JP6609749B2 - Method for producing light oil composition - Google Patents

Method for producing light oil composition Download PDF

Info

Publication number
JP6609749B2
JP6609749B2 JP2015151812A JP2015151812A JP6609749B2 JP 6609749 B2 JP6609749 B2 JP 6609749B2 JP 2015151812 A JP2015151812 A JP 2015151812A JP 2015151812 A JP2015151812 A JP 2015151812A JP 6609749 B2 JP6609749 B2 JP 6609749B2
Authority
JP
Japan
Prior art keywords
content
mass
volume
oil
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015151812A
Other languages
Japanese (ja)
Other versions
JP2017031304A (en
Inventor
峻 熊谷
伸也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2015151812A priority Critical patent/JP6609749B2/en
Priority to PCT/EP2016/068195 priority patent/WO2017021317A1/en
Priority to AU2016302551A priority patent/AU2016302551B2/en
Publication of JP2017031304A publication Critical patent/JP2017031304A/en
Priority to PH12018550007A priority patent/PH12018550007A1/en
Priority to US15/883,365 priority patent/US20180155646A1/en
Application granted granted Critical
Publication of JP6609749B2 publication Critical patent/JP6609749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Description

本発明は、ディーゼルエンジン等に使用される軽油組成物の製造方法に関するものである。 The present invention relates to a manufacturing method of the gas oil compositions used in diesel engines or the like.

一般的にガソリン、軽油、灯油などの白油と称される石油製品は、重質油分からなる重油よりも需要が多く、昨今産業用重油の天然ガスへの転換などにより、この傾向が顕著となりつつある。石油製品は連産品と呼ばれるように、白油を製造する過程で重油成分も生産されるので、白油を増産するために、重質油分を分解して白油基材とする処理(アップグレーディングプロセス)が一般的に行われている。しかしながら、重質油分を分解して得られる白油基材には、必要な規格を満たしていないものや、規格を満たしていても実用性能上の問題があるものもあり、製品とするためには使用が制限されているものもある。重質油分解装置から得られる分解系軽油留分もその一つであり、軽油の基材として用いるためには、酸化安定性に問題がある。   Petroleum products generally called white oil such as gasoline, light oil, and kerosene are in greater demand than heavy oil consisting of heavy oil, and this trend has become more prominent due to the conversion of industrial heavy oil to natural gas. It's getting on. As petroleum products are called co-products, heavy oil components are also produced in the process of producing white oil. Therefore, in order to increase production of white oil, the heavy oil content is decomposed into a white oil base (upgrading). Process) is generally performed. However, some white oil bases obtained by decomposing heavy oil do not meet the required standards, and some have problems in practical performance even if they meet the standards. Some are restricted in use. One of them is a cracked light oil fraction obtained from a heavy oil cracking apparatus, and there is a problem in oxidation stability in order to use it as a base material for light oil.

軽油の酸化安定性は、使用状態や実用性能に影響を及ぼす重要な性状の一つであり、これまでに、軽油の酸化安定性の向上を図るための、多くの提案がなされている。そして、酸化安定性の向上が図られた軽油において、分解系軽油留分を脱硫処理して得られた脱硫軽油を基材に含むものも開示されている。   The oxidation stability of light oil is one of the important properties affecting the use state and practical performance, and many proposals have been made so far for improving the oxidation stability of light oil. And the light oil in which the oxidation stability was improved is also disclosed in which a base material is desulfurized light oil obtained by desulfurizing a cracked light oil fraction.

例えば、特開2008−144156号公報には、主としてスチレン類化合物やジエン類化合物の含有量を所定の範囲に制御することで酸化安定性の向上が図られた軽油組成物であって、分解系軽油留分を脱硫処理して得られる脱硫軽油を基材として含むものが開示されている。   For example, Japanese Patent Application Laid-Open No. 2008-144156 discloses a light oil composition whose oxidation stability is improved mainly by controlling the content of a styrene compound or a diene compound within a predetermined range. The thing containing the desulfurized light oil obtained by desulfurizing a light oil fraction as a base material is disclosed.

また、特開2013−203752号公報には、主としてベンゾアントラセン類の含有量を所定の範囲に制御することで酸化安定性の向上が図られた軽油組成物であって、分解系軽油留分を脱硫処理して得られる脱硫軽油を基材として含むものが開示されている。   Japanese Patent Application Laid-Open No. 2013-203752 discloses a light oil composition whose oxidation stability is improved mainly by controlling the content of benzoanthracenes within a predetermined range, wherein a cracked gas oil fraction is The thing containing the desulfurized light oil obtained by desulfurization as a base material is disclosed.

特開2008−144156号公報JP 2008-144156 A 特開2013−203752号公報JP2013-203752A

しかしながら、分解系軽油留分は、上述の通り、軽油の基材として用いるためには、酸化安定性に課題がある。一方、ディーゼル車においては、排ガス規制強化の影響を受け、エンジン燃焼筒内への噴射圧が年々高まり、燃料噴射ポンプやインジェクター内の燃料は高圧・高温化にさらされることとなり、より一層、酸化安定性に優れた軽油組成物の提供が望まれている。そこで、本発明は、分解系軽油留分を原料油として用いた、酸化安定性に優れる軽油組成物の製造方法を提供することを目的とする。 However, as described above, the cracked gas oil fraction has a problem in oxidation stability in order to be used as a gas oil base material. On the other hand, in diesel vehicles, the injection pressure into the engine combustion cylinder has been increasing year by year due to the impact of stricter exhaust gas regulations, and the fuel in the fuel injection pumps and injectors has been exposed to high pressure and high temperature. It is desired to provide a light oil composition having excellent stability. Then, an object of this invention is to provide the manufacturing method of the light oil composition which is excellent in oxidation stability using the cracked-type light oil fraction as raw material oil.

発明は、全芳香族分を20.0〜25.0容量%、二環芳香族分を1.0〜3.0容量%、三環以上芳香族分を0.2〜1.2容量%、ナフテノベンゼン類を13.0〜18.0質量%、及び硫黄分を10質量ppm以下含み、密度(15℃)が0.8200〜0.8600g/cm 及びASTM色が0.2〜2.0である軽油組成物の製造方法であって、
分解系軽油留分を含む下記原料油を水素化脱硫する軽油組成物の製造方法である。
原料油:全芳香族分を25.0〜35.0容量%、全ナフテン分を15.0〜25.0質量%、二環ナフテン分を4.0〜7.0質量%、三環ナフテン分を1.0〜2.5質量%、及び硫黄分を0.50〜1.60質量%含み、90%留出温度が340.0〜380.0℃である。
The present invention, a total aromatic content from 20.0 to 25.0% by volume, bicyclic aromatic content of from 1.0 to 3.0% by volume, tricyclic or more aromatics of from 0.2 to 1.2 volume %, 13.0 to 18.0 mass % of naphthenobenzenes , and 10 mass ppm or less of sulfur content, a density (15 ° C.) of 0.8200 to 0.8600 g / cm 3 , and an ASTM color of 0 A method for producing a light oil composition of 2 to 2.0 , comprising:
This is a method for producing a gas oil composition in which the following raw material oil containing a cracked gas oil fraction is hydrodesulfurized.
Feedstock: total aromatic content of 25.0 to 35.0 volume%, the total naphthene content from 15.0 to 25.0 wt%, a bicyclic naphthenes 4.0 to 7.0 wt%, tricyclic naphthenes min 1.0 to 2.5 wt%, and a sulfur content viewed contains 0.50 to 1.60 wt%, a 90% distillation temperature of 340.0 ~380.0 ℃.

