JP2007185696A - Steel casting method and steel casting metallic mold - Google Patents

Steel casting method and steel casting metallic mold Download PDF

Info

Publication number
JP2007185696A
JP2007185696A JP2006006509A JP2006006509A JP2007185696A JP 2007185696 A JP2007185696 A JP 2007185696A JP 2006006509 A JP2006006509 A JP 2006006509A JP 2006006509 A JP2006006509 A JP 2006006509A JP 2007185696 A JP2007185696 A JP 2007185696A
Authority
JP
Japan
Prior art keywords
cast iron
mold
iron product
product
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006006509A
Other languages
Japanese (ja)
Other versions
JP4934321B2 (en
Inventor
Jun Sakai
潤 酒井
Kenichi Shimada
賢一 島田
Fumio Takahashi
文夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2006006509A priority Critical patent/JP4934321B2/en
Publication of JP2007185696A publication Critical patent/JP2007185696A/en
Application granted granted Critical
Publication of JP4934321B2 publication Critical patent/JP4934321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel casting method capable of reducing the variation of hardness or the like in an obtained cast iron product as much as possible when the cast iron product apt to cause a cooling rate difference due to its shape and structure is cast in a cooling stage for a molten casting steel poured into a cavity in a metallic mold. <P>SOLUTION: When the molten casting steel poured into the cavity 16 in metallic molds 10, 12 is solidified and is cast into the cast iron product 18, in the case that the cast iron product 18 having a top end part 18a being an easily cooling part faster in cooling rate than other parts is cast, a gap 22 is formed between the outer circumferential face of the top end part 18a and the inner wall face of the cavity 16 and heat abatement to the metallic molds is blocked for relaxing the cooling rate at the top end part 18a of the cast iron product 18 to be cooled in the metallic molds 10, 12. Thereafter when temperatures of the other parts in the cast iron product 18 reach the predetermined temperature higher than a room temperature, the metallic molds 10, 12 are opened; the cast iron product 18 is taken out, and the whole of the cast iron product 18 is annealed at a cooling rate slower than the cooling rate in the metallic molds 10, 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は鋳鉄方法及び鋳鉄用金型に関し、更に詳細には金型内のキャビティに注湯した鋳鉄溶湯を凝固して鋳鉄製品を鋳造するとき、前記鋳鉄製品内に他部よりも冷却速度の速い易冷却部分が存在する鋳鉄製品を鋳造する鋳鉄方法及び鋳鉄用金型に関する。   The present invention relates to a cast iron method and a cast iron mold, and more specifically, when casting a cast iron product by solidifying a cast iron melt poured into a cavity in the mold, the cast iron product has a cooling rate higher than other parts. The present invention relates to a cast iron method and a cast iron mold for casting a cast iron product having a quick and easy cooling portion.

フェライト量が多く靭性に優れた球状黒鉛鋳鉄から成る鋳鉄製品は、例えば下記特許文献1に知られている。かかる鋳鉄製品は、強靭性を有するため、自動車部品等の幅広い用途に用いられている。
かかる球状黒鉛鋳鉄から成る鋳鉄製品の鋳造では、樹脂製粘結剤(バインダー)をコーティングした砂等を用いて形成した砂型を使用している。
しかし、砂型を用いた鋳造では、砂型の造型機は勿論のこと、砂の回収、冷却、搬送、混錬再製等の砂処理設備が必要である。
しかも、鋳鉄溶湯を砂型に注湯して得た鋳鉄製品は、鉄合金の状態図において、オーステナイト相が晶出する温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以下の室温近傍にまで砂型内で冷却してから取り出すため、砂型に注湯してから取り出しまでの時間が著しく長く、その生産性が問題となりつつある。
一方、鋳鉄製品の生産性を向上させるべく、水冷構造又は銅等の高熱伝導材から成る金型に鋳鉄溶湯を注湯して得た鋳鉄製品を、金型内でA1変態温度以下の室温近傍まで急速冷却して取り出す鋳鉄方法も知られている。
特許第2730959号公報(特許請求の範囲、第3頁左欄)
A cast iron product made of spheroidal graphite cast iron having a large amount of ferrite and excellent toughness is known, for example, in Patent Document 1 below. Since such cast iron products have toughness, they are used in a wide range of applications such as automobile parts.
In casting of cast iron products made of such spheroidal graphite cast iron, a sand mold formed using sand coated with a resin binder (binder) is used.
However, in casting using a sand mold, sand processing equipment such as sand collection, cooling, transport, kneading and remanufacturing is required as well as a sand mold making machine.
Moreover, cast iron products the cast iron obtained by pouring the sand mold, in a state diagram of the iron alloy, A 1 transformation temperature below room temperature vicinity and austenite phase at a temperature below the austenite phase crystallizes is transformed into pearlite Since it is taken out after being cooled in the sand mold, the time from pouring into the sand mold until taking it out is remarkably long, and its productivity is becoming a problem.
On the other hand, in order to improve the productivity of the cast iron products, cast iron products obtained by pouring the molten cast iron in a mold made of a highly heat conductive material such as water-cooling structure or copper, in the mold following the A 1 transformation temperature room A cast iron method is also known which is rapidly cooled to the vicinity and taken out.
Japanese Patent No. 2730959 (claims, page 3, left column)

急速冷却可能な金型を用いた鋳鉄方法では、砂型を用いた鋳鉄方法に比較して、金型に注湯してから金型から鋳鉄製品を取し出すまでの時間を著しく短縮できる。
更に、金型は、再使用可能であるため、砂処理設備を不要にでき、そのプロセスを簡単化できる。
しかしながら、鋳鉄溶湯を金型に注湯して得た鋳鉄製品は、一般的に過冷された共晶黒鉛を有する低強度の片状黒鉛鋳鉄や、フェライト量が少なく靭性の低下した低グレードの球状黒鉛鋳鉄のものである。
かかる鋳鉄製品を、フェライト量が多く、靭性に優れた鋳鉄製品とするには、熱処理が不可欠である。このため、金型を用いた鋳鉄方法であっても、その生産性を著しく向上することは困難である。
唯、金型を用いた鋳鉄方法では、鋳鉄製品を金型から取り出すまでの時間を著しく短縮でき、且つ砂処理設備を不要化できる等の多くの利点を有する。
また、従来、同一金型から単一種の鋳鉄製品を鋳造しているが、複数種相当の鋳鉄製品を鋳造できれば、保有金型数の低減等の効率化を図ることができる。
このため、本発明者等は、金型を用いてフェライト量が多く且つ靭性に優れた鋳鉄製品を鋳造するには、その冷却速度が重要であると考えて検討した。その結果、金型に注湯した鋳鉄溶湯が凝固して得られた鋳鉄製品を冷却して、鋳鉄製品の温度が室温よりも高温の所定温度に到達したとき、金型を型開きして鋳鉄製品を取り出した後、この鋳鉄製品を金型内での冷却速度よりも遅い冷却速度で徐冷することによって、金型を用いてフェライト量が多く且つ靭性に優れた鋳鉄製品を鋳造できることを知った。
Compared with the cast iron method using a sand mold, the cast iron method using a rapidly coolable mold can significantly shorten the time from pouring into the mold until the cast iron product is taken out from the mold.
Furthermore, since the mold can be reused, sand processing equipment can be dispensed with and the process can be simplified.
However, cast iron products obtained by pouring molten cast iron into a mold are generally low-strength flake graphite cast iron having eutectic graphite that has been supercooled, or low grade with low ferrite content and low toughness. Of spheroidal graphite cast iron.
Heat treatment is indispensable for making such a cast iron product having a high ferrite content and excellent toughness. For this reason, even if it is the cast iron method using a metal mold | die, it is difficult to improve the productivity remarkably.
However, the cast iron method using a metal mold has many advantages such as significantly shortening the time required to take out a cast iron product from the metal mold and eliminating the need for a sand treatment facility.
Conventionally, a single type of cast iron product is cast from the same mold. However, if cast iron products corresponding to a plurality of types can be cast, efficiency such as reduction in the number of held molds can be achieved.
For this reason, the present inventors considered that the cooling rate was important for casting a cast iron product having a large amount of ferrite and excellent toughness using a mold. As a result, when the cast iron product obtained by solidification of the cast iron melt poured into the mold is cooled and the temperature of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened and the cast iron is opened. After taking out the product, know that this cast iron product can be cast at a cooling rate slower than the cooling rate in the mold to cast a cast iron product with high ferrite content and excellent toughness using the mold. It was.

しかしながら、鋳鉄製品には、その形状や構造によって他部に比較して冷却され易い部分が形成される。
例えば、二股状に分岐された二股状部が形成されるキャリパボディを鋳造する一対の金型では、その縦断面図である図15(a)及び横断面図である図15(b)に示す様に、一対の金型100,102及び突出ピン104によって形成されるキャビティ106に注湯した鉄合金の溶湯を凝固した鋳鉄製品108のうち、二股状部の先端部108a,108aは、比較的他の部分よりも断面が薄肉であるので、他部よりも冷却速度が速い。
このため、鋳鉄製品108の先端部108a,108aが型開き温度に到達したとき、他部の温度は型開き温度に到達せず、一対の金型100,102を型開きできない。
したがって、鋳鉄製品108の他部の温度が型開き温度に到達したとき、図16(a)に示す様に、一対の金型100,102を型開きし、図16(b)に示す様に、突出ピン104によって鋳鉄製品108を一対の金型100,102から突出する。
この様に、冷却速度差を有する鋳鉄製品では、通常、冷却速度が遅い部分の温度によって金型の型開きを行うため、冷却終了後に得られる鋳鉄製品内に硬度等のバラツキが発生し易いことが判明した。
そこで、本発明の課題は、金型内のキャビティに注湯した鋳鉄溶湯の冷却過程で、鋳鉄製品の形状や構造に因る冷却速度差が発生し易い鋳鉄製品を鋳造する際に、得られる鋳鉄製品内の硬度等のバラツキを可及的に小さくできる鋳鉄方法及び鋳鉄用金型を提供することにある。
However, the cast iron product is formed with a portion that is more easily cooled than the other portions due to its shape and structure.
For example, in a pair of molds for casting a caliper body in which a bifurcated portion that is bifurcated is formed, a longitudinal sectional view thereof is shown in FIG. 15 (a) and a transverse sectional view thereof is shown in FIG. 15 (b). Similarly, among the cast iron products 108 obtained by solidifying the molten iron alloy poured into the cavity 106 formed by the pair of molds 100 and 102 and the protruding pins 104, the bifurcated tip portions 108a and 108a are relatively Since the cross section is thinner than other parts, the cooling rate is faster than other parts.
For this reason, when the front end portions 108a and 108a of the cast iron product 108 reach the mold opening temperature, the temperatures of the other portions do not reach the mold opening temperature, and the pair of molds 100 and 102 cannot be opened.
Therefore, when the temperature of the other part of the cast iron product 108 reaches the mold opening temperature, the pair of molds 100 and 102 are opened as shown in FIG. 16A, and as shown in FIG. The cast iron product 108 is projected from the pair of molds 100 and 102 by the projecting pins 104.
In this way, in cast iron products having a difference in cooling rate, the mold is usually opened by the temperature of the portion where the cooling rate is slow, so that variations such as hardness are likely to occur in the cast iron product obtained after cooling is completed. There was found.
Therefore, the object of the present invention is obtained when casting a cast iron product in which a cooling rate difference due to the shape and structure of the cast iron product is likely to occur in the cooling process of the cast iron melt poured into the cavity in the mold. An object of the present invention is to provide a cast iron method and a cast iron mold that can reduce variations in hardness and the like in cast iron products as much as possible.

