JP3825879B2 - Gas turbine fuel composition - Google Patents

Gas turbine fuel composition Download PDF

Info

Publication number
JP3825879B2
JP3825879B2 JP12481997A JP12481997A JP3825879B2 JP 3825879 B2 JP3825879 B2 JP 3825879B2 JP 12481997 A JP12481997 A JP 12481997A JP 12481997 A JP12481997 A JP 12481997A JP 3825879 B2 JP3825879 B2 JP 3825879B2
Authority
JP
Japan
Prior art keywords
oil
light
fuel composition
gas turbine
turbine fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12481997A
Other languages
Japanese (ja)
Other versions
JPH10298564A (en
Inventor
正典 廣瀬
成 小山
英俊 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP12481997A priority Critical patent/JP3825879B2/en
Publication of JPH10298564A publication Critical patent/JPH10298564A/en
Application granted granted Critical
Publication of JP3825879B2 publication Critical patent/JP3825879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はガスタービン燃料組成物に関し、詳しくは、分解軽油を主体としながら直脱軽油を一定割合混合することにより、貯蔵安定性、色相安定性、通油性及び高温腐食防止性が良好で、低金属分、低硫黄分のガスタービン燃料組成物に関する。
【0002】
【従来の技術】
現在、タービンの駆動はボイラにより生じた高温高圧のスチームによる方法が主なものであり、そのボイラ用燃料としては重油や原油が主に用いられてきた。近年、高熱効率を目的としたコジェネレーションシステム等においてガスタービンの採用が増加しつつある。ガスタービンに使用される燃料は、ガスタービンの構造上、燃焼性や腐食性等によって制限を受け(特にタービンブレードの高温腐食防止の観点から、硫黄、ナトリウム、カリウム、バナジウム等の残存量を一定レベル以下に保つ必要がある)、LNGやナフサ、LPG、灯油、軽油等が主に使用されており、重油や原油の使用は、残油中に含まれる不純物がトラブルの原因となることが予想されるため、保守費用節減の観点から使用が困難な状況にある。
【0003】
一方、近年の燃料油の需要動向は白油化傾向にあり、重質油を分解し白油を増産するための分解装置(流動接触分解装置、残渣流動接触分解装置、直接重油脱硫装置、水素化分解装置等)は、より稼働率が高まることが予想される。
【0004】
現在、分解装置で製造される軽油相当の留分(分解軽油)は、主としてA重油のブレンド基材として、常圧蒸留装置から得られる直留軽油又は灯油の代替材源として用いることで白油増産に寄与しており、白油増産の観点から、分解軽油の有効利用法の開発が急務となっている。
【0005】
分解軽油はその製造方法上、タービンブレードに悪影響を及ぼす金属等の含有量が少ないという特徴を有するものの、軽質サイクル油は、貯蔵安定性に乏しいため、貯蔵中にフィルター等の閉塞の一因となる夾雑物を生じ易いことが知られており、そのままでは貯蔵安定性及び通油性確保の観点から、ガスタービン燃料への一定量以上の混合は困難であった。
【0006】
更に軽質サイクル油は、貯蔵中に褐色化が進み易いことが知られており、製品の品質維持の観点からも色相の安定化が求められていた。
【0007】
軽質サイクル油は、貯蔵安定性、色相安定性及び通油性を改善するために、これらに悪影響を与えると考えられているジエンやオレフィン化合物を飽和させ、反応性の高い硫黄化合物や窒素化合物を分解し、反応性の低い炭化水素、硫化水素、アンモニアを生成させるために水素化処理を行うのが効果的であるが、処理工程が増加し、コストがかかることから望ましいことではなかった。
【0008】
また、軽質サイクル油の貯蔵安定性、色相安定性及び通油性改善のためには、上記の他に、苛性ソーダ洗浄によるチオフェノール、メルカプタン、硫化水素、有機酸、フェノール等の夾雑物前駆体除去や、安定化剤、酸化防止剤、分散剤、夾雑物生成反応を触媒する金属(特に銅)を不活性化する金属不活性化剤等の添加剤を添加する方法も存在するが、いずれもコスト増につながるものであった。
【0009】
【発明が解決しようとする課題】
一般に軽質サイクル油の貯蔵安定性、色相安定性及び通油性改善には水素化処理が最も効果的であるものの、処理工程が増加することから精製コストに大きく影響する。更に、水素化処理装置の処理能力の点からも容易に採用できない状況にある。
【0010】
本発明の目的は、直脱軽油を一定割合以上混合することにより、特別な処理を施さずに軽質サイクル油を基材として多量に使用しながら、貯蔵安定性、色相安定性及び通油性に優れ、且つタービンブレードへの高温腐食性が少なく、加えてスラッジ重量が抑制されたガスタービン燃料組成物を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、軽質サイクル油の混合による貯蔵安定性、色相安定性及び通油性の上記欠点を克服し、軽質サイクル油の水素化処理が不要なガスタービン燃料組成物を開発すべく鋭意研究を重ねた結果、直脱軽油を軽質サイクル油に対し一定割合混合することにより、多量に軽質サイクル油を使用しても貯蔵安定性、色相安定性及び通油性を改善する効果を見出し、本発明を完成するに至った。