本発明によれば、分解系軽油留分を原料油として用いた、酸化安定性に優れる軽油組成物の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the light oil composition which is excellent in oxidation stability using the cracked-type light oil fraction as raw material oil can be provided.

脱硫装置の出口温度と脱硫軽油の多環芳香族および硫黄の含有量の相関を示す概念図である。It is a conceptual diagram which shows the correlation of the outlet temperature of a desulfurization apparatus, and the polycyclic aromatic and sulfur content of desulfurization light oil.

本発明に用いられる原料油は、全芳香族分が25.0〜35.0容量%であり、25.0〜30.0容量%であることがより好ましい。芳香族分が少ないと、発熱反応が充分でなく脱硫後の酸化安定性が不足することがあり、多すぎると脱硫後のセタン指数が低く、低温時の着火時不良などの不具合を起こすことがある。芳香族分については、例えば、一環芳香族分は、16.0〜22.0容量%、二環芳香族分は、5.0〜10.0容量%、三環以上芳香族分は、1.0〜4.0容量%とすることができる。 The raw oil used in the present invention has a total aromatic content of 25. 0 to 35.0% by volume der is, more preferably 25.0 to 30.0% by volume. If the aromatic content is small, the exothermic reaction may not be sufficient and the oxidation stability after desulfurization may be insufficient, and if it is too large, the cetane index after desulfurization may be low, causing problems such as poor ignition at low temperatures. is there. As for the aromatic component, for example, the monocyclic aromatic component is 16.0 to 22.0% by volume, the bicyclic aromatic component is 5.0 to 10.0% by volume, the tricyclic or higher aromatic component is 1 0.0 to 4.0% by volume.

原料油の全ナフテン分含有量は、15.0〜25.0質量%、より好ましくは17.0〜25.0質量%、さらに好ましくは21.0〜25.0質量%である。一環ナフテン分含有量は、例えば、10.0〜17.0質量%である。二環ナフテン分含有量は4.0〜7.0質量%であり、好ましくは5.0〜7.0質量%である。三環ナフテン分含有量は1.0〜2.5質量%であり、好ましくは1.5〜2.5質量%である。ナフテン分含有量が少ないと、脱硫後の軽油の酸化安定性が悪くなり、多すぎると脱硫後のセタン指数が低くなり、低温時の着火不良などの原因となることがある。 All naphthene content of the feedstock is 1 5.0 to 25.0 wt%, more preferably 17.0 to 25.0 wt%, more preferably from 21.0 to 25.0 wt%. One part naphthene content is 10.0-17.0 mass%, for example. Bicyclic naphthene content is 4.0-7.0 mass % , Preferably it is 5.0-7.0 mass%. Tricyclic naphthene content is from 1.0 to 2.5 wt%, preferably from 1.5 to 2.5 wt%. If the naphthene content is low, the oxidation stability of the light oil after desulfurization will be poor, and if it is too high, the cetane index after desulfurization will be low, which may cause poor ignition at low temperatures.

原料油の硫黄分は、0.50〜1.60質量%であり、0.80〜1.50質量%であることがより好ましく、1.00〜1.50質量%であることがさらに好ましい。硫黄分が多い程発熱反応が起こりやすく所望の酸化安定性を有した軽油が得られやすいが、高すぎると触媒寿命の低下、反応塔および配管などの材質の影響など脱硫装置面での不具合が懸念される。 The sulfur content of the feedstock is 0 . 50 to 1.60% by mass is, more preferably 0.80 to 1.50 wt%, more preferably from 1.00 to 1.50 wt%. The higher the sulfur content, the easier the exothermic reaction will occur and the easier it will be to obtain light oil with the desired oxidation stability. Concerned.

原料油の10%留出温度は、例えば、210.0〜270.0℃、50%留出温度は、例えば、280.0〜310.0℃である。90%留出温度は、340.0〜380.0℃であり、340.0〜370.0℃であることがより好ましく、350.0〜370.0℃であることがさらに好ましい。90%留出温度が高いほど、所望の硫黄分10質量ppmを達成するために反応温度を高くすることとなり、酸化安定性の良好な軽油が得られやすいが、高すぎると原料油中にワックスが多くなり、所望の流動点や目詰まり点値が得づらくなる。 The 10% distillation temperature of the raw material oil is, for example, 210.0 to 270.0 ° C, and the 50% distillation temperature is, for example, 280.0 to 310.0 ° C. 90% distillation temperature is 3 from 40.0 to 380.0 ° C., more preferably 340.0-370.0 ° C., further preferably from 350.0 to 370.0 ° C.. The higher the 90% distillation temperature, the higher the reaction temperature in order to achieve the desired sulfur content of 10 mass ppm, and it is easy to obtain light oil with good oxidation stability. As a result, it becomes difficult to obtain a desired pour point or clogging point value.

原料油の密度(15℃)は、0.8400〜0.8600g/cmと例えばすることができる。動粘度は4.0〜6.0mm/s、流動点は+2.5℃以下、目詰まり点は+5℃以下と例えばすることができる。 The density (15 degreeC) of raw material oil can be 0.8400-0.8600g / cm < 3 >, for example. For example, the kinematic viscosity is 4.0 to 6.0 mm 2 / s, the pour point is + 2.5 ° C. or less, and the clogging point is + 5 ° C. or less.

本発明に用いられる原料油は、分解系軽油留分と、その他の軽油基材(以下、原料油基材とする)とを混合して調製することができる。   The feedstock oil used in the present invention can be prepared by mixing a cracked gas oil fraction and another gas oil base material (hereinafter referred to as a feedstock base material).

分解系軽油留分としては、直接脱硫装置から得られる直脱軽油(以下、RGOという)、間接脱硫装置から得られる間脱軽油、流動接触分解装置から得られるライトサイクルオイル(以下、LCOという)、および熱分解装置から得られる熱分解軽油など重油のアップグレーディングプロセスから留出する軽油留分などが挙げられる。分解軽油留分としては、脱硫後の軽油の酸化安定性の観点からはRGOが好ましい。   As the cracking gas oil fraction, direct degassing oil obtained from a direct desulfurization unit (hereinafter referred to as RGO), degassing oil obtained from an indirect desulfurization unit, light cycle oil obtained from a fluid catalytic cracking unit (hereinafter referred to as LCO), And a diesel oil fraction distilled from a heavy oil upgrading process such as a pyrolysis diesel oil obtained from a pyrolysis apparatus. As the cracked light oil fraction, RGO is preferable from the viewpoint of oxidation stability of the light oil after desulfurization.

