JP2011190516A - Spheroidal graphite cast iron tube and method for producing the same - Google Patents

Spheroidal graphite cast iron tube and method for producing the same Download PDF

Info

Publication number
JP2011190516A
JP2011190516A JP2010059248A JP2010059248A JP2011190516A JP 2011190516 A JP2011190516 A JP 2011190516A JP 2010059248 A JP2010059248 A JP 2010059248A JP 2010059248 A JP2010059248 A JP 2010059248A JP 2011190516 A JP2011190516 A JP 2011190516A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
pearlite
iron tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010059248A
Other languages
Japanese (ja)
Other versions
JP5669038B2 (en
Inventor
Koji Nakamoto
光二 中本
Shinpei Tsutsumi
親平 堤
Kazuya Sakamoto
和也 坂本
Noboru Nakamichi
昇 中道
Yoshisada Michiura
吉貞 道浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2010059248A priority Critical patent/JP5669038B2/en
Publication of JP2011190516A publication Critical patent/JP2011190516A/en
Application granted granted Critical
Publication of JP5669038B2 publication Critical patent/JP5669038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spheroidal graphite cast iron tube that has high strength and high toughness and can be readily produced at a low cost. <P>SOLUTION: The spheroidal graphite cast iron tube has a composition containing, by weight, 3.20 to 4.00% C, 1.40 to 3.00% Si, 0.10 to 1.00% Mn, 0.02 to 0.08% Mg and 0.01 to 0.20% Cr, and further containing at least one selected from Sn and Cu in the range satisfying Sn (wt.%)+Cu (wt.%)/10<0.050, and the balance being Fe with inevitable impurities. The spheroidal graphite cast iron tube has a structure in which the area ratio of pearlite in a matrix structure is 60 to 80%, the number of graphite grains crystallized in the matrix structure is controlled to ≥500 grains/mm<SP>2</SP>and the average grain diameter thereof is controlled to ≤15 μm. The resulting spheroidal graphite cast iron tube has a tensile strength equal to that of FCD600 and an elongation above that of FCD450 and enables easy control of Sn and Cu contents, thereby realizing a low component cost. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金型遠心鋳造により鋳造される球状黒鉛鋳鉄管(ダクタイル鋳鉄管)とその製造方法に関する。   The present invention relates to a spheroidal graphite cast iron pipe (ductile cast iron pipe) cast by mold centrifugal casting and a method for manufacturing the same.

一般的な球状黒鉛鋳鉄には、JIS規格のFCD350、FCD400、FCD450等の高靭性タイプのものと、FCD600、FCD700、FCD800等の高強度タイプのものがあるが、球状黒鉛鋳鉄管に関しては、比較的強度と伸びのバランスのよいFCD450(引張強さ:450MPa以上、伸び:10%以上)に相当する材質のものがよく使用される。   Common spheroidal graphite cast irons include JIS standard FCD350, FCD400, FCD450 and other high toughness types, and FCD600, FCD700, FCD800, etc. A material corresponding to FCD450 (tensile strength: 450 MPa or more, elongation: 10% or more) having a good balance between mechanical strength and elongation is often used.

ところで、上記FCD450相当の材質の球状黒鉛鋳鉄管を金型遠心鋳造により製造する場合は、通常、その鋳放し組織がパーライト主体の基地にセメンタイトと球状黒鉛が共存した斑組織であるため、鋳造後に連続焼鈍炉で下記のような熱処理(焼鈍)を施して、セメンタイトを分解するとともに基地組織をフェライト化することにより、所望の機械的性質が得られるようにしている。   By the way, when the spheroidal graphite cast iron pipe made of the material equivalent to the above FCD450 is manufactured by mold centrifugal casting, the cast structure is usually a mottled structure in which cementite and spheroidal graphite coexist on the base of pearlite. The following heat treatment (annealing) is performed in a continuous annealing furnace to decompose cementite and to ferritize the matrix structure so that desired mechanical properties can be obtained.

