JP5268105B2 - Duplex stainless steel and method for producing the same - Google Patents

Duplex stainless steel and method for producing the same Download PDF

Info

Publication number
JP5268105B2
JP5268105B2 JP2009025934A JP2009025934A JP5268105B2 JP 5268105 B2 JP5268105 B2 JP 5268105B2 JP 2009025934 A JP2009025934 A JP 2009025934A JP 2009025934 A JP2009025934 A JP 2009025934A JP 5268105 B2 JP5268105 B2 JP 5268105B2
Authority
JP
Japan
Prior art keywords
phase
less
stainless steel
duplex stainless
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009025934A
Other languages
Japanese (ja)
Other versions
JP2010180459A (en
Inventor
憲亮 広田
司 東
日出夫 小枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2009025934A priority Critical patent/JP5268105B2/en
Publication of JP2010180459A publication Critical patent/JP2010180459A/en
Application granted granted Critical
Publication of JP5268105B2 publication Critical patent/JP5268105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a duplex phase stainless steel in which a fine crystal grain structure can be readily produced with addition of as small amounts of rare elements as possible. <P>SOLUTION: The duplex phase stainless steel containing an austenitic phase and a ferritic phase is manufactured by: performing cold rolling with rolling reduction rate of &ge;80%; and subsequently performing annealing. In the obtained duplex phase stainless steel, the ferritic phase accounts for 30-60% by volume, an aspect ratio in the ferritic phase is &lt;0.40, and grain size in the austenitic phase is &le;5 &mu;m. A fine grain size in the austenitic phase can be achieved without any variation, thereby imparting excellent mechanical characteristics with high strength and high toughness. The duplex phase stainless steel preferably comprises, by mass: &le;0.10% C; &le;2.0% Si; &le;2.0% Mn; 5.0-15.0% Ni; 16.0-28.0% Cr; &le;5% Mo; if desired, &le;0.20% N; and the balance being Fe and unavoidable impurities. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、例えば原子力装置用部材、クラッド鋼板及び配管用部材等の強度、延性、耐食性を必要とする素材に用いられる2相ステンレス鋼および、特に冷間圧延後の焼鈍処理においても、結晶粒の粗大化を防止できる2相ステンレス鋼の製造方法に関するものである。   The present invention includes, for example, a duplex stainless steel used for a material requiring strength, ductility, corrosion resistance, such as a member for a nuclear device, a clad steel plate, and a member for piping, and also in an annealing treatment after cold rolling, The present invention relates to a method for producing a duplex stainless steel capable of preventing the coarsening of steel.

2相ステンレス鋼は、オーステナイト相とフェライト相の混在した材料であるため、強度、延性バランスに優れた材料である。近年では、さらなる強度、延性の向上が求められており、特に結晶粒微細化プロセスを利用した発明が数多く報告されている。例えば、Ti、Zr、Nb、V、W、Cuといった析出物生成元素を積極的に材料に付与させることで、炭化物、窒化物といった微細析出物を利用し、強度、延性の向上が図られている(特許文献1参照)。また、従来技術には焼鈍温度を選択的に変化させることで、フェライト相の粗大化を抑制した熱処理方法も提案されている(特許文献2参照)。さらに、冷間圧延後の焼鈍処理工程における冷却速度を20℃/分以上に制御した熱処理プロセスを実施することで、微細粒鋼を得る製造方法も提案されている(特許文献3参照)。さらに、冷間圧延後の1次焼鈍処理をフェライト+オーステナイト2相組織あるいはフェライト単相領域となる温度に設定後、再度2次焼鈍を行うことで、微細化材を得る方法も提案されている。(特許文献4参照)。   Since the duplex stainless steel is a material in which an austenite phase and a ferrite phase are mixed, it is a material excellent in strength and ductility balance. In recent years, further improvement in strength and ductility has been demanded, and many inventions using a grain refinement process have been reported. For example, by aggressively imparting precipitate generating elements such as Ti, Zr, Nb, V, W, and Cu to the material, fine precipitates such as carbides and nitrides can be used to improve strength and ductility. (See Patent Document 1). Moreover, the prior art has also proposed a heat treatment method that suppresses the coarsening of the ferrite phase by selectively changing the annealing temperature (see Patent Document 2). Furthermore, a manufacturing method for obtaining fine-grained steel by carrying out a heat treatment process in which the cooling rate in the annealing treatment process after cold rolling is controlled to 20 ° C./min or more has been proposed (see Patent Document 3). Furthermore, a method of obtaining a refined material by performing secondary annealing again after setting the temperature of the primary annealing treatment after cold rolling to a ferrite + austenite two-phase structure or a ferrite single-phase region has also been proposed. . (See Patent Document 4).

特開2005−48203号公報JP-A-2005-48203 特報昭60−45251号公報JP-B-60-45251 特報昭61−59382号公報JP-B 61-59382 特開平3−191025号公報Japanese Patent Laid-Open No. 3-191025

