材の粘度調整のために粘度調整用油を用いる場合は、C重油基材と粘度調整用油との混合油に水を添加しても良く、先に粘度調整用油に水を添加しておき、これをC重油基材に混合しても良い。
水の添加量はC重油全量基準で0.01容量%以上であることが必要であり、硫化水素濃度をより効率的に低減させるためには0.02容量%以上が好ましく、0.05容量%以上がより好ましく、0.1容量%以上がさらに好ましく、0.2容量%以上がさらにより好ましく、0.5容量%以上が最も好ましい。
一方、添加する水の量が多すぎることは製品としてのC重油の品質上好ましくなく、2.0容量%以下であることが必要であり、1.5容量%以下であることが好ましく、1.2容量%以下がさらに好ましく、1.0容量%以下が最も好ましい。C重油中の水分が2.0容量%より多い場合には、水分が冬期では氷となって析出し、金属腐食やフィルター目詰まりを引き起こしやすくなるため好ましくない。
In the method of the present invention, the method for adding water to the C heavy oil base is not particularly limited,
For example, it is desirable to use a method such as adding water in a temperature condition where water does not boil, or using a mixer to ensure mixing of water and oil.
In addition, when using a viscosity adjusting oil for adjusting the viscosity of the C heavy oil base material, water may be added to the mixed oil of the C heavy oil base material and the viscosity adjusting oil. You may add water and mix this with C heavy oil base material.
The amount of water added must be 0.01% by volume or more based on the total amount of C heavy oil. In order to reduce the hydrogen sulfide concentration more efficiently, 0.02% by volume or more is preferable, and 0.05% by volume. % Or more, more preferably 0.1% by volume or more, still more preferably 0.2% by volume or more, and most preferably 0.5% by volume or more.
On the other hand, an excessive amount of water to be added is not preferable in terms of the quality of C heavy oil as a product, and is required to be 2.0% by volume or less, and preferably 1.5% by volume or less. .2% by volume or less is more preferable, and 1.0% by volume or less is most preferable. When the amount of water in C heavy oil is more than 2.0% by volume, the water is deposited in the form of ice in the winter, which is not preferable because it tends to cause metal corrosion and filter clogging.

本発明の方法において、C重油基材に対して水を所定量配合することにより、C重油基材の硫化水素濃度を低減させ、C重油としての硫化水素濃度を低減し、かつC重油から発生する硫化水素量が低減されたC重油が得られることについては、その理由は明らかではないが、C重油基材中に含まれる硫化水素が油よりも溶解度の高い水に溶解されイオンに解離すること、併せて/又は、溶解した硫化水素が水中で水素と硫黄に変化すること、の何れかにより硫化水素濃度が低減するものと推測される。   In the method of the present invention, by adding a predetermined amount of water to the C heavy oil base material, the hydrogen sulfide concentration of the C heavy oil base material is reduced, the hydrogen sulfide concentration as the C heavy oil is reduced, and generated from the C heavy oil. The reason why the C heavy oil in which the amount of hydrogen sulfide to be reduced is obtained is not clear, but the hydrogen sulfide contained in the C heavy oil base material is dissolved in water having higher solubility than the oil and dissociates into ions. In addition, it is presumed that the hydrogen sulfide concentration is reduced due to either the fact that dissolved hydrogen sulfide is changed into hydrogen and sulfur in water.