RGOは、全芳香族分が、好ましくは25.0容量%以上、より好ましくは25.0〜40.0容量%であり、30.0〜40.0容量%がさらに好ましい。全芳香族分が少ないと、発熱反応が起こりにくくなり脱硫後の軽油の酸化安定性が悪くなることがあり、多いと脱硫後の軽油のセタン指数が低くなり、着火不良などの不具合を起こすことがある。一環芳香族分は20.0〜35.0容量%、二環芳香族分は2.5〜4.5容量%、三環以上芳香族分は1.0〜2.0容量%と例えばすることができる。全ナフテン分は15.0質量%以上、二環ナフテン分は4.0質量%以上、三環ナフテン分は1.0質量%以上であるのが好ましい。一環ナフテン分は14.0〜20.0質量%と例えばすることができる。ナフテン分が少ないと、酸化安定性が悪くなることがあり、多いとセタン指数が低くなり、着火不良などの不具合を起こすことがある。硫黄分は0.01質量%以上であることが好ましい。   RGO has a total aromatic content of preferably 25.0% by volume or more, more preferably 25.0 to 40.0% by volume, and further preferably 30.0 to 40.0% by volume. If the total aromatic content is small, an exothermic reaction is difficult to occur and the oxidation stability of the light oil after desulfurization may be deteriorated. If it is large, the cetane index of the light oil after desulfurization will be low, causing problems such as poor ignition. There is. For example, the aromatic content is 20.0 to 35.0% by volume, the bicyclic aromatic content is 2.5 to 4.5% by volume, and the tricyclic or higher aromatic content is 1.0 to 2.0% by volume. be able to. The total naphthene content is preferably 15.0 mass% or more, the bicyclic naphthene content is 4.0 mass% or more, and the tricyclic naphthene content is preferably 1.0 mass% or more. One part naphthene content can be made into 14.0-20.0 mass%, for example. If the naphthene content is small, the oxidation stability may be deteriorated. If the naphthene content is large, the cetane index will be low, and problems such as poor ignition may occur. The sulfur content is preferably 0.01% by mass or more.

RGOは、10%留出温度が210.0〜240.0℃、50%留出温度が280.0〜320.0℃と例えばすることができる。90%留出温度は、380℃以下であることが好ましく、370℃以下であることがより好ましい。90%留出温度が高すぎると、ワックス量が増加し、低温時フィルター目詰まりを起こすことがある。密度(15℃)は、0.8700g/cm以下であることが好ましい。密度が高すぎると、排ガス中の粒子状物質を増加させることがある。動粘度は3.0〜7.0mm/s、流動点は2.5℃以下、目詰まり点は+5℃以下と例えばすることができる。 For example, RGO can have a 10% distillation temperature of 210.0-240.0 ° C and a 50% distillation temperature of 280.0-320.0 ° C. The 90% distillation temperature is preferably 380 ° C. or lower, and more preferably 370 ° C. or lower. If the 90% distillation temperature is too high, the amount of wax increases, and filter clogging may occur at low temperatures. The density (15 ° C.) is preferably 0.8700 g / cm 3 or less. If the density is too high, particulate matter in the exhaust gas may be increased. For example, the kinematic viscosity is 3.0 to 7.0 mm 2 / s, the pour point is 2.5 ° C. or less, and the clogging point is + 5 ° C. or less.

LCOは、全芳香族分が、好ましくは60.0容量%以上、より好ましくは65〜80容量%、さらに好ましくは70〜80容量%である。全芳香族分が少ないと、発熱反応が小さく、脱硫後の酸化安定性が悪くなることがあり、多いと脱硫後のセタン指数が低くなり、着火不良を起こすことがある。一環芳香族分は15.0〜30.0容量%、二環芳香族分は20.0〜40.0容量%、三環以上芳香族分は5.0〜20.0容量%と例えばすることができる。全ナフテン分は15.0質量%以上、二環ナフテン分は3.0質量%以上、三環ナフテン分は1.0質量%以上であるのが好ましい。一環ナフテン分は12.0〜17.0質量%と例えばすることができる。ナフテン分が少ないと、脱硫後の酸化安定性が不充分となることがあり、多いとセタン指数が低くなり、着火不良などの不具合を起こすことがある。硫黄分は、0.07質量%以上であることが好ましい。   LCO has a total aromatic content of preferably 60.0% by volume or more, more preferably 65 to 80% by volume, and still more preferably 70 to 80% by volume. When the total aromatic content is small, the exothermic reaction is small, and the oxidation stability after desulfurization may be deteriorated. When the total aromatic content is large, the cetane index after desulfurization is low, and ignition failure may occur. For example, the aromatic content is 15.0 to 30.0% by volume, the bicyclic aromatic content is 20.0 to 40.0% by volume, and the tricyclic or higher aromatic content is 5.0 to 20.0% by volume. be able to. The total naphthene content is preferably 15.0 mass% or more, the bicyclic naphthene content is 3.0 mass% or more, and the tricyclic naphthene content is preferably 1.0 mass% or more. One part naphthene content can be made into 12.0-17.0 mass%, for example. If the naphthene content is small, the oxidative stability after desulfurization may be insufficient, and if it is large, the cetane index may be low, causing problems such as poor ignition. The sulfur content is preferably 0.07% by mass or more.

LCOは、10%留出温度が210.0〜230.0℃、50%留出温度が250.0〜280.0℃と例えばすることができる。90%留出温度は370.0℃以下であることが好ましい。90%留出温度が高すぎると、ワックス量が多くなり、冬季にフィルター目詰まりなどの不具合を起こすことがある。密度(15℃)は、0.9800g/cm以下であることが好ましく、0.9200〜0.9500g/cmであることがより好ましい。密度が低すぎると脱硫後の酸化安定性が低くなることがあり、高すぎると、セタン指数が低くなり着火不良を起こすことがある。動粘度は2.0〜4.0mm/s、流動点は−15〜−35℃、目詰まり点は−5〜−20℃と例えばすることができる。 For example, LCO can have a 10% distillation temperature of 210.0 to 230.0 ° C and a 50% distillation temperature of 250.0 to 280.0 ° C. The 90% distillation temperature is preferably 370.0 ° C or lower. If the 90% distillation temperature is too high, the amount of wax increases, and problems such as filter clogging may occur in winter. The density (15 ° C.) is preferably 0.9800 g / cm 3 or less, and more preferably 0.9200 to 0.9500 g / cm 3 . If the density is too low, the oxidation stability after desulfurization may be low, and if it is too high, the cetane index may be low, resulting in poor ignition. For example, the kinematic viscosity may be 2.0 to 4.0 mm 2 / s, the pour point may be −15 to −35 ° C., and the clogging point may be −5 to −20 ° C.

