JP4700153B2 - Fuel oil - Google Patents

Fuel oil Download PDF

Info

Publication number
JP4700153B2
JP4700153B2 JP22827699A JP22827699A JP4700153B2 JP 4700153 B2 JP4700153 B2 JP 4700153B2 JP 22827699 A JP22827699 A JP 22827699A JP 22827699 A JP22827699 A JP 22827699A JP 4700153 B2 JP4700153 B2 JP 4700153B2
Authority
JP
Japan
Prior art keywords
oil
heavy
fuel
fuel oil
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22827699A
Other languages
Japanese (ja)
Other versions
JP2001098287A (en
Inventor
延佳 鳳城
真太郎 石田
裕司 野口
健二 清田
勝美 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP22827699A priority Critical patent/JP4700153B2/en
Publication of JP2001098287A publication Critical patent/JP2001098287A/en
Application granted granted Critical
Publication of JP4700153B2 publication Critical patent/JP4700153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、低硫黄含有量で高発熱量の燃料油、およびその製造方法に関する。
【0002】
【従来の技術】
現在、我国で中小型ボイラーや加熱炉等の燃料としてはA重油が多く使用されている。通常、A重油の混合基材としては原油の常圧蒸留装置から得られる直留軽油、直留灯油、およびこれらを水素化脱硫処理した脱硫軽油、脱硫灯油などに残炭源として常圧残油等を少量混合して製造されている。最近は接触分解装置から得られる分解軽油も一部で混合基材として利用されている。これらの基材を混合して製造したA重油は需要家の要望に合わせて硫黄分が0.05〜1.0%の間で調整されている。特に、最近は環境問題への配慮から低硫黄分の燃料が要望されている。
【0003】
一方、需要家の要望には発熱量が高い燃料の供給がある。最近は、外燃用を主体として使用されるA重油は、硫黄分は0.1wt%以下で、セタン指教35以上でかつ高発熱量の燃料が望まれている。しかし、通常は、硫黄分含有量の上限を重視して燃料油を製造する場合が多い。そのために硫黄分の低い脱硫軽質軽油や脱硫灯油を主混合基材として用いる必要があった。そうすると、製造された燃料油は、これらの比較的低密度で低発熱量の混合基材により、低密度で低発熱量の燃料油となってしまっていた。分解軽油は一般に発熱量が高いので発熱量を高めるための基材としては好都合であるが、硫黄分が高く、また、セタン指数が非常に低いのでバランスの取れた汎用性のある燃料を製造するためには、混合基材としての使用には厳しい制限があり、結果として高発熱量、低硫黄分の燃料油の製造は難しかった。
【0004】
【発明が解決しようとする課題】
本発明は、硫黄含有量を十分に低減した、かつ発熱量の高い燃料油およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、重油直接脱硫プロセスから得られる直脱重質軽油を混合基材として含み、硫黄分が0.lwt%以下でかつ、密度が0.8762以上の燃料油が上記課題を解決する優れた燃料油であることを見い出し本発明を完成したものである。
【0006】
すなわち、本発明の要旨は以下のとおりである。
(1) 重油直接脱硫プロセスから得られる直脱重質軽油を混合基材として含み、硫黄分が0.lwt%以下でかつ、密度が0.8762以上の燃料油。
(2) 前記直脱重質軽油の性状が、沸点範囲が220℃〜450℃、蒸留50%留出温度が250℃〜350℃の範囲でかつ、密度が0.850以上である(1)記載の燃料油。
【0007】
(3) 前記直脱重質軽油を混合基材として5〜100vol%含有する(1)または(2)記載の燃料油。
(4) 重油直接脱硫プロセスから得られる脱硫油を蒸留して直脱重質軽油を分留し、これを混合基材として用いて燃料油を製造することからなる(1)〜(3)のいずれかに記載の燃料油を製造する方法。
【0008】
(5) 前記重油直接脱硫プロセスにおいて原料油として分解軽油を含む重質油を用いる(4)記載の燃料油の製造方法。
【0009】
【発明の実施の形態】
本発明の燃料油は、重油直接脱硫プロセスから得られる直脱重質軽油を混合基材として含むことを特徴とする。さらに、本発明の燃料油は硫黄分が0.lwt%以下でかつ、密度が0.8762g/cm3 以上である必要がある。硫黄分が0.lwt%以下でないと当然本発明の低硫黄燃料油としては不適格である。また、上記直脱重質軽油を混合基材として含み、密度が0.8762g/cm3 以上、好ましくは0.880g/cm3 以上であると発熱量の高いすなわち高カロリーの燃料油とすることができる。これは上記直脱重質軽油が低硫黄分、高密度、高発熱量であることによる。なお、本発明の燃料油は上記要件に加えA重油の規格を満足させれば、さらに汎用性のある燃料油として利用することができる。
【0010】