本発明の方法により得られるC重油(以下、本発明のC重油という。)の50℃における動粘度は、燃焼障害の観点から、3000mm/s以下であることが必要であり、2800mm/s以下であることが好ましく、2600mm/s以下であることがさらに好ましく、2500mm/s以下であることが最も好ましい。50℃における動粘度が3000mm/sより高い場合には燃焼障害が発生しやすくなるため好ましくない。
また、本発明のC重油の50℃における動粘度は30mm/s以上であることが必要であり、70mm/s以上であることが好ましく、120mm/s以上であることがさらに好ましく、160mm/s以上であることが最も好ましい。
なお、本発明における動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」に準拠して得られる値を意味する。
The kinematic viscosity at 50 ° C. of C heavy oil obtained by the method of the present invention (hereinafter referred to as C heavy oil of the present invention) is required to be 3000 mm 2 / s or less from the viewpoint of combustion failure, and is 2800 mm 2 / s. preferably s or less, more preferably at most 2600 mm 2 / s, and most preferably not more than 2500 mm 2 / s. When the kinematic viscosity at 50 ° C. is higher than 3000 mm 2 / s, combustion failure tends to occur, which is not preferable.
Moreover, the kinematic viscosity at 50 ° C. of the C heavy oil of the present invention needs to be 30 mm 2 / s or more, preferably 70 mm 2 / s or more, more preferably 120 mm 2 / s or more, Most preferably, it is 160 mm 2 / s or more.
The kinematic viscosity in the present invention means a value obtained according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.

本発明のC重油組成物の引火点は、取り扱い上の安全性の観点から、60℃以上であることが必要であり、65℃以上であることが好ましく、70℃以上であることが最も好ましい。
なお、本発明における引火点とは、JIS K 2265「引火点の求め方−第3部:ペンスキーマルテンス密閉法」のペンスキーマルテン密閉式で測定される値を意味する。
The flash point of the C heavy oil composition of the present invention is required to be 60 ° C. or higher, preferably 65 ° C. or higher, and most preferably 70 ° C. or higher, from the viewpoint of safety in handling. .
In addition, the flash point in the present invention means a value measured by a pen schema ruten sealing method according to JIS K 2265 “How to obtain a flash point—Part 3: Pen schema rutens sealing method”.

本発明のC重油の15℃における密度は、発熱量の観点から、0.90g/cm以上であることが必要であり、0.91g/cm以上であることが好ましく、0.92g/cm以上であることが最も好ましい。15℃における密度が0.90g/cm未満の場合には容量当りの発熱量が小さくなるため好ましくない。
また、本発明のC重油の15℃における密度は、燃焼障害の観点から、1.01g/cm以下であることが必要であり、1.00g/cm以下であることが好ましく、0.99g/cm以下であることが最も好ましい。15℃における密度が1.01g/cmより大きい場合は、燃焼障害を発生しやすくなるため好ましくない。
なお、本発明における密度とは、JIS K 2249「原油及び石油製品−密度試験方法及び密度・質量・容量換算表」に準拠して得られる値を表すものを意味する。
The density at 15 ° C. of the heavy C oil of the present invention needs to be 0.90 g / cm 3 or more from the viewpoint of the calorific value, preferably 0.91 g / cm 3 or more, and 0.92 g / cm 3. Most preferably, it is cm 3 or more. When the density at 15 ° C. is less than 0.90 g / cm 3 , the calorific value per capacity becomes small, which is not preferable.
The density at 15 ℃ of C heavy oil of the present invention, from the viewpoint of combustion failure, must be at 1.01 g / cm 3 or less, preferably 1.00 g / cm 3 or less, 0. Most preferably, it is 99 g / cm 3 or less. When the density at 15 ° C. is larger than 1.01 g / cm 3 , combustion failure tends to occur, which is not preferable.
In addition, the density in this invention means what represents the value obtained based on JISK2249 "crude oil and petroleum products-density test method and density / mass / capacity conversion table".

本発明のC重油の硫黄分は、環境の観点から、4.5質量%以下であることが必要であり、4.2質量%以下であることが好ましく、4.0質量%以下であることがさらに好ましく、3.5質量%以下であることが最も好ましい。硫黄分が4.5質量%を超える場合はエンジンからの排出ガスの悪化が懸念される。
なお、本発明において硫黄分とは、JIS K 2541「原油及び石油製品−硫黄分試験方法」により測定される値を意味する。
The sulfur content of C heavy oil of the present invention is required to be 4.5% by mass or less from the viewpoint of the environment, preferably 4.2% by mass or less, and 4.0% by mass or less. Is more preferable, and most preferably 3.5% by mass or less. When the sulfur content exceeds 4.5% by mass, there is a concern about deterioration of exhaust gas from the engine.
In addition, in this invention, a sulfur content means the value measured by JISK2541 "Crude oil and petroleum products-sulfur content test method".