本発明者等は、前記課題を解決すべく検討した結果、金型のキャビティ内で冷却している鋳鉄製品のうち、冷却速度が他部よりも速い易冷却部分の外周面とキャビティの内壁面との間に隙間を形成し、金型への熱引きを阻止することによって、他部との冷却速度差を可及的に緩和できることを見出し、本発明に到達した。
すなわち、本発明は、金型内のキャビティに注湯した鋳鉄溶湯を凝固して鋳鉄製品を鋳造するとき、前記鋳鉄製品内に他部よりも冷却速度の速い易冷却部分が存在する鋳鉄製品を鋳造する際に、該金型内で冷却する鋳鉄製品の易冷却部分の冷却速度を緩和すべく、前記易冷却部分の外周面とキャビティの内壁面との間に隙間を形成して金型への熱引きを阻止した後、前記鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、前記金型を型開きして鋳鉄製品を取り出して、前記鋳鉄製品の全体を金型内での冷却速度よりも遅い冷却速度で徐冷することを特徴とする鋳鉄方法にある。
また、本発明は、鋳鉄製品を鋳造する金型内のキャビティに注湯した鋳鉄溶湯が凝固するとき、前記鋳鉄製品内に他部よりも冷却され易い易冷却部分が存在する鋳鉄製品を鋳造する鋳鉄用金型において、該金型内で冷却される鋳鉄製品の易冷却部分の外周面と接触する金型のキャビティ内壁面の少なくとも一部を形成する金型部分が後退し、前記易冷却部分の外周面とキャビティの内壁面との間に形成された隙間によって、前記金型への熱引きが阻止されて、前記易冷却部分の冷却速度が緩和されるように、前記金型部分が金型の他部に対し独立して移動可能に設けられ、且つ前記鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、前記鋳鉄製品の全体を金型内での冷却速度よりも遅い冷却速度で徐冷できるように、前記鋳鉄製品の全体を金型から取出可能に形成されていることを特徴とする鋳鉄用金型でもある。
As a result of studying to solve the above problems, the inventors of the present invention, as a result of the cast iron product cooling in the cavity of the mold, the outer peripheral surface of the easy-cooling portion and the inner wall surface of the cavity whose cooling rate is faster than other portions The inventors have found that a difference in cooling rate with other parts can be reduced as much as possible by forming a gap between the two and preventing heat from being drawn to the mold, and have reached the present invention.
That is, according to the present invention, when a cast iron product is cast by solidifying a cast iron melt poured into a cavity in a mold, a cast iron product in which an easy-cooling portion having a faster cooling rate than the other portion is present in the cast iron product. When casting, in order to reduce the cooling rate of the easy cooling part of the cast iron product to be cooled in the mold, a gap is formed between the outer peripheral surface of the easy cooling part and the inner wall surface of the cavity to the mold. When the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened, the cast iron product is taken out, and the entire cast iron product is removed. In the cast iron method, the cooling is performed at a cooling rate slower than the cooling rate in the mold.
Further, according to the present invention, when a cast iron melt poured into a cavity in a mold for casting a cast iron product solidifies, the cast iron product casts a cast iron product in which there is an easily cooled portion that is more easily cooled than the other part. In the cast iron mold, the mold part forming at least a part of the cavity inner wall surface of the mold that comes into contact with the outer peripheral surface of the easy-cooling part of the cast iron product cooled in the mold is retracted, and the easy-cooling part The mold part is formed so that the gap formed between the outer peripheral surface of the mold and the inner wall surface of the cavity prevents heat from being drawn to the mold and reduces the cooling rate of the easy-cooling part. When the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the entire cast iron product is cooled in the mold. So that it can be slowly cooled at a cooling rate slower than the rate. It is also an iron mold, characterized in that the whole of ironwork is formed retrievable from the mold.

かかる本発明において、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間の隙間を、前記易冷却部分の外周面に接触している金型のキャビティ内壁面の少なくとも一部を後退して形成することによって、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を容易に形成できる。
この様に、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を容易に形成できる金型としては、鋳鉄製品の易冷却部分の外周面と接触するキャビティの内壁面を形成する部分を、金型の他部に対し独立して移動可能に形成した分割金型、或いは鋳鉄製品の易冷却部分の外周面と先端面が接触するピンを、金型の他部に対し独立して移動可能に形成した金型を好適に用いることができる。
更に、金型としては、注湯した鋳鉄溶湯が凝固した鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間形成時期及び鋳鉄製品の取出時期を制御し得る冷却特性を有する金型を用いることによって、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成する温度及び鋳鉄製品の取出温度を一定とすることができ、一定品質の鋳鉄製品を得ることができる。かかる金型としては、炭素(C)が0.45重量%の鋼(S45C)から成る金型を好適に用いることができる。
尚、金型として、湯口から注湯された鋳鉄溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型を好適に用いることができる。
In the present invention, the gap between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity is retreated with at least a part of the inner wall surface of the mold contacting the outer peripheral surface of the easy-cooling portion. Thus, a gap can be easily formed between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity.
Thus, as a mold that can easily form a gap between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity, the inner wall surface of the cavity that contacts the outer peripheral surface of the easy-cooling portion of the cast iron product is used. A split mold formed so that the part to be formed can be moved independently of the other part of the mold, or a pin where the outer peripheral surface of the easy-cooling part of the cast iron product and the tip surface are in contact with the other part of the mold A mold formed so as to be independently movable can be preferably used.
Furthermore, the mold has a cooling characteristic capable of controlling the gap formation time and the cast iron product take-off time between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity where the cast iron melt is solidified. By using a mold, the temperature at which a gap is formed between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity and the temperature at which the cast iron product is taken out can be made constant. Obtainable. As such a mold, a mold made of steel (S45C) containing 0.45% by weight of carbon (C) can be suitably used.
In addition, as a metal mold | die, the metal mold | die for gravity cast iron with which the cast iron molten metal poured from the gate is filled in a cavity by gravity can be used suitably.

また、金型から取り出した鋳鉄製品を室温下で放冷することによって、金型から取り出した鋳鉄製品を金型内での冷却速度よりも容易に遅い冷却速度で冷却できる。
更に、金型を型開きして前記鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つ前記オーステナイト相がパーライト相に変態するA1変態温度以上、具体的には、1147〜727℃とすることによって、フェライト量が多く、靭性に優れた鋳鉄製品を、熱処理を施すことなく得ることができる。
一方、金型を型開きして鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相がパーライト相に変態するA1変態温度未満の温度、具体的には727℃未満とすることによって、フェライト量が低下するものの、抗張力及び耐力に優れた鋳鉄製品を得ることができる。
尚、本発明においていう「易冷却部分」には、例えば鋳造製品内に他の部分よりも薄肉の部分が存在するとき、この薄肉の部分が該当し易い。
Further, by allowing the cast iron product taken out from the mold to cool at room temperature, the cast iron product taken out from the mold can be easily cooled at a lower cooling rate than the cooling rate in the mold.
Furthermore, in the phase diagram of the iron alloy poured into the cavity, the temperature at which the mold is opened and the cast iron product is taken out is equal to or lower than the eutectic temperature at which both the austenite phase and graphite crystallize, and the austenite phase is pearlite. phases transformation to the a 1 transformation temperature or more, specifically, by the 1147-727 ° C., often the amount of ferrite, good cast iron product toughness, can be obtained without heat treatment.
On the other hand, the temperature of the mold and mold opening takes out the cast iron products, in the state diagram of the iron alloy poured into the cavity, A 1 transformation temperature of less than the temperature at which austenite phase is transformed into pearlite phase, specifically 727 ° C. By making it less than this, although the amount of ferrite decreases, a cast iron product excellent in tensile strength and proof stress can be obtained.
Note that the “easy-cooling part” in the present invention is likely to correspond to, for example, a thinner part than other parts in a cast product.

本発明によれば、型開き前に金型内で冷却している鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成して金型への熱引きを防止することによって、鋳鉄製品の易冷却部分の冷却速度を緩和し、他部との冷却速度差を可及的に小さくできる。このため、鋳鉄製品の形状や構造に基づく冷却速度差に因って発生する鋳鉄製品内の硬度等のバラツキを可及的に小さくできる。
更に、鋳鉄製品の他部が室温以上の所定温度に冷却されたとき、鋳鉄製品の全体を冷却速度の速い金型から取り出して、金型内での冷却速度よりも遅い冷却速度で徐冷することによって、冷却が終了した鋳鉄製品に熱処理を施した場合と同等の効果を得ることができる。
従って、本発明では、金型から取り出す鋳鉄製品の温度を変更することによって、異なった種類(特性)の鋳鉄製品を得ることができる。
例えば、金型を型開きして鋳鉄製品を取り出す温度を、鉄合金の状態図において、オーステナイト相がパーライト相に変態するA1変態温度よりも低い温度まで冷却すると、冷却終了して得られた鋳鉄製品のパーライト化率が高くなり、フェライト量が低下するものの、抗張力及び耐力に優れた鋳鉄製品を得ることができる。
一方、金型内の鋳鉄製品が、鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の温度に到達したとき、金型から鋳鉄製品を取り出し、金型内での冷却速度よりも遅い冷却速度で徐冷すると、フェライト量及び黒鉛球状化率を向上でき、優れた靭性を呈する鋳鉄製品を、熱処理を施すことなく得ることができる。A1変態温度の近傍の鋳鉄製品を徐冷できたことによるものと考えられる。
According to the present invention, a gap is formed between the outer peripheral surface of the easy-cooling portion of the cast iron product cooled in the mold before opening the mold and the inner wall surface of the cavity to prevent heat from being drawn into the mold. As a result, the cooling rate of the easy-cooling part of the cast iron product can be relaxed, and the difference in cooling rate with other parts can be made as small as possible. For this reason, it is possible to reduce variations in hardness and the like in the cast iron product as much as possible due to the cooling rate difference based on the shape and structure of the cast iron product.
Furthermore, when the other part of the cast iron product is cooled to a predetermined temperature above room temperature, the entire cast iron product is taken out from the mold having a high cooling rate and gradually cooled at a cooling rate lower than the cooling rate in the mold. As a result, it is possible to obtain the same effect as when the cast iron product that has been cooled is heat treated.
Accordingly, in the present invention, different types (characteristics) of cast iron products can be obtained by changing the temperature of the cast iron products taken out from the mold.
For example, the temperature of the mold and mold opening takes out the cast iron products, in the state diagram of iron alloy, the austenite phase is cooled to a temperature lower than the A 1 transformation temperature to transform into pearlite phase, obtained by completion of the cooling Although the pearlite ratio of the cast iron product increases and the ferrite content decreases, a cast iron product excellent in tensile strength and proof stress can be obtained.
On the other hand, cast iron products in the mold, in the state diagram of iron alloy, the austenite phase and graphite are both and austenite phase at eutectic temperature below the crystallisation reaches the A 1 transformation temperature above which the transformation to pearlite phase When the cast iron product is taken out from the mold and slowly cooled at a cooling rate slower than the cooling rate in the mold, the ferrite content and the graphite spheroidization rate can be improved, and the cast iron product exhibiting excellent toughness is subjected to heat treatment. Can be obtained without application. Presumably due to the possible slow cooling the cast iron products in the vicinity of A 1 transformation temperature.