ところで近年は、原材料費のコスト急上昇に伴い、製造コストが軒並み増加している。したがって、今後新材料を開発していく上で、レアメタル元素Ti、Zr、Nb、V、Wといった析出物生成元素の使用は極力抑えていかなければならない。また従来2相ステンレス鋼の冷間圧延後における焼鈍条件は、フェライト相における再結晶促進を意図して、1050℃〜1200℃に設定されている。この結果、オーステナイト相は、著しく粗大化してしまうのが現状である。そこでオーステナイト相の結晶粒微細化方法として、焼鈍処理工程での冷却速度の増加や2回焼鈍処理を適用する方法も提案されているが、熱処理設備の改良や熱処理工程の稼働時間増加に伴う製造コストの増大また大型部材への適用が困難である等の問題がある。
このような観点から、希少元素を極力低減し、かつ容易に微細結晶粒組織を作製できる2相ステンレス鋼の開発が望まれる。
By the way, in recent years, the manufacturing cost has increased in general with the rapid increase of the raw material cost. Therefore, in developing new materials in the future, it is necessary to suppress the use of precipitate-generating elements such as rare metal elements Ti, Zr, Nb, V, and W as much as possible. Moreover, the annealing conditions after cold rolling of conventional duplex stainless steel are set to 1050 ° C. to 1200 ° C. with the intention of promoting recrystallization in the ferrite phase. As a result, the austenite phase is extremely coarse at present. Therefore, methods for increasing the cooling rate in the annealing process and applying a double annealing process have also been proposed as methods for refining the austenite crystal grains. There are problems such as an increase in cost and difficulty in application to large members.
From such a viewpoint, it is desired to develop a duplex stainless steel capable of reducing the rare elements as much as possible and easily producing a fine grain structure.

本発明は、上記の実状に鑑みなされたものであり、フェライト相の体積率を30〜60%、その組織形態のアスペクト比を0.40未満に制御することで、冷間圧延後の焼鈍処理で形成される微細粒組織を容易に作製できる2相ステンレス鋼およびその製造方法を提供することを目的とする。   This invention is made | formed in view of said actual condition, and the annealing process after cold rolling is controlled by controlling the volume ratio of a ferrite phase to 30 to 60% and the aspect-ratio of the structure | tissue form to less than 0.40. An object of the present invention is to provide a duplex stainless steel capable of easily producing a fine grain structure formed by the above process and a method for producing the same.

すなわち、本発明の2相ステンレス鋼のうち、第1の本発明は、質量%で、C:0.10%以下、Si:2.0%以下、Mn:2.0%以下、Ni:7.0〜15.0%、Cr:16.0〜28.0%、Mo:2.0〜5.0%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、オーステナイト相とフェライト相を含み、該フェライト相の体積率が30〜60%であって、該フェライト相のアスペクト比が0.40未満前記オーステナイト相の結晶粒径が5μm以下であることを特徴とする。 That is, among the duplex stainless steels of the present invention, the first present invention is mass%, C: 0.10% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 7 0.0-15.0%, Cr: 16.0-28.0%, Mo: 2.0-5.0%, with the balance being composed of Fe and unavoidable impurities , includes a ferrite phase, the volume ratio of the ferrite phase is a 30% to 60%, the aspect ratio of the ferrite phase is less than 0.40, the crystal grain size of the austenite phase, characterized in that it is 5μm or less.

第2の本発明の2相ステンレス鋼は、前記第1の本発明において、前記組成に、質量%で、さらにNを0.20%以下含有することを特徴とする。 The duplex stainless steel according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the composition contains mass% and further contains N of 0.20% or less.

第3の本発明の2相ステンレス鋼は、前記第1または第2の本発明において、肉厚が20〜150mmであることを特徴とする。 The duplex stainless steel according to the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the wall thickness is 20 to 150 mm.

第4の本発明の2相ステンレス鋼の製造方法は、前記第1〜第3のいずれかの本発明の組成を有するステンレス鋼に、圧下率80%以上で冷間圧延を行ってフェライト相のアスペクト比を0.40未満とし、その後、0.3℃/秒以上の昇温速度で加熱してオーステナイト相の再結晶が生じ、かつ該相の結晶粒成長が生じない900〜1050℃の温度で焼鈍を行ってオーステナイト相の結晶粒径を5μm以下にすることを特徴とする。 The method for producing a duplex stainless steel according to the fourth aspect of the present invention comprises subjecting the stainless steel having the composition according to any one of the first to third aspects of the present invention to cold rolling at a rolling reduction of 80% or more, A temperature of 900 to 1050 ° C. with an aspect ratio of less than 0.40, followed by heating at a heating rate of 0.3 ° C./second or more to cause recrystallization of the austenite phase and no crystal growth of the phase Annealing is performed to reduce the crystal grain size of the austenite phase to 5 μm or less.

すなわち、本発明の2相ステンレス鋼によれば、フェライト相のピン止め効果によって結晶粒の粗大化が確実に防止された微細結晶粒を有しており、高強度、高靭性の優れた機械的特性を示す。
ここで、フェライト相のアスペクト比が0.4以上であると、フェライト相のピン止め効果が小さくなって、オーステナイト相の結晶粒粗大化抑制効果が十分に得られておらず、オーステナイト相の結晶粒径のバラツキが大きくなる。このため、本発明の2相ステンレス鋼では、フェライト相のアスペクト比が0.4未満を満たしていることが必要とされる。
That is, according to the duplex stainless steel of the present invention, it has fine crystal grains in which coarsening of crystal grains is surely prevented by the pinning effect of the ferrite phase, and has high strength and high toughness. Show properties.
Here, when the aspect ratio of the ferrite phase is 0.4 or more, the pinning effect of the ferrite phase is reduced, and the effect of suppressing the coarsening of the austenite phase is not sufficiently obtained. The variation in particle size increases. For this reason, in the duplex stainless steel of the present invention, it is necessary that the aspect ratio of the ferrite phase satisfies less than 0.4.

また、オーステナイト相とフェライト相とを含む本発明の2相ステンレス鋼では、前記フェライト相の体積率を、30〜60%に規制する。フェライト体積率を適正に定めることで、延靭性、強度、耐食性をバランスよく確保することができる。   Moreover, in the duplex stainless steel of this invention containing an austenite phase and a ferrite phase, the volume ratio of the said ferrite phase is controlled to 30 to 60%. By appropriately determining the volume fraction of ferrite, it is possible to ensure a good balance of ductility, strength, and corrosion resistance.