本発明のC重油は、セタン価向上剤、酸化防止剤、安定化剤、分散剤、金属不活性化剤、微生物殺菌剤、助燃剤、帯電防止剤、識別剤、着色剤等の各種添加剤を含有することもできる。
上述の添加剤は、常法に従い合成したものを用いてもよく、また市販の添加剤を用いてもよい。なお、市販されている添加剤は、その添加剤が目的としている効果に寄与する有効成分を適当な溶剤で希釈している場合もある。有効成分が希釈されている市販添加剤を使用する場合には、C重油中の性状が上記の条件を満たすように市販添加剤を添加することが好ましい。なお、添加量としては任意であるが、C重油全量基準で、通常0.5質量%以下、好ましくは0.2質量%以下である。
C heavy oil of the present invention comprises various additives such as a cetane number improver, an antioxidant, a stabilizer, a dispersant, a metal deactivator, a microbial disinfectant, a combustion aid, an antistatic agent, a discriminating agent, and a colorant. Can also be contained.
As the above-mentioned additive, one synthesized according to a conventional method may be used, or a commercially available additive may be used. In addition, the additive currently marketed may have diluted the active ingredient which contributes to the effect which the additive aimed at with the appropriate solvent. When using a commercially available additive in which the active ingredient is diluted, it is preferable to add the commercially available additive so that the properties in C heavy oil satisfy the above-mentioned conditions. The addition amount is arbitrary, but it is usually 0.5% by mass or less, preferably 0.2% by mass or less, based on the total amount of C heavy oil.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1〜10及び比較例1〜3]
(1)C重油の調製
実施例1〜10及び比較例1〜3のC重油の試料を以下の方法により調製した。
[Examples 1 to 10 and Comparative Examples 1 to 3]
(1) Preparation of C heavy oil Samples of C heavy oil of Examples 1 to 10 and Comparative Examples 1 to 3 were prepared by the following method.

(2)油中(液相中)の硫化水素測定用試料の調製および硫化水素濃度の測定
C重油基材又はC重油基材と粘度調整用油との混合油を1L缶に採取し、60℃に加温した後、500ml瓶に300ml分移し、速やかに密栓する。この瓶に所望する水添加濃度(容量%)に相当する所定量の水を添加し、再度密栓して2分間攪拌した後、60℃の恒温槽に30分間浸漬し、セパラブルフラスコに約250g採取する。ただし、比較例1〜3用の試料には水を添加しないで、その後の操作を行う。
上記で得られた試料を用い、IP 399「Determination of hydrogen sulphide in fuel oils」に準拠して、油中(液相中)の硫化水素濃度を測定した。
それらの結果を表1に示す。
(2) Preparation of hydrogen sulfide measurement sample in oil (in liquid phase) and measurement of hydrogen sulfide concentration C heavy oil base material or mixed oil of C heavy oil base material and viscosity adjusting oil was collected in a 1 L can, and 60 After warming to 0 ° C., transfer to the 500 ml bottle for 300 ml and seal immediately. A predetermined amount of water corresponding to the desired water addition concentration (volume%) is added to the bottle, sealed again and stirred for 2 minutes, then immersed in a constant temperature bath at 60 ° C. for 30 minutes, and about 250 g in a separable flask. Collect. However, the subsequent operation is performed without adding water to the samples for Comparative Examples 1 to 3.
Using the sample obtained above, the hydrogen sulfide concentration in the oil (in the liquid phase) was measured according to IP 399 “Determination of hydrogen sulphide in fuel oils”.
The results are shown in Table 1.