本発明では、金型内のキャビティに注湯した鋳鉄溶湯(以下、単に溶湯と称することがある)を凝固して得られた鋳鉄製品を冷却し、金型の型開き前に、形状や構造に基づく冷却速度差を有する鋳鉄製品の易冷却の外周面とキャビティの内壁面との間に隙間を形成して、易冷却部分の冷却速度を緩和することが大切である。
かかる隙間の形成によって、金型への熱引きを防止して鋳鉄製品の易冷却部分の冷却速度を緩和し、鋳鉄製品の他部における冷却速度との冷却速度差を可及的に少なくできる。
ここで、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成することなく冷却すると、冷却完了して得られた鋳鉄製品は、その内部に硬度等のバラツキを有するものとなり易い。
次いで、本発明では、鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、金型を型開きして鋳鉄製品を取り出して、鋳鉄製品の全体を金型内での冷却速度よりも遅い冷却速度で徐冷することが大切である。
この金型から取り出した鋳鉄製品の冷却速度を、金型内での冷却速度以上で冷却する場合には、得られた鋳鉄製品は金型内で急速冷却して得た鋳鉄製品と同等のものとなる。
In the present invention, a cast iron product obtained by solidifying cast iron molten metal (hereinafter sometimes simply referred to as molten metal) poured into a cavity in a mold is cooled, and the shape and structure are changed before the mold is opened. It is important to reduce the cooling rate of the easy cooling part by forming a gap between the outer peripheral surface of the easy cooling of the cast iron product having the cooling rate difference based on and the inner wall surface of the cavity.
By forming such a gap, it is possible to prevent heat from being drawn to the mold, relax the cooling rate of the easy-cooling portion of the cast iron product, and reduce the cooling rate difference from the cooling rate at the other portion of the cast iron product as much as possible.
Here, when cooling without forming a gap between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity, the cast iron product obtained after completion of cooling has variations such as hardness in the inside. It tends to be a thing.
Next, in the present invention, when the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened, the cast iron product is taken out, and the entire cast iron product is removed from the mold. It is important to cool slowly at a cooling rate slower than the cooling rate.
When cooling the cast iron product taken out of the mold at a cooling rate higher than the cooling rate in the mold, the resulting cast iron product is equivalent to the cast iron product obtained by rapid cooling in the mold. It becomes.

かかる金型を型開きして鋳鉄製品を取り出す温度(以下、型開き温度と称することがある)について、図1に示す鉄―炭素合金の状態図に基づいて説明する。図1に示す状態図において、鉄が3.5重量%の溶湯では、約1240℃で凝固を開始して、鉄に炭素が固溶したオーステナイト(γ)相が晶出する。溶湯の凝固は1147℃で完了し、凝固体にはオーステナイト相とセメンタイト(Fe3C)、或いは黒鉛とオーステナイト相とが同時に晶出する。
この凝固体が更に冷却されると、738〜727℃以下では、オーステナイト相がパーライト相に変態する。本発明では、このオーステナイト相がパーライト相に変態する温度をA1変態温度と称する。
The temperature at which the mold is opened and the cast iron product is taken out (hereinafter sometimes referred to as mold opening temperature) will be described based on the state diagram of the iron-carbon alloy shown in FIG. In the phase diagram shown in FIG. 1, in a molten iron of 3.5 wt%, solidification starts at about 1240 ° C., and an austenite (γ) phase in which carbon is dissolved in iron crystallizes. Solidification of the molten metal is completed at 1147 ° C., and the austenite phase and cementite (Fe 3 C) or graphite and austenite phase are crystallized simultaneously in the solidified body.
When this solidified body is further cooled, the austenite phase is transformed into a pearlite phase at 738 to 727 ° C. or lower. In the present invention, it referred to the temperature at which the austenite phase is transformed into pearlite phase and the A 1 transformation temperature.

本発明における型開き温度を、図1に示す鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の温度とすることによって、鋳鉄製品の易冷却部分の冷却速度を緩和して、鋳鉄製品の他部との冷却速度差を可及的に小さくした後、鋳鉄製品の全体を徐冷することによって、鋳鉄製品の冷却が終了したとき、鋳鉄製品の全体をフェライト量及び黒鉛球状化率が多く、優れた靭性を呈する鋳鉄製品を、熱処理を施すことなく得ることができる。
この型開き温度としては、具体的には、1147〜727℃とすることが好ましく、特に1147〜850℃とすることが、得られる鋳鉄製品のフェライト量を70%以上とすることができ好ましい。
かかる型開き温度を1147℃を越える温度とすると、金型内で溶湯の凝固が不完全となり易い傾向にある。
一方、型開き温度を、A1変態温度、具体的には727℃よりも低温とすると、金型を型開きして鋳鉄製品の全体を徐冷して得られる鋳鉄製品は、その硬度が高く且つフェライト量が低下するものの、抗張力及び耐力に優れている。
In the phase diagram of the iron alloy shown in FIG. 1, the mold opening temperature in the present invention is equal to or lower than the eutectic temperature at which both the austenite phase and graphite crystallize, and is equal to or higher than the A 1 transformation temperature at which the austenite phase transforms into a pearlite phase. By reducing the cooling rate of the easy-cooling part of the cast iron product and reducing the difference in cooling rate with the other part of the cast iron product as much as possible, the entire cast iron product is gradually cooled, When the cooling of the product is completed, a cast iron product having a large amount of ferrite and a high spheroidizing ratio of graphite and exhibiting excellent toughness can be obtained without heat treatment.
Specifically, the mold opening temperature is preferably 1147 to 727 ° C., and more preferably 1147 to 850 ° C., since the ferrite content of the cast iron product to be obtained can be 70% or more.
If the mold opening temperature exceeds 1147 ° C., the molten metal tends to be incompletely solidified in the mold.
On the other hand, if the mold opening temperature is lower than the A 1 transformation temperature, specifically 727 ° C., the cast iron product obtained by opening the mold and gradually cooling the entire cast iron product has a high hardness. In addition, although the ferrite content decreases, the tensile strength and proof stress are excellent.

鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成する時期(以下、隙間形成時期と称することがある)、及び金型を型開きして鋳鉄製品を取り出す時期は、原則として鋳鉄製品の温度で判断することが最適であるが、鋳造の都度、鋳鉄製品の温度を直接測定することは困難である。このため、金型内の鋳鉄製品の温度と溶湯を金型に注湯してからの経過時間との関係を測定し、金型への溶湯の注湯からの経過時間に基いて、隙間形成時期及び金型からの鋳鉄製品の取出時期を管理することが容易である。
本発明において、金型に注湯する溶湯とする鉄合金は、鉄―炭素合金を用いることが好ましく、特に、炭素(C)3.1〜3.9重量%、珪素(Si)2.0〜3.0重量%、マンガン(Mn)0.3重量%以下、燐(P)0.03重量%以下、クロム(Cr)0.10重量%以下、マグネシウム(Mg)0.018〜0.060重量%、残余鉄及び不純物から成り、且つCE値(炭素当量)4.0〜4.7重量%の鉄合金を好適に用いることができる。
When the gap is formed between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity (hereinafter sometimes referred to as gap formation timing), and when the mold is opened and the cast iron product is taken out In principle, it is best to judge from the temperature of the cast iron product, but it is difficult to directly measure the temperature of the cast iron product at every casting. Therefore, the relationship between the temperature of the cast iron product in the mold and the elapsed time since the molten metal was poured into the mold was measured, and the gap was formed based on the elapsed time from the molten metal poured into the mold. It is easy to manage the timing and the timing of removing the cast iron product from the mold.
In the present invention, an iron-carbon alloy is preferably used as the molten iron to be poured into the mold. In particular, 3.1% to 3.9% by weight of carbon (C) and 2.0% of silicon (Si) are used. -3.0% by weight, manganese (Mn) 0.3% by weight or less, phosphorus (P) 0.03% by weight or less, chromium (Cr) 0.10% by weight or less, magnesium (Mg) 0.018-0. An iron alloy composed of 060% by weight, residual iron and impurities and having a CE value (carbon equivalent) of 4.0 to 4.7% by weight can be suitably used.