上記本発明の燃料油は、混合基材として用いる上記直脱重質軽油の性状が、沸点範囲が220℃〜450℃、蒸留50%留出温度が250℃〜350℃の範囲でかつ、密度が0.850g/cm3 以上、さらには0.850〜0.920g/cm3 であることが特に好適である。また、上記直脱重質軽油の混合割合を5〜100vol%の範囲、さらには30〜100vol%の範囲とすれば好適に本発明の燃料油とすることができる。通常は、重油直接脱硫プロセスからの脱硫油を蒸留して得られる直脱重質軽油を使用すれば本発明の燃料油を製造することができる。さらに、上記重油直接脱硫プロセスの原料油として分解軽油を含む重質油を用いることにより効率よく直脱重質軽油を得ることができ、これを混合基材として用いれば重油直接脱硫プロセスからの脱硫油から好適に本発明の燃料油を得ることができる。
【0011】
本発明の燃料油用の混合基材としては重油直接脱硫プロセスからの直脱重質軽油(DSHGO)が必須であるが、他の混合基材としては特に制限されない。例えば、原油の蒸留により得られる直留軽質軽油(LGO)、直留灯油(KERO)、それらを脱硫処理した脱硫軽質軽油(DGO)、脱硫灯油、重油間接脱硫プロセスから得られる間脱軽質軽油(VHLGO)、重油直接脱硫プロセスから得られる直脱重質軽油より沸点の低めの直脱軽質軽油(DSGO)、場合によっては軽油脱ろう装置から得られる脱ろう軽油、分解軽油(軽質分解軽油(LCO)または/および重質分解軽油(HCO))、分解軽油を脱硫した脱硫分解軽油(DSLCO、DSHCO)などを好適に使用することができる。これらの混合基材を混合後の燃料油が上記性状を満足するように混合すればよい。上記の中でもDGO、LCO、VHLGOなどが特に好適な混合基材である。
【0012】
重油直接脱硫プロセスの原料油としては、通常常圧残油を使用すればよいが、得られた直脱重質軽油の90%蒸留温度が高くなりすぎ好ましくない場合がある。本発明の燃料油製造に適した直脱重質軽油(DSHGO)を高収率で得るには分解軽油(軽質分解軽油(LCO)、重質分解軽油(HCO))を含む重質油を原料油とすることが好適である。分解軽油は通常硫黄分が多く、芳香族分も多くセタン指数が低いのでそのままでは低硫黄分の燃料油の混合基材としては少量しか使用できない。また、通常の脱硫軽油と同様に脱硫分解軽油として使用することも考えられるが、芳香族分の多い分解軽油の脱硫処理には通常の軽油脱硫用の触媒、脱硫装置などが工業的には充分対応できず、経済的には軽油脱硫装置による脱硫分解軽油の製造は困難である。
【0013】
そこで本発明者らは鋭意検討の結果、重油直接脱硫プロセスにより分解軽油を脱硫処理することにより、上記問題点を解決し、低硫黄含有量で高密度かつ高発熱量の直脱重質軽油(DSHGO)を容易に高収率で得ることができることを見い出した。これは、重油直接脱硫プロセスでの水素化処理が充分な脱硫処理および適度な脱芳香族処理であり、分解軽油の密度および発熱量を余り下げないで脱硫を行い直脱重質軽油とすることができるためと考えられる。なお、重油直接脱硫プロセスの原料油としては、分解軽油のみでもよいが、他の原料油と混合することが好適である。他の原料油としては、常圧残油、減圧残油、脱歴残渣、脱アスファルト油、重質軽油、減圧軽油、直留軽油、分解残油などが好適である。
【0014】
なお、分解軽油(軽質分解軽油(LCO)、重質分解軽油(HCO))とは、流動接触分解装置および/または残油流動接触分解装置から得られる軽油留分である。通常、本発明に用いられる軽質分解軽油(LCO)の性状は、沸点140〜400℃、蒸留50%留出温度200〜330℃、密度0.860〜0.950g/cm3 であることが好ましい。重質分解軽油(HCO)の性状は、沸点170〜500℃、蒸留50%留出温度320〜410℃、密度0.900〜1.050g/cm3 であることが好ましい。
【0015】
流動接触分解装置は、重質軽油、減圧軽油を用いて、触媒存在下で減圧軽油または水素化処理をした脱硫減圧軽油等を原料として接触分解する装置である。また、残油流動接触分解装置の場合は重質油水素化処理装置より得られる脱硫残油や低硫黄の常圧残油を原料油として接触分解する装置である。流動接触分解反応または残油流動接触分解反応は通常の方法に従って行えばよい。
【0016】
重油直接脱硫プロセスは高圧の水素化脱硫処理工程であり、その触媒は金属担持無機酸化物触媒を用いる。通常は、γアルミナ等の多孔質無機酸化物担体に周期律表第6族、第8族及び第10族から選ばれる少なくとも1種以上の金属を担持させた水素化脱硫用の金属担持無機酸化物触媒である。さらに、必要に応じて水素化脱メタル触媒、水素化分解触媒、水素化脱窒素触媒及び脱スケール触媒などを組み合わせてもよい。重油直接脱硫プロセスの通常の反応塔運転条件は、反応温度:150〜450℃、水素分圧:70〜220kg/cm2 、液空間速度LHSV:0.05〜3.0/hr、水素/油比:100〜3000Nm3 /k1とすることが好ましい。
【0017】
【実施例】
(実施例1)
市販の重油直接脱硫用のニッケル、モリブデン担持アルミナ担体触媒を水素化処理触媒として使用した重油直接脱硫装置を用いて、軽質分解軽油(LCO)20vol%、重質分解軽油(HCO)10vol%、減圧残油40vol%、脱歴残渣30vol%の混合油を原料油として水素化脱硫処理を実施した。反応条件は反応温度:390℃、水素分圧:125kg/cm2 、液空間速度LHSV:0.17/hr、水素/油比:850Nm3 /k1とした。得られた脱硫油を蒸留して直脱軽油(DSGO)、直脱重質軽油(DSHGO)、脱硫重油(DSRC)を得た。それぞれの性状を原料油の性状とともに表1に示す。得られた直脱重質軽油(DSHGO)に間脱軽質軽油(VHLGO)、別途準備した軽質分解軽油(LCO)を混合して本発明の燃料油1を製造した。各混合基材の性状および混合比とともに得られた燃料油1の性状を表2に示した。
【0018】
【表1】