原料油中、分解軽油留分は、1〜35容量%であることが好ましく、5〜30容量%であることがより好ましい。分解軽油留分が多すぎると、製品のセタン指数が低くなることがあり、少なすぎると反応塔出口温度が低くなり所望とする酸化安定性を有する軽油組成物が得られなくなることがある。分解軽油留分がRGOであるときは、原料油中に5〜30容量%であることが好ましく、15〜30容量%であることがより好ましく、25〜30容量%であることがさらに好ましい。RGOが多すぎると、製品のセタン指数が低くとなることがあり、少なすぎると所望とする酸化安定性を有する軽油組成物が得られなくとなることがある。分解軽油留分がLCOであるときは、原料油中に1〜10容量%であることが好ましく、5〜10容量%であることがより好ましい。LCOが多すぎると、製品のセタン指数が低くとなることがあり、少なすぎると反応塔出口温度が低くなり所望とする酸化安定性を有する軽油組成物が得られなくとなることがある。   In the raw material oil, the cracked light oil fraction is preferably 1 to 35% by volume, more preferably 5 to 30% by volume. If the cracked gas oil fraction is too much, the cetane index of the product may be lowered, and if it is too little, the reaction tower outlet temperature is lowered, and a light oil composition having the desired oxidation stability may not be obtained. When the cracked gas oil fraction is RGO, it is preferably 5 to 30% by volume in the feedstock, more preferably 15 to 30% by volume, and further preferably 25 to 30% by volume. If there is too much RGO, the cetane index of the product may be low, and if it is too little, a light oil composition having the desired oxidation stability may not be obtained. When the cracked light oil fraction is LCO, it is preferably 1 to 10% by volume in the raw material oil, and more preferably 5 to 10% by volume. If the LCO is too much, the cetane index of the product may be lowered, and if it is too little, the reaction tower outlet temperature may be lowered, and a light oil composition having the desired oxidation stability may not be obtained.

原料油基材としては、常圧蒸留装置から得られる軽油留分(以下、直留軽油とする)が挙げられる。   Examples of the raw material oil base include a light oil fraction obtained from an atmospheric distillation apparatus (hereinafter referred to as straight-run light oil).

本発明においては、上記原料油を水素化脱硫して軽油組成物を得る。得られる軽油組成物は、全芳香族分が20.0〜25.0容量%、好ましくは21.0〜25.0容量%である。一環芳香族分は、例えば18.0〜22.0容量%である。二環芳香族分は、1.0〜3.0容量%、好ましくは2.0〜3.0容量%である。三環以上芳香族分は、0.2〜1.2容量%、好ましくは0.5〜1.2容量%である。芳香族分が少ないと燃料噴射系のシール材を収縮し、燃料にじみを起こすることがあり、多いと排気ガス中の黒煙が増加することがある。 In the present invention, the gas oil composition is obtained by hydrodesulfurizing the above-mentioned raw material oil. The light oil composition obtained has a total aromatic content of 20.0 to 25.0 vol %, preferably 21.0 to 25.0 vol%. For example, the aromatic content is 18.0 to 22.0% by volume. The bicyclic aromatic content is 1.0 to 3.0 % by volume , preferably 2.0 to 3.0% by volume. The tricyclic or higher aromatic content is 0.2 to 1.2 % by volume , preferably 0.5 to 1.2% by volume. If the aromatic content is small, the sealing material of the fuel injection system may be contracted to cause fuel bleeding. If the aromatic content is large, black smoke in the exhaust gas may increase.

得られる軽油組成物は、ナフテノベンゼン類が13.0〜18.0質量%、好ましくは13.0〜16.5質量%、より好ましくは13.0〜15.0質量%である。ナフテノベンゼン類が少ないと、燃料供給系のシール材を収縮し燃料にじみを起こすことがあり、多いと酸化安定性が悪くなることがある。一環ナフテノベンゼン類は、好ましくは15.0質量%以下、より好ましくは9.0〜13.0質量%、さらに好ましくは9.0〜12.0質量%、特に好ましくは9.0〜11.0質量%である。一環ナフテノベンゼン類が少ないと、燃料供給系のシール材を収縮し燃料にじみを起こすことがあり、多いと酸化安定性が悪くなることがある。二環ナフテノベンゼン類は、好ましくは5.0質量%以下、より好ましくは1.0〜4.0質量%、さらに好ましくは1.0〜3.0質量%である。二環ナフテノベンゼン類が多すぎると、酸化安定性が悪くなる傾向にあり好ましくない。硫黄分は、10質量ppm以下である。 The obtained light oil composition contains 13.0 to 18.0 mass % of naphthenobenzenes , preferably 13.0 to 16.5 mass%, more preferably 13.0 to 15.0 mass%. If the amount of naphthenobenzenes is small, the fuel supply system sealant may contract and cause fuel bleeding. If the amount of naphthenobenzenes is large, the oxidation stability may deteriorate. The naphthenobenzenes are preferably 15.0% by mass or less, more preferably 9.0 to 13.0% by mass, still more preferably 9.0 to 12.0% by mass, and particularly preferably 9.0 to 11%. 0.0% by mass. If the amount of naphthenobenzenes is too small, the fuel supply system sealant may shrink and cause fuel bleeding, and if it is too high, oxidation stability may deteriorate. The bicyclic naphthenobenzenes are preferably 5.0% by mass or less, more preferably 1.0 to 4.0% by mass, and still more preferably 1.0 to 3.0% by mass. An excessive amount of bicyclic naphthenobenzenes is not preferred because the oxidation stability tends to deteriorate. The sulfur content is 10 mass ppm or less.

なお、本発明において、一環ナフテノベンゼン類とは、ナフテノベンゼン及びそれにアルキル基を有するものを含み、例えば、インダン、及びテトラリンが挙げられる。二環ナフテノベンゼン類とは、二環ナフテノベンゼン及びそれにアルキル基を有するものを含み、例えば、オクタヒドロアントラセン、及びアルキルオクタヒドロアントラセンが挙げられる。ナフテノベンゼン類は、一環ナフテノベンゼン類、二環ナフテノベンゼン類、さらに多環ナフテノベンゼン類を含む。   In the present invention, the one-part naphthenobenzenes include naphthenobenzene and those having an alkyl group, and examples thereof include indane and tetralin. Bicyclic naphthenobenzenes include bicyclic naphthenobenzene and those having an alkyl group, and examples thereof include octahydroanthracene and alkyloctahydroanthracene. Naphthenobenzenes include naphthenobenzenes, bicyclic naphthenobenzenes, and polycyclic naphthenobenzenes.

ASTM色は、0.2〜2.0であり、好ましくは0.5〜2.0、より好ましくは1.0〜2.0である。ASTM色は小さすぎると酸化安定性が悪くなり、また大きすぎると排ガス中の黒煙が増加し好ましくない。密度(15℃)は、0.8200〜0.8600g/cmである。10%留出温度は220.0〜250.0℃、50%留出温度は270.0〜300.0℃、90%留出温度は330.0〜360.0℃と例えばすることができる。動粘度は2.5〜5.5mm/s、流動点は2.5℃以下、目詰まり点は+1℃以下、セタン指数は、好ましくは45〜60、より好ましくは50〜60、さらに好ましくは55〜58である。セタン指数が大きすぎると排ガス中の未燃炭化水素が増加する場合があり、小さすぎると始動不良を起こす場合がある。 The ASTM color is 0.2 to 2.0 , preferably 0.5 to 2.0 , and more preferably 1.0 to 2.0 . If the ASTM color is too small, the oxidation stability is deteriorated, and if it is too large, black smoke in the exhaust gas increases, which is not preferable. The density (15 ° C.) is 0 . 8200 to 0.8600 g / cm 3 . For example, the 10% distillation temperature may be 220.0 to 250.0 ° C, the 50% distillation temperature may be 270.0 to 300.0 ° C, and the 90% distillation temperature may be 330.0 to 360.0 ° C. . The kinematic viscosity is 2.5 to 5.5 mm 2 / s, the pour point is 2.5 ° C. or less, the clogging point is + 1 ° C. or less, and the cetane index is preferably 45 to 60, more preferably 50 to 60, and even more preferably. Is 55-58. If the cetane index is too large, unburned hydrocarbons in the exhaust gas may increase, and if it is too small, start-up failure may occur.