【0012】
即ち、本発明の上記課題は、
1.(A)沸点範囲170〜380℃、50%留出点200〜330℃、15℃密度0.860〜0.985g/cmの軽質サイクル油を40〜90容量%と、
(B)沸点範囲130〜500℃、50%留出点250〜400℃、15℃密度0.840〜0.950g/cmの直脱軽油を10〜60容量%含有し、
(C)バナジウム含有量が0.2重量ppm以下、
(D)硫黄含有量が0.5重量%以下、
(E)ナトリウムとカリウムの合計含有量が0.2重量ppm以下で、
(F)且つスラッジ重量が6mg/l以下のガスタービン燃料組成物、
【0013】
2.前記(A)、(B)成分の他に、(a)直留灯油又は脱硫処理した灯油、(b)脱硫処理した直留軽質軽油、(c)脱硫処理した直留重質軽油、(d)水素化分解軽油、及び(e)脱硫処理した減圧軽油のうちから選ばれる少なくとも1つを含有することを特徴とする上記1記載のガスタービン燃料組成物、
【0014】
3.直脱軽油が、沸点範囲130〜330℃、50%留出点200〜300℃、15℃密度0.840〜0.900g/cmの直脱軽油中の低沸点留分であることを特徴とする上記1又は2記載のガスタービン燃料組成物、
【0015】
4.直脱軽油が、沸点範囲220〜450℃、50%留出点250〜350℃、15℃密度0.850〜0.920g/cmの直脱軽油中の中沸点留分であることを特徴とする上記1又は2記載のガスタービン燃料組成物、
【0016】
5.直脱軽油が、直脱軽油中の低沸点留分と中沸点留分を任意の割合で混合したものであることを特徴とする上記1又は2記載のガスタービン燃料組成物、
【0017】
6.軽質サイクル油が、流動接触分解装置及び/又は残渣流動接触分解装置より得られたものであり、直脱軽油が、直接重油脱硫装置より得られたものであることを特徴とする上記1〜5のいずれかに記載のガスタービン燃料組成物、
の各々により達成される。
【0018】
軽質サイクル油に対して直脱軽油を一定割合混合することにより、貯蔵安定性、色相安定性、通油性が改善されることの理由は明確ではないが、原料油が重油直接脱硫装置で処理される過程で、多環芳香族等の一部が水素化され、反応性(水素供与能力)の高い化合物が生成し、これらの化合物が軽質サイクル油の反応性が高く不安定な化合物を安定化する作用を有するものと推定される。この効果は直留灯油(又は脱硫処理した灯油)、脱硫処理した直留軽質軽油、脱硫処理した直留重質軽油、水素化分解軽油、及び脱硫処理した減圧軽油にはなく、本発明で規定する直脱軽油を使用せずに、これらの直留系留分等だけを軽質サイクル油に混合した場合には、貯蔵安定性、色相安定性及び通油性は改善されなかった。
【0019】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明のガスタービン燃料組成物は、所定の性状を有する軽質サイクル油を40〜90容量%、及び所定の性状を有する直脱軽油又は直脱軽油のうち低沸点留分及び/又は中沸点留分を10〜60容量%の割合で混合し、且つ、この際にバナジウム含有量が0.2重量ppm以下、硫黄分含有量が0.5重量%以下、ナトリウムとカリウムの合計含有量が0.2重量ppm以下で、且つスラッジ重量が6mg/l以下となるようにする。
【0020】
軽質サイクル油は、流動接触分解装置及び/又は残渣流動接触分解装置から得られる、沸点170〜380℃の範囲内の留分である。具体的には、その蒸留性状として、50%留出点が200〜330℃であり、15℃の密度が0.860〜0.985g/cmの範囲のものが適宜利用できる。流動接触分解装置は、重質軽油、減圧軽油を水素化脱硫装置を用いて、アルミナ担持Co−Mo触媒、アルミナ担持Ni−Mo触媒等の触媒存在下で、5〜10MP、好ましくは5〜8MPの圧力下、350〜450℃、好ましくは360〜420℃の温度で、LHSV0.5〜4.0/h、好ましくは1.0〜3.0/hの条件で水素化処理をした脱硫減圧軽油等を原料油に、また、残渣流動接触分解装置の場合は、直接重油脱硫装置より得られる直脱残油、低硫黄の常圧残油を上記原料油に加えて、固体触媒の存在下で接触分解する装置であり、通常シリカアルミナ触媒やゼオライト触媒が用いられ、また、反応条件は一般に反応温度470〜550℃、反応圧力0.08〜0.3MP程度であるが、これらの条件は特に限定されるものではない。
【0021】
直脱軽油は直接重油脱硫装置より得られる、沸点130〜500℃の範囲内の留分である。具体的にはその蒸留性状として、50%留出点が250〜400℃であり、15℃の密度が0.840〜0.950g/cmの範囲のものが適宜利用できる。直脱軽油のうち低沸点留分は、直接重油脱硫装置より得られる、沸点130〜330℃の範囲内の留分である。具体的には、その蒸留性状として、50%留出点が200〜300℃であり、15℃の密度が0.840〜0.900g/cmの範囲のものが適宜利用できる。直脱軽油のうち中沸点留分は、直接重油脱硫装置より得られる、沸点220〜450℃の範囲内の留分である。具体的には、その蒸留性状として、50%留出点が250〜350℃であり、15℃の密度が0.850〜0.920g/cmの範囲のものが適宜利用できる。また、直接重油脱硫装置は、常圧残油及び/又は減圧残油をアルミナ担持Co−Mo触媒、アルミナ担持Ni−Mo触媒等の触媒存在下で、10〜25MP、好ましくは14〜20MPの圧力下、350〜450℃、好ましくは360〜420℃の温度で、LHSV0.1〜1.0/h、好ましくは0.2〜0.5/hの条件で水素化を行う装置であるが、これらの条件は特に限定されるものではない。