ここで、炭素(C)が3.1重量%未満では、炭化物が析出し易くパーライトが多くなり、鋳鉄性が低下する傾向がある。他方、炭素(C)が3.9重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
珪素(Si)が2.0重量%未満では、炭化物が析出し易くパーライトが多くなる傾向があり、他方、3.0重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
マンガン(Mn)が0.3重量%を越えると、パーライトが多くなる傾向にあり、燐(P)が0.03重量%を越える場合、クロム(Cr)が0.10重量%を越える場合には、ステダイトによって脆くなり易くなる傾向にある。
マグネシウム(Mg)が0.018重量%未満では、黒鉛が球状化しなくなる傾向にあり、他方、0.060重量%を越えると、引け巣の発生や炭化物が析出し易くなる傾向にある。
また、CE値(炭素当量)が4.0重量%未満では、炭化物が析出し易くパーライトが多くなり、鋳鉄性が低下する傾向がある。他方、CE値(炭素当量)が4.7重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
かかる組成の溶湯を金型に注湯する際に、Si量で0.05〜0.225重量%のFe−Siを注湯接種することによって、黒鉛の微細化を図ることができる。Fe−Siの注湯接種量をSi量で0.05重量%未満とすると,黒鉛が微細化され難くなる傾向にあり、0.225重量%を越える量を注湯接種しても、黒鉛の微細化の程度は飽和に達しており、未溶解物が発生し易くなる傾向にある。
Here, if the carbon (C) is less than 3.1% by weight, carbides are likely to precipitate, pearlite is increased, and cast iron properties tend to be lowered. On the other hand, when the carbon (C) exceeds 3.9% by weight, quiche graphite is precipitated, the graphite is unevenly deposited, and the chain graphite tends to be precipitated.
When silicon (Si) is less than 2.0% by weight, carbide tends to precipitate and tends to increase pearlite. On the other hand, when it exceeds 3.0% by weight, quiche graphite is precipitated, and graphite is unevenly deposited. The chain graphite tends to be easily deposited.
When manganese (Mn) exceeds 0.3% by weight, pearlite tends to increase. When phosphorus (P) exceeds 0.03% by weight, chromium (Cr) exceeds 0.10% by weight. Tends to become brittle due to steadite.
If the magnesium (Mg) is less than 0.018% by weight, the graphite tends not to spheroidize. On the other hand, if it exceeds 0.060% by weight, shrinkage cavities and carbides tend to precipitate.
In addition, when the CE value (carbon equivalent) is less than 4.0% by weight, carbides are likely to precipitate, pearlite increases, and cast iron properties tend to decrease. On the other hand, when the CE value (carbon equivalent) exceeds 4.7% by weight, quiche graphite is precipitated, graphite is unevenly deposited, and chain graphite tends to be precipitated.
When pouring a molten metal having such a composition into a mold, it is possible to refine the graphite by pouring and injecting 0.05 to 0.225% by weight of Fe—Si. When the amount of Fe-Si poured is less than 0.05% by weight, the graphite tends to be difficult to be refined. Even if the amount exceeding 0.225% by weight is poured, The degree of refinement has reached saturation, and undissolved products tend to be generated.

本発明で用いる金型としては、湯口から注湯された溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型を、構造が簡単であるため好適に用いることができる。
ところで、従来の鋳鉄用金型としては、水冷構造又は銅等の高熱伝導材から成る金型が用いられている。かかる従来の鋳鉄用金型では、キャビティに充填された溶湯の冷却速度が著しく速く、金型に溶湯を注湯してから10秒程度でA1変態温度よりも充分に低温にまで冷却されるため、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成する隙間形成時期、及び金型からの鋳鉄製品の取出時期を管理することは困難である。
このため、本発明で用いる金型としては、かかる隙間形成時期及び取出時期を制御し得る冷却特性、具体的には、水冷構造又は銅等の高熱伝導材から成る従来の金型の冷却速度よりも緩和された冷却速度の金型を用いる。
かかる金型としては、炭素(C)が0.45重量%の鋼(S45C)から成る金型を好適に用いることができる。この金型には、水冷構造を設けることを要しない。従って、従来の水冷構造を具備する金型よりも構造が簡単となり、製造コストも安価となる。
尚、本発明で用いる金型には、従来の金型に使用されていた塗型剤は用いることができる。
As the mold used in the present invention, a gravity cast iron mold in which the molten metal poured from the gate is filled into the cavity by gravity can be suitably used because of its simple structure.
By the way, as a conventional mold for cast iron, a mold made of a water-cooled structure or a high heat conductive material such as copper is used. In such conventional cast iron mold is sufficiently cooled to a temperature lower than the A 1 transformation temperature significantly faster cooling rate of the filled molten metal into the cavity, approximately 10 seconds after pouring the molten metal into a mold Therefore, it is difficult to manage the gap formation time for forming a gap between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity and the time for taking out the cast iron product from the mold.
For this reason, as the mold used in the present invention, the cooling characteristics that can control the gap formation timing and the extraction timing, specifically, the cooling rate of a conventional mold made of a water-cooled structure or a high thermal conductive material such as copper. Also, use a mold with a moderate cooling rate.
As such a mold, a mold made of steel (S45C) containing 0.45% by weight of carbon (C) can be suitably used. This mold does not need to be provided with a water cooling structure. Therefore, the structure is simpler than the mold having the conventional water cooling structure, and the manufacturing cost is also reduced.
In addition, the mold agent used by the conventional metal mold | die can be used for the metal mold | die used by this invention.

本発明で用いる金型は、注湯した鋳鉄溶湯が凝固した鋳鉄製品をキャビティ内に保持しつつ、鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間を形成できるものであることが必要である。
かかる金型としては、鋳鉄製品の易冷却部分の外周面に接触している金型のキャビティ内壁面の少なくとも一部を後退して隙間を形成する金型を好適に用いることができる。
この金型としては、鋳鉄製品の易冷却部分の外周面と接触するキャビティの内壁面を形成する部分を、金型の他部に対し独立して移動可能に形成した分割金型を用いることができる。
かかる分割金型の一例を、二股状に分岐された二股状部が形成されるキャリパボディを鋳造する分割金型の縦断面図である図2(a)及び横断面図である図2(b)に示す。図2(a)(b)に示す分割金型は、一対の金型10,12、突出ピン14、及び移動型20によって形成されている。この移動型20は、一対の金型10,12を形成する他部に対して独立して移動可能に金型10に設けられており、一対の金型10,12のパーティング面に沿って移動する。
かかる図2(a)に示す分割金型では、一対の金型10,12、移動型20及び突出ピン14によってキャビティ16が形成される。このキャビティ16のうち、鋳鉄製品18の二股状部の先端部18a,18aを形成するB部分は、キャビティ16に注湯された鉄合金の溶湯が凝固して形成された鋳鉄製品18の他部よりも薄肉な部分であって、冷却速度の速い易冷却部分である。かかるB部分を形成するキャビティ16の内壁面の一部は、金型10に設けられた移動型20,20によって形成される。
The mold used in the present invention is capable of forming a gap between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity while holding the cast iron product solidified by the molten cast iron poured in the cavity. It is necessary to be.
As such a mold, a mold in which a gap is formed by retreating at least a part of the inner wall surface of the cavity of the mold that is in contact with the outer peripheral surface of the easily cooled portion of the cast iron product can be suitably used.
As this mold, it is possible to use a divided mold in which a portion forming the inner wall surface of the cavity that comes into contact with the outer peripheral surface of the easy-cooling portion of the cast iron product is movable independently of the other portion of the mold. it can.
An example of such a split mold is a longitudinal sectional view of a split mold for casting a caliper body in which a bifurcated portion bifurcated is formed, and FIG. ). The split mold shown in FIGS. 2A and 2B is formed by a pair of molds 10 and 12, a protruding pin 14, and a movable mold 20. The movable mold 20 is provided on the mold 10 so as to be independently movable with respect to the other parts forming the pair of molds 10 and 12, and along the parting surfaces of the pair of molds 10 and 12. Moving.
In the split mold shown in FIG. 2A, the cavity 16 is formed by the pair of molds 10, 12, the movable mold 20, and the protruding pins 14. Among the cavities 16, the portion B forming the bifurcated end portions 18 a and 18 a of the cast iron product 18 is the other part of the cast iron product 18 formed by solidification of the molten iron alloy poured into the cavity 16. It is an easily cooled part that is thinner than that and has a high cooling rate. A part of the inner wall surface of the cavity 16 forming the portion B is formed by the movable dies 20 and 20 provided in the mold 10.

一対の金型10,12内に形成されたキャビティ16内に注湯された鉄合金の溶湯が凝固して形成された鋳鉄製品18のうち、キャビティ16のB部分によって形成された先端部18a,18aは、前述した様に、鋳鉄製品18の他部よりも冷却速度が速い易冷却部分である。このため、一対の金型10,12の型開き前に、図3(a)に示す様に、B部分の内壁面の一部を形成する移動型20がスライドして、先端部18aの外周面との間に隙間22を形成する。かかる隙間22を形成することによって金型10,12への熱引きを阻止でき、先端部18aに移動型20が接触していた場合に比較して、先端部18aの冷却速度を緩和できる。このため、鋳鉄製品18の先端部18aと他部との冷却速度差を可及的に小さくできる。
かかる隙間22を形成する時期は、溶湯をキャビティに注湯してからの経過時間で管理することが好ましい。
例えば、鋳鉄製品18の先端部18a,18aの温度変化について、溶湯をキャビティに注湯してから、鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の所望温度に到達するまでの時間を計測しておき、溶湯をキャビティに注湯してから所定時間経過して時点で、移動型20を移動して隙間22を形成する。
或いは、鋳鉄製品18の先端部18a,18aと本体部との硬度を測定し、先端部18a,18aの硬度が本体部と略等しくなるように、移動型20の移動時期を調整してもよい。
次いで、鋳鉄製品18の他部が室温以上の所定温度に到達し、図3(b)に示す様に、一対の金型10,12を型開きし、図3(c)に示す様に、金型12に設けられた突出ピン14によって一対の金型10,12のパーティング面から突出された鋳鉄製品18の全体は略同一温度に冷却されている。
更に、かかる鋳鉄製品18を空気中で徐冷することによって、硬度等のバラツキを可及的に小さい鋳鉄製品18を得ることができる。
尚、移動型20を金型10から抜き出してもよいが、図3(a)に示す様に、移動型20を金型10から抜き出すことなく隙間22を形成することによって、隙間22内の空気が金型10外の空気と置換され難いため、隙間22の温度を一定に保持でき、鋳鉄製品18の先端部18aの冷却速度を充分に緩和できる。
Of the cast iron product 18 formed by solidification of the molten iron alloy poured into the cavity 16 formed in the pair of molds 10, 12, the tip 18 a formed by the B portion of the cavity 16, 18a is an easy cooling part whose cooling rate is faster than the other part of the cast iron product 18, as described above. Therefore, before the pair of molds 10 and 12 are opened, as shown in FIG. 3A, the movable mold 20 that forms a part of the inner wall surface of the portion B slides, and the outer periphery of the tip end portion 18a. A gap 22 is formed between the surfaces. By forming such a gap 22, it is possible to prevent heat from being drawn to the molds 10 and 12, and the cooling rate of the tip 18 a can be reduced as compared with the case where the movable die 20 is in contact with the tip 18 a. For this reason, the cooling rate difference of the front-end | tip part 18a and the other part of the cast iron product 18 can be made as small as possible.
The timing for forming the gap 22 is preferably managed by the elapsed time after the molten metal is poured into the cavity.
For example, regarding the temperature change of the tip portions 18a, 18a of the cast iron product 18, after pouring the molten metal into the cavity, in the phase diagram of the iron alloy, the temperature is below the eutectic temperature at which both the austenite phase and graphite are crystallized, and austenite phase advance by measuring the time to reach the a 1 transformation temperature or more desired temperatures to be transformed into pearlite phase, a molten metal at the time the predetermined time has elapsed since the pouring into the cavity, moving the mobile 20 The gap 22 is formed.
Or the hardness of the front-end | tip parts 18a and 18a and the main-body part of the cast iron product 18 may be measured, and the movement time of the movable mold | type 20 may be adjusted so that the hardness of the front-end | tip parts 18a and 18a may become substantially equal to a main-body part. .
Next, the other part of the cast iron product 18 reaches a predetermined temperature equal to or higher than room temperature, and as shown in FIG. 3B, the pair of molds 10 and 12 are opened, and as shown in FIG. The entire cast iron product 18 projecting from the parting surfaces of the pair of molds 10 and 12 is cooled to substantially the same temperature by the projecting pins 14 provided on the mold 12.
Furthermore, by gradually cooling the cast iron product 18 in the air, it is possible to obtain the cast iron product 18 with as small a variation as possible in hardness.
Although the movable mold 20 may be extracted from the mold 10, the air in the gap 22 can be formed by forming the gap 22 without extracting the movable mold 20 from the mold 10 as shown in FIG. However, since it is difficult to replace the air outside the mold 10, the temperature of the gap 22 can be kept constant, and the cooling rate of the tip 18 a of the cast iron product 18 can be sufficiently relaxed.