上記金型遠心鋳造後の熱処理は、まず、鋳造された管状の半製品をオーステナイト域(870℃以上)まで加熱し、セメンタイトを完全に分解して、オーステナイトの基地に黒鉛のみが晶出した組織とする。なお、このときには、加熱温度が高いほど短時間でセメンタイトの分解が可能である。その後、共析変態点付近(700〜750℃程度)の温度域で一定時間保持するか、もしくは変態点付近を徐冷することにより、オーステナイトからフェライトを析出させる。このときには、保持時間が長いほど、あるいは冷却速度が遅いほどフェライト析出量が多くなる。そして、基地組織が完全にフェライト化して、フェライトの基地に黒鉛が分散した組織となった場合に、FCD450相当の材質が得られる。   In the heat treatment after the above-mentioned mold centrifugal casting, first, the cast tubular semi-finished product is heated to the austenite region (870 ° C. or higher), the cementite is completely decomposed, and only graphite is crystallized on the austenite base. And At this time, the cementite can be decomposed in a shorter time as the heating temperature is higher. Thereafter, ferrite is precipitated from austenite by holding for a certain time in the temperature range near the eutectoid transformation point (about 700 to 750 ° C.) or by gradually cooling the transformation zone. At this time, the amount of ferrite precipitation increases as the holding time is longer or the cooling rate is slower. A material equivalent to FCD450 can be obtained when the base structure is completely ferritized into a structure in which graphite is dispersed in the ferrite base.

一方、近年では、FCD450よりも強度と伸びのバランスがよく、かつ安価に製造できる球状黒鉛鋳鉄管がユーザから強く求められている。そこで、本出願人は、球状黒鉛鋳鉄の基本的な化学成分に、パーライト安定化元素であるSnとCuのうち少なくとも1種を、0.050≦Sn(重量%)+Cu(重量%)/10 ≦0.089となる範囲で添加し、基地組織にパーライトを50〜90%の面積率で析出させて、基地組織をフェライトとパーライトからなる二相組織とするとともに、基地組織中に微細な黒鉛を多数晶出させることにより、FCD600と同等以上の引張強さとFCD450に匹敵する伸びを同時に達成する技術を提案した(特願2009−35314)。しかし、この技術では、SnおよびCuの含有量の範囲が狭いためその管理が面倒であり、またこれらの成分のコストが高いという難点がある。   On the other hand, in recent years, there has been a strong demand from users for a spheroidal graphite cast iron pipe that has a better balance between strength and elongation than FCD450 and can be manufactured at low cost. Therefore, the present applicant has added at least one of Sn and Cu, which are pearlite stabilizing elements, to the basic chemical component of spheroidal graphite cast iron, 0.050 ≦ Sn (wt%) + Cu (wt%) / 10. ≦ 0.089 is added, pearlite is precipitated in the base structure at an area ratio of 50 to 90%, and the base structure becomes a two-phase structure composed of ferrite and pearlite, and fine graphite is contained in the base structure. A technology has been proposed that simultaneously achieves a tensile strength equal to or higher than that of FCD600 and an elongation comparable to FCD450 by allowing a large number of crystals to crystallize (Japanese Patent Application No. 2009-35314). However, in this technique, since the range of Sn and Cu contents is narrow, the management thereof is troublesome, and the cost of these components is high.

また、砂型鋳造によって製造される球状黒鉛鋳鉄製品に対しては、鋳造した半製品をオーステナイト域まで加熱して一定時間保持した後、60℃/分程度の冷却速度で急冷してオーステナイトからパーライトを析出させ、さらに670〜760℃で加熱保持する熱処理を行って、パーライトの一部からフェライトを生成させるとともに残りのパーライトの性状を調整することにより、高強度を確保しつつ伸びの改善を図る技術が提案されている(特許文献1参照。)。   In addition, for spheroidal graphite cast iron products manufactured by sand mold casting, the cast semi-finished product is heated to the austenite region and held for a certain period of time, and then rapidly cooled at a cooling rate of about 60 ° C./min to obtain pearlite from austenite. Technology to improve elongation while securing high strength by precipitating and heat-treating at 670-760 ° C to generate ferrite from a portion of pearlite and adjusting the properties of the remaining pearlite Has been proposed (see Patent Document 1).