Figure 0004700153
【0019】
【表2】
Figure 0004700153
【0020】
(実施例2)
実施例1において、使用した混合基材の組み合わせの代わりに表3に示す組み合わせとした以外は実施例1と同様にして本発明の燃料油2を製造した。各混合基材の性状および混合比とともに得られた燃料油2の性状を表3に示した。
【0021】
【表3】
Figure 0004700153
【0022】
(実施例3)
実施例1において、使用した混合基材の組み合わせの代わりに表4に示す組み合わせとした以外は実施例1と同様にして本発明の燃料油3を製造した。各混合基材の性状および混合比とともに得られた燃料油3の性状を表4に示した。
【0023】
【表4】
Figure 0004700153
【0024】
(比較例1)
従来のA重油の製造方法を模した燃料油の製造方法として、従来の製造基材を用いて製造した燃料油4、燃料油5、および燃料油6の基材混合比および得られた燃料油の性状を混合基材の性状とともに表5、表6、表7に示した。
【0025】
【表5】
Figure 0004700153
【0026】
【表6】
Figure 0004700153
【0027】
【表7】
Figure 0004700153
【0028】
【発明の効果】
本発明によれば、直脱重質軽油(DSHGO)を混合基材として用いた本発明の燃料油は従来の混合方法による燃料油に比べ硫黄分が低く、発熱量が高くセタン指数も高いバランスの良い好適な燃料油であることがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel oil having a low sulfur content and a high calorific value, and a method for producing the same.
[0002]
[Prior art]
Currently, A heavy oil is often used in Japan as a fuel for small and medium-sized boilers and heating furnaces. Usually, as the mixed base material of A heavy oil, straight-run gas oil obtained from a crude oil atmospheric distillation apparatus, straight-run kerosene, hydrodesulfurized desulfurized gas oil, desulfurized kerosene, etc. as a residual coal source, normal pressure residual oil Etc. are manufactured by mixing a small amount. Recently, cracked light oil obtained from a catalytic cracking apparatus is also partially used as a mixed base material. A heavy oil produced by mixing these base materials has a sulfur content of 0.05 to 1.0% in accordance with the demands of customers. In particular, recently, a low-sulfur fuel has been demanded in consideration of environmental problems.
[0003]
On the other hand, there is a demand for consumers to supply fuel with a high calorific value. Recently, heavy fuel oil A, mainly used for external combustion, has a sulfur content of 0.1 wt% or less, a cetane instruction of 35 or more, and a high calorific value fuel. However, usually, fuel oil is often produced with an emphasis on the upper limit of the sulfur content. Therefore, it was necessary to use desulfurized light gas oil or desulfurized kerosene having a low sulfur content as the main mixing base material. As a result, the produced fuel oil has become a low density and low calorific value fuel oil due to these relatively low density and low calorific value mixed base materials. Decomposed light oil generally has a high calorific value, so it is convenient as a base material for increasing the calorific value, but it has a high sulfur content and a very low cetane index, so it produces a balanced and versatile fuel. Therefore, there are severe restrictions on the use as a mixed base material, and as a result, it has been difficult to produce a fuel oil with a high calorific value and a low sulfur content.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a fuel oil having a sufficiently reduced sulfur content and a high calorific value, and a method for producing the same.
[0005]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have included, as a mixed base material, a directly degassed heavy gas oil obtained from a heavy oil direct desulfurization process, and a sulfur content of 0. The present invention has been completed by finding that a fuel oil having a density of 1 wt% or less and a density of 0.8762 or more is an excellent fuel oil that solves the above problems.
[0006]
That is, the gist of the present invention is as follows.
(1) It contains a directly degassed heavy gas oil obtained from a heavy oil direct desulfurization process as a mixed base material, and the sulfur content is 0. Fuel oil having a density of 1 wt% or less and a density of 0.8762 or more.
(2) The properties of the directly degassed heavy gas oil have a boiling range of 220 ° C. to 450 ° C., a distillation 50% distillation temperature of 250 ° C. to 350 ° C., and a density of 0.850 or more (1) The fuel oil described.
[0007]
(3) The fuel oil according to (1) or (2), which contains 5 to 100 vol% of the directly desorbed heavy gas oil as a mixed base material.
(4) The desulfurized oil obtained from the heavy oil direct desulfurization process is distilled to fractionate the directly degassed heavy gas oil, and this is used as a mixed base material to produce fuel oil (1) to (3) A method for producing the fuel oil according to any one of the above.
[0008]
(5) The method for producing fuel oil according to (4), wherein heavy oil containing cracked light oil is used as a raw material oil in the heavy oil direct desulfurization process.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The fuel oil of the present invention is characterized by containing, as a mixed base material, a directly degassed heavy gas oil obtained from a heavy oil direct desulfurization process. Furthermore, the fuel oil of the present invention has a sulfur content of 0. It is necessary that it is 1 wt% or less and the density is 0.8762 g / cm 3 or more. Sulfur content is 0. If it is not less than 1 wt%, it is of course not suitable as the low sulfur fuel oil of the present invention. In addition, a fuel oil having a high calorific value, that is, a high calorie content, should contain the above directly deuterated light oil as a mixed base material and have a density of 0.8762 g / cm 3 or more, preferably 0.880 g / cm 3 or more. Can do. This is because the directly degassed heavy gas oil has a low sulfur content, a high density, and a high calorific value. In addition to the above requirements, the fuel oil of the present invention can be used as a more versatile fuel oil as long as it satisfies the A heavy oil standard.