図2及び図3に示す分割金型に代えて、図4(a)(b)に示す一対の金型を用いることができる、図4(a)は、この一対の金型の縦断面図であり、図4(b)は、この一対の金型の横断面図である。
図4(a)(b)に示す一対の金型10,12では、鋳鉄製品18の先端部18a,18aの各外周面と先端面が接触するピン24,24を具備する。このピン24,24は、一対の金型10,12を形成する他部に対して独立して移動可能に金型10に設けられており、一対の金型10,12のパーティング面に沿って移動する。
かかるピン24も、一対の金型10,12内で冷却される鋳鉄製品18に対し、図5に示す様に、スライドして先端部18aの外周面との間に隙間26を形成する。かかる隙間26を形成することによって、先端部18aにピン24が接触していた場合に比較して、先端部18aの冷却速度を緩和できる。
かかる隙間26を形成する時期も、図2及び図3に示す分割金型の場合と同様にして、鉄合金の溶湯をキャビティに注湯してから所定時間経過して時点で、ピン24をスライドして隙間26を形成する。
A pair of molds shown in FIGS. 4A and 4B can be used in place of the split mold shown in FIGS. 2 and 3. FIG. 4A is a longitudinal sectional view of the pair of molds. FIG. 4B is a cross-sectional view of the pair of molds.
The pair of molds 10 and 12 shown in FIGS. 4 (a) and 4 (b) includes pins 24 and 24 that contact the outer peripheral surfaces of the tip portions 18 a and 18 a of the cast iron product 18 with the tip surfaces. The pins 24 and 24 are provided on the mold 10 so as to be independently movable with respect to the other portions forming the pair of molds 10 and 12, and extend along the parting surfaces of the pair of molds 10 and 12. Move.
Such a pin 24 also slides with respect to the cast iron product 18 cooled in the pair of molds 10 and 12, as shown in FIG. 5, and forms a gap 26 between the outer peripheral surface of the tip end portion 18a. By forming the gap 26, the cooling rate of the tip 18a can be reduced as compared with the case where the pin 24 is in contact with the tip 18a.
When the gap 26 is formed, the pin 24 is slid when a predetermined time elapses after the molten iron alloy is poured into the cavity, as in the case of the split mold shown in FIGS. Thus, the gap 26 is formed.

また、金型12に設けられた突出ピン14の先端面と当接する鋳鉄製品18の当接面側に他部よりも冷却され易い易冷却部である薄肉部18bが形成される場合には、図6(a)に示す様に、突出ピンを兼ね備えた移動型28を設けてもよい。この移動型28は、一対の金型10,12のパーティング面に対して直交する方向に移動可能に設けられている。
図6(a)に示す一対の金型10,12内に形成されたキャビティ16内に注湯された溶湯が凝固して形成された鋳鉄製品18のうち、キャビティ16のB部分によって形成された他部よりも薄肉部18bに対し、図6(b)に示す様に、移動型28がスライドして、先端部18aの外周面との間に隙間30を形成する。かかる隙間30を形成することによって、薄肉部18bの冷却速度を緩和し、鋳鉄製品18の他部との冷却速度差を可及的に小さくできる。
次いで、鋳鉄製品18の他部が室温以上の所定温度に到達したとき、図6(c)に示す様に、一対の金型10,12を型開きし、図6(d)に示す様に、移動型28によって一対の金型10,12のパーティング面から鋳鉄製品18を突出する。
Further, when the thin portion 18b, which is an easy-cooling portion that is more easily cooled than the other portion, is formed on the contact surface side of the cast iron product 18 that contacts the tip surface of the protruding pin 14 provided in the mold 12, As shown in FIG. 6 (a), a movable die 28 having a protruding pin may be provided. The movable mold 28 is provided so as to be movable in a direction orthogonal to the parting surfaces of the pair of molds 10 and 12.
6A. Of the cast iron product 18 formed by solidification of the molten metal poured into the cavity 16 formed in the pair of molds 10 and 12 shown in FIG. As shown in FIG. 6B, the movable mold 28 slides relative to the thinner portion 18b than the other portion to form a gap 30 between the outer peripheral surface of the distal end portion 18a. By forming the gap 30, the cooling rate of the thin portion 18 b can be relaxed, and the difference in cooling rate with the other portion of the cast iron product 18 can be made as small as possible.
Next, when the other part of the cast iron product 18 reaches a predetermined temperature equal to or higher than room temperature, the pair of molds 10 and 12 are opened as shown in FIG. 6 (c), and as shown in FIG. 6 (d). The cast iron product 18 is projected from the parting surfaces of the pair of molds 10 and 12 by the movable die 28.

更に、内部に筒状部が形成された鋳鉄製品18を鋳造する際には、中子を具備する一対の金型を用いる。この一対の金型の一例を図7(a)(b)に示す。図7(a)は中子を具備する一対の金型の縦断面図であり、図7(b)はその横断面図である。
図7(a)(b)に示す一対の金型10,12は、鋳鉄製品18の内部に筒状部32を形成すべく、円柱状の中子34の先端部が、鋳鉄製品18の二股状部の先端部18a,18aを形成するキャビティ16の間を通過してキャビティ16内に挿入されている。
この中子34の後端部側に形成された、シリンダー状部34aには、ロッド36の先端部に設けられたピストン36aが挿入されている。
かかるロッド36の後端部36bに固着された板上体38には、ピン40の後端部が固着されている。このピン40の先端面は、鋳鉄製品18の先端部18aを形成するキャビティ16のB部分を形成する内壁面の一部を構成する。
かかるピン40は、図7(b)に示す様に、二本設けられており、ピン40,40の各先端面は、鋳鉄製品18の先端部18a,18aの各々を形成するキャビティ16の内壁面の一部を構成している。この部分をB部分として示している。
図7(a)(b)に示す一対の金型10,12内に形成されたキャビティ16内に注湯された鉄合金の溶湯が凝固して形成された鋳鉄製品18のうち、キャビティ16のB部分によって形成された先端部18aに対し、図8(a)に示す様に、中子34の後端部側は形成されたシリンダー状部34aに挿入されたピストン36aが中子34の後端側に移動し、ロッド36の後端部36bに固着された板上体38に後端部が固着されているピン40もロッド36と共に移動する。このピン40が移動する際には、中子34は移動しない。
かかるピン40の移動によって、鋳鉄製品18の先端部18aとの間に隙間42が形成される。かかる隙間42を形成することによって、先端部18aの冷却速度を緩和し、鋳鉄製品18の他部との冷却速度差を可及的に小さくできる。
次いで、鋳鉄製品18の他部が室温以上の所定温度に到達したとき、図8(b)に示す様に、中子34及びピン40の全体を一対の金型10,12から引き抜いた後、図8(c)に示す様に、一対の金型10,12の型開きして鋳鉄製品18を取り出す。
Furthermore, when casting the cast iron product 18 in which the cylindrical part is formed, a pair of molds having a core is used. An example of the pair of molds is shown in FIGS. Fig.7 (a) is a longitudinal cross-sectional view of a pair of metal mold | die which comprises a core, FIG.7 (b) is the cross-sectional view.
A pair of molds 10 and 12 shown in FIGS. 7 (a) and 7 (b) has a cylindrical core 34 having a bifurcated portion of the cast iron product 18 so that a cylindrical portion 32 is formed inside the cast iron product 18. It passes between the cavities 16 forming the tip portions 18 a and 18 a of the shape-like portions and is inserted into the cavities 16.
A piston 36 a provided at the tip of the rod 36 is inserted into a cylindrical part 34 a formed on the rear end side of the core 34.
The rear end portion of the pin 40 is fixed to the plate upper body 38 fixed to the rear end portion 36b of the rod 36. The tip surface of the pin 40 constitutes a part of the inner wall surface forming the B portion of the cavity 16 that forms the tip portion 18 a of the cast iron product 18.
As shown in FIG. 7 (b), two pins 40 are provided, and the tip surfaces of the pins 40, 40 are inside the cavities 16 that form the tip portions 18 a, 18 a of the cast iron product 18. It constitutes a part of the wall surface. This part is shown as part B.
Of the cast iron product 18 formed by solidification of the molten iron alloy poured into the cavity 16 formed in the pair of molds 10 and 12 shown in FIGS. As shown in FIG. 8 (a), the piston 36 a inserted into the cylindrical portion 34 a formed on the rear end side of the core 34 is located behind the core 34, as shown in FIG. The pin 40 which moves to the end side and whose rear end portion is fixed to the plate body 38 fixed to the rear end portion 36 b of the rod 36 also moves together with the rod 36. When the pin 40 moves, the core 34 does not move.
By such movement of the pin 40, a gap 42 is formed between the cast iron product 18 and the tip end portion 18a. By forming such a gap 42, the cooling rate of the tip 18a can be relaxed and the difference in cooling rate with the other part of the cast iron product 18 can be made as small as possible.
Next, when the other part of the cast iron product 18 reaches a predetermined temperature equal to or higher than room temperature, as shown in FIG. 8B, after the core 34 and the pin 40 are pulled out from the pair of molds 10 and 12, As shown in FIG. 8C, the pair of molds 10 and 12 are opened and the cast iron product 18 is taken out.

この様に金型から取り出した鋳造製品を、その金型内での冷却速度よりも遅い冷却速度で徐冷することが大切である。
この金型から取り出した鋳鉄製品の冷却速度を、鋳鉄製品を金型内での冷却速度と同等以上とすると、冷却された鋳鉄製品は、パーライト化率が高くなり、フェライト量が低下したものとなる。
かかる徐冷は、金型から取り出した鋳鉄製品を室温下で放冷することによって達成できる。
この様に、水冷構造を有しない金型内での鋳鉄製品の冷却速度を、室温下で鋳鉄製品を放冷する場合よりも速くできるのは以下のように考えられる。
本発明では、金型内で冷却される鋳鉄製品の易冷却部分に対し、易冷却部分の外周面とキャビティの内壁面との間に隙間を形成して、易冷却部分の冷却速度を緩和した後、鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、金型を型開きするため、金型は注湯後短時間で型開きされて、冷却途中で高温状態にある鋳鉄製品を取り出される。このため、水冷構造を有しない金型でも、注湯された溶湯の凝固及び鋳鉄製品に因る型温度の上昇が抑制された状態で冷却されており、次に注湯される溶湯の凝固及び鋳鉄製品を取り出す取出温度までの熱量を充分に吸収し得る熱容量を有する。
また、溶湯及び鋳鉄製品から金型への伝熱は、鋳鉄製品から空気への伝熱に比較して良好である。
したがって、冷却状態の金型に注湯された溶湯が凝固された鋳鉄製品の冷却速度は、室温下で鋳鉄製品を放冷する場合よりも速くなる。
尚、金型での鋳鉄製品の冷却速度が、室温下で鋳鉄製品を放冷する場合と同等以下であるときは、溶湯を注湯した金型及び鋳鉄製品を取り出した金型の一方又は両方に冷風等を吹き付けて強制冷却を施してもよい。
In this way, it is important that the cast product taken out from the mold is gradually cooled at a cooling rate slower than the cooling rate in the mold.
If the cooling rate of the cast iron product taken out from the mold is equal to or higher than the cooling rate of the cast iron product in the mold, the cooled cast iron product has a higher pearlite ratio and a reduced ferrite content. Become.
Such slow cooling can be achieved by allowing the cast iron product taken out from the mold to cool at room temperature.
In this way, it is considered that the cooling rate of the cast iron product in the mold having no water cooling structure can be made faster than the case where the cast iron product is allowed to cool at room temperature.
In the present invention, with respect to the easy cooling part of the cast iron product cooled in the mold, a clearance is formed between the outer peripheral surface of the easy cooling part and the inner wall surface of the cavity to reduce the cooling rate of the easy cooling part. Later, when the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened in a short time after pouring, and the mold is opened in a short time after pouring and is in a high temperature state during cooling. The cast iron product in is taken out. For this reason, even in a mold that does not have a water cooling structure, the molten metal that has been poured is cooled in a state in which the solidification of the molten metal and the rise in the mold temperature caused by the cast iron product are suppressed. It has a heat capacity that can sufficiently absorb the amount of heat up to the extraction temperature at which the cast iron product is taken out.
Also, heat transfer from the molten metal and cast iron product to the mold is better than heat transfer from the cast iron product to air.
Therefore, the cooling rate of the cast iron product obtained by solidifying the molten metal poured into the mold in the cooled state is faster than when the cast iron product is allowed to cool at room temperature.
In addition, when the cooling rate of the cast iron product in the mold is equal to or less than that when the cast iron product is allowed to cool at room temperature, one or both of the mold into which the molten metal is poured and the mold from which the cast iron product is taken out Forcible cooling may be performed by blowing cold air or the like.

以上、説明してきた本発明に係る鋳鉄方法によれば、フェライト量が多く靭性に優れた、球状黒鉛鋳鉄から成る鋳鉄製品を迅速に得ることができる。
特に、金型を型開きして鋳鉄製品を取り出す温度を、1147〜850℃とすることによって、鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が70%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。この鋳鉄製品は、FCD450に相当するものであり、自動車部品等に用いられる。
ここで、金型を型開きして鋳鉄製品を取り出す温度を、727℃〜850℃未満とした場合には、鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が60〜70%であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。この鋳鉄製品は、FCD550に相当するものである。
As described above, according to the cast iron method according to the present invention described above, a cast iron product made of spheroidal graphite cast iron having a large amount of ferrite and excellent toughness can be quickly obtained.
In particular, by setting the temperature at which the mold is opened and the cast iron product is taken out to 1147 to 850 ° C., the ferrite amount measured by a metallographic micrograph of the cast iron product is 70% or more, and the grain size is 5 μm or more. A cast iron product having a graphite particle count of 900 particles / mm 2 or more and a graphite spheroidization ratio occupied by spherical graphite particles of 70% or more among graphite particles can be obtained. This cast iron product corresponds to FCD450 and is used for automobile parts and the like.
Here, when the temperature at which the mold is opened and the cast iron product is taken out is 727 ° C. to less than 850 ° C., the ferrite amount measured by a metallographic micrograph of the cast iron product is 60 to 70%, A cast iron product can be obtained in which the number of graphite particles having a particle diameter of 5 μm or more is 900 particles / mm 2 or more, and among the graphite particles, the graphite spheroidization ratio occupied by the spherical graphite particles is 70% or more. This cast iron product corresponds to FCD550.

後述する様に、FCD450に相当する2.5kg程度の鋳鉄製品を、水冷構造を具備しないS45C材の金型を用いて本発明に係る鋳鉄方法によって鋳造すると、金型に溶湯を注湯してから70秒程度で型開きして鋳鉄製品を取り出し放冷することによって得ることができる。
これに対し、FCD450に相当する2.5kg程度の鋳鉄製品を、従来の水冷構造の金型を用いた鋳鉄方法で得るには、水冷構造の金型から冷却された鋳鉄製品を取り出すまでの所要時間は約10秒程度であるが、取り出された鋳鉄製品に熱処理を施すことが必要であり、この熱処理に約45分程度必要である。
また、FCD450に相当する2.5kg程度の鋳鉄製品を従来の砂型を用いて鋳造すると、砂型に溶湯を注湯してから冷却された鋳鉄製品を取り出すまでに約45分程度必要である。
As described later, when a cast iron product of about 2.5 kg corresponding to FCD450 is cast by the cast iron method according to the present invention using a mold of S45C material that does not have a water cooling structure, a molten metal is poured into the mold. Then, the mold can be opened in about 70 seconds, and the cast iron product can be taken out and allowed to cool.
In contrast, in order to obtain a cast iron product of about 2.5 kg corresponding to FCD450 by a conventional cast iron method using a water-cooled mold, it is necessary to take out the cooled cast iron product from the water-cooled mold. Although the time is about 10 seconds, it is necessary to heat-treat the extracted cast iron product, and this heat treatment requires about 45 minutes.
Further, when a cast iron product of about 2.5 kg corresponding to FCD450 is cast using a conventional sand mold, it takes about 45 minutes from pouring the molten metal into the sand mold and taking out the cooled cast iron product.

この様に、本発明に係る鋳鉄方法によれば、従来の水冷構造又は銅等の高熱伝導材から成る金型を用いた鋳鉄方法や砂型を用いた鋳鉄方法に比較して、短時間でフェライト量が多く靭性に優れた、球状黒鉛鋳鉄から成る鋳鉄製品を迅速に得ることができる。
更に、本発明では、従来の水冷構造又は銅等の高熱伝導材から成る金型に比較して、金型での鋳鉄製品の冷却速度が緩和された金型を用いることができ、水冷構造等の特殊構造を不要にできるため、金型の構造を簡単化した安価な金型用いることができ、鋳鉄製品の製造コストの低減を図ることができる。
また、本発明に係る鋳鉄方法によれば、従来の砂型を用いる鋳鉄方法に比較して、砂型の造型機、砂の回収、冷却、搬送、混錬再製等の砂処理設備を不要化でき、鋳鉄プラントの設備投資を低減できる。
As described above, according to the cast iron method of the present invention, ferrite can be produced in a short time compared to the conventional cast iron method using a water-cooled structure or a mold made of a high heat conductive material such as copper or the cast iron method using a sand mold. A cast iron product made of spheroidal graphite cast iron having a large amount and excellent toughness can be obtained quickly.
Furthermore, in the present invention, compared with a conventional water-cooled structure or a mold made of a high heat conductive material such as copper, a mold in which the cooling rate of cast iron products in the mold is relaxed can be used. Since the special structure can be made unnecessary, an inexpensive mold with a simplified mold structure can be used, and the production cost of cast iron products can be reduced.
Further, according to the cast iron method according to the present invention, compared to the conventional cast iron method using a sand mold, a sand mold making machine, sand collection, cooling, transport, kneading remanufacturing and the like can be eliminated, Capital investment in cast iron plant can be reduced.

(1)金型:重力鋳鉄用金型として、炭素(C)が0.45重量%の鋼(S45C)から成る金型を作成した。この金型には、水冷構造を設けなかった。かかる金型で鋳造できる鋳鉄製品は、二股状部が形成されたキャリパボディである。
本実施例で用いる金型は、図2(a)(b)に示す分割金型であって、一対の金型10,12、突出ピン14、及び移動型20によって形成されている。移動型20は、金型10に設けられており、キャリパボディの二股状部を形成するキャビティ16の先端部を形成する、この移動型20は、一対の金型10,12のパーティング面に沿って移動する。
(2)溶湯:炭素(C)3.1〜3.9重量%、珪素(Si)2.0〜3.0重量%、マンガン(Mn)0.3重量%以下、燐(P)0.03重量%以下、クロム(Cr)0.10重量%以下、マグネシウム(Mg)0.018〜0.060重量%、微量の硫黄(S)、銅(Cu)から成り、且つCE値(炭素当量)4.0〜4.7重量%の鉄合金を溶融して溶湯とした。この鉄合金の凝固完了温度は1145℃であり、A1変態温度は730〜727℃である。
(3)金型内での鋳鉄製品の冷却曲線
作成した金型の湯口に溶湯を注湯し、その際に、Si量で0.20重量%のFe−Siを注湯接種した。
また、この金型に溶湯を注湯して鋳造製品を鋳造する捨て打ちを4回行なった後、金型の湯口から挿入した熱伝対によって、金型内の鋳鉄製品本体部の温度を測定して冷却曲線を求めた。結果を図9のグラフとして示す。
図9に示すグラフは、金型の湯口に溶湯の注入開始からの経過時間と鋳鉄製品の温度との関係を示す。
図9に示すグラフから明らかな様に、金型の湯口から注湯された溶湯は、注湯開始から40秒後に凝固し、金型内の鋳鉄製品は600℃近傍まで経時時間に対して直線的に冷却されることを示しているため、金型内の鋳鉄製品は、その鉄合金のA1変態温度近傍においても、溶湯が凝固した直後と略同等の冷却速度で冷却される。
尚、鋳鉄製品が600℃に冷却されるまでの冷却曲線の直線の傾きから鋳鉄製品の金型内での冷却速度を求めると、4.5℃/秒(800℃まで)〜1.17℃/秒(800〜600℃)である。
(4)移動型20の移動開始時期
鋳鉄製品であるキャリパボディの二股状部の先端部とキャリパボディの本体部との硬度を測定し、先端部の硬度が本体部と略等しくなるように移動型20の移動時期を決定した。
(1) Mold: As a mold for gravity cast iron, a mold made of steel (S45C) with 0.45% by weight of carbon (C) was prepared. This mold was not provided with a water cooling structure. A cast iron product that can be cast with such a mold is a caliper body having a bifurcated portion.
The mold used in the present embodiment is a split mold shown in FIGS. 2A and 2B, and is formed by a pair of molds 10 and 12, protruding pins 14, and a movable mold 20. The movable mold 20 is provided in the mold 10 and forms the tip of the cavity 16 forming the bifurcated portion of the caliper body. The movable mold 20 is formed on the parting surfaces of the pair of molds 10 and 12. Move along.
(2) Molten metal: 3.1 to 3.9% by weight of carbon (C), 2.0 to 3.0% by weight of silicon (Si), 0.3% by weight or less of manganese (Mn), 0.8% of phosphorus (P). 03 wt% or less, chromium (Cr) 0.10 wt% or less, magnesium (Mg) 0.018 to 0.060 wt%, trace amount of sulfur (S), copper (Cu), and CE value (carbon equivalent) ) 4.0 to 4.7% by weight of an iron alloy was melted to form a molten metal. The solidification completion temperature of this iron alloy is 1145 ° C., and the A 1 transformation temperature is 730 to 727 ° C.
(3) Cooling curve of the cast iron product in the mold The molten metal was poured into the pouring gate of the prepared mold, and at that time, 0.20% by weight of Fe—Si in terms of Si amount was poured and inoculated.
In addition, after casting was cast four times by pouring molten metal into this mold, the temperature of the cast iron product main body in the mold was measured by a thermocouple inserted from the mold gate. Then, a cooling curve was obtained. The results are shown as a graph in FIG.
The graph shown in FIG. 9 shows the relationship between the elapsed time from the start of pouring molten metal into the mold gate and the temperature of the cast iron product.
As is apparent from the graph shown in FIG. 9, the molten metal poured from the pouring gate of the mold solidifies after 40 seconds from the start of pouring, and the cast iron product in the mold is linear with respect to the elapsed time up to about 600 ° C. it indicates that an manner being cooled, the cast iron product in the mold, also in the a 1 transformation temperature near the iron alloy is cooled immediately after the melt has solidified substantially equal cooling rate.
When the cooling rate in the mold of the cast iron product is determined from the slope of the cooling curve until the cast iron product is cooled to 600 ° C., 4.5 ° C./second (up to 800 ° C.) to 1.17 ° C. / Sec (800 to 600 ° C.).
(4) Movement start time of the movable die 20 The hardness of the tip of the bifurcated portion of the caliper body, which is a cast iron product, and the body of the caliper body is measured, and the tip is moved so that the hardness is substantially equal to that of the body. The moving time of the mold 20 was determined.