なお、本発明の2相ステンレス鋼では、好適な組成として、質量%で、C:0.10%以下、Si:2.0%以下、Mn:2.0%以下、Ni:.0〜15.0%、Cr:18.0〜28.0%、Mo:2.0〜5.0%以下を含有し、さらに所望によりNを0.20質量%以下を含有し、残部がFeおよび不可避的不純物からなるものを示すことができる。以下に、該好適組成における各成分の限定理由を説明する。なお、以下における含有量はいずれも質量%を意味している。 In the duplex stainless steel of the present invention, as a suitable composition, C: 0.10% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 7 . 0 to 15.0%, Cr: 18.0 to 28.0%, Mo: 2.0 to 5.0 % or less, and optionally containing N in an amount of 0.20% by mass or less. Those composed of Fe and inevitable impurities can be shown. Below, the reason for limitation of each component in this suitable composition is demonstrated. In addition, all the contents in the following mean the mass%.

C:0.10%以下
CはCr、Moと結合し、MC、M及びM23タイプの炭化物を形成することで、粒界でのピン止め効果に寄与する。またオーステナイト相に対しては、固溶強化能を向上させる作用をもつ。これらの作用のために、Cを極力積極添加する。しかし炭素を過剰に含有させると、安定化処理時に粒界へ析出するCr炭化物が多くなり、粒界を脆弱化させ、延性を低下させる。したがってCの添加量は、0.10%以下に限定する。なお、上記作用を十分に得るためにはCの下限を0.01%とするのが望ましく、また、上記と同様の理由でCの上限を0.05%とするのが望ましい。
C: 0.10% or less C combines with Cr and Mo to form M 6 C, M 7 C 3 and M 23 C 6 type carbides, thereby contributing to the pinning effect at the grain boundaries. Moreover, it has the effect | action which improves a solid solution strengthening ability with respect to an austenite phase. For these actions, C is added as much as possible. However, when carbon is contained excessively, more Cr carbide precipitates at the grain boundary during the stabilization treatment, weakening the grain boundary and reducing ductility. Therefore, the addition amount of C is limited to 0.10% or less. In order to obtain the above effect sufficiently, it is desirable to set the lower limit of C to 0.01%, and it is desirable to set the upper limit of C to 0.05% for the same reason as described above.

Si:2.0%以下
Siは耐酸化性、耐食性、強度を高める上で必須元素であると同時に、金属間化合物の析出による結晶粒微細化に寄与する。しかし過剰な添加は、製造性を劣化させるとともに、金属間化合物の粗大化による脆化をもたらす。したがって含有量は、2.0%以下の範囲に限定する。なお、上記作用を十分に得るためにはSiの下限を0.4%とするのが望ましく、また、上記と同様の理由でSiの上限を1.0%とするのが望ましい。
Si: 2.0% or less Si is an essential element for enhancing oxidation resistance, corrosion resistance, and strength, and at the same time contributes to refinement of crystal grains by precipitation of intermetallic compounds. However, excessive addition deteriorates manufacturability and causes embrittlement due to coarsening of intermetallic compounds. Therefore, the content is limited to a range of 2.0% or less. In order to obtain the above effect sufficiently, the lower limit of Si is desirably 0.4%, and the upper limit of Si is desirably 1.0% for the same reason as described above.

Mn:2.0%以下
Mnは脱酸剤として添加されるとともに、MnS等の析出物を生成させることで、結晶粒の微細化に寄与する。しかし、過剰な含有は、加工性、耐食性を劣化させる。したがって含有量は2.0%以下とする。なお、上記作用を十分に得るためにはMnの下限を0.5%とするのが望ましく、また、上記と同様の理由でMnの上限を1.5%とするのが望ましい。
Mn: 2.0% or less Mn is added as a deoxidizer and contributes to refinement of crystal grains by generating precipitates such as MnS. However, excessive inclusion deteriorates workability and corrosion resistance. Therefore, the content is 2.0% or less. In order to obtain the above effect sufficiently, the lower limit of Mn is desirably 0.5%, and the upper limit of Mn is desirably 1.5% for the same reason as described above.

Ni:.0〜15.0%
Niは、オーステナイト相安定化元素であるが、過剰な添加は原料コストの増大を招く。したがって含有量は、.0〜15.0%とする。なお上記と同様の理由でNiの上限を13.0%とするのが望ましい。
Ni: 7 . 0 to 15.0%
Ni is an austenite phase stabilizing element, but excessive addition causes an increase in raw material cost. Therefore, the content is 7 . 0 to 15.0%. Incidentally, for the 13.0% upper limit of Ni for the same reason as described above it is desirable.

Cr:16.0〜28.0%
Crは、耐食性向上のため、16.0%以上の添加が必要である。またフェライトの生成を促進させることで、オーステナイト相の粗大化抑制に寄与する。しかし過剰な添加は、熱間加工性も著しく低下する。したがって含有量は、16.0〜28.0%とする。望ましくは18.0〜26.0%である。
Cr: 16.0 to 28.0%
Cr needs to be added in an amount of 16.0% or more in order to improve corrosion resistance. Moreover, it contributes to the suppression of the austenite phase coarsening by promoting the formation of ferrite. However, excessive addition also significantly reduces hot workability. Therefore, the content is made 16.0 to 28.0%. Desirably, it is 18.0 to 26.0%.