【0022】
軽質サイクル油の混合割合が90容量%をこえる場合、及び/又は直脱軽油の混合割合が10容量%未満の場合は、直脱軽油による改質効果が不足して所定の貯蔵安定性及び通油性の改善効果は得られない。
【0023】
軽質サイクル油に対して直脱軽油を一定割合混合することにより、貯蔵安定性、色相安定性、通油性が改善されることの理由は、課題を解決するための手段の項で述べた通りである。
【0024】
本発明のガスタービン燃料組成物には、必要に応じてセタン価向上剤、酸化防止剤、安定化剤、分散剤、流動性向上剤、金属不活性化剤、微生物殺菌剤、助燃剤、帯電防止剤、識別剤等を適宜加えることができる。
【0025】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。
【0026】
実施例1、2、3、4、5及び比較例1、2、3、4
表1に示す性状の基材を表2に示す容量比に混合して燃料組成物を調製し、その貯蔵安定性の指標として貯蔵前後のスラッジ重量の変化を、色相安定性の指標として貯蔵前後のASTM色の変化を、通油性の指標として貯蔵前後のフィルター通過時間を測定した。
【0027】
【表1】

Figure 0003825879
【0028】
【表2】
Figure 0003825879
【0029】
表2より明らかなように、一定割合以上の直脱軽油又は直脱軽油のうち低沸点留分及び/又は中沸点留分を混合することにより、軽質サイクル油を多量に混合してもスラッジ生成量を著しく低減し、優れた貯蔵安定性、色相安定性及び通油性を有するガスタービン燃料が得られた。
【0030】
尚、燃料油の性状及び貯蔵安定性は次の方法によって求めた。
*1 密度:
JIS K 2249に準拠して測定した。
*2 蒸留性状:
JIS K 2254に準拠して測定した。
*3 硫黄分:
JIS K 2541に準拠して測定した。
*4 金属分:
ナトリウムは原子吸光法、その他の金属はプラズマ発光分光法(ICP法)により測定した。
*5 スラッジ重量:
スクリューキャップ付きのパイレックス製ビン(Corning 1372)のキャップに6mmの穴を開け、試料充填後、暗所にて80℃で1週間貯蔵後、100mlを目開き0.8μmのフィルターで濾過し、乾燥後、濾紙上に補足されたスラッジ重量を測定した。
*6 ASTM色:
JIS K 2580に準拠して測定した。
*7 通油性:
温度20℃、吸引圧力500mmHgで、試料1000mlが直径47mm、目開き0.8μmのフィルターを通過するのに要する時間を測定した。
【0031】
【発明の効果】
本発明によれば、一定割合の直脱軽油又は直脱軽油のうち低沸点留分及び/又は中沸点留分を混合することにより、軽質サイクル油を多量に混合しても貯蔵安定性、色相安定性及び通油性に優れ、且つ低金属分及び低硫黄分でタービンブレードの高温腐食性の少ないガスタービン燃料組成物を製造することができ、軽質サイクル油の有効活用を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine fuel composition, and more specifically, by mixing a fixed proportion of directly removed light oil mainly composed of cracked light oil, the storage stability, hue stability, oil permeability and hot corrosion resistance are good and low. The present invention relates to a gas turbine fuel composition having a metal content and a low sulfur content.
[0002]
[Prior art]
At present, the turbine is driven mainly by high-temperature and high-pressure steam generated by a boiler, and heavy oil and crude oil have been mainly used as fuel for the boiler. In recent years, the adoption of gas turbines is increasing in cogeneration systems and the like for the purpose of high thermal efficiency. Fuel used in gas turbines is limited by combustibility, corrosivity, etc. due to the structure of the gas turbine (especially from the viewpoint of preventing high-temperature corrosion of turbine blades, the remaining amount of sulfur, sodium, potassium, vanadium, etc. is constant) LNG, naphtha, LPG, kerosene, light oil, etc. are mainly used, and the use of heavy oil or crude oil is expected to cause troubles in the residual oil. Therefore, it is difficult to use from the viewpoint of reducing maintenance costs.