実施例1で作成した金型に溶湯を注湯して鋳造製品を鋳造する捨て打ちを4回行なった後、この金型の湯口に、炭素(C)3.47重量%、珪素(Si)2.71重量%、マンガン(Mn)0.21重量%以下、燐(P)0.02重量%、クロム(Cr)0.04重量%、硫黄(S)0.007重量%、マグネシウム(Mg)0.023重量%、銅(Cu)0.04重量%から成り、且つCE値(炭素当量)4.37重量%の鉄合金を溶融して得た溶湯を注湯した。その際に、Si量で0.20重量%のFe−Siを注湯接種した。Fe−Siを注湯接種した溶湯のオーステナイト相と黒鉛とが共に晶出する共晶温度は1148℃であり、オーステナイト相がパーライト相に変態するA1変態温度が727℃である。 After casting was performed four times by pouring molten metal into the mold created in Example 1 to cast a cast product, 3.47% by weight of carbon (C) and silicon (Si) were added to the mold gate. 2.71 wt%, manganese (Mn) 0.21 wt% or less, phosphorus (P) 0.02 wt%, chromium (Cr) 0.04 wt%, sulfur (S) 0.007 wt%, magnesium (Mg ) A molten metal obtained by melting an iron alloy composed of 0.023 wt%, copper (Cu) 0.04 wt% and having a CE value (carbon equivalent) of 4.37 wt% was poured. At that time, molten iron was inoculated with 0.20% by weight of Fe-Si. The eutectic temperature at which both the austenite phase and graphite of the molten metal infused with Fe—Si crystallize is 1148 ° C., and the A 1 transformation temperature at which the austenite phase transforms into a pearlite phase is 727 ° C.

金型の湯口に溶湯の注湯開始から40秒後に移動型20を移動し、鋳鉄製品であるキャリパボディの二股状部の先端部外周面とキャビティの内壁面との間に隙間を形成した。
次いで、金型の湯口に溶湯の注湯開始から109秒後に型開きして鋳鉄製品を取り出し、室温下で空冷した。この鋳鉄製品の金型からの取出温度は、図9に示すグラフから930℃である。また、空冷における鋳鉄製品の冷却速度は、2.17℃/秒(800℃まで)〜0.67℃/秒(800〜600℃)であって、金型内での鋳鉄製品の冷却速度[4.5℃/秒(800℃まで)〜1.17℃/秒(800〜600℃)]よりも遅い。
冷却された鋳鉄製品であるキャリパボディの二股状部の先端部と本体中央部とについて、材料組織及び硬度について測定した。
材料組織については、二股状部の先端部(A)と本体中央部(B)との各部位から採取したサンプルの表面を顕微鏡で100倍に拡大し、所定範囲に存在する5μm以上の黒鉛粒子数を数えると共に、5μm以上の黒鉛粒子数の総数に対する黒鉛球状化率を測定した。この黒鉛球状化率は、JIS G5502 12.6の黒鉛球状化率判定試験方法に準拠して行った。
得られた鋳鉄製品においては、先端部(A)では、5μm以上の黒鉛粒子数の総数が1335個/mm2で且つ黒鉛球状化率は80.4%であり、本体中央部(B)では、5μm以上の黒鉛粒子数の総数が1098個/mm2で且つ黒鉛球状化率は75.9%であった。
サンプルの表面を100倍に拡大した顕微鏡組織写真を図10に示す。図10に示すAは二股状部の先端部のものであり、Bは本体中央部のものである。
The movable mold 20 was moved 40 seconds after the start of pouring of the molten metal into the mold spout, and a gap was formed between the outer peripheral surface of the bifurcated portion of the caliper body, which is a cast iron product, and the inner wall surface of the cavity.
Next, the mold was opened 109 seconds after the start of pouring of the molten metal into the mold spout, and the cast iron product was taken out and air-cooled at room temperature. The temperature at which the cast iron product is taken out from the mold is 930 ° C. from the graph shown in FIG. Moreover, the cooling rate of the cast iron product in air cooling is 2.17 ° C./second (up to 800 ° C.) to 0.67 ° C./second (800 to 600 ° C.), and the cooling rate of the cast iron product in the mold [ 4.5 ° C./second (up to 800 ° C.) to 1.17 ° C./second (800 to 600 ° C.)].
The material structure and hardness of the bifurcated portion of the caliper body, which is a cooled cast iron product, and the central portion of the main body were measured.
Regarding the material structure, the surface of the sample collected from each part of the bifurcated tip (A) and the central part (B) of the main body is magnified 100 times with a microscope, and graphite particles of 5 μm or more existing in a predetermined range While counting the number, the graphite spheroidization ratio with respect to the total number of graphite particles of 5 μm or more was measured. This graphite spheroidization rate was carried out in accordance with the graphite spheroidization rate judgment test method of JIS G5502 12.6.
In the obtained cast iron product, the total number of graphite particles of 5 μm or more is 1335 / mm 2 and the spheroidization ratio of graphite is 80.4% at the tip (A), and at the center (B) of the main body. The total number of graphite particles of 5 μm or more was 1098 particles / mm 2 and the graphite spheroidization ratio was 75.9%.
A micrograph of the sample surface magnified 100 times is shown in FIG. A shown in FIG. 10 is the tip of the bifurcated portion, and B is the central portion of the main body.

更に、二股状部の先端部(A)と本体中央部(B)との各部位から採取したサンプルをナイタール液に浸漬してエッチング処理を施した後、サンプル表面を顕微鏡で100倍に拡大し、フェライト量(%)を調査した。このフェライト量は、JIS G5502 12.6の基地組織判定方法に準拠して測定した。
エッチング処理を施したサンプル表面を100倍に拡大した顕微鏡組織写真を図11に示す。図11に示すAは二股状部の先端部のものであり、Bは本体中央部のものである。
図11に示す顕微鏡組織写真において、球状の黒い部分が黒鉛であり、その周囲を覆う白い部分がフェライト相である。フェライト量(%)は、視野の異なる5箇所で測定し、その測定値の平均値を採用した。
得られた鋳鉄製品においては、二股状部の先端部(A)では、フェライト量が77.8%であり、本体中央部(B)では、フェライト量が90.6%であった。
Furthermore, after the sample collected from each part of the tip part (A) of the bifurcated part and the central part (B) of the main body is immersed in a nital solution and etched, the surface of the sample is magnified 100 times with a microscope. The amount of ferrite (%) was investigated. This ferrite content was measured in accordance with the base structure judgment method of JIS G5502 12.6.
FIG. 11 shows a micrograph of the microstructure of the sample surface subjected to the etching process, magnified 100 times. A shown in FIG. 11 is the tip of the bifurcated portion, and B is the center of the main body.
In the micrograph shown in FIG. 11, the spherical black part is graphite, and the white part covering the periphery is the ferrite phase. The ferrite amount (%) was measured at five locations with different fields of view, and the average value of the measured values was adopted.
In the obtained cast iron product, the ferrite content was 77.8% at the tip portion (A) of the bifurcated portion, and the ferrite content was 90.6% at the central portion (B) of the main body.

また、二股状部の先端部(A)と本体中央部(B)との各部位から採取したサンプルについて、市販されている硬度計を用いてHRB硬度を測定した。得られた鋳鉄製品では、二股状部の先端部(A)のHRB硬度は90.0であり、本体中央部(B)のHRB硬度は84.5であった。
この様に、得られた鋳鉄製品では、二股状部の先端部(A)と本体中央部(B)とは、材料組織及び硬度に若干の相違が認められるが、FCD450に相当する材料である。
Moreover, HRB hardness was measured about the sample extract | collected from each site | part of the front-end | tip part (A) of a bifurcated part and a main-body center part (B) using the commercially available hardness meter. In the obtained cast iron product, the HRB hardness of the tip portion (A) of the bifurcated portion was 90.0, and the HRB hardness of the main body central portion (B) was 84.5.
In this way, in the obtained cast iron product, the tip part (A) of the bifurcated part and the central part (B) of the main body are materials corresponding to FCD450 although some differences in material structure and hardness are recognized. .