Mo:2.0〜5.0
Moはマトリックスへの固溶強化に寄与する元素であるとともに、MoC等の析出物を生成させることで、結晶粒の微細化に寄与するが、偏析性の強い元素であり大型鋼塊製造には不適な元素である。したがって、含有量は2.0〜5.0%とする。望ましくは2.0〜4.0%の範囲である。
Mo: 2.0 to 5.0 %
Mo is an element that contributes to solid solution strengthening in the matrix, and by generating precipitates such as Mo 2 C, it contributes to refinement of crystal grains. It is an unsuitable element. Therefore, the content is set to 2.0 to 5.0% . Desirably, it is 2.0 to 4.0% of range.

N:0.20%以下
Nは耐食性を向上させる元素であり、フェライト体積率をコントロールする上でも有用な元素であり、所望により添加される。しかし、多量に含有させるとブローホールの原因になるため、含有量は0.2%以下とする。望ましくは0.16%以下である。
N: 0.20% or less N is an element that improves corrosion resistance, and is also an element useful for controlling the ferrite volume fraction, and is added as desired. However, if it is contained in a large amount, it causes blow holes, so the content is 0.2% or less. Desirably, it is 0.16% or less.

Ti、Zr、Nb、V、W、Cuは、CやNと結合することで、炭化物、窒化物を生成することにより、結晶粒微細化に寄与するが、本発明合金では、これら生成物を利用せずとも、結晶粒微細化を成し遂げられる。したがって、Ti、Zr、V、W、Cuの添加は不要であるが、所望により1種以上を添加することも可能である。例えば、Ti、Zr、Vを各0.5%以下、W3.0%以下、Cu2.0%以下を含有することができる。 Ti, Zr, Nb, V, W, and Cu combine with C and N to generate carbides and nitrides, thereby contributing to grain refinement. In the alloy of the present invention, these products are Even without use, crystal grain refinement can be achieved. Therefore, it is not necessary to add Ti, Zr, V, W, or Cu, but it is possible to add one or more if desired. For example, Ti, Zr, and V can each contain 0.5% or less, W3.0% or less, and Cu 2.0% or less.

冷間圧延圧下率:80%以上
2相ステンレス鋼の製造に際し、冷間圧延での圧下率を80%以上にする。これにより焼鈍前のフェライト相のアスペクト比を小さくして、焼鈍時にフェライト相のピン止め効果によりオーステナイト相の粗大化を阻止してオーステナイト相を実質的に5μm以下にする結晶粒微細化が達成される。冷間圧延での圧下率が80%未満では、結晶粒の微細化が十分でなく、オーステナイト相を実質的に5μm以下にすることが難しくなる。同様の理由で冷間圧延圧下率は90%以上が望ましい。なお、実質的に5μm以下とは、希に5μmを越えるものを除いて結晶粒径が5μm以下であることを意味しており、さらには全ての結晶粒径において5μm以下であるのが望ましい。
Cold rolling reduction ratio: 80% or more When producing duplex stainless steel, the rolling reduction ratio in cold rolling is set to 80% or more. This reduces the aspect ratio of the ferrite phase before annealing, prevents the austenite phase from coarsening due to the pinning effect of the ferrite phase during annealing, and achieves grain refinement that makes the austenite phase substantially 5 μm or less. The If the rolling reduction in cold rolling is less than 80%, the crystal grains are not sufficiently refined, and it becomes difficult to make the austenite phase substantially 5 μm or less. For the same reason, the cold rolling reduction is desirably 90% or more. The term “substantially 5 μm or less” means that the crystal grain size is 5 μm or less except for those rarely exceeding 5 μm, and more preferably 5 μm or less for all crystal grain sizes.

アスペクト比:0.40未満
上記圧下率を80以上%にし、さらにフェライト体積率を30%以上に制御することでフェライト相のアスペクト比を0.40%未満にして、上記ピン止め効果を確実なものにすることができる。アスペクト比が0.40%未満であると、オーステナイト相の結晶粒粗大化の抑制効果が小さくなる。
Aspect ratio: less than 0.40 The above rolling reduction ratio is set to 80% or more, and the ferrite volume ratio is controlled to 30% or more, so that the aspect ratio of the ferrite phase is set to less than 0.40%, and the pinning effect is ensured. Can be a thing. When the aspect ratio is less than 0.40%, the effect of suppressing the coarsening of crystal grains in the austenite phase becomes small.

焼鈍温度
冷間圧延後には、靭性の改善を目的に焼鈍熱処理を行う。焼鈍温度の設定によりオーステナイト相:フェライト相の体積比を調整することができる。焼鈍条件はオーステナイト相の再結晶が生じ、結晶粒粗大化が起きない条件であれば良いが、例えば900〜1050℃の温度範囲とすることができる。
Annealing temperature After cold rolling, annealing heat treatment is performed for the purpose of improving toughness. The volume ratio of austenite phase: ferrite phase can be adjusted by setting the annealing temperature. The annealing conditions may be any conditions as long as recrystallization of the austenite phase occurs and crystal grain coarsening does not occur, but the temperature can be set to, for example, 900 to 1050 ° C.

焼鈍時昇温速度
焼鈍時には、昇温過程において0.3℃/秒まで焼鈍速度を遅くしても結晶粒成長を抑制することができる。これにより肉厚20mm〜150mmの大型部材においても微細で結晶粒径にバラツキの少ない材料を作製することができる。
Temperature raising rate during annealing During annealing, crystal grain growth can be suppressed even if the annealing rate is slowed down to 0.3 ° C./second in the temperature raising process. Thereby, even a large member having a wall thickness of 20 mm to 150 mm can be produced with a fine material with little variation in crystal grain size.