本発明に係る軽油組成物は、酸化安定性に優れている。酸化安定性は、例えば、PetroOXY法による誘導期間によって表すことができ、本発明に係る軽油組成物においては、好ましくは70分以上、より好ましくは90分以上、さらに好ましくは125分以上、特に好ましくは140分以上である。   The light oil composition according to the present invention is excellent in oxidation stability. The oxidation stability can be expressed by, for example, the induction period by the PetroOXY method. In the light oil composition according to the present invention, it is preferably 70 minutes or more, more preferably 90 minutes or more, still more preferably 125 minutes or more, particularly preferably Is over 140 minutes.

前述の原料油を用いて水素化脱硫することにより、酸化安定性が優れた上記の軽油組成物が得られる。脱硫装置リアクターの反応温度および原料油の硫黄分や芳香族含有量を適正に制御することにより、特に酸化安定性に優れた軽油組成物が得られる。水素化脱硫は、上記のような軽油組成物が得られるような条件で行われる。例えば、以下のように水素化脱硫を行うことができる。   By performing hydrodesulfurization using the above-mentioned raw material oil, the above light oil composition having excellent oxidation stability can be obtained. By appropriately controlling the reaction temperature of the desulfurizer reactor and the sulfur content and aromatic content of the raw material oil, a light oil composition particularly excellent in oxidation stability can be obtained. The hydrodesulfurization is performed under conditions such that the light oil composition as described above is obtained. For example, hydrodesulfurization can be performed as follows.

水素化脱硫は、コバルトモリブデン系やニッケルモリブデン系など公知の触媒を使用した脱硫装置を用いることができる。脱硫処理条件は、得られる脱硫軽油の硫黄分が10massppm以下となるように適宜調整すればよいが、装置出口温度は、多環ナフテンの脱水素反応が支配的となる領域とする。   For hydrodesulfurization, a desulfurization apparatus using a known catalyst such as a cobalt molybdenum system or a nickel molybdenum system can be used. The desulfurization treatment conditions may be adjusted as appropriate so that the sulfur content of the obtained desulfurized light oil is 10 massppm or less, but the apparatus outlet temperature is set to a region where the dehydrogenation reaction of polycyclic naphthene is dominant.

脱硫装置の反応装置内では、脱硫反応と同時に脱芳香族反応が起こり、2環以上の多環芳香族も脱硫反応の進行とともに減少する。ところが、脱硫反応と脱芳香族反応は発熱反応なので、脱硫反応塔の出口温度は入り口温度より高くなる。そのため、ある温度を境に、ナフテンの脱水素反応が支配的となる場合は、温度上昇に伴い多環芳香族の含有量が増加する傾向にある。   In the reactor of the desulfurization apparatus, a dearomatic reaction occurs simultaneously with the desulfurization reaction, and polycyclic aromatics having two or more rings also decrease as the desulfurization reaction proceeds. However, since the desulfurization reaction and the dearomatic reaction are exothermic reactions, the outlet temperature of the desulfurization reaction tower is higher than the inlet temperature. Therefore, when the dehydrogenation reaction of naphthene becomes dominant at a certain temperature, the polycyclic aromatic content tends to increase as the temperature rises.

すなわち、装置出口温度は、装置出口温度が所定値(図1における温度T0)以下の場合(図1における温度T0よりも左側の領域)は、装置内において多環芳香族の脱水素反応が支配的となる。そのため、温度上昇に伴って反応が進み、多環芳香族含有量は減少する。一方、装置出口温度が所定値T0より大きくなる場合は、装置内において2環以上の多環ナフテンの脱水反応が支配的となり、温度上昇に伴って反応が進み、脱硫軽油の多環芳香族含有量は増加する。   That is, when the apparatus outlet temperature is equal to or lower than a predetermined value (temperature T0 in FIG. 1) (region on the left side of temperature T0 in FIG. 1), the polycyclic aromatic dehydrogenation reaction dominates in the apparatus. It becomes the target. Therefore, the reaction proceeds with increasing temperature, and the polycyclic aromatic content decreases. On the other hand, when the outlet temperature of the apparatus is higher than the predetermined value T0, the dehydration reaction of two or more polycyclic naphthenes is dominant in the apparatus, and the reaction proceeds as the temperature rises, and the desulfurized gas oil contains polycyclic aromatics. The amount increases.

なお、図1の多環芳香族と硫黄分の含有量を示すグラフは、理解を容易にするものであり、正確なものではない。   In addition, the graph which shows content of the polycyclic aromatic of FIG. 1 and sulfur content makes an understanding easy, and is not exact.

装置出口温度が、装置内において多環ナフテンの脱水素反応が支配的となる領域となるように調整することと原料油中のナフテン類の量を適正にすることで、脱硫軽油の多環芳香族含有量を高めかつナフテノベンゼン量を減少させ、酸化安定性の向上を図ることができる。水素化脱硫する原料油が上記所定の性状であると、特に酸化安定性を高めることができる。   By adjusting the device outlet temperature so that the dehydrogenation reaction of polycyclic naphthene is dominant in the device, and by adjusting the amount of naphthenes in the feedstock, the polycyclic aroma of desulfurized gas oil It is possible to improve the oxidation stability by increasing the group content and decreasing the amount of naphthenobenzene. When the raw material oil to be hydrodesulfurized has the predetermined property, oxidation stability can be particularly improved.

装置出口温度は、装置で使用されている触媒の種類に応じて、液空間速度、反応塔出口水素分圧、水素オイル比を適宜調整し、適正な反応塔出口温度とすることで、所望の範囲に収めることができる。例えば触媒としては市販のCoMo系またはNiMo系脱硫触媒を使い、液空間速度0.4〜1.5h−1、反応塔出口水素分圧3.5〜6.2MPa、水素オイル比100〜300NL/Lとすることができる。 Depending on the type of catalyst used in the apparatus, the apparatus outlet temperature is adjusted appropriately for the liquid space velocity, the reaction tower outlet hydrogen partial pressure, and the hydrogen oil ratio to obtain an appropriate reaction tower outlet temperature. Can be in range. For example, a commercially available CoMo-based or NiMo-based desulfurization catalyst is used as the catalyst, the liquid space velocity is 0.4 to 1.5 h −1 , the reaction tower outlet hydrogen partial pressure is 3.5 to 6.2 MPa, and the hydrogen oil ratio is 100 to 300 NL / L.