[0010]
The fuel oil of the present invention is characterized by the properties of the directly deuterated light oil used as a mixing base material in a boiling range of 220 ° C to 450 ° C, a distillation 50% distillation temperature of 250 ° C to 350 ° C, and a density. Is particularly preferably 0.850 g / cm 3 or more, more preferably 0.850 to 0.920 g / cm 3 . Further, the fuel oil of the present invention can be suitably obtained by setting the mixing ratio of the directly degassed heavy gas oil in the range of 5 to 100 vol%, and further in the range of 30 to 100 vol%. Usually, the fuel oil of the present invention can be produced by using a directly degassed heavy gas oil obtained by distilling the desulfurized oil from the heavy oil direct desulfurization process. Furthermore, by using a heavy oil containing cracked light oil as a raw material oil for the above heavy oil direct desulfurization process, it is possible to efficiently obtain a direct demineralized heavy gas oil, and if this is used as a mixed base material, desulfurization from the heavy oil direct desulfurization process is achieved. The fuel oil of the present invention can be suitably obtained from the oil.
[0011]
As the mixed base material for the fuel oil of the present invention, direct degassed heavy gas oil (DSHGO) from the heavy oil direct desulfurization process is essential, but the other mixed base material is not particularly limited. For example, straight-run light diesel oil (LGO) obtained by distillation of crude oil, straight-run kerosene (KERO), desulfurized light diesel oil (DGO) obtained by desulfurizing them, desulfurized kerosene, intermediate delighted light diesel oil obtained from the indirect desulfurization process of heavy oil ( VHLGO), directly degassed light diesel oil (DSGO) having a lower boiling point than directly degassed heavy gas oil obtained from heavy oil direct desulfurization process, and in some cases, dewaxed light oil obtained from diesel oil dewaxing equipment, cracked diesel oil (light cracked diesel oil (LCO ) Or / and heavy cracked light oil (HCO)), desulfurized cracked light oil obtained by desulfurizing cracked light oil (DSLCO, DSHCO), and the like can be preferably used. What is necessary is just to mix so that the fuel oil after mixing these mixing base materials may satisfy | fill the said property. Among the above, DGO, LCO, VHLGO and the like are particularly suitable mixed base materials.
[0012]
As the feedstock for the heavy oil direct desulfurization process, normal pressure residual oil may be used. However, the obtained 90% distillation temperature of the directly degassed heavy gas oil may become too high, which is not preferable. In order to obtain a high yield of direct desorbed heavy gas oil (DSHGO) suitable for the production of the fuel oil of the present invention, a heavy oil containing cracked light oil (light cracked light oil (LCO), heavy cracked light oil (HCO)) is used as a raw material. Oil is preferred. Decomposed light oil usually has a high sulfur content, a high aromatic content, and a low cetane index, so that it can be used only as a low sulfur fuel fuel base material. In addition, it can be used as a desulfurized cracked light oil in the same way as a normal desulfurized light oil. However, a catalyst for desulfurization of a normal light oil, a desulfurizer, etc. are industrially sufficient for desulfurization of cracked light oil with a high aromatic content. Economically, it is difficult to produce desulfurized gas oil by using a light oil desulfurization apparatus.
[0013]
Therefore, as a result of intensive studies, the present inventors have solved the above-mentioned problems by desulfurizing cracked light oil by a heavy oil direct desulfurization process. It has been found that DSHGO) can be easily obtained in high yield. This is a desulfurization treatment and moderate dearomatization treatment that is sufficient for hydrotreatment in the heavy oil direct desulfurization process, and desulfurization is performed without reducing the density and calorific value of cracked gas oil so that it becomes a directly degassed heavy gas oil. This is thought to be possible. The raw oil for the heavy oil direct desulfurization process may be only cracked light oil, but is preferably mixed with other raw oils. As other raw material oils, atmospheric residual oil, vacuum residual oil, history residue, deasphalted oil, heavy gas oil, vacuum gas oil, straight-run gas oil, cracked residual oil and the like are suitable.
[0014]