以上、説明したように本発明の2相ステンレス鋼によれば、オーステナイト相とフェライト相を含み、質量%で、C:0.10%以下、Si:2.0%以下、Mn:2.0%以下、Ni:7.0〜15.0%、Cr:16.0〜28.0%、Mo:2.0〜5.0%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、前記フェライト相の体積率が30〜60%であって、該フェライト相のアスペクト比が0.40未満前記オーステナイト相の結晶粒径が5μm以下であるので、オーステナイト相の微細結晶がバラツキなく得られており、高強度、高靭性の優れた機械的特性が得られる。 As described above, according to the duplex stainless steel of the present invention, the austenite phase and the ferrite phase are included, and in mass%, C: 0.10% or less, Si: 2.0% or less, Mn: 2.0 %: Ni: 7.0 to 15.0%, Cr: 16.0 to 28.0%, Mo: 2.0 to 5.0%, with the balance being Fe and inevitable impurities. The ferrite phase has a volume fraction of 30 to 60%, the ferrite phase has an aspect ratio of less than 0.40 , and the crystal grain size of the austenite phase is 5 μm or less. It is obtained without variation, and mechanical properties with high strength and high toughness can be obtained.

また、本発明の2相ステンレス鋼の製造方法によれば、圧下率80%以上で冷間圧延を行い、その後、焼鈍を行うことにより、レアメタルなどを用いることなく、また、過大な熱処理工程の負担を伴うことなく、フェライト相組織形態制御のみで、オーステナイト相の微細化が可能になる。したがって高強度、高靭性に優れた2相ステンレス鋼を安価かつ効率的に製造することが可能となる。   In addition, according to the method for producing a duplex stainless steel of the present invention, cold rolling is performed at a reduction rate of 80% or more, and then annealing is performed without using a rare metal or the like, and an excessive heat treatment step. The austenite phase can be refined only by controlling the ferrite phase structure without burden. Therefore, it is possible to produce a duplex stainless steel having high strength and high toughness at low cost and efficiently.

図1は、Fe−19Cr−12Niにおける90%冷間圧延後、1050℃、1300℃焼鈍材のEBSD観察結果を示す図である。FIG. 1 is a diagram showing the EBSD observation results of 1050 ° C. and 1300 ° C. annealed materials after 90% cold rolling in Fe-19Cr-12Ni. 図2は、Fe−22Cr−12Niにおける90%冷間圧延後、1050℃、1300℃焼鈍材のEBSD組織観察結果を示す図である。FIG. 2 is a diagram showing an EBSD structure observation result of 1050 ° C. and 1300 ° C. annealed materials after 90% cold rolling in Fe-22Cr-12Ni. 図3は、2相ステンレス鋼Fe−25Cr−7Niにおける90%冷間圧延後、1050℃焼鈍材のEBSD組織観察結果を示す図である。FIG. 3 is a diagram showing an EBSD structure observation result of a 1050 ° C. annealed material after 90% cold rolling in the duplex stainless steel Fe-25Cr-7Ni. 図4は、Fe−22Cr−12Niにおける70%冷間圧延後、1050℃、1300℃焼鈍材のEBSD組織観察結果を示す図である。FIG. 4 is a view showing an EBSD structure observation result of 1050 ° C. and 1300 ° C. annealed materials after 70% cold rolling in Fe-22Cr-12Ni. 図5は、図1〜4に示した材料のフェライト相体積率変化に伴うオーステナイト相結晶粒径を示す図である。FIG. 5 is a diagram showing the austenite phase grain size accompanying the change in the ferrite phase volume fraction of the materials shown in FIGS. 図6は、図1〜4に示した材料のフェライト相アスペクト比変化に伴うオーステナイト相結晶粒径を示す図である。FIG. 6 is a diagram showing the austenite phase grain size accompanying the change in the ferrite phase aspect ratio of the materials shown in FIGS. 図7は、比較鋼SUS316L及びFe−22Cr−12Ni材における950℃焼鈍時の昇温速度増加に伴うオーステナイト相結晶粒径を示す図である。FIG. 7 is a diagram showing the austenite phase grain size accompanying the increase in the heating rate during annealing at 950 ° C. in the comparative steel SUS316L and the Fe-22Cr-12Ni material. 図8は、比較鋼SUS316L及びFe−22Cr−12Ni材における昇温速度3.1℃/秒でのEBSD組織観察結果を示す図である。FIG. 8 is a diagram showing an EBSD structure observation result of the comparative steel SUS316L and the Fe-22Cr-12Ni material at a temperature rising rate of 3.1 ° C./second.

以下に、本発明の一実施形態を説明する。
好適には、質量%で、C:0.10%以下、Si:2.0%以下、Mn:2.0%以下、Ni:5.0〜15.0%、Cr:18.0〜28.0%、Mo:5%以下を含有し、さらに所望によりN:0.20%以下を含有し、残部がFeおよび不可避的不純物からなる組成に調整して鋼を溶製する。但し、本発明としては、2相ステンレス鋼の組織を得られるものであればよく、上記組成に限定をされるものではない。
また、上記鋼の溶製方法は、常法により行うことができ、その製造方法が特に限定されるものではない。
Hereinafter, an embodiment of the present invention will be described.
Preferably, in mass%, C: 0.10% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 5.0-15.0%, Cr: 18.0-28 0.0%, Mo: 5% or less, and further, if desired, N: 0.20% or less, and the balance is adjusted to a composition comprising Fe and inevitable impurities, and the steel is melted. However, the present invention is not limited to the above composition as long as the structure of the duplex stainless steel can be obtained.
Moreover, the melting method of the said steel can be performed by a conventional method, and the manufacturing method is not specifically limited.