しかしながら、球状黒鉛鋳鉄製品が水道管等の管材である場合、その鋳造方法は砂型鋳造よりも冷却速度がかなり大きい金型遠心鋳造が中心となるため、上記特許文献1に記載の技術を適用することは困難である。すなわち、特許文献1の技術では鋳造時に基地組織にパーライトを生成する冷却速度で冷却されることが前提条件となっているが、それよりも冷却速度の大きい金型遠心鋳造を行った場合には、基地組織にセメンタイトが多く生成してしまうので、特許文献1に記載された熱処理を適用しても望ましい特性を得ることはできない。   However, when the spheroidal graphite cast iron product is a pipe material such as a water pipe, the casting method is centered on mold centrifugal casting whose cooling rate is considerably higher than that of sand casting, and therefore the technique described in Patent Document 1 is applied. It is difficult. That is, in the technique of Patent Document 1, it is a precondition that cooling is performed at a cooling rate that generates pearlite in the base structure at the time of casting, but when mold centrifugal casting with a higher cooling rate is performed, Since a lot of cementite is generated in the base structure, even if the heat treatment described in Patent Document 1 is applied, desirable characteristics cannot be obtained.

特開2003−55731号公報JP 2003-55731 A

本発明の課題は、高強度と高靭性を兼ね備え、容易かつ安価に製造できる球状黒鉛鋳鉄管とその製造方法を提供することである。   An object of the present invention is to provide a spheroidal graphite cast iron pipe that has both high strength and high toughness and can be easily and inexpensively manufactured and a method for manufacturing the same.

上記の課題を解決するために、本発明の球状黒鉛鋳鉄管は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mn:0.10〜1.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにSnとCuのうちの1種または両方をSn(重量%)+Cu(重量%)/10 <0.050となる範囲で含有し、残部がFeおよび不可避的不純物からなり、基地組織におけるパーライトの面積率が60〜80%であり、基地組織中に晶出している黒鉛の粒数が500個/mm以上、平均粒径が15μm以下であるものとした。 In order to solve the above-mentioned problems, the spheroidal graphite cast iron pipe of the present invention is C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mn: 0.10 by weight%. 1.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20%, and one or both of Sn and Cu are Sn (wt%) + Cu (weight) %) / 10 <0.050, the balance is composed of Fe and inevitable impurities, the area ratio of pearlite in the base structure is 60 to 80%, and the graphite crystallized in the base structure The number of particles was 500 / mm 2 or more, and the average particle size was 15 μm or less.

ここで、パーライトの面積率とは、所定の大きさの視野において黒鉛を除いた基地組織の面積を100%とした場合のパーライトの面積の割合(%)である。また、黒鉛の粒数および平均粒径は、粒径3μm以下のものを除いて計測した値である。   Here, the area ratio of pearlite is the ratio (%) of the area of pearlite when the area of the base tissue excluding graphite is 100% in a field of a predetermined size. Further, the number of graphite grains and the average particle diameter are values measured excluding those having a particle diameter of 3 μm or less.

すなわち、本発明では、基地組織におけるパーライト面積率を60〜80%となるように調整するとともに、基地組織中に微細な球状黒鉛を多数晶出させて組織を緻密化することにより、コストの高いSnやCuを多く添加しなくても、高強度と高靭性を同時に達成できるようにしたのである。   That is, in the present invention, the pearlite area ratio in the base structure is adjusted to be 60 to 80%, and a large number of fine spherical graphite is crystallized in the base structure to make the structure dense, thereby increasing the cost. High strength and high toughness can be achieved simultaneously without adding much Sn or Cu.

次に、各合金元素の含有量を上記の範囲に限定した理由について説明する。   Next, the reason why the content of each alloy element is limited to the above range will be described.

Cは、本発明に必要な黒鉛量と鋳造性(溶湯の流動性)を確保するために、少なくとも3.20%含むようにした。一方、含有量が4.00%を超えると、黒鉛の晶出が過剰になって高い強度が得られなくなるので、含有量の上限を4.00%とした。   C is included in an amount of at least 3.20% in order to ensure the graphite amount and castability (fluidity of the molten metal) necessary for the present invention. On the other hand, if the content exceeds 4.00%, crystallization of graphite becomes excessive and high strength cannot be obtained, so the upper limit of the content was set to 4.00%.