The cracked light oil (light cracked light oil (LCO), heavy cracked light oil (HCO)) is a light oil fraction obtained from a fluid catalytic cracking device and / or a residual oil fluid catalytic cracking device. Usually, the properties of the light cracked light oil (LCO) used in the present invention are preferably a boiling point of 140 to 400 ° C., a distillation 50% distillation temperature of 200 to 330 ° C., and a density of 0.860 to 0.950 g / cm 3. . The heavy cracked light oil (HCO) preferably has a boiling point of 170 to 500 ° C., a distillation 50% distillation temperature of 320 to 410 ° C., and a density of 0.900 to 1.050 g / cm 3 .
[0015]
The fluid catalytic cracking apparatus is an apparatus that uses heavy gas oil or vacuum gas oil to perform catalytic cracking using a vacuum gas oil or a desulfurized vacuum gas oil hydrotreated in the presence of a catalyst as a raw material. In the case of a residual oil fluid catalytic cracking device, it is a device that performs catalytic cracking using a desulfurized residual oil obtained from a heavy oil hydrotreating device or a low-sulfur atmospheric residual oil as a raw material oil. The fluid catalytic cracking reaction or the residual oil fluid catalytic cracking reaction may be carried out according to a usual method.
[0016]
The heavy oil direct desulfurization process is a high-pressure hydrodesulfurization process, and a metal-supported inorganic oxide catalyst is used as the catalyst. Usually, a metal-supported inorganic oxide for hydrodesulfurization in which at least one metal selected from Groups 6, 8, and 10 of the periodic table is supported on a porous inorganic oxide support such as γ-alumina. Product catalyst. Furthermore, you may combine a hydrodemetallation catalyst, a hydrocracking catalyst, a hydrodenitrogen catalyst, a descaling catalyst, etc. as needed. The normal reaction tower operating conditions of the heavy oil direct desulfurization process are: reaction temperature: 150 to 450 ° C., hydrogen partial pressure: 70 to 220 kg / cm 2 , liquid space velocity LHSV: 0.05 to 3.0 / hr, hydrogen / oil Ratio: It is preferable to set it as 100-3000Nm < 3 > / k1.
[0017]
【Example】
(Example 1)
Using a heavy oil direct desulfurization system using a commercially available nickel- and molybdenum-supported alumina carrier catalyst for heavy oil direct desulfurization as a hydrotreating catalyst, light cracked light oil (LCO) 20 vol%, heavy cracked light oil (HCO) 10 vol%, reduced pressure Hydrodesulfurization treatment was performed using a mixed oil of 40 vol% residual oil and 30 vol% degassing residue as a raw material oil. The reaction conditions were as follows: reaction temperature: 390 ° C., hydrogen partial pressure: 125 kg / cm 2 , liquid space velocity LHSV: 0.17 / hr, hydrogen / oil ratio: 850 Nm 3 / k1. The obtained desulfurized oil was distilled to obtain directly degassed light oil (DSGO), directly degassed heavy gas oil (DSHGO), and desulfurized heavy oil (DSRC). Each property is shown in Table 1 together with the properties of the raw material oil. The fuel oil 1 of the present invention was produced by mixing the directly removed heavy light oil (DSHGO) with the lightly removed light oil (VHLGO) and the separately prepared light cracked light oil (LCO). Table 2 shows the properties of the mixed base materials and the properties of the fuel oil 1 obtained together with the mixing ratio.
[0018]
[Table 1]
Figure 0004700153
[0019]
[Table 2]
Figure 0004700153
[0020]
(Example 2)
In Example 1, the fuel oil 2 of the present invention was produced in the same manner as in Example 1 except that the combinations shown in Table 3 were used instead of the mixed base materials used. Table 3 shows the properties of the mixed base materials and the properties of the fuel oil 2 obtained together with the mixing ratio.
[0021]
[Table 3]
Figure 0004700153
[0022]
(Example 3)
In Example 1, the fuel oil 3 of the present invention was produced in the same manner as in Example 1 except that the combinations shown in Table 4 were used instead of the combinations of the mixed bases used. Table 4 shows the properties of the mixed base materials and the properties of the fuel oil 3 obtained together with the mixing ratio.
[0023]
[Table 4]
Figure 0004700153
[0024]
(Comparative Example 1)
As a method for producing fuel oil simulating a conventional method for producing heavy fuel oil A, the fuel oil 4, fuel oil 5, and base material mixture ratio of fuel oil 6 produced using a conventional production base material and the obtained fuel oil The properties are shown in Table 5, Table 6, and Table 7 together with the properties of the mixed base material.
[0025]
[Table 5]
Figure 0004700153
[0026]
[Table 6]
Figure 0004700153
[0027]
[Table 7]
Figure 0004700153
[0028]
【The invention's effect】
According to the present invention, the fuel oil of the present invention using directly desorbed heavy gas oil (DSHGO) as a mixing base has a lower sulfur content, a higher calorific value, and a higher cetane index than the fuel oil produced by the conventional mixing method. It turns out that it is a suitable fuel oil with good.