上記2相ステンレス鋼は、まず熱間鍛造を行う。例えば1150℃〜1250℃に加熱して鍛造を行うことができ、鍛造工程における条件について本発明に特に限定されない。
熱間鍛造後には、溶体化処理を施すことができる。熱処理条件としては、例えば1050〜1200℃の加熱温度、1〜3時間の保持時間が例示される。
上記溶体化処理後には、圧縮率80%以上の冷間圧延を行う。一パスまたは複数パスで圧延を行うことにより、所定形状とする。この際のパス数は本発明としては特に限定されない。冷間圧延後の2相ステンレス鋼では、好適には、フェライト相のアスペクト比が0.40未満になっている。
The duplex stainless steel is first hot forged. For example, forging can be performed by heating to 1150 ° C. to 1250 ° C., and the conditions in the forging process are not particularly limited to the present invention.
After hot forging, solution treatment can be performed. Examples of the heat treatment conditions include a heating temperature of 1050 to 1200 ° C. and a holding time of 1 to 3 hours.
After the solution treatment, cold rolling with a compression rate of 80% or more is performed. A predetermined shape is obtained by rolling in one pass or multiple passes. The number of passes at this time is not particularly limited in the present invention. In the duplex stainless steel after cold rolling, the aspect ratio of the ferrite phase is preferably less than 0.40.

冷間圧延後には、焼鈍処理を行う。例えば、950℃〜1050℃の加熱温度、1分〜1時間の保持が例示される。該焼鈍においては、フェライト鋼のピン止め効果によってオーステナイト相の粗大化が阻止され、好適には、実質的に粒径5μm以下のオーステナイト相が得られる。
本発明の2相ステンレス鋼は、原子力装置用部材、クラッド鋼板及び配管用部材等の強度、延性、耐食性を必要とする素材に好適であり、特に冷間圧延後の焼鈍処理においても、結晶粒の粗大化を防止できる材料として好適である。
After cold rolling, an annealing process is performed. For example, a heating temperature of 950 ° C. to 1050 ° C. and holding for 1 minute to 1 hour are exemplified. In the annealing, the austenite phase is prevented from being coarsened by the pinning effect of the ferritic steel, and preferably an austenite phase having a particle size of substantially 5 μm or less is obtained.
The duplex stainless steel of the present invention is suitable for materials that require strength, ductility, corrosion resistance, etc., such as members for nuclear equipment, clad steel plates, and piping members, and particularly in the annealing treatment after cold rolling. It is suitable as a material that can prevent coarsening.

以下、本発明の実施例を詳細に説明する。
表1に示す組成(残部:不純物)を有する4つの合金を真空誘導溶解炉により溶製し、25kg鋼塊を得た。得られた鋼塊を、熱間鍛造(加熱温度1250℃)により厚さ30mm×120mm×Lの板材とした。各供試材について、1050℃×3hの溶体化処理を施し、20mm×20mm×Lの材料に切断した。これを圧下率70%及び90%で冷間圧延し、冷間圧延材とした。さらに、これらに950℃〜1300℃で焼鈍処理を実施し、各種フェライト相体積率を変化させた合金を作製した。
Hereinafter, embodiments of the present invention will be described in detail.
Four alloys having the composition shown in Table 1 (remainder: impurities) were melted in a vacuum induction melting furnace to obtain a 25 kg steel ingot. The obtained steel ingot was made into a plate material having a thickness of 30 mm × 120 mm × L by hot forging (heating temperature 1250 ° C.). Each sample material was subjected to a solution treatment of 1050 ° C. × 3 h and cut into a material of 20 mm × 20 mm × L. This was cold-rolled at a reduction ratio of 70% and 90% to obtain a cold-rolled material. Furthermore, these were subjected to annealing treatment at 950 ° C. to 1300 ° C., and alloys with various volume fractions of ferrite phases were produced.

図1、2にFe−19Cr−12Ni及びFe−22Cr−12Ni材に対して圧下率90%で冷間圧延後、1050℃〜1300℃で1時間保持した各供試材のEBSD(Electron Back Scattering diffraction pattern)観察結果を示す。焼鈍温度の上昇とともに、フェライト相の体積率は7.7〜64.4%まで変化するとともに、その際のオーステナイト相の結晶粒径は、3.86〜16.4μmまで変化した。なおこれらの結晶粒径は、いずれも双晶の除去と方位差角15度以上の大傾角粒界のみを取り出す画像解析を行うことにより導出した。観察の結果、特に、焼鈍温度1050℃のFe−22Cr−12Niでは、フェライト相組織形態がアスペクト比0.38と棒状組織となっていた。   FIGS. 1 and 2 show EBSD (Electron Back Scattering) of each test material held at 1050 ° C. to 1300 ° C. for 1 hour after cold rolling at a reduction rate of 90% with respect to Fe-19Cr-12Ni and Fe-22Cr-12Ni materials. diffraction pattern) Observation results are shown. As the annealing temperature increased, the volume fraction of the ferrite phase changed from 7.7 to 64.4%, and the crystal grain size of the austenite phase at that time changed from 3.86 to 16.4 μm. These crystal grain sizes were all derived by removing twins and performing image analysis to extract only large-angle grain boundaries with an orientation difference angle of 15 degrees or more. As a result of observation, in particular, in Fe-22Cr-12Ni having an annealing temperature of 1050 ° C., the ferrite phase structure was a rod-shaped structure with an aspect ratio of 0.38.

図3に、Fe−25Cr−7Ni2相ステンレス鋼の1050℃焼鈍後のEBSD観察結果を示す。該2相ステンレス鋼では、フェライト相体積率59.4%を有している。この際のフェライト相におけるアスペクト比は0.39と棒状組織形態を帯びていた。またその際のオーステナイト相の結晶粒径は、4.47μmとなっていた。   In FIG. 3, the EBSD observation result after 1050 degreeC annealing of Fe-25Cr-7Ni duplex stainless steel is shown. The duplex stainless steel has a ferrite phase volume fraction of 59.4%. At this time, the aspect ratio of the ferrite phase was 0.39, which was a rod-like structure. At that time, the crystal grain size of the austenite phase was 4.47 μm.