[0003]
On the other hand, the trend of demand for fuel oil in recent years has been the trend toward white oil, cracking equipment for cracking heavy oil and increasing white oil production (fluid catalytic cracking equipment, residue fluid catalytic cracking equipment, direct heavy oil desulfurization equipment, hydrogen It is expected that the utilization rate of chemical decomposition equipment and the like will increase further.
[0004]
At present, the fraction corresponding to light oil (cracked light oil) produced by the cracking device is mainly used as a blend base of heavy oil A, and is used as an alternative material source for straight-run light oil or kerosene obtained from the atmospheric distillation device. From the viewpoint of increasing white oil production, there is an urgent need to develop a method for effectively using cracked gas oil.
[0005]
Although cracked gas oil has a feature that the content of metals and the like that adversely affect turbine blades is low due to its production method, light cycle oil is poor in storage stability, and this may cause clogging of filters and the like during storage. It is known that it is easy to produce such impurities, and it is difficult to mix a certain amount or more with the gas turbine fuel as it is from the viewpoint of ensuring storage stability and oil permeability.
[0006]
Furthermore, light cycle oils are known to be easily browned during storage, and there has been a demand for stabilization of hue from the viewpoint of maintaining product quality.
[0007]
In order to improve storage stability, hue stability and oil permeability, light cycle oils saturate diene and olefin compounds, which are thought to adversely affect them, and decompose highly reactive sulfur and nitrogen compounds. However, it is effective to perform a hydrotreatment to generate hydrocarbons, hydrogen sulfide, and ammonia having low reactivity, but this is not desirable because of an increase in processing steps and cost.
[0008]
In addition to the above, in order to improve the storage stability, hue stability, and oil permeability of light cycle oils, in addition to the above, removal of contaminant precursors such as thiophenol, mercaptan, hydrogen sulfide, organic acids, and phenols by washing with caustic soda There are also methods for adding additives such as stabilizers, antioxidants, dispersants, metal deactivators that inactivate metals (especially copper) that catalyze the formation of impurities, but they all cost It led to an increase.