Siは、溶湯の流動性を高める作用や黒鉛の晶出を促進する作用を有するが、含有量が1.40%未満ではこれらの作用による効果が十分に得られない。一方、含有量が3.00%を超えると、黒鉛の晶出が過剰になるとともに基地組織のパーライト化を抑える作用が大きくなって高強度が得られなくなるし、製品の外表面にピンホール等の荒れが発生しやすくなる。このため、含有量の範囲を1.40〜3.00%とした。   Si has an effect of increasing the fluidity of the molten metal and an effect of promoting crystallization of graphite, but if the content is less than 1.40%, the effect of these actions cannot be sufficiently obtained. On the other hand, if the content exceeds 3.00%, the crystallization of graphite becomes excessive and the effect of suppressing the pearlization of the matrix structure becomes large, and high strength cannot be obtained, and pinholes or the like are formed on the outer surface of the product. Roughness is likely to occur. For this reason, the range of content was made into 1.40 to 3.00%.

Mnは、Sを固定して無害化する元素であり、その効果を十分に得るために少なくとも0.10%含むようにした。しかし、過剰であれば伸びを低下させるので、含有量の上限を1.00%とした。   Mn is an element that fixes S and renders it harmless, and is contained in an amount of at least 0.10% in order to sufficiently obtain the effect. However, if it is excessive, the elongation is lowered, so the upper limit of the content was made 1.00%.

Mgは、黒鉛を球状化させるのに必要な元素であり、含有量が0.02%未満では十分な効果が得られない一方、0.08%を超えると効果の向上が少なくなるので、含有量の範囲を0.02〜0.08%とした。   Mg is an element necessary for spheroidizing graphite, and if the content is less than 0.02%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.08%, the improvement in the effect is reduced. The amount range was 0.02 to 0.08%.

Crは、通常、不可避的に0.01%以上含まれるが、含有量が0.20%以下であればその影響は小さい   Usually, Cr is inevitably contained in an amount of 0.01% or more, but the effect is small if the content is 0.20% or less.

SnとCuはともにパーライト安定化元素であり、Cuの効果はSnの約1/10であることが知られている。しかし、基地組織におけるパーライトの面積率を60〜80%に調整するには、必ずしも多量に添加する必要はなく、Sn(重量%)+Cu(重量%)/10 <0.050となる範囲に含有量を抑えることにより、含有量の管理がしやすくなるとともに、コスト低減を図ることができる。   Sn and Cu are both pearlite stabilizing elements, and the effect of Cu is known to be about 1/10 of Sn. However, in order to adjust the area ratio of pearlite in the base tissue to 60 to 80%, it is not always necessary to add a large amount, and it is contained in a range where Sn (wt%) + Cu (wt%) / 10 <0.05. By suppressing the amount, the content can be easily managed and the cost can be reduced.

上記各合金元素のほかには、P、S等の不可避的不純物が含有されるが、その含有量は少ないほどよい。例えば、Pは0.08%以下、Sは0.015%以下とすることが好ましい。   In addition to the above alloy elements, unavoidable impurities such as P and S are contained, but the smaller the content, the better. For example, it is preferable that P is 0.08% or less and S is 0.015% or less.

また、本発明の球状黒鉛鋳鉄管の製造方法は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mn:0.10〜1.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにSnとCuのうちの1種または両方をSn(重量%)+Cu(重量%)/10 <0.050となる範囲で含有し、残部がFeおよび不可避的不純物からなる組成の溶湯を用いて、金型遠心鋳造により管状の半製品を鋳造し、この半製品に対して、900〜1100℃で5〜25分保持した後、20〜30℃/分の冷却速度で680℃以下まで冷却し、さらに700〜720℃で15〜30分加熱保持する熱処理を連続焼鈍炉で行うことにより、前記半製品を上述した構成の球状黒鉛鋳鉄管となすものである。   Moreover, the manufacturing method of the spheroidal graphite cast iron pipe of the present invention is, in wt%, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mn: 0.10 to 1.00% Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20%, and one or both of Sn and Cu are Sn (wt%) + Cu (wt%) / 10 A tubular semi-finished product is cast by mold centrifugal casting using a molten metal having a composition of <0.050, the balance being Fe and inevitable impurities, and 900 to 1100 for this semi-finished product. After holding at 5 ° C for 25-25 minutes, cooling to 680 ° C or less at a cooling rate of 20-30 ° C / min, and further performing heat treatment for 15-30 minutes at 700-720 ° C by heating in a continuous annealing furnace, The semi-finished product is formed into a spheroidal graphite cast iron pipe having the above-described configuration.