多環ナフテンの脱水素反応が支配的となる領域(温度)は、例えば、次のように決定することができる。硫黄分を下げるために反応温度を上げていくと、2環以上の多環芳香族分も減少するが、ある点を境に多環芳香族分が増加する温度が存在する。多環芳香族分が下限となる温度(T0)は水素分圧・触媒活性・水素オイル比など一般的な脱硫装置の装置・運転条件および原料油の性状により異なるが、この温度は得られる軽油組成物の芳香族を測定(例えばJPI法)し、多環芳香族分と反応塔出口温度を測定して決定することができる。多環ナフテンの脱水素反応が支配的となる領域(温度)は、T0℃〜T0+40℃の範囲内から選ばれることが好ましく、T0℃〜T0+20℃の範囲内から選ばれることがより好ましい。この範囲内から任意の範囲、即ち上限下限を決めて多環ナフテンの脱水素反応が支配的となる領域(温度)とすることができる。支配的となる領域(温度)が低すぎると所望の酸化安定性が得られづらくなり、高すぎると多環芳香族が増加し排ガス性状が悪化することがある。   The region (temperature) where the dehydrogenation reaction of polycyclic naphthene is dominant can be determined, for example, as follows. When the reaction temperature is raised to lower the sulfur content, the polycyclic aromatic content of two or more rings also decreases, but there is a temperature at which the polycyclic aromatic content increases at a certain point. The temperature at which the polycyclic aromatic content becomes the lower limit (T0) varies depending on the general desulfurization equipment and operating conditions such as hydrogen partial pressure, catalyst activity, and hydrogen oil ratio, and the properties of the feedstock oil. It can be determined by measuring the aromaticity of the composition (for example, JPI method) and measuring the polycyclic aromatic content and the reaction tower outlet temperature. The region (temperature) in which the dehydrogenation reaction of polycyclic naphthene is dominant is preferably selected from the range of T0 ° C. to T0 + 40 ° C., and more preferably selected from the range of T0 ° C. to T0 + 20 ° C. Within this range, an arbitrary range, that is, an upper limit and a lower limit can be determined to set a region (temperature) in which the dehydrogenation reaction of polycyclic naphthene becomes dominant. If the dominant region (temperature) is too low, it is difficult to obtain the desired oxidation stability, and if it is too high, the polycyclic aromatics increase and the exhaust gas properties may deteriorate.

本発明において、軽油組成物は、製品軽油であってもよいし、製品軽油を構成する基材であってもよい。したがって、本発明に係る軽油組成物を製品としてそのまま用いることもできるし、基材として用いることもできる。   In the present invention, the light oil composition may be a product light oil or a base material constituting the product light oil. Therefore, the light oil composition according to the present invention can be used as a product as it is or as a base material.

本発明に係る軽油組成物をそのまま製品とする場合、基材とする場合、いずれの場合でも、添加剤を混合してもよい。基材として用いる場合は、例えば、1種または2種以上の灯油基材、または1種または2種以上の軽油基材と混合することができる。   When the light oil composition according to the present invention is used as it is as a product, when it is used as a base material, an additive may be mixed in any case. When using as a base material, it can mix with 1 type, 2 or more types of kerosene base materials, or 1 type, or 2 or more types of light oil base materials, for example.

灯油基材としては、例えば、原油を常圧蒸留して得られる灯油留分およびそれを脱硫した脱硫灯油を用いることができる。また常圧蒸留装置から得られる灯油留分と分解灯油を適切な割合で混合、脱硫処理して得られた硫黄分10質量ppm以下の灯油基材も用いることができる。なお、分解灯油とは、流動接触分解装置から得られる灯油留分や熱分解装置から得られる灯油留分などの重油のアップグレーディングプロセスから留出する灯油留分をいい、近年の社会的要請に従えば、それの混合比率はできるだけ高くすることが好ましい。   As the kerosene base material, for example, a kerosene fraction obtained by atmospheric distillation of crude oil and a desulfurized kerosene obtained by desulfurization thereof can be used. A kerosene base material having a sulfur content of 10 mass ppm or less obtained by mixing and desulfurizing a kerosene fraction obtained from an atmospheric distillation apparatus and cracked kerosene at an appropriate ratio can also be used. Note that cracked kerosene refers to kerosene fractions distilled from heavy oil upgrading processes such as kerosene fractions obtained from fluid catalytic cracking equipment and kerosene fractions obtained from thermal cracking equipment. Therefore, it is preferable to make the mixing ratio as high as possible.

また、軽油基材としては、例えば、一酸化炭素と水からフィッシャートロップシュ反応を利用してパラフィン化合物が製造されたGTL軽油などが挙げられる。   Moreover, as a light oil base material, the GTL light oil etc. with which the paraffin compound was manufactured using the Fischer-Tropsch reaction from carbon monoxide and water are mentioned, for example.

添加剤としては、酸化防止剤、潤滑性向上剤、および低温流動性向上剤などが挙げられる。酸化防止剤としては、市販品が挙げられる。潤滑性向上剤としては、脂肪酸を主成分とする酸系およびグリセリンモノ脂肪酸エステルを主成分とするエステル系などの市販品が挙げられる。これらの化合物は単独で、または2種以上を組み合わせて使用できる。潤滑性向上剤に用いられる脂肪酸としては、炭素数が12〜22程度、好ましくは炭素数が18程度の不飽和脂肪酸、即ちオレイン酸、リノール酸、リノレン酸等の混合物を主成分とするのが好ましい。低温流動性向上剤としては、エチレン−酢酸ビニル共重合体、エチレン−アルキルアクリレート共重合体、アルケニルコハク酸アミド、塩素化ポリエチレン、およびポリアルキルアクリレートなどの市販品が挙げられる。   Examples of the additive include an antioxidant, a lubricity improver, and a low temperature fluidity improver. A commercial item is mentioned as antioxidant. Examples of the lubricity improver include commercially available products such as acid-based acids based on fatty acids and esters based on glycerin monofatty acid esters. These compounds can be used alone or in combination of two or more. The fatty acid used in the lubricity improver is mainly composed of an unsaturated fatty acid having about 12 to 22 carbon atoms, preferably about 18 carbon atoms, that is, a mixture of oleic acid, linoleic acid, linolenic acid and the like. preferable. Examples of the low temperature fluidity improver include commercially available products such as ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer, alkenyl succinic acid amide, chlorinated polyethylene, and polyalkyl acrylate.

≪原料油の調製≫
分解系軽油留分として、RGOおよびLCOを、それに混合する原料油基材として原油種及び硫黄分など性状が異なる軽油留分1(LGO1)および軽油留分2(LGO2)を用いた。これらの性状等を表1に示す。RGO、LCO、LGO1およびLGO2を表2に記載の容量割合で混合して、原料油1〜4を得た。原料油1〜4の性状を表2に示す。なお、全ての性状等は、下記のようにして求めた。
≪Preparation of raw oil≫
RGO and LCO were used as cracking gas oil fractions, and light oil fraction 1 (LGO1) and light oil fraction 2 (LGO2) having different properties such as crude oil type and sulfur content were used as the raw material oil base to be mixed therewith. These properties are shown in Table 1. RGO, LCO, LGO1 and LGO2 were mixed at a volume ratio shown in Table 2 to obtain feedstocks 1-4. Table 2 shows the properties of the feedstocks 1-4. All the properties and the like were determined as follows.

組成:
(芳香族分)
JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」により測定される1環芳香族分と2環芳香族分と3環以上芳香族炭化水素分。これらの総和を全芳香族分とした。
composition:
(Aromatic content)
1 ring aromatic content, 2 ring aromatic content and 3 or more ring aromatic hydrocarbon content measured by JPI-5S-49-97 "Petroleum products-Hydrocarbon type test method-High performance liquid chromatograph method". The sum of these was taken as the total aromatic content.