(3)気相中の硫化水素測定用試料の調製および硫化水素濃度の測定
C重油基材又はC重油基材と粘度調整用油との混合油を1L缶に採取し、60℃に加温した後、500ml瓶に250ml分移し、速やかに密栓する。この瓶に所望する水添加濃度(容量%)に相当する所定量の水を添加し、再度密栓して2分間攪拌した後、60℃の恒温槽に20分間浸漬する。ただし、比較例1〜3用の試料には水を添加しないで、その後の操作を行う。
上記で得られた試料を用い、ASTM D5705「Standard Test Method for Measurement of Hydrogen Sulfide in the Vapor Phase Above Residual Fuel Oils」に準拠して、気相中の硫化水素濃度を測定した。
それらの結果を表1に示す。
(3) Preparation of hydrogen sulfide measurement sample in gas phase and measurement of hydrogen sulfide concentration Collect C heavy oil base material or mixed oil of C heavy oil base material and viscosity adjusting oil in 1 L can and heat to 60 ° C After that, it is transferred to a 500 ml bottle for 250 ml and immediately sealed. A predetermined amount of water corresponding to a desired water addition concentration (volume%) is added to the bottle, and the bottle is sealed again and stirred for 2 minutes, and then immersed in a thermostat at 60 ° C. for 20 minutes. However, the subsequent operation is performed without adding water to the samples for Comparative Examples 1 to 3.
Using the sample obtained above, the hydrogen sulfide concentration in the gas phase was measured according to ASTM D5705 “Standard Test Method for Measurement of Hydrogen Sulfide in the Vapor Phase Above Residual Fuel Oils”.
The results are shown in Table 1.

(4)硫化水素濃度測定結果の評価
油中(液相中)及び気相中の硫化水素濃度測定結果の評価は、水を添加しない場合を基準として、残存率により評価した。基準としては、同一種類の基材について、油中(液相中)の場合は100、気相中の場合は1.00として評価した。なお、実施例1〜6については比較例1、実施例7〜8については比較例2、実施例9〜10については比較例3との比較で評価した。
表1の結果から明らかなように、本発明にかかる実施例1〜10の油中(液相中)及び気相中の硫化水素濃度は、比較例1〜3に比べて、同一種類の基材の比較において、硫化水素濃度が大幅に低減することがわかる。
(4) Evaluation of hydrogen sulfide concentration measurement results The hydrogen sulfide concentration measurement results in the oil (in the liquid phase) and in the gas phase were evaluated based on the residual ratio based on the case where water was not added. As a reference, the same type of base material was evaluated as 100 in the case of oil (in liquid phase) and 1.00 in the case of gas phase. In addition, about Examples 1-6, it evaluated by the comparison with Comparative Example 3 about Comparative Example 1 about Examples 1-10, Comparative Example 2 about Examples 7-8, and Examples 9-10.
As is clear from the results in Table 1, the hydrogen sulfide concentrations in the oil (in the liquid phase) and in the gas phase of Examples 1 to 10 according to the present invention are the same type of groups as compared with Comparative Examples 1 to 3. In the comparison of materials, it can be seen that the hydrogen sulfide concentration is greatly reduced.

Figure 2011195759
Figure 2011195759

本発明により、C重油基材の硫化水素濃度が低減されたC重油を製造できるため産業上きわめて有用である。   According to the present invention, C heavy oil in which the hydrogen sulfide concentration of the C heavy oil base material is reduced can be produced, which is extremely useful industrially.

Claims (3)

C重油基材に水をC重油全量基準で0.01〜2.0容量%添加することを特徴とする、硫化水素濃度および発生する硫化水素量が低減されたC重油の製造方法。   A method for producing C heavy oil in which the concentration of hydrogen sulfide and the amount of generated hydrogen sulfide are reduced, wherein water is added to a C heavy oil base material in an amount of 0.01 to 2.0% by volume based on the total amount of C heavy oil. C重油基材が、常圧蒸留装置から得られる塔底油、減圧蒸留装置から得られる塔底油、残油脱硫装置から得られる残油、流動接触分解装置から得られる残油およびエキストラクト油から選ばれることを特徴とする請求項1に記載のC重油の製造方法。   C base oil base oil obtained from atmospheric distillation equipment, bottom oil obtained from vacuum distillation equipment, residual oil obtained from residual oil desulfurization equipment, residual oil and extract oil obtained from fluid catalytic cracking equipment It is chosen from these, The manufacturing method of C heavy oil of Claim 1 characterized by the above-mentioned. 50℃における動粘度が30〜3000mm/s、引火点が60℃以上、15℃における密度が0.90〜1.01g/cm、硫黄分が4.5質量%以下であることを特徴とする請求項1又は2に記載の方法で製造したC重油。 The kinematic viscosity at 50 ° C. is 30 to 3000 mm 2 / s, the flash point is 60 ° C. or more, the density at 15 ° C. is 0.90 to 1.01 g / cm 3 , and the sulfur content is 4.5 mass% or less. C heavy oil produced by the method according to claim 1 or 2.
JP2010066399A 2010-03-23 2010-03-23 Method for manufacturing fuel oil c Pending JP2011195759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066399A JP2011195759A (en) 2010-03-23 2010-03-23 Method for manufacturing fuel oil c