すなわち、上記溶湯を用いる金型遠心鋳造と上記条件の熱処理の組み合わせにより、パーライト面積率が60〜80%、かつ黒鉛の粒数が500個/mm以上でその平均粒径が15μm以下となり、高強度かつ高靭性の球状黒鉛鋳鉄管を容易に製造することができる。このとき、黒鉛粒数が500個/mmを下回ると、上記熱処理を行う際にセメンタイトの分解に時間がかかり、また基地組織に含まれる固溶炭素の黒鉛化が遅れるため、上記範囲のパーライト面積率が得られにくくなるが、黒鉛粒数を500個/mm以上とすることにより、この影響を小さくすることができる。 That is, by the combination of mold centrifugal casting using the molten metal and heat treatment under the above conditions, the pearlite area ratio is 60 to 80%, the number of graphite particles is 500 pieces / mm 2 or more, and the average particle size is 15 μm or less, A high-strength and high-toughness spheroidal graphite cast iron pipe can be easily produced. At this time, if the number of graphite particles is less than 500 particles / mm 2 , it takes time to decompose cementite during the heat treatment, and the graphitization of the solute carbon contained in the matrix structure is delayed. Although the area ratio is difficult to obtain, the influence can be reduced by setting the number of graphite particles to 500 pieces / mm 2 or more.

上述したように、本発明の球状黒鉛鋳鉄管は、SnおよびCuの含有量を抑えながら、基地組織におけるパーライトの面積率を60〜80%とし、基地組織中に微細な球状黒鉛を多く晶出させたものであるから、高強度と高靭性の両方の特性を有し、しかもSnやCuの含有量の管理が容易で成分コストの安いものとなっている。   As described above, the spheroidal graphite cast iron pipe of the present invention has an area ratio of pearlite in the base structure of 60 to 80% while suppressing the Sn and Cu contents, and a large amount of fine spheroidal graphite is crystallized in the base structure. Therefore, it has characteristics of both high strength and high toughness, and the content of Sn and Cu can be easily managed and the component cost is low.

また、本発明の球状黒鉛鋳鉄管の製造方法は、SnおよびCuの含有量を抑えた溶湯を用いて金型遠心鋳造を行った後、通常の連続焼鈍炉において所定の条件で熱処理を行うものであるから、熱処理設備の改造等を必要とせず、高強度かつ高靭性の球状黒鉛鋳鉄管を容易かつ安価に製造することができる。   Moreover, the manufacturing method of the spheroidal graphite cast iron pipe of the present invention is to perform heat treatment under a predetermined condition in a normal continuous annealing furnace after performing mold centrifugal casting using a molten metal with suppressed Sn and Cu contents. Therefore, it is possible to easily and inexpensively manufacture a spheroidal graphite cast iron pipe having high strength and high toughness without requiring modification of heat treatment equipment.

a〜cは、それぞれ実施形態の球状黒鉛鋳鉄管の材料組織の顕微鏡写真a to c are photomicrographs of the material structure of the spheroidal graphite cast iron pipe of the embodiment, respectively.

以下、本発明の実施形態の球状黒鉛鋳鉄管の特性を確認するために行った実験について説明する。実験では、まず、実施形態の球状黒鉛鋳鉄管(実施例1〜3)を製造した。表1は実験に用いた溶湯の化学成分を示す。ここで、記載を省略した残部は、Feおよび不可避的不純物(P:0.04〜0.06%、S:0.002〜0.005%を含む)からなる。なお、化学成分のデータは、それぞれの溶湯から作製した白銑試料を発光分光分析装置で分析した値である。   Hereinafter, the experiment conducted in order to confirm the characteristic of the spheroidal graphite cast iron pipe of the embodiment of the present invention will be described. In the experiment, first, the spheroidal graphite cast iron pipe (Examples 1 to 3) of the embodiment was manufactured. Table 1 shows the chemical components of the molten metal used in the experiment. Here, the remainder which abbreviate | omitted description consists of Fe and an unavoidable impurity (P: 0.04-0.06%, S: 0.002-0.005% included). In addition, the data of a chemical component are the values which analyzed the birch sample produced from each molten metal with the emission-spectral-analysis apparatus.