図4に、上記でオーステナイト相の微細化が確認されたFe−22Cr−12Ni材に対して圧下率を70%に変更して冷間圧延した後、1050℃〜1300℃で1時間保持した各供試材のEBSD観察結果を示す。焼鈍温度の上昇とともに、フェライト相の体積率は26.2〜52.6%まで変化するとともに、その際のオーステナイト相の結晶粒径は、6.22〜20.6μmまで変化した。特にオーステナイト相の結晶粒径6.22μmが得られた焼鈍温度1050℃の材料では、フェライト相組織形態がアスペクト比0.40となっていた。   In FIG. 4, each of the Fe-22Cr-12Ni materials whose refinement of the austenite phase was confirmed as described above was cold-rolled by changing the reduction ratio to 70%, and held at 1050 ° C. to 1300 ° C. for 1 hour. The EBSD observation result of a test material is shown. As the annealing temperature increased, the volume fraction of the ferrite phase changed from 26.2 to 52.6%, and the crystal grain size of the austenite phase at that time changed from 6.22 to 20.6 μm. In particular, in the material having an annealing temperature of 1050 ° C. in which the crystal grain size of the austenite phase is 6.22 μm, the ferrite phase structure has an aspect ratio of 0.40.

図5に図1〜4に示した材料(この図面ではCW+ANと称する)のオーステナイト相結晶粒径に及ぼすフェライト相体積率の影響をまとめたものを示す。例えば、フェライト相のアスペクト比が0.40未満の材料ではオーステナイト相結晶粒径5μm以下となっている。   FIG. 5 shows a summary of the effect of the ferrite phase volume ratio on the austenite phase grain size of the material shown in FIGS. 1 to 4 (referred to as CW + AN in this drawing). For example, a material having an ferrite phase aspect ratio of less than 0.40 has an austenite crystal grain size of 5 μm or less.

図6に図5に示した材料のオーステナイト相結晶粒径に及ぼすフェライト相のアスペクト比をまとめたものを示す。明らかに、フェライト相のアスペクト比増加に伴い、オーステナイト相結晶粒径は粗大化していることがわかる。特に、オーステナイト相結晶粒径5μm以下の材料においては、アスペクト比が0.40未満と他の材料に比べ、低い値を示していた。   FIG. 6 shows a summary of the aspect ratio of the ferrite phase on the austenite phase grain size of the material shown in FIG. Obviously, the austenite phase grain size becomes coarser as the aspect ratio of the ferrite phase increases. In particular, the material with an austenite phase crystal grain size of 5 μm or less had an aspect ratio of less than 0.40, which was lower than other materials.

図7に比較鋼SUS316L及びFe−22Cr−12Ni材における焼鈍温度950℃までの昇温速度変化に伴うオーステナイト相の結晶粒径変化を示し、図8にこれらを3.1℃/秒で昇温したときのEBSD組織観察結果を示す。各材料は、圧下率90%で冷間圧延をしたものである。
なお950℃まで昇温した後は、オーバーシュートを防止するため、1分間保持した。SUS316L鋼では昇温速度9.3℃/秒以上になると、結晶粒径が急激に増加した。一方でFe−22Cr−12Ni材では、0.3℃/秒の昇温速度においても、図2(b)で認められるような棒状組織が観察された。なおその際のオーステナイト相の結晶粒径は昇温速度によらず、1μm程度と非常に微細であることが明らかとなった。つまり棒状組織となったフェライト相はオーステナイト相の長時間組織安定性を維持する上で有効であることが明らかになった。
FIG. 7 shows the change in the crystal grain size of the austenite phase accompanying the change in the heating rate up to the annealing temperature of 950 ° C. in the comparative steel SUS316L and Fe-22Cr-12Ni, and FIG. The EBSD structure | tissue observation result when doing is shown. Each material is cold-rolled at a reduction rate of 90%.
In addition, after heating up to 950 degreeC, in order to prevent an overshoot, it hold | maintained for 1 minute. In SUS316L steel, the crystal grain size increased rapidly when the heating rate was 9.3 ° C./sec or more. On the other hand, in the Fe-22Cr-12Ni material, a rod-like structure as observed in FIG. 2B was observed even at a temperature rising rate of 0.3 ° C./second. The crystal grain size of the austenite phase at that time was found to be very fine, about 1 μm, regardless of the rate of temperature increase. In other words, it became clear that the ferrite phase in a rod-like structure is effective in maintaining the long-term structural stability of the austenite phase.

Claims (4)