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066399A JP2011195759A (en) 2010-03-23 2010-03-23 Method for manufacturing fuel oil c

Publications (1)

Publication Number Publication Date
JP2011195759A true JP2011195759A (en) 2011-10-06

Family

ID=44874375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066399A Pending JP2011195759A (en) 2010-03-23 2010-03-23 Method for manufacturing fuel oil c

Country Status (1)

Country Link
JP (1) JP2011195759A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139964A (en) * 1999-11-15 2001-05-22 Akio Iwai Preparation and treatment of emulsified fuel oil by adding water content to various fuel oil and emulsified by ultrasonic wave, and its unit
JP2006083254A (en) * 2004-09-15 2006-03-30 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Fuel composition
JP2008239877A (en) * 2007-03-28 2008-10-09 Nippon Oil Corp Heavy fuel oil c composition
JP2009227933A (en) * 2008-03-25 2009-10-08 Nippon Oil Corp Fuel oil c composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139964A (en) * 1999-11-15 2001-05-22 Akio Iwai Preparation and treatment of emulsified fuel oil by adding water content to various fuel oil and emulsified by ultrasonic wave, and its unit
JP2006083254A (en) * 2004-09-15 2006-03-30 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Fuel composition
JP2008239877A (en) * 2007-03-28 2008-10-09 Nippon Oil Corp Heavy fuel oil c composition
JP2009227933A (en) * 2008-03-25 2009-10-08 Nippon Oil Corp Fuel oil c composition

Similar Documents

Publication Publication Date Title
JP6941582B2 (en) Fuel oil composition and its manufacturing method
JP4916219B2 (en) Method for producing A heavy oil composition
US9719027B2 (en) Low viscosity metal-based hydrogen sulfide scavengers
WO2007011263A1 (en) Light oil fuel
JP5340230B2 (en) C heavy oil composition
JP5639532B2 (en) C heavy oil composition and method for producing the same
JP2010235694A (en) Unleaded gasoline composition for cylinder direct injection type gasoline engine
JP2003105349A (en) Method for producing kerosene
JP5111049B2 (en) High calorific value fuel oil composition
JP5841422B2 (en) C heavy oil composition and method for producing the same
JP4039760B2 (en) Kerosene and method for producing the same
JP5599367B2 (en) A heavy oil composition and method for producing the same
JP5348821B2 (en) Kerosene composition
JP2011195759A (en) Method for manufacturing fuel oil c
RU2387700C1 (en) Method for diesel fuel generation
JP6609749B2 (en) Method for producing light oil composition
JP2020132796A (en) Heavy oil composition and method for producing heavy oil composition
JP3981488B2 (en) A heavy oil composition with excellent low-temperature fluidity and low sulfur
CN106700085B (en) A kind of processing coal tar used additives and preparation method thereof
JP6389432B2 (en) Fuel composition
JP2019151705A (en) Fuel oil composition for internal combustion engine and manufacturing method therefor
RU2478692C1 (en) Marine low-viscosity fuel
JP5334903B2 (en) A heavy oil composition
JP5684184B2 (en) Light oil composition
JP3825879B2 (en) Gas turbine fuel composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408