最初に、表1の組成を有する溶湯をそれぞれ約1300℃で遠心鋳造装置の円筒状金型に注湯して、厚さ約7.0mmの管状の半製品(鋳放し管)を鋳造した。この鋳造の際には、注湯した溶湯を金型水冷により凝固させた後、凝固した管状体を金型から引き抜いて空冷した。   First, molten metal having the composition shown in Table 1 was poured into a cylindrical mold of a centrifugal casting apparatus at about 1300 ° C. to cast a tubular semi-finished product (as cast pipe) having a thickness of about 7.0 mm. At the time of casting, the poured molten metal was solidified by mold water cooling, and then the solidified tubular body was pulled out of the mold and air-cooled.

そして、各鋳放し管を連続焼鈍炉で下記の条件で熱処理(二段焼鈍)することにより、製品としての球状黒鉛鋳鉄管に仕上げた。
(1段目焼鈍条件)
・加熱保持:900〜1100℃×5〜25分
・冷却速度:25〜30℃/分(実施例1、2)、20〜25℃/分(実施例3)
・冷却温度:650℃程度(680℃以下)
(2段目焼鈍条件)
・加熱保持:700〜720℃×15〜30分
・冷却速度:1〜8℃/分
・冷却温度:600℃程度
Then, each as-cast pipe was heat-treated (two-stage annealing) under the following conditions in a continuous annealing furnace to finish a spheroidal graphite cast iron pipe as a product.
(First stage annealing condition)
Heating and holding: 900 to 1100 ° C. × 5 to 25 minutes Cooling rate: 25 to 30 ° C./min (Examples 1 and 2), 20 to 25 ° C./min (Example 3)
・ Cooling temperature: about 650 ° C (680 ° C or less)
(Second stage annealing conditions)
・ Heat holding: 700 to 720 ° C. × 15 to 30 minutes • Cooling rate: 1 to 8 ° C./minute • Cooling temperature: about 600 ° C.

ここで、1段目の冷却速度は、冷却後の基地組織のほとんどがパーライトとなりフェライトが析出しないように設定したものである。このため、実施例1、2に比べてパーライト安定化元素であるSnおよびCuの含有量が多い(Sn(重量%)+Cu(重量%)/10の値が高い)実施例3では、1段目の冷却速度を実施例1、2よりも遅くしている。そして、2段目の加熱保持により、パーライトからある程度のフェライトを析出させるとともにパーライト性状を調整して、伸びの向上を図っている。   Here, the cooling rate of the first stage is set so that most of the base structure after cooling becomes pearlite and ferrite does not precipitate. For this reason, the content of Sn and Cu, which are pearlite stabilizing elements, is larger than those in Examples 1 and 2 (the value of Sn (wt%) + Cu (wt%) / 10 is high). The eye cooling rate is slower than those in Examples 1 and 2. The second stage of heating and holding precipitates some ferrite from the pearlite and adjusts the pearlite properties to improve the elongation.

このようにして製造した各実施例の鋳鉄管から試験片を採取し、それぞれについて材料組織の性状および機械的性質を調査した。その調査結果を表2、3に示す。また、図1は各実施例の材料組織の顕微鏡写真を示す。ここで、表2の材料組織の性状に関するデータは、いずれも管の厚さ方向中心部の画像解析により計測したもので、そのうちのパーライト面積率は所定の大きさの視野における基地組織の面積を100%とした場合のパーライトの面積の割合であり、黒鉛面積率は所定の大きさの視野全体の面積を100%とした場合の黒鉛の面積の割合である。また、黒鉛に関しては、いずれも粒径が3μm以下のものを除いて計測を行っている。   Test pieces were collected from the cast iron pipes of the respective examples thus produced, and the properties and mechanical properties of the material structures were investigated for each. The survey results are shown in Tables 2 and 3. Moreover, FIG. 1 shows the microscope picture of the material structure | tissue of each Example. Here, the data on the properties of the material structure in Table 2 are all measured by image analysis of the central portion in the thickness direction of the tube, and the pearlite area ratio of the data is the area of the base tissue in a visual field of a predetermined size. It is the ratio of the area of pearlite when it is 100%, and the graphite area ratio is the ratio of the area of graphite when the area of the entire visual field of a predetermined size is 100%. In addition, graphite is measured except for particles having a particle size of 3 μm or less.