[0009]
[Problems to be solved by the invention]
In general, hydrotreating is the most effective in improving the storage stability, hue stability and oil permeability of light cycle oils, but the refining cost is greatly affected by the increase in processing steps. Furthermore, it is in a situation where it cannot be easily adopted from the viewpoint of the processing capacity of the hydrotreating apparatus.
[0010]
The object of the present invention is to mix a directly degassed light oil at a certain ratio or more, so that it is excellent in storage stability, hue stability and oil permeability while using a large amount of light cycle oil as a base material without any special treatment. Another object of the present invention is to provide a gas turbine fuel composition that has low hot corrosiveness to turbine blades and that has a reduced sludge weight.
[0011]
[Means for Solving the Problems]
The present inventors have intensively studied to develop a gas turbine fuel composition that overcomes the above-mentioned drawbacks of storage stability, hue stability and oil permeability by mixing light cycle oil and does not require hydroprocessing of light cycle oil. As a result of repeating the above, the present invention has found an effect of improving storage stability, hue stability and oil permeability even if a large amount of light cycle oil is used by mixing a certain amount of directly removed light oil with light cycle oil. It came to complete.
[0012]
That is, the above problem of the present invention is as follows.
1. (A) 40-90% by volume of light cycle oil having a boiling range of 170-380 ° C., a 50% distillation point of 200-330 ° C., and a 15 ° C. density of 0.860-0.985 g / cm 3 ,
(B) 10-60% by volume of directly removed light oil having a boiling range of 130-500 ° C., 50% distillation point 250-400 ° C., 15 ° C. density 0.840-0.950 g / cm 3 ,
(C) vanadium content is 0.2 wtppm or less,
(D) the sulfur content is 0.5 wt% or less,
(E) The total content of sodium and potassium is 0.2 ppm by weight or less,
(F) and a gas turbine fuel composition having a sludge weight of 6 mg / l or less,
[0013]
2. In addition to the components (A) and (B), (a) straight-run kerosene or desulfurized kerosene, (b) desulfurized straight-run light gas oil, (c) desulfurized straight-run heavy gas oil, (d 2. The gas turbine fuel composition according to 1 above, which contains at least one selected from hydrocracked gas oil and (e) desulfurized vacuum gas oil,
[0014]
3. The directly degassed diesel oil is a low boiling fraction in a directly degassed gas oil having a boiling range of 130 to 330 ° C, a 50% distillation point of 200 to 300 ° C, and a density of 15 ° C of 0.840 to 0.900 g / cm 3. The gas turbine fuel composition as described in 1 or 2 above,
[0015]
4). The directly degassed gas oil is a medium boiling fraction in a directly degassed gas oil having a boiling range of 220 to 450 ° C., a 50% distillation point of 250 to 350 ° C., and a density of 15 ° C. of 0.850 to 0.920 g / cm 3. The gas turbine fuel composition as described in 1 or 2 above,
[0016]
5). The gas turbine fuel composition according to the above 1 or 2, wherein the directly degassed oil is a mixture of a low boiling fraction and a medium boiling distillate in the directly degassed oil at an arbitrary ratio,
[0017]
6). 1 to 5 above, wherein the light cycle oil is obtained from a fluid catalytic cracking device and / or a residue fluid catalytic cracking device, and the direct degassing light oil is obtained from a direct heavy oil desulfurization device. A gas turbine fuel composition according to any one of
Achieved by each.
[0018]
The reason why storage stability, hue stability, and oil permeability are improved by mixing a certain amount of direct deionized light oil with light cycle oil is not clear, but the raw material oil is processed by heavy oil direct desulfurization equipment. In the process, part of polycyclic aromatics etc. is hydrogenated to produce compounds with high reactivity (hydrogen donating ability), and these compounds stabilize light cycle oils with high reactivity and unstable compounds It is estimated that it has the effect | action which carries out. This effect does not apply to straight-run kerosene (or desulfurized kerosene), desulfurized straight-run light gas oil, desulfurized straight-run heavy gas oil, hydrocracked light oil, and desulfurized vacuum gas oil. In the case where these straight-run fractions and the like were mixed with the light cycle oil without using the directly removed light oil, the storage stability, hue stability and oil permeability were not improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The gas turbine fuel composition of the present invention comprises 40 to 90% by volume of a light cycle oil having a predetermined property, and a low boiling fraction and / or a medium boiling point fraction of a directly degassed light oil or a directly degassed light oil having a predetermined property. In this case, the vanadium content is 0.2 ppm by weight or less, the sulfur content is 0.5% by weight or less, and the total content of sodium and potassium is 0. .2 ppm by weight or less and sludge weight to 6 mg / l or less.
[0020]
The light cycle oil is a fraction having a boiling point in the range of 170 to 380 ° C. obtained from a fluid catalytic cracker and / or a residue fluid catalytic cracker. Specifically, as the distillation properties, those having a 50% distillation point of 200 to 330 ° C. and a density of 15 ° C. in the range of 0.860 to 0.985 g / cm 3 can be used as appropriate. The fluid catalytic cracking apparatus uses heavy hydro oil or vacuum gas oil in the presence of a catalyst such as an alumina-supported Co-Mo catalyst or an alumina-supported Ni-Mo catalyst using a hydrodesulfurization apparatus, and 5-10 MP, preferably 5-8 MP. The desulfurization decompression was hydrotreated under conditions of 350 to 450 ° C., preferably 360 to 420 ° C. and LHSV of 0.5 to 4.0 / h, preferably 1.0 to 3.0 / h. In the case of gas oil, etc. as raw material oil, or in the case of a residue fluid catalytic cracking device, add direct debris residue obtained from a direct heavy oil desulfurization device or low-sulfur atmospheric residual oil to the above raw material oil in the presence of a solid catalyst. In general, a silica alumina catalyst or a zeolite catalyst is used, and reaction conditions are generally a reaction temperature of 470 to 550 ° C. and a reaction pressure of about 0.08 to 0.3 MP. Especially limited No.
[0021]
Direct deionized light oil is a fraction having a boiling point in the range of 130 to 500 ° C., obtained directly from heavy oil desulfurization equipment. Specifically, as the distillation properties, those having a 50% distillation point of 250 to 400 ° C. and a density of 15 ° C. in the range of 0.840 to 0.950 g / cm 3 can be used as appropriate. The low boiling point fraction of direct degassed diesel oil is a fraction having a boiling point in the range of 130 to 330 ° C. obtained from a direct heavy oil desulfurization apparatus. Specifically, as the distillation properties, those having a 50% distillation point of 200 to 300 ° C. and a density of 15 ° C. in the range of 0.840 to 0.900 g / cm 3 can be used as appropriate. Among direct degassing light oils, the middle boiling fraction is a fraction having a boiling point within a range of 220 to 450 ° C. obtained from a direct heavy oil desulfurization apparatus. Specifically, as the distillation properties, those having a 50% distillation point of 250 to 350 ° C. and a density of 15 ° C. in the range of 0.850 to 0.920 g / cm 3 can be used as appropriate. Moreover, the direct heavy oil desulfurization apparatus is a pressure of 10 to 25 MP, preferably 14 to 20 MP in the presence of a catalyst such as an alumina-supported Co-Mo catalyst and an alumina-supported Ni-Mo catalyst. Below, it is an apparatus for performing hydrogenation at a temperature of 350 to 450 ° C., preferably 360 to 420 ° C., under conditions of LHSV 0.1 to 1.0 / h, preferably 0.2 to 0.5 / h. These conditions are not particularly limited.
[0022]
When the mixing ratio of the light cycle oil exceeds 90% by volume and / or when the mixing ratio of the directly degassed light oil is less than 10% by volume, the reforming effect by the direct degassing light oil is insufficient, and the predetermined storage stability and general efficiency are improved. Oiliness improvement effect cannot be obtained.
[0023]
The reason why storage stability, hue stability, and oil permeability are improved by mixing a certain proportion of directly removed light oil with light cycle oil is as described in the section on means for solving the problems. is there.
[0024]
The gas turbine fuel composition of the present invention includes a cetane number improver, an antioxidant, a stabilizer, a dispersant, a fluidity improver, a metal deactivator, a microbial disinfectant, a combustion aid, a charge as necessary. An inhibitor, a discriminating agent, etc. can be added suitably.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.
[0026]
Examples 1, 2, 3, 4, 5 and Comparative Examples 1, 2, 3, 4
A base material having the properties shown in Table 1 was mixed in the volume ratio shown in Table 2 to prepare a fuel composition, and the change in sludge weight before and after storage as an index of storage stability, and before and after storage as an index of hue stability. The change in ASTM color was measured using the filter passage time before and after storage as an index of oil permeability.