(ナフテン分,ナフテノベンゼン類)
Agilent Technologies社製HP−6890Nガスクロマトグラムを接続したJEOL社製JMS−T100GC飛行時間型質量分析計を用い、FI−MS測定し、測定したデータをノルマルパラフィン標準試料を用いて求めたイオン強度(%)と濃度(質量%)補正グラフを用いて補正後、全体の強度を100質量%として各質量比(%)を求めた。分析条件は以下の通りである。
GCカラム: FS、Deactivated (0.250mm×5m, Agilent technologies)
カラム温度条件:300℃(7分)
試料気化室条件:300℃一定
MS検出器部:300℃
(Naphthene, naphthenobenzenes)
The ionic strength (%) was obtained by performing FI-MS measurement using a JMS-T100GC time-of-flight mass spectrometer manufactured by JEOL to which an HP-6890N gas chromatogram manufactured by Agilent Technologies was connected, and using the normal paraffin standard sample. ) And the concentration (mass%) correction graph, and then the respective strength ratios (%) were determined with the overall strength as 100 mass%. The analysis conditions are as follows.
GC column: FS, Deactivated (0.250mm × 5m, Agilent technologies)
Column temperature condition: 300 ° C (7 minutes)
Sample vaporization chamber conditions: 300 ° C constant MS detector: 300 ° C

硫黄分:
JIS K 2541−4「原油及び石油製品−硫黄分試験方法 第4部:放射線式励起法」により測定した。
密度(@15℃):
JIS K 2249「原油及び石油製品−密度試験方法及び密度・質量・容積換算表」により測定した。
蒸留性状:
JIS K 2254「石油製品―蒸留試験方法」により測定した。
Sulfur content:
Measured according to JIS K 2541-4 “Crude oil and petroleum products—Sulfur content test method Part 4: Radiation excitation method”.
Density (@ 15 ° C):
Measured according to JIS K 2249 “Crude oil and petroleum products—density test method and density / mass / volume conversion table”.
Distillation properties:
Measured according to JIS K 2254 "Petroleum products-Distillation test method".

動粘度(@30℃):
JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定した。
流動点:
JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定した。
目詰まり点:
JIS K 2288「石油製品−軽油−目詰まり点試験方法」により測定した。
ASTM色:
JIS K 2580「石油製品−色試験方法」の刺激値換算法により測定した。色彩・濁度同時測定器COH400(日本電色株式会社製)を用いて、小数点1桁まで測定した。
Kinematic viscosity (@ 30 ° C):
Measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
Pour point:
Measured according to JIS K 2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
Clogging point:
Measured according to JIS K 2288 “Petroleum products—light oil—clogging point test method”.
ASTM color:
It was measured by the stimulus value conversion method of JIS K 2580 “Petroleum products—color test method”. Using a color / turbidity simultaneous measuring device COH400 (manufactured by Nippon Denshoku Co., Ltd.), measurement was performed up to one decimal place.

セタン指数:
JIS K 2280−5「石油製品−オクタン価及びセタン価並びにセタン指数の求め方−第5部セタン指数」に従って測定した。
PetroOXY法による誘導期間(誘導期間):
酸化安定性の指標として、酸化安定性試験装置PetroOXY(Petrotest社製)を用いて、初期酸素圧力を700kPaに設定し、最大圧より圧力が10%低下するまでの経過時間を測定した。なお、本試験においては、高温での酸化安定性を評価するため試験温度は140℃とした。
Cetane index:
Measured according to JIS K 2280-5 “Petroleum products—Octane number and cetane number and determination of cetane index—Part 5: Cetane index”.
Induction period by the PetroOXY method (induction period):
As an oxidation stability index, using an oxidation stability test apparatus PetroOXY (manufactured by Petrotest), the initial oxygen pressure was set to 700 kPa, and the elapsed time until the pressure decreased by 10% from the maximum pressure was measured. In this test, the test temperature was 140 ° C. in order to evaluate oxidation stability at high temperatures.

(実施例1)
原料油1を市販の脱硫触媒を用い、液空間速度1.0h−1、水素分圧5.6MPa、水素オイル比150NL/Lの条件で、装置出口温度が、多環ナフテンの脱水素反応が支配的となる領域(温度)で、硫黄分が10massppm以下となるまで脱硫処理して実施例1に係る軽油組成物を得た。得られた軽油組成物の性状等を表3に示す。
Example 1
The raw material oil 1 was prepared using a commercially available desulfurization catalyst, the liquid space velocity was 1.0 h −1 , the hydrogen partial pressure was 5.6 MPa, and the hydrogen oil ratio was 150 NL / L. In a dominant region (temperature), desulfurization treatment was performed until the sulfur content became 10 massppm or less, and the light oil composition according to Example 1 was obtained. Table 3 shows properties and the like of the obtained light oil composition.

(実施例2〜3)
原料油1の代わりに原料油2または3を用いた以外は実施例1と同様にして、実施例2〜3に係る軽油組成物を得た。得られた軽油組成物の性状等を表3に示す。
(Examples 2-3)
The light oil composition which concerns on Examples 2-3 was obtained like Example 1 except having used raw material oil 2 or 3 instead of the raw material oil 1. FIG. Table 3 shows properties and the like of the obtained light oil composition.

(比較例1)
原料油1の代わりに原料油4を用いた以外は実施例1と同様にして、比較例1に係る軽油組成物を得た。得られた軽油組成物の性状等を表3に示す。
(Comparative Example 1)
A light oil composition according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the raw material oil 4 was used instead of the raw material oil 1. Table 3 shows properties and the like of the obtained light oil composition.

Claims (3)