図1(a)〜(c)から、各実施例の基地組織はパーライトとフェライトからなる二相組織となっており、微細な黒鉛が多数晶出していることがわかる。そして、表2、3から明らかなように、各実施例のパーライト面積率は60〜80%で、黒鉛の粒数が600個/mm以上、平均粒径が13μm以下であり、いずれの例でも約600MPaの引張強さと13%以上の伸びが確保されている。 1 (a) to 1 (c), it can be seen that the base structure of each example has a two-phase structure composed of pearlite and ferrite, and a large number of fine graphite is crystallized. As apparent from Tables 2 and 3, the pearlite area ratio of each example is 60 to 80%, the number of graphite particles is 600 particles / mm 2 or more, and the average particle size is 13 μm or less. However, a tensile strength of about 600 MPa and an elongation of 13% or more are secured.

以上の結果から、各実施例の球状黒鉛鋳鉄管は、基地組織におけるパーライト面積率を60〜80%に調整するとともに、冷却速度の大きい金型遠心鋳造と適切な条件の熱処理とを組み合わせて、基地組織中に微細な黒鉛を多数晶出させることにより、SnやCuの含有量を低く抑えても、FCD600と同等の引張強さとFCD450よりも高い伸びを有する、高強度かつ高靭性のものとなり、容易かつ安価に製造できることが確認された。   From the above results, the spheroidal graphite cast iron pipe of each example adjusts the pearlite area ratio in the base structure to 60 to 80%, and combines mold centrifugal casting with a large cooling rate and heat treatment under appropriate conditions, By crystallizing a lot of fine graphite in the base structure, even if the content of Sn and Cu is kept low, it has high tensile strength and high toughness with tensile strength equivalent to FCD600 and higher elongation than FCD450. It was confirmed that it can be manufactured easily and inexpensively.

Claims (2)

重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mn:0.10〜1.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにSnとCuのうちの1種または両方をSn(重量%)+Cu(重量%)/10 <0.050となる範囲で含有し、残部がFeおよび不可避的不純物からなり、基地組織におけるパーライトの面積率が60〜80%であり、基地組織中に晶出している黒鉛の粒数が500個/mm以上、平均粒径が15μm以下である球状黒鉛鋳鉄管。 By weight, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mn: 0.10 to 1.00%, Mg: 0.02 to 0.08%, Cr: It contains 0.01 to 0.20%, and further contains one or both of Sn and Cu in a range of Sn (wt%) + Cu (wt%) / 10 <0.05, with the balance being Fe. And the area ratio of pearlite in the base structure is 60 to 80%, the number of graphite grains crystallized in the base structure is 500 / mm 2 or more, and the average particle diameter is 15 μm or less. Spheroidal graphite cast iron pipe. 重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mn:0.10〜1.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにSnとCuのうちの1種または両方をSn(重量%)+Cu(重量%)/10 <0.050となる範囲で含有し、残部がFeおよび不可避的不純物からなる組成の溶湯を用いて、金型遠心鋳造により管状の半製品を鋳造し、この半製品に対して、900〜1100℃で5〜25分保持した後、20〜30℃/分の冷却速度で680℃以下まで冷却し、さらに700〜720℃で15〜30分加熱保持する熱処理を連続焼鈍炉で行うことにより、前記半製品を請求項1に記載の球状黒鉛鋳鉄管となす球状黒鉛鋳鉄管の製造方法。   By weight, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mn: 0.10 to 1.00%, Mg: 0.02 to 0.08%, Cr: It contains 0.01 to 0.20%, and further contains one or both of Sn and Cu in a range of Sn (wt%) + Cu (wt%) / 10 <0.05, with the balance being Fe. A tubular semi-finished product is cast by mold centrifugal casting using a molten metal having a composition composed of unavoidable impurities, and the semi-finished product is held at 900 to 1100 ° C. for 5 to 25 minutes, and then 20 to 30 ° C. 2. The spheroidal graphite cast iron pipe according to claim 1, wherein the semi-finished product is cooled to 680 ° C. or less at a cooling rate of 1 min / min and further subjected to heat treatment at 700 to 720 ° C. for 15 to 30 minutes in a continuous annealing furnace Manufacturing method of spheroidal graphite cast iron pipe.
JP2010059248A 2010-03-16 2010-03-16 Spheroidal graphite cast iron pipe and manufacturing method thereof Active JP5669038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059248A JP5669038B2 (en) 2010-03-16 2010-03-16 Spheroidal graphite cast iron pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059248A JP5669038B2 (en) 2010-03-16 2010-03-16 Spheroidal graphite cast iron pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011190516A true JP2011190516A (en) 2011-09-29
JP5669038B2 JP5669038B2 (en) 2015-02-12