質量%で、C:0.10%以下、Si:2.0%以下、Mn:2.0%以下、Ni:7.0〜15.0%、Cr:16.0〜28.0%、Mo:2.0〜5.0%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、オーステナイト相とフェライト相を含み、該フェライト相の体積率が30〜60%であって、該フェライト相のアスペクト比が0.40未満前記オーステナイト相の結晶粒径が5μm以下であることを特徴とする2相ステンレス鋼。 In mass%, C: 0.10% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 7.0-15.0%, Cr: 16.0-28.0%, Mo: contains 2.0 to 5.0%, the balance is composed of Fe and inevitable impurities , includes an austenite phase and a ferrite phase, the volume fraction of the ferrite phase is 30 to 60%, , the aspect ratio of the ferrite phase is less than 0.40, two-phase stainless steel, wherein the crystal grain size of the austenite phase is 5μm or less. 前記組成に、質量%で、さらにNを0.20%以下含有することを特徴とする請求項記載の2相ステンレス鋼。 The composition,% by mass, still two-phase stainless steel according to claim 1, characterized in that it comprises 0.20% hereinafter containing a N. 肉厚が20〜150mmであることを特徴とする請求項1または2に記載の2相ステンレス鋼。 The duplex stainless steel according to claim 1 or 2, wherein the thickness is 20 to 150 mm . 請求項1〜3のいずれかに記載の組成を有するステンレス鋼に、圧下率80%以上で冷間圧延を行ってフェライト相のアスペクト比を0.40未満とし、その後、0.3℃/秒以上の昇温速度で加熱してオーステナイト相の再結晶が生じ、かつ該相の結晶粒成長が生じない900〜1050℃の温度で焼鈍を行ってオーステナイト相の結晶粒径を5μm以下にすることを特徴とする2相ステンレス鋼の製造方法。The stainless steel having the composition according to any one of claims 1 to 3 is cold-rolled at a reduction rate of 80% or more so that the aspect ratio of the ferrite phase is less than 0.40, and then 0.3 ° C / second. Austenite phase is recrystallized by heating at the above temperature rising rate, and annealing is performed at a temperature of 900 to 1050 ° C. at which the crystal grain growth of the phase does not occur to reduce the crystal grain size of the austenite phase to 5 μm or less. A process for producing a duplex stainless steel characterized by
JP2009025934A 2009-02-06 2009-02-06 Duplex stainless steel and method for producing the same Expired - Fee Related JP5268105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025934A JP5268105B2 (en) 2009-02-06 2009-02-06 Duplex stainless steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025934A JP5268105B2 (en) 2009-02-06 2009-02-06 Duplex stainless steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010180459A JP2010180459A (en) 2010-08-19
JP5268105B2 true JP5268105B2 (en) 2013-08-21

Family

ID=42762194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025934A Expired - Fee Related JP5268105B2 (en) 2009-02-06 2009-02-06 Duplex stainless steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5268105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778958A4 (en) * 2018-03-30 2021-02-17 JFE Steel Corporation Two-phase stainless-clad steel sheet and method for manufacturing same
EP3778965A4 (en) * 2018-03-30 2021-02-17 JFE Steel Corporation Two-phase stainless-clad steel sheet and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623761B2 (en) * 2016-01-04 2019-12-25 日本製鉄株式会社 Manufacturing method of metastable austenitic stainless steel
KR101903181B1 (en) * 2016-12-23 2018-10-01 주식회사 포스코 Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
JP6477735B2 (en) * 2017-01-26 2019-03-06 Jfeスチール株式会社 Duplex stainless steel clad steel and manufacturing method thereof
KR20190072280A (en) * 2017-12-15 2019-06-25 주식회사 포스코 Duplex stainless steel having excellent hole expansion and method of manufacturing the same
CN108977736B (en) * 2018-07-03 2020-03-20 中国科学院金属研究所 Micron-scale stainless steel membrane with mark number of HR-1 and soft state performance regulating and controlling method thereof
JP7414616B2 (en) 2020-03-30 2024-01-16 日鉄ステンレス株式会社 Ferritic/austenitic duplex stainless steel sheets for building materials
CN115948690A (en) * 2022-12-26 2023-04-11 浦项(张家港)不锈钢股份有限公司 Cold-rolled stainless steel strip, precise cold-rolled stainless steel strip and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614416B2 (en) * 1994-07-04 1997-05-28 日本冶金工業株式会社 Method for manufacturing superplastic duplex stainless steel sheet
JP3370441B2 (en) * 1994-07-25 2003-01-27 日本冶金工業株式会社 Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JP5337473B2 (en) * 2008-02-05 2013-11-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778958A4 (en) * 2018-03-30 2021-02-17 JFE Steel Corporation Two-phase stainless-clad steel sheet and method for manufacturing same
EP3778965A4 (en) * 2018-03-30 2021-02-17 JFE Steel Corporation Two-phase stainless-clad steel sheet and method for manufacturing same
US11692252B2 (en) 2018-03-30 2023-07-04 Jfe Steel Corporation Duplex stainless clad steel plate and method of producing same
US11891675B2 (en) 2018-03-30 2024-02-06 Jfe Steel Corporation Duplex stainless clad steel plate and method of producing same

Also Published As

Publication number Publication date
JP2010180459A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5268105B2 (en) Duplex stainless steel and method for producing the same
JP6588440B2 (en) High strength low specific gravity steel plate and method for producing the same
CN108368573B (en) High-strength stainless steel sheet having excellent fatigue characteristics and method for producing same
JP6018453B2 (en) High strength thick steel plate with excellent cryogenic toughness
US10260137B2 (en) Method for producing Ni-based superalloy material
JP2007126715A (en) HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2009138255A (en) High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
EP3208354B1 (en) Ni-based superalloy for hot forging
JP2009084637A (en) High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability
JP6590117B1 (en) High Mn steel and manufacturing method thereof
JP4408386B2 (en) High-strength steel with fine grain structure
JP2015061932A (en) Maraging steel having excellent fatigue characteristic
JP2020509175A (en) Low alloy steel sheet with excellent strength and softness
JP2008261023A (en) High-strength low-specific gravity steel sheet having excellent ductility and workability, and its production method
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
EP3208355B1 (en) Ni-based superalloy for hot forging
JP2019535889A (en) High strength high manganese steel with excellent low temperature toughness and method for producing the same
JP2016180143A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP2010270377A (en) High-strength low-specific-gravity steel sheet superior in ductility, workability and toughness, and method for manufacturing the same
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2013072118A (en) Steel excellent in high-temperature strength and method for production thereof
JP2019011515A (en) Maraging steel excellent in fatigue characteristic
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees