JP2005095911A - Method for continuously casting spheroidal graphite cast iron - Google Patents

Method for continuously casting spheroidal graphite cast iron Download PDF

Info

Publication number
JP2005095911A
JP2005095911A JP2003330653A JP2003330653A JP2005095911A JP 2005095911 A JP2005095911 A JP 2005095911A JP 2003330653 A JP2003330653 A JP 2003330653A JP 2003330653 A JP2003330653 A JP 2003330653A JP 2005095911 A JP2005095911 A JP 2005095911A
Authority
JP
Japan
Prior art keywords
slab
cast iron
cast
cooling
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330653A
Other languages
Japanese (ja)
Inventor
Toru Niinuma
透 新沼
Yoshikatsu Furuno
好克 古野
Yutaka Tsuchida
裕 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2003330653A priority Critical patent/JP2005095911A/en
Publication of JP2005095911A publication Critical patent/JP2005095911A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the increase of inventories in respective kinds and storing cost by continuously casting the base materials having the same component composition and changing the cooling conditions thereafter to classify into various material qualities. <P>SOLUTION: A method for continuously casting a spheroidal cast iron is peculiarly provided with the following processes: (a) molten metal having the component composition (mass%) of 3.1-3.7% C, 2.5-3.2% Si, 0.1-0.6%Mn, 0.02-0.05% Mg, 0.1-1.0% Cu and the balance with inevitable impurities, is introduced into a continuous casting mold to cast a cast billet; (b) successively, the cast billet drawn out from the mold, is cooled, and this surface temperature is made to be 710-730°C; and (c) this cast billet is cooled by adjusting so that the average cooling rate for cooling to 600°C, becomes a specific cooling rate in the interval of 0.05-1.5°C/s. (d) Thus, the cast billet provided with a specific strength in the range of 400-750 MPa is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は球状黒鉛鋳鉄の製造方法に関する。特に、引張強さが400〜750MPaの球状黒鉛鋳鉄連続鋳造棒の製造方法に関する。   The present invention relates to a method for producing spheroidal graphite cast iron. In particular, the present invention relates to a method for producing a spheroidal graphite cast iron continuous cast bar having a tensile strength of 400 to 750 MPa.

近年、鋳鉄の連続鋳造棒は種々の産業分野で使用に供され、例えば、素材の寸法精度が高い等の特徴があることから、NC旋盤加工や自動切断加工のような連続化された加工工程に最も適した鋳鉄素材としてその価値は益々高まっている。   In recent years, continuous cast bars of cast iron have been used in various industrial fields. For example, due to the features such as high dimensional accuracy of materials, continuous machining processes such as NC lathe processing and automatic cutting processing. As the most suitable cast iron material, its value is increasing.

球状黒鉛鋳鉄は、鋳鉄中の黒鉛を球状化することにより、普通鋳鉄に較べて引張り強度、伸び等の機械的性質を向上させている。球状黒鉛鋳鉄の強度を高めるために、銅、マンガンを適量添加する方法が一般的に用いられている。また、特開平8―188812号公報には、球状黒鉛鋳鉄の強度を高めるために、アンチモンを添加する方法が記載されている。
特開平8−188812号公報
Spheroidal graphite cast iron improves mechanical properties such as tensile strength and elongation as compared with ordinary cast iron by spheroidizing graphite in cast iron. In order to increase the strength of spheroidal graphite cast iron, a method of adding appropriate amounts of copper and manganese is generally used. JP-A-8-188812 discloses a method of adding antimony to increase the strength of spheroidal graphite cast iron.
JP-A-8-188812

前記先行技術の銅、マンガンを添加して引張強さを高める方法では、引張強さに応じて銅、マンガンの添加量を変更する必要がある。そのため、引張強さ、成分組成に仕分けした種別毎の製品在庫が必要となるので在庫量が増えることになり、そのため製品保管費も高くなる。また、前記アンチモンを添加する方法においても、同様に在庫種別の増加や保管費用を増加させることになる。   In the prior art method of adding copper and manganese to increase the tensile strength, it is necessary to change the amount of copper and manganese added according to the tensile strength. For this reason, product inventory for each type classified into tensile strength and component composition is required, so that the amount of inventory increases, and thus product storage costs also increase. In addition, in the method of adding antimony, the stock type and storage costs are increased in the same manner.

さらに、球状黒鉛鋳鉄は、引張り強度が400MPaから750MPaの範囲でも、例えば、JIS G5502(球状黒鉛鋳造品)の規格においては、FCD400、FCD450、FCD500、FCD600、FCD700等数多くの品種がある。そのため、球状黒鉛鋳鉄の全材質、全サイズの製品を保有し管理するとなると、在庫費用増や管理費用増を招くことになる。   Furthermore, spheroidal graphite cast iron has many varieties such as FCD400, FCD450, FCD500, FCD600, and FCD700 in the standard of JIS G5502 (spherical graphite cast product) even when the tensile strength is in the range of 400 MPa to 750 MPa. For this reason, possessing and managing products of all materials and all sizes of spheroidal graphite cast iron will increase inventory costs and management costs.

従って、本発明は上記課題を解決するものであり、同一成分組成の母材を連続鋳造し、その後の冷却条件を変えることにより種々材質の鋳造品に造り分け、在庫種別増や保管費増を防ぐことを目的とするものである。   Accordingly, the present invention solves the above-mentioned problems, and continuously casts a base material having the same component composition, and then separates it into castings of various materials by changing the cooling conditions, thereby increasing the inventory type and the storage cost. The purpose is to prevent.

前記課題を解決するために、本発明の態様は以下のようである。
本発明の第1の態様は、下記の工程を備えたことを特徴とする球状黒鉛鋳鉄の連続鋳造方法である。
(a)成分組成(成分組成はmass%である)が、C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0%を含有し、残部がFe及び不可避不純物である溶湯を連続鋳造鋳型に導いて鋳片を鋳造し、
(b)ついで、前記鋳型から引き抜かれた鋳片を冷却させてその表面温度を710〜730℃とし、
(c)ついで、前記鋳片を600℃まで冷却する平均冷却速度を0.05〜1.5℃/sの間の特定の冷却速度となるように調整して該鋳片を冷却し、
(d)引張強さが、400〜750MPa範囲の特定の引張強さを備えた鋳片を得る。
In order to solve the above-mentioned problems, aspects of the present invention are as follows.
The first aspect of the present invention is a continuous casting method of spheroidal graphite cast iron characterized by comprising the following steps.
(A) Component composition (component composition is mass%) is C: 3.1-3.7%, Si: 2.5-3.2%, Mn: 0.1-0.6%, Mg : 0.02 to 0.05%, Cu: 0.1 to 1.0%, with the balance being Fe and inevitable impurities, the molten metal is led to a continuous casting mold to cast a slab,
(B) Next, the slab pulled out from the mold is cooled to a surface temperature of 710 to 730 ° C.,
(C) Next, an average cooling rate for cooling the slab to 600 ° C. is adjusted to a specific cooling rate between 0.05 to 1.5 ° C./s to cool the slab,
(D) A slab having a specific tensile strength in the range of 400 to 750 MPa is obtained.

本発明の第2の態様は、前記冷却は、スリットを設けた中空管を鋳片の周りにリング状に配設した1基以上の空気噴射装置により空気を噴射させる方法であることを特徴とする球状黒鉛鋳鉄の連続鋳造方法である。   According to a second aspect of the present invention, the cooling is a method in which air is injected by one or more air injection devices in which a hollow tube provided with a slit is arranged in a ring shape around a slab. This is a continuous casting method of spheroidal graphite cast iron.

本発明の第3の態様は、前記鋳片を600℃まで冷却する際に、該冷却を保温カバー付設ロール上を移動させて行うことを特徴とする球状黒鉛鋳鉄の連続鋳造方法である。   A third aspect of the present invention is a continuous casting method of spheroidal graphite cast iron, characterized in that when the slab is cooled to 600 ° C., the cooling is performed on a roll provided with a heat insulating cover.

本発明の第4の態様は、前記鋳片を600℃まで冷却する平均冷却速度を0.05〜1.5℃/sの間の所定の冷却速度に調整し、黒鉛、パーライト及びフェライトからなる金属組織の基地面積比を制御し、前記成分組成の範囲内の溶湯を用いて400〜750MPaの範囲において所定の引張強さを備えた鋳片を同一ロットにおいて鋳造することを特徴とする球状黒鉛鋳鉄の連続鋳造方法である。   In the fourth aspect of the present invention, an average cooling rate for cooling the slab to 600 ° C. is adjusted to a predetermined cooling rate between 0.05 to 1.5 ° C./s, and the graphite pearlite and ferrite are used. Spheroidal graphite characterized by controlling a base area ratio of a metal structure and casting a slab having a predetermined tensile strength in a range of 400 to 750 MPa in a same lot using a molten metal within the range of the component composition. This is a continuous casting method of cast iron.

本発明では、C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0%を含有し残部がFe及び不可避不純物である連続鋳造棒を空気冷却して鋳造棒の表面温度を710〜730℃に保持後、600℃までの平均冷却速度を0.5〜1.5℃/sの間に調整して冷却することにより、400〜750MPaの引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を製造することができ、連続鋳造棒の冷却条件を変えることにより材質の造り分けが可能である。   In the present invention, C: 3.1-3.7%, Si: 2.5-3.2%, Mn: 0.1-0.6%, Mg: 0.02-0.05%, Cu: A continuous cast bar containing 0.1 to 1.0% and the balance being Fe and inevitable impurities is air-cooled to maintain the surface temperature of the cast bar at 710 to 730 ° C., and then the average cooling rate up to 600 ° C. is 0. By adjusting and cooling between 5 and 1.5 ° C./s, it is possible to produce a spheroidal graphite cast iron continuous cast bar having a tensile strength of 400 to 750 MPa. It is possible to create different materials by changing them.

以下に本発明の実施形態について説明する。本実施形態の球状黒鉛鋳鉄連続鋳造棒の製造方法は、成分組成(成分組成はmass%である)が、C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0%を含有し、残部がFe及び不可避不純物である溶湯を連続鋳造鋳型で鋳片を鋳造し、ついで、前記鋳型から引き抜かれた鋳片を冷却させてその表面温度を710〜730℃とし、ついで、前記鋳片の600℃までの平均冷却速度を0.05〜1.5℃/sの間の特定の冷却速度に調整して該鋳片を冷却し、引張強さが、400〜750MPa範囲の特定の引張強さを備えた鋳片を得ることを特徴とする。   Embodiments of the present invention will be described below. The manufacturing method of the spheroidal graphite cast iron continuous cast bar of the present embodiment has a component composition (component composition is mass%): C: 3.1-3.7%, Si: 2.5-3.2%, Mn: 0.1 to 0.6%, Mg: 0.02 to 0.05%, Cu: 0.1 to 1.0%, with the balance being Fe and unavoidable impurities in a continuous casting mold The slab is cast, then the slab drawn from the mold is cooled to a surface temperature of 710 to 730 ° C., and then the average cooling rate of the slab to 600 ° C. is 0.05 to 1. The slab is cooled to a specific cooling rate of 5 ° C./s to obtain a slab having a specific tensile strength in the range of 400 to 750 MPa.

本実施形態では、球状黒鉛鋳鉄の成分組成(成分組成は、以下mass%である。)として、C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0%を含有し、残部がFeおよび不可避不純物である。   In the present embodiment, the component composition of spheroidal graphite cast iron (the component composition is mass% hereinafter) is C: 3.1 to 3.7%, Si: 2.5 to 3.2%, Mn: 0 0.1 to 0.6%, Mg: 0.02 to 0.05%, Cu: 0.1 to 1.0%, with the balance being Fe and inevitable impurities.

以下に、本発明における化学成分等の限定理由について説明する。
C:3.1〜3.7% Cは、鋳鉄で黒鉛を晶出させるための重要元素である。ただし、含有量が3.1%未満ではチルが発生しやすくなり、3.7%を超えると球状化処理した時、ドロスが発生しやすくなる。従って、添加量は3.1〜3.7%の範囲とする。
Below, the reason for limitation of the chemical component etc. in this invention is demonstrated.
C: 3.1-3.7% C is an important element for crystallizing graphite with cast iron. However, if the content is less than 3.1%, chill is likely to occur, and if it exceeds 3.7%, dross is likely to occur when spheroidizing treatment is performed. Therefore, the addition amount is in the range of 3.1 to 3.7%.

Si:2.5〜3.2%。Siは、黒鉛化促進元素であると共に、鋳造性を改善する効果がある。含有量が2.5%未満では注湯時の溶湯の流動性が悪くなる。3.2%を超えると靭性が低下する。従って、Siの添加量は2.5〜3.2%の範囲とする。   Si: 2.5-3.2%. Si is an element for promoting graphitization and has an effect of improving castability. If the content is less than 2.5%, the fluidity of the molten metal during pouring deteriorates. If it exceeds 3.2%, the toughness decreases. Therefore, the amount of Si added is in the range of 2.5 to 3.2%.

Mn:0.1〜0.6% Mnは、脱酸、脱硫作用を備えており、また、パーライト化を促進する元素である。含有量が0.1%未満では熱処理効果が期待できず、0.6%を超えると靭性が劣化する。従って、Mnの添加量は0.1〜0.6%の範囲とする。   Mn: 0.1 to 0.6% Mn has an effect of deoxidation and desulfurization, and is an element that promotes pearlization. If the content is less than 0.1%, the heat treatment effect cannot be expected, and if it exceeds 0.6%, the toughness deteriorates. Therefore, the amount of Mn added is in the range of 0.1 to 0.6%.

Mg:0.02〜0.05% Mgは黒鉛を球状化させる作用を備える。含有量が0.02%未満では黒鉛を球状化する効果が少ない。含有量が0.05%を超えてもその効果が少なく、チル発生の要因となる。従って、Mgの添加量は0.02〜0.05%の範囲とする。   Mg: 0.02 to 0.05% Mg has a function of spheroidizing graphite. If the content is less than 0.02%, the effect of spheroidizing graphite is small. Even if the content exceeds 0.05%, the effect is small, which causes generation of chill. Therefore, the amount of Mg added is in the range of 0.02 to 0.05%.

Cu:0.1〜1.0% Cuは、パーライト形成元素であるため、基地強化促進効果のために必要である。0.1%未満ではその効果がなく、1.0%を超えると靭性が劣化する。従って、添加量は0.1〜1.0%の範囲とする。   Cu: 0.1 to 1.0% Since Cu is a pearlite forming element, it is necessary for the effect of promoting base strengthening. If it is less than 0.1%, the effect is not obtained, and if it exceeds 1.0%, the toughness deteriorates. Therefore, the addition amount is in the range of 0.1 to 1.0%.

なお、鋳造棒を製造する際には、例えば、円柱であれば直径の大小、のようにサイズや形状に応じて組織を制御するために成分を調整する必要がある。例えば、Cについては、鋳片の大きさによって添加量を変える必要があり、直径が300mmでは添加量を3.3%程度に低くし、直径が40mmでは添加量を3.6%程度に高めとする必要がある。Cuの場合には、鋳片が300mm以上では、組織制御のために0.4〜0.8%添加することが望ましい。   When manufacturing a cast rod, it is necessary to adjust the components in order to control the structure according to the size and shape, for example, if the cylinder is a cylinder, the diameter is large or small. For example, for C, it is necessary to change the addition amount depending on the size of the slab, and when the diameter is 300 mm, the addition amount is reduced to about 3.3%, and when the diameter is 40 mm, the addition amount is increased to about 3.6%. It is necessary to. In the case of Cu, when the slab is 300 mm or more, it is desirable to add 0.4 to 0.8% for structure control.

本実施形態の球状黒鉛鋳鉄連続鋳造棒の製造方法は、連続鋳造された鋳造棒を噴射空気を用いて冷却させて鋳造棒の表面温度を710〜730℃とし、ついで、600℃までの平均冷却速度を0.05〜1.5℃/sの間に調整して冷却し400〜750MPaの引張強さを備えた鋳造棒を得ることを特徴とする。   In the production method of the spheroidal graphite cast iron continuous cast bar of this embodiment, the continuously cast cast bar is cooled using jet air so that the surface temperature of the cast bar is set to 710 to 730 ° C, and then the average cooling to 600 ° C is performed. It is characterized by adjusting the speed between 0.05 to 1.5 ° C./s and cooling to obtain a cast bar having a tensile strength of 400 to 750 MPa.

本発明者等は球状黒鉛鋳鉄を連続鋳造法により製造するにあたり、本発明に係る成分組成を備えた鋳造品について、球状黒鉛周辺の基地の金属組織と冷却速度との関係を調べた。   When producing the spheroidal graphite cast iron by the continuous casting method, the present inventors investigated the relationship between the metal structure of the base around the spheroidal graphite and the cooling rate for the cast product having the component composition according to the present invention.

図4には連続冷却変態曲線(CCT曲線)を示した。図4中のFはフェライト、Pはパーライト、Mはマルテンサイトをそれぞれ示す。図4から、パーライト変態域は720〜600℃の範囲に存在していること、また冷却速度に応じてフェライトとパーライトの割合が変わることが分かる。即ち、冷却速度(CR)が0.1℃/sよりも小さいとフェライトが70%以上(パーライトが30%以下)を占め、冷却速度が0.1<CR<5ではフェライトとパーライトとが混在(パーライト30〜90%)し、CR>5ではマルテンサイト組織になる。   FIG. 4 shows a continuous cooling transformation curve (CCT curve). In FIG. 4, F represents ferrite, P represents pearlite, and M represents martensite. FIG. 4 shows that the pearlite transformation region exists in the range of 720 to 600 ° C., and that the ratio of ferrite and pearlite varies depending on the cooling rate. That is, when the cooling rate (CR) is less than 0.1 ° C./s, ferrite accounts for 70% or more (perlite is 30% or less), and when the cooling rate is 0.1 <CR <5, ferrite and pearlite are mixed. (Perlite 30-90%) and CR> 5 results in a martensite structure.

鋳造中の鋳造棒内部の温度については、コンピュータによる凝固解析を行って温度を推定した。表面温度が720℃のとき中心部の温度は、例えば、直径50mmの鋳造棒では735℃、直径100mmの鋳造棒では750℃、直径300mmの鋳造棒では800℃となることが分かった。   As for the temperature inside the casting rod during casting, the temperature was estimated by performing solidification analysis by a computer. When the surface temperature is 720 ° C., the temperature at the center is, for example, 735 ° C. for a 50 mm diameter casting rod, 750 ° C. for a 100 mm diameter casting rod, and 800 ° C. for a 300 mm diameter casting rod.

図1を用いて本実施形態について説明する。タンディッシュ15内に保持された球状黒鉛鋳鉄溶湯13は、タンディッシュ15の開口部を通して水冷鋳型17に導入され、水冷鋳型17を通過して固められた鋳造棒11は、ピンチロール29を用いて図の右方向に引き抜かれる。次に、鋳造棒11はサポートロール27上を移動しながら、一基以上複数基設けられた空気噴射装置を通過する際に噴射空気で冷却される。   This embodiment will be described with reference to FIG. The spheroidal graphite cast iron melt 13 held in the tundish 15 is introduced into the water-cooled mold 17 through the opening of the tundish 15, and the cast bar 11 solidified by passing through the water-cooled mold 17 is pinched roll 29. It is pulled out to the right in the figure. Next, the casting rod 11 is cooled by the blast air while moving on the support roll 27 while passing through the air jetting device provided with one or more.

例えば、図1においては、第1の空気噴射装置19、第2の空気噴射装置21、第3の空気噴射装置23と空気噴射装置が3基設けられている。第1〜第3の何れか1基又は2基以上を用いて空気噴射する。すると、鋳造棒11は冷却されて表面温度が710〜730℃に制御される。   For example, in FIG. 1, the first air injection device 19, the second air injection device 21, the third air injection device 23, and three air injection devices are provided. Air injection is performed using any one or more of the first to third units. Then, the casting rod 11 is cooled and the surface temperature is controlled to 710 to 730 ° C.

本実施形態では、空気噴射装置を通過後の鋳造棒11の表面温度は710〜730℃に制御する。710℃を下回ると変態開始温度を下回り、730℃を超えると大径鋳片では中心部の温度が800℃を越え、組織制御に不可欠な所望の冷却速度を得るのが困難だからである。   In the present embodiment, the surface temperature of the casting rod 11 after passing through the air injection device is controlled to 710 to 730 ° C. This is because if the temperature is lower than 710 ° C., the temperature is lower than the transformation start temperature, and if it exceeds 730 ° C., the center diameter of the large-diameter slab exceeds 800 ° C., and it is difficult to obtain a desired cooling rate essential for structure control.

ついで、鋳造棒11は、600℃までの平均冷却速度を0.05〜1.5℃/sに調整されて冷却される。所定の冷却速度に調製する場合には、前記表面温度を710〜730℃に制御する際に用いる、例えば、第1〜第3の何れか1基又は2基以上を用いて空気噴射して冷却することが望ましい。あるいは、水をミスト状に噴射して冷却しても良い。要は、600℃までの平均冷却速度を0.05〜1.5℃/sに調整できれば良い。なお、平均冷却速度とは、所定温度から所定温度までの温度差を、冷却するに要した時間で割って求めた値である。   Next, the casting rod 11 is cooled by adjusting the average cooling rate up to 600 ° C. to 0.05 to 1.5 ° C./s. When adjusting to a predetermined cooling rate, it is used when controlling the surface temperature to 710 to 730 ° C., for example, using one or more of the first to third units to cool by air injection It is desirable to do. Or you may cool by injecting water in mist form. In short, the average cooling rate up to 600 ° C. may be adjusted to 0.05 to 1.5 ° C./s. The average cooling rate is a value obtained by dividing the temperature difference from the predetermined temperature to the predetermined temperature by the time required for cooling.

本実施形態の球状黒鉛鋳鉄連続鋳造棒の製造方法では、空気を噴射するためのスリットを設けた中空管をリング状に配設した空気噴射装置を1基以上複数基設け、前記空気噴射装置を通過させてスリットから空気を噴射させて冷却する際に、噴射空気量を調整して鋳片表面を冷却したり、鋳片の平均冷却速度を制御することを特徴とする。   In the manufacturing method of the spheroidal graphite cast iron continuous casting rod of the present embodiment, one or more air injection devices in which a hollow tube provided with a slit for injecting air is arranged in a ring shape are provided, and the air injection device When cooling by injecting air from the slit and cooling the slab surface by adjusting the amount of blast air, the average cooling rate of the slab is controlled.

本実施形態の空気噴射装置について、図2(a)、図2(b)を用いて説明する。空気噴射装置41は中空円筒状の管を成形してリング状に加工したものである。図2(a)は、リング状に設けられた空気噴射装置41を通過する円柱状の鋳造棒11に対して、スリットを通して噴射空気43を吹付けている状態を示したものである。噴射空気43はリング状管の内側円周周囲に設けられたスリットから均一な圧力、均一な流量で吹き出されるので、中心に位置する鋳造棒11の表面を均一に冷却することができる。   The air injection device of this embodiment will be described with reference to FIGS. 2 (a) and 2 (b). The air injection device 41 is formed by forming a hollow cylindrical tube into a ring shape. FIG. 2A shows a state in which the blast air 43 is blown through the slit to the cylindrical casting rod 11 passing through the air jet device 41 provided in a ring shape. Since the blast air 43 is blown out from a slit provided around the inner circumference of the ring-shaped tube at a uniform pressure and a uniform flow rate, the surface of the casting rod 11 located at the center can be cooled uniformly.

図2(b)には空気噴射装置41の中空円筒状管の断面を示した。空気噴射装置41には、リング状管の内側に円周の全周囲にわたりスリット45が設けられている。また、リング状管の中空部47に冷却用の空気を受け入れるための図示していないパイプが接続され、やはり図示されていない流量計や圧力計や調節弁等が備えられる。   FIG. 2B shows a cross section of the hollow cylindrical tube of the air injection device 41. In the air injection device 41, a slit 45 is provided on the inner side of the ring-shaped tube over the entire circumference. Further, a pipe (not shown) for receiving cooling air is connected to the hollow portion 47 of the ring-shaped tube, and a flow meter, a pressure gauge, a control valve, etc., not shown, are also provided.

なお、鋳造棒の表面温度を制御するためには、噴射空気の調整は、管の形状や寸法、スリットの形状や寸法、噴射空気の圧力や流量等を目的とする鋳造棒の大きさ、形状等により最適なものを選定すれば良い。また、空気噴射装置については、複数基設けると精密な制御が可能となる。また、複数設ける場合には、空気噴射装置を設ける間隔についても上記と同様最適な条件を選定すれば良い。   In order to control the surface temperature of the casting rod, adjustment of the blast air is performed by adjusting the shape and size of the tube, the shape and size of the slit, the pressure and flow rate of the blast air, and the size and shape of the casting rod. What is necessary is just to select the most suitable one. Further, when a plurality of air injection devices are provided, precise control becomes possible. Moreover, when providing two or more, what is necessary is just to select the optimal conditions similarly to the above also about the space | interval which provides an air injection apparatus.

本実施形態の球状黒鉛鋳鉄連続鋳造棒の製造方法は、600℃までの平均冷却速度を0.05〜1.5℃/sの間の所定の冷却速度に調整し、黒鉛、パーライト及びフェライトからなる金属組織の基地面積比を制御し、前記成分組成の範囲内の溶湯を用いて400〜750MPaの範囲において所定の引張強さを備えた鋳片を同一ロットにおいて鋳造することを特徴とする。   The manufacturing method of the spheroidal graphite cast iron continuous cast bar of this embodiment adjusts the average cooling rate up to 600 ° C. to a predetermined cooling rate between 0.05 and 1.5 ° C./s, and uses graphite, pearlite and ferrite. The base area ratio of the metal structure is controlled, and cast slabs having a predetermined tensile strength in the range of 400 to 750 MPa are cast in the same lot using a molten metal within the range of the component composition.

なお、同一ロットとは、溶製した所定量の鋳鉄溶湯をタンディッシュに繰り返し補給して連続的に鋳片を得る連続鋳造法において、鋳造開始から終了までの1サイクル操業で製造した鋳片を表す。   The same lot refers to a slab manufactured in one cycle operation from the start to the end of casting in a continuous casting method in which a predetermined amount of molten cast iron is repeatedly supplied to the tundish to obtain a continuous slab. Represent.

(実施形態1)
以下に冷却速度を変化させた場合の金属組織と引張強さについて個別に説明する。
実施の形態1は、空気噴射装置による冷却後の鋳造棒の600℃までの冷却速度を0.5〜1.5℃/sとして、金属組織の基地が面積比で90%以上のパーライトと残部がフェライトの共存組織であり、かつ、700MPa以上の引張強さを備えた鋳造棒を得ることを特徴とする。
(Embodiment 1)
The metal structure and tensile strength when the cooling rate is changed will be individually described below.
In the first embodiment, the cooling rate to 600 ° C. of the cast rod after cooling by the air injection device is set to 0.5 to 1.5 ° C./s, and the base of the metal structure is 90% or more of the pearlite and the remaining part in the area ratio Is a coexisting structure of ferrite, and is characterized by obtaining a cast bar having a tensile strength of 700 MPa or more.

すなわち、鋳造棒の表面温度が710〜730℃の範囲となるように空気冷却する。その後、空気圧力・風量を調整して600℃までの平均冷却速度を0.5〜1.5℃/sに制御して鋳造棒を強制冷却する。これにより、金属組織の基地が面積比で90%以上のパーライトと残部がフェライトの共存組織で、かつ700MPa以上の引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を得ることができる。   That is, air cooling is performed so that the surface temperature of the casting rod is in the range of 710 to 730 ° C. Then, the casting rod is forcibly cooled by adjusting the air pressure and the air volume and controlling the average cooling rate up to 600 ° C. to 0.5 to 1.5 ° C./s. As a result, it is possible to obtain a spheroidal graphite cast iron continuous cast bar having a metal structure base of coexisting pearlite with an area ratio of 90% or more and the balance of ferrite with a tensile strength of 700 MPa or more.

なお、金属組織の基地については、例えば鋳物便覧(社団法人 日本鋳物協会編、昭和60年1月20日、丸善書店 発行)により、以下の式を用いてパーライト面積比P(%)を求めることができる。
P(%)=A÷(A+A+A)×100
ここで、A:パーライト占有面積
:黒鉛の占有面積
:フェライトの占有面積
For metal structure bases, find the perlite area ratio P (%) using the following formula, for example, according to the casting manual (edited by the Japan Foundry Association, published by Maruzen Shoten on January 20, 1985). Can do.
P (%) = A P ÷ (A G + A F + A P ) × 100
Where A P : Perlite occupation area
A G : Occupied area of graphite
A F : Occupied area of ferrite

(実施の形態2)
実施の形態2は、空気噴射装置による冷却後の鋳造棒の600℃までの冷却速度を0.3〜1.0℃/sとして、金属組織の基地が面積比で80%のパーライトと残部がフェライトの共存組織であり、かつ、600MPa以上の引張強さを備えた鋳造棒を得ることを特徴とする。
(Embodiment 2)
In the second embodiment, the cooling rate of the cast rod after cooling by the air injection device is set to 0.3 to 1.0 ° C./s, and the base of the metal structure has an area ratio of 80% pearlite and the balance. A cast bar having a ferrite coexisting structure and a tensile strength of 600 MPa or more is obtained.

すなわち、鋳造棒の表面温度が710〜730℃の範囲となるように空気冷却する。その後、空気圧力・風量を調整して600℃までの平均冷却速度を0.3〜1.0℃/sに制御する。これにより、金属組織の基地が面積比で80%以上のパーライトと残部がフェライトの共存組織で、かつ600MPa以上の引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を得ることができる。   That is, air cooling is performed so that the surface temperature of the casting rod is in the range of 710 to 730 ° C. Thereafter, the air pressure and the air volume are adjusted to control the average cooling rate up to 600 ° C. to 0.3 to 1.0 ° C./s. As a result, it is possible to obtain a spheroidal graphite cast iron continuous cast bar having a metal structure base of coexisting pearlite with an area ratio of 80% or more and the balance of ferrite with a tensile strength of 600 MPa or more.

(実施の形態3)
実施の形態3は、空気噴射装置による冷却後の鋳造棒の600℃までの平均冷却速度を0.1〜0.5℃/sとして、金属組織の基地が面積比で40〜60%のパーライトと残部がフェライトの共存組織であり、かつ、500MPa以上の引張強さを備えた鋳造棒を得ることを特徴とする。
(Embodiment 3)
In Embodiment 3, the average cooling rate up to 600 ° C. of the cast rod after cooling by the air injection device is 0.1 to 0.5 ° C./s, and the base of the metal structure is pearlite with an area ratio of 40 to 60%. And the balance is a coexisting structure of ferrite, and a cast rod having a tensile strength of 500 MPa or more is obtained.

すなわち、鋳造棒の表面温度が710〜730℃の範囲となるように空気冷却する。その後、空気圧力や風量を調製して600℃までの平均冷却速度を0.1〜0.5℃/sに制御する。これにより、金属組織の基地が面積比で40〜60%のパーライトと残部がフェライトの共存組織で、かつ500MPa以上の引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を得ることができる。   That is, air cooling is performed so that the surface temperature of the casting rod is in the range of 710 to 730 ° C. Thereafter, the air pressure and the air volume are adjusted, and the average cooling rate up to 600 ° C. is controlled to 0.1 to 0.5 ° C./s. As a result, it is possible to obtain a spheroidal graphite cast iron continuous cast bar having a metal structure base of pearlite having an area ratio of 40 to 60% and the balance being a ferrite coexisting structure and having a tensile strength of 500 MPa or more.

(実施の形態4)
実施の形態4は、空気噴射装置による冷却後の鋳造棒の600℃までの平均冷却速度を0.05〜0.1℃/sとして、金属組織の基地が面積比で80〜100%のフェライトと残部がパーライトの共存組織であり、かつ、400MPa以上の引張強さを備えた鋳造棒を得ることを特徴とする。
(Embodiment 4)
In the fourth embodiment, the average cooling rate up to 600 ° C. of the cast rod after cooling by the air injection device is set to 0.05 to 0.1 ° C./s, and the base of the metal structure is ferrite having an area ratio of 80 to 100%. And the balance is a coexisting structure of pearlite, and a cast bar having a tensile strength of 400 MPa or more is obtained.

すなわち、鋳造棒の表面温度が710〜730℃の範囲となるように空気冷却する。その後、保温カバー付設ロール上を移動させて600℃までの平均冷却速度を0.05〜0.10℃/sに制御する。これにより、金属組織の基地が面積比で80〜90%のフェライトと残部がパーライトの共存組織で、かつ400MPa以上の引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を得ることができる。   That is, air cooling is performed so that the surface temperature of the casting rod is in the range of 710 to 730 ° C. Then, it moves on the installation roll with a heat insulation cover, and controls the average cooling rate to 600 degreeC to 0.05-0.10 degreeC / s. As a result, it is possible to obtain a spheroidal graphite cast iron continuous cast bar having a metal structure base of 80 to 90% in area ratio of ferrite and the remaining pearlite coexisting structure and having a tensile strength of 400 MPa or more.

図3としての表1の実施例1に示した本発明成分組成の球状黒鉛鋳鉄溶湯3トンを水平連続鋳造設備のタンディッシュ(TD)に注湯して、直径100mmの鋳鉄鋳造棒を鋳造した。図1に示したようにリング状の第1から第3までの空気噴射装置を配置させ、空気噴射装置のスリットから空気を噴射して、鋳型から出た鋳造棒を円周方向から連続冷却した。   3 tonnes of spheroidal graphite cast iron having the composition of the present invention shown in Example 1 of Table 1 as shown in FIG. 3 were poured into a tundish (TD) of a horizontal continuous casting facility to cast a cast iron casting rod having a diameter of 100 mm. . As shown in FIG. 1, the first to third ring-shaped air injection devices are arranged, air is injected from the slits of the air injection device, and the casting rod coming out of the mold is continuously cooled from the circumferential direction. .

第1、第2の空気冷却装置を用いて空気噴射し、鋳造棒の表面温度は710〜730℃の範囲となるように制御した。その後、第3の空気冷却装置を用い、空気圧力や風量を調整して風速30〜40m/sの衝風冷却を行い、600℃までの鋳造棒の平均冷却速度を1.0〜1.1℃/sとなるように制御して鋳造棒2トンを製造した。   Air was injected using the first and second air cooling devices, and the surface temperature of the casting rod was controlled to be in the range of 710 to 730 ° C. Thereafter, using a third air cooling device, air pressure and air volume are adjusted to perform blast cooling at a wind speed of 30 to 40 m / s, and the average cooling rate of the cast rod up to 600 ° C. is 1.0 to 1.1. 2 tons of cast rods were produced by controlling the temperature to be ℃ / s.

得られた鋳造棒の表層部、中間部(直径の1/4位置)、および中心部の金属組織を観察したところ、何れの部位でもパーライト主体(パーライト95%)であった。また、中間部から試験片を採取し機械的性質を調べたところ、引張強さは766MPa、伸びは4.2%、硬さはHB(ブリネル硬さ)が255を示し、FCD700相当の特性を備えていることがわかった。   Observation of the surface layer portion, intermediate portion (1/4 position of the diameter), and central portion of the obtained cast rod revealed that the pearlite was predominant (95% pearlite) in any part. Further, when a test piece was collected from the middle part and examined for mechanical properties, the tensile strength was 766 MPa, the elongation was 4.2%, the hardness was HB (Brinell hardness) 255, and the characteristics equivalent to FCD700 were obtained. I found out that I have it.

なお、引張強さと伸びは、JIS Z2241の方法により求めた。硬さはJIS Z2243の方法により求めた。   In addition, the tensile strength and elongation were calculated | required by the method of JISZ2241. The hardness was determined by the method of JIS Z2243.

実施例1に用いたタンディッシュ(TD)に表1の実施例2に示した本発明成分組成の球状黒鉛鋳鉄溶湯2トンをつぎ足して、直径100mmの鋳鉄鋳造棒を鋳造した。   A cast iron casting rod having a diameter of 100 mm was cast by adding 2 tons of molten spheroidal graphite cast iron having the composition of the present invention shown in Example 2 of Table 1 to the tundish (TD) used in Example 1.

実施例1と同様に、第1、第2の空気冷却装置を用いて空気噴射し、鋳造棒の表面温度は710〜730℃の範囲となるように制御した。その後、第3の空気冷却装置を用い、空気圧力や風量を調整して風速20〜30m/sの衝風冷却を行い、600℃までの鋳造棒の平均冷却速度を0.5〜0.7℃/sとなるように制御して鋳造棒を製造した。   In the same manner as in Example 1, air was injected using the first and second air cooling devices, and the surface temperature of the casting rod was controlled to be in the range of 710 to 730 ° C. Thereafter, using a third air cooling device, air pressure and air volume are adjusted to perform blast cooling at a wind speed of 20 to 30 m / s, and the average cooling rate of the cast rod up to 600 ° C. is set to 0.5 to 0.7. A cast bar was produced under the control of ℃ / s.

得られた鋳造棒の表層部、中間部(直径の1/4位置)、および中心部の金属組織を観察したところ、何れの部位でもパーライト主体(パーライト80%)であった。また、中間部から試験片を採取し機械的性質を調べたところ、引張強さは650MPa、伸びは7.0%、硬さはHB(ブリネル硬さ)が241を示し、FCD600相当の特性を備えていることがわかった。   Observation of the surface layer portion, the middle portion (1/4 of the diameter), and the metal structure of the center portion of the obtained cast bar revealed that the pearlite main body (perlite 80%) was found in any part. Further, when a test piece was collected from the middle part and examined for mechanical properties, the tensile strength was 650 MPa, the elongation was 7.0%, the hardness was HB (Brinell hardness) 241 and the characteristics equivalent to FCD600 were obtained. I found out that I have it.

実施例2に用いたタンディッシュ(TD)に表1の実施例3に示した本発明成分組成の球状黒鉛鋳鉄溶湯2トンつぎ足して、直径100mmの鋳鉄鋳造棒を鋳造した。   A cast iron casting rod having a diameter of 100 mm was cast on the tundish (TD) used in Example 2 by adding 2 tons of molten spheroidal graphite cast iron having the composition of the present invention shown in Example 3 of Table 1.

実施例1と同様に、第1、第2の空気冷却装置を用いて空気噴射し、鋳造棒の表面温度は710〜730℃の範囲となるように制御した。その後、第3の空気冷却装置を用い、空気圧力や風量を調整して、600℃までの鋳造棒の平均冷却速度を0.2〜0.3℃/sとなるように制御して鋳造棒を製造した。   In the same manner as in Example 1, air was injected using the first and second air cooling devices, and the surface temperature of the casting rod was controlled to be in the range of 710 to 730 ° C. Thereafter, the third air cooling device is used to adjust the air pressure and the air volume, and the average cooling rate of the casting rod up to 600 ° C. is controlled to be 0.2 to 0.3 ° C./s. Manufactured.

得られた鋳造棒の表層部、中間部(直径の1/4位置)、および中心部の金属組織を観察したところ、何れの部位でもフェライトとパーライトがほぼ同じ割合(パーライト60%)であった。また、中間部から試験片を採取し機械的性質を調べたところ、引張強さは522MPa、伸びは11.6%、硬さはHB(ブリネル硬さ)が187を示し、FCD500相当の特性を備えていることがわかった。   When the metal structure of the surface layer part, the intermediate part (1/4 of the diameter), and the central part of the obtained cast bar was observed, the ratio of ferrite and pearlite was almost the same (60% pearlite) at any part. . Further, when a test piece was collected from the middle part and examined for mechanical properties, the tensile strength was 522 MPa, the elongation was 11.6%, the hardness was HB (Brinell hardness) 187, and the characteristics equivalent to FCD500 were obtained. I found out that I have it.

実施例3に用いたタンディッシュ(TD)に表1の実施例4に示した本発明成分組成の球状黒鉛鋳鉄溶湯2トンをつぎ足して、直径100mmの鋳鉄鋳造棒を鋳造した。   A cast iron rod having a diameter of 100 mm was cast by adding 2 tons of spheroidal graphite cast iron melt having the composition of the present invention shown in Example 4 of Table 1 to the tundish (TD) used in Example 3.

第1、第2、第3の空気冷却装置を用いて空気噴射し、鋳造棒の表面温度は710〜730℃の範囲となるように制御した。   Air was injected using the first, second, and third air cooling devices, and the surface temperature of the casting rod was controlled to be in the range of 710 to 730 ° C.

その後、保温カバー付設ロール上を移動させ、600℃までの鋳造棒の平均冷却速度を0.05〜0.06℃/sとなるように制御した。   Then, it moved on the installation roll with a heat retention cover, and it controlled so that the average cooling rate of the casting rod to 600 degreeC might be set to 0.05-0.06 degreeC / s.

得られた鋳造棒の表層部、中間部(直径の1/4位置)、および中心部の金属組織を観察したところ、何れの部位でもフェライト主体(92%)であった。また、中間部から試験片を採取し機械的性質を調べたところ、引張強さは458MPa、伸びは24.4%、硬さはHB(ブリネル硬さ)が159を示し、FCD400相当の特性を備えていることがわかった。   When the metal structure of the surface layer portion, the intermediate portion (1/4 position of the diameter), and the center portion of the obtained cast bar was observed, the ferrite main component (92%) was found in any portion. Further, when a test piece was collected from the middle part and examined for mechanical properties, the tensile strength was 458 MPa, the elongation was 24.4%, the hardness was HB (Brinell hardness) 159, and the characteristics equivalent to FCD400 were obtained. I found out that I have it.

C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0を含有し残部がFe及び不可避不純物である連続鋳造棒を製造する際、同一成分組成の母材から、冷却条件を変えることにより400〜750MPaの引張強さを備えた球状黒鉛鋳鉄連続鋳造棒を造り分けることができる。   C: 3.1-3.7%, Si: 2.5-3.2%, Mn: 0.1-0.6%, Mg: 0.02-0.05%, Cu: 0.1 When producing a continuous cast bar containing 1.0 and the balance being Fe and inevitable impurities, a spheroidal graphite cast iron continuously having a tensile strength of 400 to 750 MPa by changing cooling conditions from a base material of the same component composition Can cast casting bars.

本発明の鋳造方法を示した図である。It is the figure which showed the casting method of this invention. 本発明の空気噴射装置を示した図である。It is the figure which showed the air injection apparatus of this invention. 本発明の実施例の成分組成等を示した図である。It is the figure which showed the component composition etc. of the Example of this invention. 連続冷却変態曲線(CCT曲線)を示した。A continuous cooling transformation curve (CCT curve) was shown.

符号の説明Explanation of symbols

11 鋳造棒
13 溶湯
15 タンディッシュ
17 水冷鋳型
19 空気噴射装置
21 空気噴射装置
23 空気噴射装置
25 保温カバー
27 サポートロール
29 ピンチロール
41 空気噴射装置
43 噴射空気
45 スリット
47 中空部
DESCRIPTION OF SYMBOLS 11 Casting rod 13 Molten metal 15 Tundish 17 Water cooling mold 19 Air injection apparatus 21 Air injection apparatus 23 Air injection apparatus 25 Thermal insulation cover 27 Support roll 29 Pinch roll 41 Air injection apparatus 43 Injection air 45 Slit 47 Hollow part

Claims (4)