Family

ID=44795731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059248A Active JP5669038B2 (en) 2010-03-16 2010-03-16 Spheroidal graphite cast iron pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5669038B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208240A1 (en) * 2013-06-28 2014-12-31 株式会社リケン Spheroidal graphite cast iron
JP2015510062A (en) * 2012-03-08 2015-04-02 ベーテー イノヴェイション ゲゼルシャフト ミット ベシュレンクテルハフツング Turnbuckle to connect structural elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266047A (en) * 2001-03-07 2002-09-18 Nippon Chutetsukan Kk Ductile cast iron pipe and manufacturing method therefor
JP2003055731A (en) * 2001-08-10 2003-02-26 Aisin Takaoka Ltd Spheroidal graphite cast iron excellent in strength, elongation and machinability, and its production method
JP2005095911A (en) * 2003-09-22 2005-04-14 Nippon Chuzo Kk Method for continuously casting spheroidal graphite cast iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266047A (en) * 2001-03-07 2002-09-18 Nippon Chutetsukan Kk Ductile cast iron pipe and manufacturing method therefor
JP2003055731A (en) * 2001-08-10 2003-02-26 Aisin Takaoka Ltd Spheroidal graphite cast iron excellent in strength, elongation and machinability, and its production method
JP2005095911A (en) * 2003-09-22 2005-04-14 Nippon Chuzo Kk Method for continuously casting spheroidal graphite cast iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510062A (en) * 2012-03-08 2015-04-02 ベーテー イノヴェイション ゲゼルシャフト ミット ベシュレンクテルハフツング Turnbuckle to connect structural elements
WO2014208240A1 (en) * 2013-06-28 2014-12-31 株式会社リケン Spheroidal graphite cast iron
CN105283571A (en) * 2013-06-28 2016-01-27 株式会社理研 Spheroidal graphite cast iron
US9822433B2 (en) 2013-06-28 2017-11-21 Kabushiki Kaisha Riken Spheroidal graphite cast iron

Also Published As

Publication number Publication date
JP5669038B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP2019094568A (en) Ultrahigh strength ferritic steel strengthened by cu-rich nanoclusters, and method of manufacturing the same
WO2011062012A1 (en) Steel wire for low-temperature annealing and method for producing the same
JP5113104B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6809170B2 (en) Manufacturing method of Ni-based superalloy material
JP6319437B2 (en) Steel for cold forging
JP2011105993A (en) Spheroidal graphite cast iron tube and method for producing the same
JP6809169B2 (en) Manufacturing method of Ni-based superalloy material
JP5268105B2 (en) Duplex stainless steel and method for producing the same
JP2006283142A (en) High-strength copper alloy superior in bending workability
JP2009013479A (en) High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP2015168882A (en) Spheroidizing heat treatment method for alloy steel
JP2017048459A (en) Steel wire for machine structure component
JP6473192B2 (en) Spheroidal graphite cast iron and method for producing the same
JP2020503435A (en) Low yield ratio steel sheet excellent in low temperature toughness and method for producing the same
JP5669038B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP2018168473A (en) Spheroidizing heat treatment method for alloy steel
JP3950682B2 (en) Manufacturing method of hot rolled wire rod for bearing
JP2004099923A (en) High strength ductile cast iron
JP6328967B2 (en) Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
KR20000058123A (en) Heavy wall steel material having superior weldability and method for producing the same
JP6793541B2 (en) Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5669038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150