Claims (4)

原料油として分解軽油を含む重質油を用いる重油直接脱硫プロセスから得られる直脱重質軽油を混合基材として含み、硫黄分が0.lwt%以下でかつ、密度が0.8762以上の燃料油。Directly deuterated heavy gas oil obtained from heavy oil direct desulfurization process using heavy oil containing cracked gas oil as raw material oil is included as a mixed base material, and the sulfur content is 0. Fuel oil having a density of 1 wt% or less and a density of 0.8762 or more. 前記直脱重質軽油の性状が、沸点範囲が220℃〜450℃、蒸留50%留出温度が250℃〜350℃の範囲でかつ、密度が0.850以上である請求項1記載の燃料油。  The fuel according to claim 1, wherein the properties of the directly degassed heavy gas oil are a boiling range of 220 ° C to 450 ° C, a distillation 50% distillation temperature of 250 ° C to 350 ° C, and a density of 0.850 or more. oil. 前記直脱重質軽油を混合基材として5〜100vol%含有する請求項1または2記載の燃料油。  The fuel oil according to claim 1 or 2, comprising 5 to 100 vol% of the directly degassed heavy gas oil as a mixed base material. 原料油として分解軽油を含む重質油を用いる重油直接脱硫プロセスから得られる脱硫油を蒸留して直脱重質軽油を分留し、これを混合基材として用いて燃料油を製造することからなる請求項1〜3のいずれかに記載の燃料油を製造する方法。 Because the desulfurized oil obtained from the heavy oil direct desulfurization process using heavy oil containing cracked light oil as the raw material oil is distilled to fractionate the directly degassed heavy gas oil, and this is used as a mixing base to produce fuel oil A method for producing the fuel oil according to claim 1.
JP22827699A 1999-07-26 1999-08-12 Fuel oil Expired - Fee Related JP4700153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22827699A JP4700153B2 (en) 1999-07-26 1999-08-12 Fuel oil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999210389 1999-07-26
JP21038999 1999-07-26
JP11-210389 1999-07-26
JP22827699A JP4700153B2 (en) 1999-07-26 1999-08-12 Fuel oil