下記の工程を備えたことを特徴とする球状黒鉛鋳鉄の連続鋳造方法。
(a)成分組成(成分組成はmass%である)が、C:3.1〜3.7%、Si:2.5〜3.2%、Mn:0.1〜0.6%、Mg:0.02〜0.05%、Cu:0.1〜1.0%を含有し、残部がFe及び不可避不純物である溶湯を連続鋳造鋳型に導いて鋳片を鋳造し、
(b)ついで、前記鋳型から引き抜かれた鋳片を冷却させてその表面温度を710〜730℃とし、
(c)ついで、前記鋳片を600℃まで冷却する平均冷却速度を0.05〜1.5℃/sの間の特定の冷却速度となるように調整して該鋳片を冷却し、
(d)引張強さが、400〜750MPa範囲の特定の引張強さを備えた鋳片を得る。
A continuous casting method of spheroidal graphite cast iron, comprising the following steps.
(A) Component composition (component composition is mass%) is C: 3.1-3.7%, Si: 2.5-3.2%, Mn: 0.1-0.6%, Mg : 0.02 to 0.05%, Cu: 0.1 to 1.0%, with the balance being Fe and inevitable impurities, the molten metal is led to a continuous casting mold to cast a slab,
(B) Next, the slab pulled out from the mold is cooled to a surface temperature of 710 to 730 ° C.,
(C) Next, an average cooling rate for cooling the slab to 600 ° C. is adjusted to a specific cooling rate between 0.05 to 1.5 ° C./s to cool the slab,
(D) A slab having a specific tensile strength in the range of 400 to 750 MPa is obtained.
前記冷却は、スリットを設けた中空管を鋳片の周りにリング状に配設した1基以上の空気噴射装置により空気を噴射させる方法であることを特徴とする請求項1に記載の球状黒鉛鋳鉄の連続鋳造方法。   2. The spherical shape according to claim 1, wherein the cooling is a method in which air is injected by one or more air injection devices in which a hollow tube provided with a slit is arranged in a ring shape around a slab. Continuous casting method of graphite cast iron. 前記鋳片を600℃まで冷却する際に、該冷却を保温カバー付設ロール上を移動させて行うことを特徴とする請求項1又は2に記載の球状黒鉛鋳鉄の連続鋳造方法。   3. The continuous casting method of spheroidal graphite cast iron according to claim 1, wherein when the slab is cooled to 600 ° C., the cooling is performed by moving on a roll provided with a heat insulating cover. 前記鋳片を600℃まで冷却する平均冷却速度を0.05〜1.5℃/sの間の所定の冷却速度に調整し、黒鉛、パーライト及びフェライトからなる金属組織の基地面積比を制御し、前記成分組成の範囲内の溶湯を用いて400〜750MPaの範囲において所定の引張強さを備えた鋳片を同一ロットにおいて鋳造することを特徴とする請求項1〜3のいずれかに記載の球状黒鉛鋳鉄の連続鋳造方法。
(P0305068)
The average cooling rate for cooling the slab to 600 ° C. is adjusted to a predetermined cooling rate between 0.05 to 1.5 ° C./s, and the base area ratio of the metal structure composed of graphite, pearlite and ferrite is controlled. The cast slab having a predetermined tensile strength in a range of 400 to 750 MPa is cast in the same lot using a molten metal within the range of the component composition. Continuous casting method of spheroidal graphite cast iron.
(P0305068)
JP2003330653A 2003-09-22 2003-09-22 Method for continuously casting spheroidal graphite cast iron Pending JP2005095911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330653A JP2005095911A (en) 2003-09-22 2003-09-22 Method for continuously casting spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330653A JP2005095911A (en) 2003-09-22 2003-09-22 Method for continuously casting spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JP2005095911A true JP2005095911A (en) 2005-04-14

Family

ID=34459547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330653A Pending JP2005095911A (en) 2003-09-22 2003-09-22 Method for continuously casting spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP2005095911A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229640A (en) * 2007-03-19 2008-10-02 Aisin Takaoka Ltd Manufacturing method of spheroidal graphite cast iron casting
KR101024358B1 (en) * 2010-08-27 2011-03-30 태경연주(주) The method of the continuous casting iron for spheroidal graphite cast iron
JP2011190516A (en) * 2010-03-16 2011-09-29 Kurimoto Ltd Spheroidal graphite cast iron tube and method for producing the same
CN105283571A (en) * 2013-06-28 2016-01-27 株式会社理研 Spheroidal graphite cast iron
CN108866427A (en) * 2018-07-19 2018-11-23 郑州机械研究所有限公司 The manufacturing method of large section low-temperature high-toughness Ferrite nodular iron casting
JP2019119924A (en) * 2018-01-11 2019-07-22 トヨタ自動車株式会社 Spheroidal graphite cast iron
KR20200005821A (en) * 2018-07-09 2020-01-17 한국기계연구원 Spheroidal graphite cast iron with excellent tensile property and preparation method thereof
CN115007820A (en) * 2022-07-28 2022-09-06 西北工业大学 Ultrasonic continuous casting method and system for reducing wall thickness sensitivity of spherical graphite tissue

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229640A (en) * 2007-03-19 2008-10-02 Aisin Takaoka Ltd Manufacturing method of spheroidal graphite cast iron casting
JP2011190516A (en) * 2010-03-16 2011-09-29 Kurimoto Ltd Spheroidal graphite cast iron tube and method for producing the same
KR101024358B1 (en) * 2010-08-27 2011-03-30 태경연주(주) The method of the continuous casting iron for spheroidal graphite cast iron
CN105283571A (en) * 2013-06-28 2016-01-27 株式会社理研 Spheroidal graphite cast iron
JP2019119924A (en) * 2018-01-11 2019-07-22 トヨタ自動車株式会社 Spheroidal graphite cast iron
KR20200005821A (en) * 2018-07-09 2020-01-17 한국기계연구원 Spheroidal graphite cast iron with excellent tensile property and preparation method thereof
KR102174021B1 (en) * 2018-07-09 2020-11-04 한국기계연구원 Spheroidal graphite cast iron with excellent tensile property and preparation method thereof
CN108866427A (en) * 2018-07-19 2018-11-23 郑州机械研究所有限公司 The manufacturing method of large section low-temperature high-toughness Ferrite nodular iron casting
CN115007820A (en) * 2022-07-28 2022-09-06 西北工业大学 Ultrasonic continuous casting method and system for reducing wall thickness sensitivity of spherical graphite tissue

Similar Documents

Publication Publication Date Title
CN101967610B (en) High carbon high silicon martensite stainless steel billet and preparation method thereof
TWI391500B (en) Eco-friendly pb-free free-cutting steel and manufacturing method thereof
JP2011105993A (en) Spheroidal graphite cast iron tube and method for producing the same
CN113134585A (en) Homogenization square billet continuous casting production method under action of outfield cooperative control
JP2005095911A (en) Method for continuously casting spheroidal graphite cast iron
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
CN100566886C (en) The metal continuous casting crystallizer composite apparatus of controlled controlling initial solidification
JP2008280566A (en) High-strength steel material having precipitates finely dispersed therein, and method for continuously casting slab of high-strength steel material
JP2010131635A (en) Die-cast molding method for iron and die-cast molded body
KR101024358B1 (en) The method of the continuous casting iron for spheroidal graphite cast iron
CN102517476B (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
JP6358975B2 (en) Flake graphite cast iron and method for producing the same
JP5516013B2 (en) High-strength steel plate, continuous casting method of slabs that are materials of this high-strength steel plate, and method for producing high-strength steel
JP2007185696A (en) Steel casting method and steel casting metallic mold
CN1047546C (en) As-continuously cast beam blank an method for casting continuously cast beam blank
JP2003001404A (en) Method for casting cast iron-made molded product
CN108380835B (en) Low-segregation gas valve steel continuous casting billet and manufacturing method thereof
JP2007327083A (en) Spheroidal graphite cast iron and its production method
JP2004216411A (en) Continuous casting method for special molten steel
JP6191781B1 (en) Spheroidal graphite cast iron with excellent gas defect resistance
JPH05285599A (en) Horizontal continuous casting mold and hollow member produced by this mold
CN104815971A (en) Casting method and casting device
JP2006326595A (en) Bore pin for casting cylinder block
JP2018069324A (en) Mold device for continuous casting for steel and manufacturing method of surface layer-modified cast slab using the same
JP4296158B2 (en) Method for producing Mg alloy