[0027]
[Table 1]
Figure 0003825879
[0028]
[Table 2]
Figure 0003825879
[0029]
As is clear from Table 2, sludge is generated even if a large amount of light cycle oil is mixed by mixing low boiling fraction and / or medium boiling fraction of direct demineralized light oil or direct demineralized light oil over a certain ratio A gas turbine fuel with significantly reduced amounts and excellent storage stability, hue stability and oil permeability was obtained.
[0030]
The properties and storage stability of the fuel oil were determined by the following method.
* 1 Density:
The measurement was performed according to JIS K 2249.
* 2 Distillation properties:
The measurement was performed according to JIS K 2254.
* 3 Sulfur content:
The measurement was performed according to JIS K2541.
* 4 Metal content:
Sodium was measured by atomic absorption spectroscopy, and other metals were measured by plasma emission spectroscopy (ICP method).
* 5 Sludge weight:
A 6 mm hole is made in the cap of a Pyrex bottle (Corning 1372) with a screw cap, and after filling the sample, it is stored in the dark at 80 ° C. for 1 week, and 100 ml is filtered through a filter with an opening of 0.8 μm and dried. Thereafter, the weight of sludge trapped on the filter paper was measured.
* 6 ASTM color:
The measurement was performed according to JIS K 2580.
* 7 Oil permeability:
The time required for a sample of 1000 ml to pass through a filter having a diameter of 47 mm and an aperture of 0.8 μm at a temperature of 20 ° C. and a suction pressure of 500 mmHg was measured.
[0031]
【The invention's effect】
According to the present invention, by mixing a low-boiling fraction and / or a middle-boiling fraction of a certain proportion of direct deionized light oil or direct demineralized light oil, even if a large amount of light cycle oil is mixed, storage stability, hue A gas turbine fuel composition having excellent stability and oil permeability, low metal content and low sulfur content and low high temperature corrosivity of turbine blades can be produced, and light cycle oil can be effectively utilized.

Claims (6)

(A)沸点範囲170〜380℃、50%留出点200〜330℃、15℃密度0.860〜0.985g/cmの軽質サイクル油を40〜90容量%と、
(B)沸点範囲130〜500℃、50%留出点250〜400℃、15℃密度0.840〜0.950g/cmの直脱軽油を10〜60容量%含有し、
(C)バナジウム含有量が0.2重量ppm以下、
(D)硫黄含有量が0.5重量%以下、
(E)ナトリウムとカリウムの合計含有量が0.2重量ppm以下で、
(F)且つスラッジ重量が6mg/l以下のガスタービン燃料組成物。
(A) 40-90% by volume of light cycle oil having a boiling range of 170-380 ° C., a 50% distillation point of 200-330 ° C., and a 15 ° C. density of 0.860-0.985 g / cm 3 ,
(B) 10-60% by volume of directly removed light oil having a boiling range of 130-500 ° C., 50% distillation point 250-400 ° C., 15 ° C. density 0.840-0.950 g / cm 3 ,
(C) vanadium content is 0.2 wtppm or less,
(D) the sulfur content is 0.5 wt% or less,
(E) The total content of sodium and potassium is 0.2 ppm by weight or less,
(F) A gas turbine fuel composition having a sludge weight of 6 mg / l or less.