全芳香族分を20.0〜25.0容量%、二環芳香族分を1.0〜3.0容量%、三環以上芳香族分を0.2〜1.2容量%、ナフテノベンゼン類を13.0〜18.0質量%、及び硫黄分を10質量ppm以下含み、密度(15℃)が0.8200〜0.8600g/cm 及びASTM色が0.2〜2.0である軽油組成物の製造方法であって、
分解系軽油留分を含む下記原料油を水素化脱硫することを特徴とする軽油組成物の製造方法。
原料油:全芳香族分を25.0〜35.0容量%、全ナフテン分を15.0〜25.0質量%、二環ナフテン分を4.0〜7.0質量%、三環ナフテン分を1.0〜2.5質量%、及び硫黄分を0.50〜1.60質量%含み、90%留出温度が340.0〜380.0℃である。
The total aromatic content from 20.0 to 25.0% by volume, bicyclic aromatic content from 1.0 to 3.0 volume%, the aromatic content or tricyclic 0.2 to 1.2 volume%, naphtheno 13.0 to 18.0 % by mass of benzenes and 10 mass ppm or less of sulfur content, density (15 ° C.) is 0.8200 to 0.8600 g / cm 3 , and ASTM color is 0.2 to 2 A process for producing a light oil composition that is 0.0 ,
A process for producing a gas oil composition, comprising hydrodesulfurizing the following feedstock containing a cracked gas oil fraction.
Feedstock: total aromatic content of 25.0 to 35.0 volume%, the total naphthene content from 15.0 to 25.0 wt%, a bicyclic naphthenes 4.0 to 7.0 wt%, tricyclic naphthenes min 1.0 to 2.5 wt%, and a sulfur content viewed contains 0.50 to 1.60 wt%, a 90% distillation temperature of 340.0 ~380.0 ℃.
前記分解系軽油留分が下記直脱軽油であり、前記原料油中に前記直脱軽油を5〜30容量%含む請求項記載の軽油組成物の製造方法。
直脱軽油:全芳香族分を25.0容量%以上、全ナフテン分を15.0質量%以上、二環ナフテン分を4.0質量%以上、三環ナフテン分を1.0質量%以上、及び硫黄分を0.01質量%以上含み、90%留出温度が380.0℃以下、及び密度(15℃)が0.8700g/cm以下である。
Wherein a degradation system gas oil fraction is below direct desulfurization gas oil, a manufacturing method of claim 1 gas oil composition according the containing 5-30% by volume direct desulfurization gas oil to the feedstock.
Direct degassing oil: 25.0 vol% or more of total aromatic content, 15.0 mass% or more of total naphthene content, 4.0 mass% or more of bicyclic naphthene content, 1.0 mass% or more of tricyclic naphthene content And a sulfur content of 0.01% by mass or more, a 90% distillation temperature of 380.0 ° C. or lower, and a density (15 ° C.) of 0.8700 g / cm 3 or lower.
前記分解系軽油留分が下記ライトサイクルオイルであり、前記原料油中に前記ライトサイクルオイルを1〜10容量%含む請求項記載の軽油組成物の製造方法。
ライトサイクルオイル:全芳香族分を60.0容量%以上、全ナフテン分を15.0質量%以上、二環ナフテン分を3.0質量%以上、三環ナフテン分を1.0質量%以上、及び硫黄分を0.07質量%以上含み、90%留出温度が370.0℃以下、及び密度(15℃)が0.9800g/cm以下である。
Method for producing a degradation system is a gas oil fraction is below light cycle oil, gas oil composition of claim 1 wherein said containing light cycle oil 1-10% by volume in said feedstock.
Light cycle oil: total aromatic content is 60.0% by volume or more, total naphthene content is 15.0% by mass or more, bicyclic naphthene content is 3.0% by mass or more, tricyclic naphthene content is 1.0% by mass or more, And a sulfur content of 0.07% by mass or more, a 90% distillation temperature of 370.0 ° C. or lower, and a density (15 ° C.) of 0.9800 g / cm 3 or lower.
JP2015151812A 2015-07-31 2015-07-31 Method for producing light oil composition Active JP6609749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015151812A JP6609749B2 (en) 2015-07-31 2015-07-31 Method for producing light oil composition
PCT/EP2016/068195 WO2017021317A1 (en) 2015-07-31 2016-07-29 Gas oil composition and method for producing the same
AU2016302551A AU2016302551B2 (en) 2015-07-31 2016-07-29 Gas oil composition and method for producing the same
PH12018550007A PH12018550007A1 (en) 2015-07-31 2018-01-29 Gas oil composition and method for producing the same
US15/883,365 US20180155646A1 (en) 2015-07-31 2018-01-30 Gas oil composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151812A JP6609749B2 (en) 2015-07-31 2015-07-31 Method for producing light oil composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019056935A Division JP2019116637A (en) 2019-03-25 2019-03-25 Gas oil composition and raw oil thereof

Publications (2)

Publication Number Publication Date
JP2017031304A JP2017031304A (en) 2017-02-09
JP6609749B2 true JP6609749B2 (en) 2019-11-27

Family

ID=56611246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151812A Active JP6609749B2 (en) 2015-07-31 2015-07-31 Method for producing light oil composition

Country Status (5)

Country Link
US (1) US20180155646A1 (en)
JP (1) JP6609749B2 (en)
AU (1) AU2016302551B2 (en)
PH (1) PH12018550007A1 (en)
WO (1) WO2017021317A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396633B2 (en) 2020-05-22 2022-07-26 ExxonMobil Technology and Engineering Company High napthenic content marine fuel compositions
US11485920B2 (en) * 2020-05-22 2022-11-01 ExxonMobil Technology and Engineering Company Ultra low sulfur marine fuel compositions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146365A (en) * 2000-11-13 2002-05-22 Kashima Oil Co Ltd Method for producing desulfurized light oil and the resultant light oil
JP2004137353A (en) * 2002-10-17 2004-05-13 Idemitsu Kosan Co Ltd Method for hydrodesulfurization of gas oil and gas oil composition obtained by the method
JP5417329B2 (en) * 2009-03-13 2014-02-12 Jx日鉱日石エネルギー株式会社 Method for producing low sulfur gas oil base and low sulfur gas oil
JP5520101B2 (en) * 2010-03-05 2014-06-11 Jx日鉱日石エネルギー株式会社 Light oil composition
JP5615216B2 (en) * 2011-03-22 2014-10-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
JP5615215B2 (en) * 2011-03-22 2014-10-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
JP5683344B2 (en) * 2011-03-25 2015-03-11 Jx日鉱日石エネルギー株式会社 Monocyclic aromatic hydrocarbon production method
JP5759262B2 (en) * 2011-05-24 2015-08-05 Jx日鉱日石エネルギー株式会社 Method for producing xylene
JP6057508B2 (en) * 2011-11-18 2017-01-11 昭和シェル石油株式会社 Light oil fuel composition
JP6057509B2 (en) * 2011-12-14 2017-01-11 昭和シェル石油株式会社 Light oil fuel composition
JP6045385B2 (en) * 2013-02-15 2016-12-14 Jxエネルギー株式会社 Production method of light oil base material and light oil composition containing the base material

Also Published As

Publication number Publication date
AU2016302551A1 (en) 2018-02-15
AU2016302551B2 (en) 2021-08-26
US20180155646A1 (en) 2018-06-07
PH12018550007A1 (en) 2018-07-09
WO2017021317A1 (en) 2017-02-09
JP2017031304A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2018101244A1 (en) Heavy fuel oil c composition
JP5340230B2 (en) C heavy oil composition
JP6609749B2 (en) Method for producing light oil composition
JP5154817B2 (en) Gas oil base and gas oil composition
JP6045385B2 (en) Production method of light oil base material and light oil composition containing the base material
JP6057509B2 (en) Light oil fuel composition
JP7313142B2 (en) Heavy oil composition and method for producing heavy oil composition
JP5730006B2 (en) Light oil composition
JP5847750B2 (en) Fuel oil composition
JP2019116637A (en) Gas oil composition and raw oil thereof
JP5676344B2 (en) Kerosene manufacturing method
JP5312649B2 (en) Fuel oil composition for diesel engines
JP6057508B2 (en) Light oil fuel composition
JP5091762B2 (en) Gas oil base and gas oil composition
JP5053796B2 (en) Fuel oil composition for diesel engines
JP5504442B2 (en) Fuel oil composition for diesel engines
JP2008007675A (en) Gas oil composition
JP4635243B2 (en) A heavy oil
JP6145397B2 (en) Light oil composition
JP2023137574A (en) Kerosene composition and base material for kerosene composition
JP5436079B2 (en) Light oil composition
JP6181540B2 (en) Light oil composition
JP6128839B2 (en) Light oil fuel composition
JP5053795B2 (en) Fuel oil composition for diesel engines
JP5436078B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6609749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150