Publications (2)

Publication Number Publication Date
JP2001098287A JP2001098287A (en) 2001-04-10
JP4700153B2 true JP4700153B2 (en) 2011-06-15

Family

ID=26518025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22827699A Expired - Fee Related JP4700153B2 (en) 1999-07-26 1999-08-12 Fuel oil

Country Status (1)

Country Link
JP (1) JP4700153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479918A (en) * 2014-12-01 2015-04-01 邬石根 Coconut oil added pesticide scavenging agent and using method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825876B2 (en) * 1997-04-28 2006-09-27 新日本石油株式会社 A heavy oil composition with good storage stability, hue stability and oil permeability
JP3825878B2 (en) * 1997-04-28 2006-09-27 新日本石油株式会社 A heavy oil composition with good storage stability
JP3825875B2 (en) * 1997-04-28 2006-09-27 新日本石油株式会社 A heavy oil composition for heating having good storage stability, hue stability and oil permeability

Also Published As

Publication number Publication date
JP2001098287A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US8110091B2 (en) Process for the conversion of feedstocks resulting from renewable sources for producing gas oil fuel bases with a low sulphur content and with an improved cetane number
US10760015B2 (en) Installation and integrated hydrotreatment and hydroconversion process with common fractionation section
JPH04110394A (en) Method of manufacturing gasoline and distillate
JP2003105349A (en) Method for producing kerosene
JP2000212579A (en) Production of lamp oil
JP4039760B2 (en) Kerosene and method for producing the same
CN101942331B (en) Gasoline and diesel oil combined hydrogenation method
JP3807608B2 (en) Environment-friendly A heavy oil and method for producing the same
JP2530498B2 (en) Method for reducing sulfur in petroleum distillates
JP4700153B2 (en) Fuel oil
CN102465011A (en) Hydrotreatment method of heavy distillate oil
JP5404505B2 (en) Method for producing isopentane fraction for gasoline base
JP3981487B2 (en) A heavy oil composition with high total calorific value and ultra-low sulfur
JP3825878B2 (en) A heavy oil composition with good storage stability
JP2863326B2 (en) Crude oil refining method
JP3825876B2 (en) A heavy oil composition with good storage stability, hue stability and oil permeability
JP3634041B2 (en) Light oil quality treatment method
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP5036074B2 (en) Environmentally friendly gasoline
JP3825875B2 (en) A heavy oil composition for heating having good storage stability, hue stability and oil permeability
JPH07102266A (en) Process for reducing sulfur content of petroleum distillate
JP5108329B2 (en) Kerosene composition
JPH08218082A (en) Diesel light oil composition
JP2863325B2 (en) Crude oil refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

LAPS Cancellation because of no payment of annual fees