前記(A)、(B)成分の他に、(a)直留灯油又は脱硫処理した灯油、(b)脱硫処理した直留軽質軽油、(c)脱硫処理した直留重質軽油、(d)水素化分解軽油、及び(e)脱硫処理した減圧軽油のうちから選ばれる少なくとも1つを含有することを特徴とする請求項1記載のガスタービン燃料組成物。In addition to the components (A) and (B), (a) straight-run kerosene or desulfurized kerosene, (b) desulfurized straight-run light gas oil, (c) desulfurized straight-run heavy gas oil, (d 2. The gas turbine fuel composition according to claim 1, comprising at least one selected from a) hydrocracked diesel oil and (e) a desulfurized vacuum gas oil. 直脱軽油が、沸点範囲130〜330℃、50%留出点200〜300℃、15℃密度0.840〜0.900g/cmの直脱軽油中の低沸点留分であることを特徴とする請求項1又は2記載のガスタービン燃料組成物。The directly degassed light oil is a low boiling fraction in a directly degassed gas oil having a boiling range of 130 to 330 ° C., a 50% distillation point of 200 to 300 ° C., and a density of 15 ° C. of 0.840 to 0.900 g / cm 3. The gas turbine fuel composition according to claim 1 or 2. 直脱軽油が、沸点範囲220〜450℃、50%留出点250〜350℃、15℃密度0.850〜0.920g/cmの直脱軽油中の中沸点留分であることを特徴とする請求項1又は2記載のガスタービン燃料組成物。The directly degassed gas oil is a medium boiling fraction in a directly degassed gas oil having a boiling point range of 220 to 450 ° C., a 50% distillation point of 250 to 350 ° C., and a 15 ° C. density of 0.850 to 0.920 g / cm 3. The gas turbine fuel composition according to claim 1 or 2. 直脱軽油が、直脱軽油中の低沸点留分と中沸点留分を任意の割合で混合したものであることを特徴とする請求項1又は2記載のガスタービン燃料組成物。The gas turbine fuel composition according to claim 1 or 2, wherein the directly degassed gas oil is a mixture of a low boiling point fraction and a medium boiling point fraction in the directly degassed light oil at an arbitrary ratio. 軽質サイクル油が、流動接触分解装置及び/又は残渣流動接触分解装置より得られたものであり、直脱軽油が、直接重油脱硫装置より得られたものであることを特徴とする請求項1〜5のいずれかに記載のガスタービン燃料組成物。The light cycle oil is obtained from a fluid catalytic cracking apparatus and / or a residue fluid catalytic cracking apparatus, and the direct degassing light oil is obtained from a direct heavy oil desulfurization apparatus. The gas turbine fuel composition according to any one of 5.
JP12481997A 1997-04-28 1997-04-28 Gas turbine fuel composition Expired - Lifetime JP3825879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12481997A JP3825879B2 (en) 1997-04-28 1997-04-28 Gas turbine fuel composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12481997A JP3825879B2 (en) 1997-04-28 1997-04-28 Gas turbine fuel composition

Publications (2)

Publication Number Publication Date
JPH10298564A JPH10298564A (en) 1998-11-10
JP3825879B2 true JP3825879B2 (en) 2006-09-27

Family

ID=14894902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12481997A Expired - Lifetime JP3825879B2 (en) 1997-04-28 1997-04-28 Gas turbine fuel composition

Country Status (1)

Country Link
JP (1) JP3825879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096474A (en) * 2001-09-27 2003-04-03 Idemitsu Kosan Co Ltd Fuel oil composition
JP4635243B2 (en) * 2007-05-31 2011-02-23 Jx日鉱日石エネルギー株式会社 A heavy oil

Also Published As

Publication number Publication date
JPH10298564A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
Alfke et al. Oil refining
JP4375646B2 (en) Kerosene manufacturing method
CN1351130A (en) Hydrogenation process for preparing diesel oil from coal-tar oil
JP4039760B2 (en) Kerosene and method for producing the same
JP3825879B2 (en) Gas turbine fuel composition
JP3825876B2 (en) A heavy oil composition with good storage stability, hue stability and oil permeability
JP3825878B2 (en) A heavy oil composition with good storage stability
JP3981487B2 (en) A heavy oil composition with high total calorific value and ultra-low sulfur
JP3825875B2 (en) A heavy oil composition for heating having good storage stability, hue stability and oil permeability
JP3825877B2 (en) A heavy oil composition for heating with good storage stability
JP2008156459A (en) Hydrocarbon-based fuel oil and its manufacturing method
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP5676344B2 (en) Kerosene manufacturing method
JP5108328B2 (en) Kerosene composition
JP3981488B2 (en) A heavy oil composition with excellent low-temperature fluidity and low sulfur
JP5036074B2 (en) Environmentally friendly gasoline
JP5108329B2 (en) Kerosene composition
JP4009381B2 (en) A heavy oil composition with excellent low-temperature fluidity and low sulfur
Lengyel et al. Upgrading of delayed coker light naphtha in a crude oil refinery
JP4371937B2 (en) Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same
JPH08218082A (en) Diesel light oil composition
JP4700153B2 (en) Fuel oil
JP2010053235A (en) Method for producing hydrocarbon oil
JPH08311462A (en) Diesel gas oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term