実施例2と同様にしてキャリパボディの鋳鉄製品を鋳造した。この鋳造の際に、金型の湯口に溶湯の注湯開始から金型の型開きするまでの離型時間を下記表1に示す様に、種々変更して行い、取り出した鋳鉄製品を室温下で空冷した。この金型の型開きした際の鋳鉄製品温度(離型製品温度)を表1に併せて示した。この際に、移動型20を移動する移動時期は、実施例1と同時期とした。
冷却が終了した鋳鉄製品の二股状部の先端部(A)及び本体中央部(B)の各々から採取したサンプルの各々について、実施例2と同様にして黒鉛粒数、HRB硬度、黒鉛球状化率、フェライト量を測定した結果を、下記表2に示す。
更に、鋳鉄製品の各々について、抗張力、耐力及び伸びについても測定し、下記表3に示す。
A caliper body cast iron product was cast in the same manner as in Example 2. During the casting, the mold release time from the start of pouring of the molten metal into the mold spout until the mold opening was changed as shown in Table 1 below. And air cooled. The cast iron product temperature (mold release product temperature) when the mold is opened is also shown in Table 1. At this time, the moving time for moving the movable mold 20 was set to be the same as that in Example 1.
For each of the samples taken from the tip portion (A) and the central portion (B) of the bifurcated portion of the cast iron product after cooling, the number of graphite grains, HRB hardness, and graphite spheroidization were the same as in Example 2. The results of measuring the rate and the ferrite content are shown in Table 2 below.
Further, for each of the cast iron products, the tensile strength, proof stress and elongation were also measured and are shown in Table 3 below.

表1、表2及び表3から明らかな様に、No.2、No.3及びNo.4の水準では、金型に注湯する溶湯のA1変態温度以上である1060℃(No.2)、930℃(No。3)又は765℃(No.4)で金型から鋳鉄製品を取り出し、空冷することによって、二股状部の先端部(A)及び本体中央部(B)において、フェライト量が60%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。特に、鋳鉄製品の取出温度を850℃以上としたNo.2及びNo.3の水準では、本体中央部(B)において、フェライト量が90%以上の鋳鉄製品を得ることができ、就中、鋳鉄製品の取出温度を1000℃以上としたNo.2の水準では、二股状部の先端部(A)及び本体中央部(B)においても、フェライト量が90%以上の鋳鉄製品を得ることができる。
これに対し、金型からの鋳鉄製品の取出温度を、溶湯のA1変態温度である727℃未満の温度としたNo.1及びNo.5の水準では、二股状部の先端部(A)では、フェライト量が60%未満の鋳鉄製品であった。かかる鋳鉄製品では、No.2、No.3及びNo.4の水準に比較してHRB硬度が上昇するものの、フェライト量が低下する傾向にある。
As is clear from Tables 1, 2 and 3, No. 2, No. 2 At the level of 3 and No. 4, the mold is at 1060 ° C. (No. 2), 930 ° C. (No. 3) or 765 ° C. (No. 4) which is higher than the A 1 transformation temperature of the molten metal poured into the mold. The cast iron product is taken out from the steel and air-cooled, so that the ferrite content is 60% or more and the number of graphite particles having a particle diameter of 5 μm or more is 900 at the tip portion (A) and the central portion (B) of the bifurcated portion. / mm 2 or more, and among the graphite particles, the graphite spheroidization ratio of spherical graphite grains account it is possible to obtain a cast iron product is 70% or more. In particular, No. 2 and No. 2 in which the extraction temperature of cast iron products was 850 ° C. or higher. 3 level, it is possible to obtain a cast iron product having a ferrite content of 90% or more in the central part (B) of the main body. A cast iron product having a ferrite content of 90% or more can also be obtained at the tip portion (A) and the central portion (B) of the main body.
On the other hand, at the level of No. 1 and No. 5 where the temperature at which the cast iron product is taken out from the mold is less than 727 ° C. which is the A 1 transformation temperature of the molten metal, the tip of the bifurcated portion (A) Then, it was a cast iron product having a ferrite content of less than 60%. In such cast iron products, No. 2, No. Although the HRB hardness increases as compared with the levels of 3 and No. 4, the ferrite content tends to decrease.

また、表3に示す抗張力、耐力及び伸びの各々について、離型製品温度で整理すると、図12〜図14に示すようになる。かかる図12〜図14において、図12は離型製品温度と得られた鋳造製品の抗張力との関係を示すグラフ、図13は離型製品温度と得られた鋳造製品の耐力との関係を示すグラフ、及び図14は離型製品温度と得られた鋳造製品の伸びとの関係を示すグラフを各々示すである。この図12〜図14には、共晶温度及びA1変態温度を表示すると共に、球状黒鉛鋳鉄JIS規格で定められているFCD450及びFCD500の下限値を表示した。
この球状黒鉛鋳鉄JIS規格で定められているのFCD450及びFCD500の規格値を下記表4に示す。
図12〜図14に示す様に、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の温度で離型することによって、FCD450に相当する鋳造製品を得ることができる。
一方、離型製品温度がA1変態温度よりも低温とすると、得られた鋳造製品は、FCD450よりもフェライト量が低下するものの、硬度が高くなるFCD500相当の鋳造製品となる。
この様に、成形型から鋳造製品を取り出す離型製品温度を調整することによって、FCD450に相当する鋳造製品とFCD500に相当する鋳造製品とを得ることができる。
Moreover, when each of the tensile strength, yield strength and elongation shown in Table 3 is arranged according to the release product temperature, it is as shown in FIGS. 12 to 14, FIG. 12 is a graph showing the relationship between the release product temperature and the tensile strength of the obtained cast product, and FIG. 13 shows the relationship between the release product temperature and the yield strength of the obtained cast product. FIG. 14 and FIG. 14 are graphs showing the relationship between the release product temperature and the elongation of the obtained cast product. In FIGS. 12 to 14, eutectic temperature and A 1 transformation temperature are displayed, and lower limit values of FCD450 and FCD500 defined by the JIS standard of spheroidal graphite cast iron are displayed.
Table 4 below shows the standard values of FCD450 and FCD500 defined by the JIS standard for the spheroidal graphite cast iron.
As shown in FIGS. 12 to 14, FCD450 is released by releasing at a temperature not higher than the eutectic temperature at which both the austenite phase and graphite are crystallized and not lower than the A 1 transformation temperature at which the austenite phase transforms into a pearlite phase. A corresponding cast product can be obtained.
On the other hand, when releasing the product temperature is the temperature lower than the A 1 transformation temperature, the resulting cast products, although the amount of ferrite becomes lower than FCD450, a cast product of equivalent FCD500 hardness is high.
In this way, by adjusting the temperature of the release product for taking out the cast product from the mold, it is possible to obtain a cast product corresponding to FCD450 and a cast product corresponding to FCD500.

鉄―炭素合金の状態図を示す。The phase diagram of iron-carbon alloy is shown. 本発明に係る鋳鉄用金型の一例を説明する断面図である。It is sectional drawing explaining an example of the metal mold | die for cast iron which concerns on this invention. 図2に示す鋳鉄用金型の動作を説明する断面図である。It is sectional drawing explaining operation | movement of the metal mold | die for cast iron shown in FIG. 本発明に係る鋳鉄用金型の他の例を説明する断面図である。It is sectional drawing explaining the other example of the metal mold | die for cast iron which concerns on this invention. 図4に示す鋳鉄用金型の動作を説明する断面図である。It is sectional drawing explaining operation | movement of the metal mold | die for cast iron shown in FIG. 本発明に係る鋳鉄用金型の他の例を説明すると共に、その動作を説明する断面図である。It is sectional drawing explaining the operation | movement while demonstrating the other example of the metal mold | die for cast iron which concerns on this invention. 本発明に係る鋳鉄用金型の他の例を説明する断面図である。It is sectional drawing explaining the other example of the metal mold | die for cast iron which concerns on this invention. 図7に示す鋳鉄用金型の動作を説明する断面図である。It is sectional drawing explaining operation | movement of the metal mold | die for cast iron shown in FIG. 金型の湯口に溶湯の注入開始からの経過時間と鋳鉄製品の本体部の温度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time from the injection | pouring start of molten metal to the gate of a metal mold | die, and the temperature of the main-body part of a cast iron product. 金型内で鋳鉄製品が930℃に冷却されたとき、金型から取り出して空冷して得た鋳造製品から採取したサンプルのエッチング前の顕微鏡組織写真である。It is the microscope organization photograph before the etching of the sample extract | collected from the casting product obtained by taking out from a metal mold | die and cooling by air when a cast iron product is cooled at 930 degreeC in a metal mold | die. 図10のサンプルにエッチングを施した後の顕微鏡写真である。It is a microscope picture after etching the sample of FIG. 離型製品温度と得られた鋳造製品の抗張力との関係を示すグラフである。It is a graph which shows the relationship between mold release product temperature and the tensile strength of the obtained casting product. 離型製品温度と得られた鋳造製品の耐力との関係を示すグラフである。It is a graph which shows the relationship between mold release product temperature and the yield strength of the obtained casting product. 離型製品温度と得られた鋳造製品の伸びとの関係を示すグラフである。It is a graph which shows the relationship between mold release product temperature and the elongation of the obtained casting product. 従来の鋳鉄用金型を説明する断面図である。It is sectional drawing explaining the conventional metal mold | die for cast iron. 図15に示す鋳鉄用金型の動作を説明する断面図である。It is sectional drawing explaining operation | movement of the metal mold | die for cast iron shown in FIG.

符号の説明Explanation of symbols

10,12 金型
14 突出ピン
16 キャビティ
18 鋳鉄製品
18a 先端部
18b 薄肉部
20,28,30 移動型
22,26,42 隙間
24,40 ピン
32 筒状部
34a シリンダー状部
34 中子
36a ピストン
36 ロッド
36b 後端部
38 板上体
10, 12 Mold 14 Protruding pin 16 Cavity 18 Cast iron product 18a Tip 18b Thin portion 20, 28, 30 Moving mold 22, 26, 42 Clearance 24, 40 Pin 32 Cylindrical portion 34a Cylinder portion 34 Core 36a Piston 36 Rod 36b Rear end 38 Plate upper body

Claims (18)

金型内のキャビティに注湯した鋳鉄溶湯を凝固して鋳鉄製品を鋳造するとき、前記鋳鉄製品内に他部よりも冷却速度の速い易冷却部分が存在する鋳鉄製品を鋳造する際に、
該金型内で冷却する鋳鉄製品の易冷却部分の冷却速度を緩和すべく、前記易冷却部分の外周面とキャビティの内壁面との間に隙間を形成して金型への熱引きを阻止した後、
前記鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、前記金型を型開きして鋳鉄製品を取り出して、前記鋳鉄製品の全体を金型内での冷却速度よりも遅い冷却速度で徐冷することを特徴とする鋳鉄方法。
When casting a cast iron product by solidifying the cast iron melt poured into the cavity in the mold, when casting a cast iron product in which there is an easy-cooling part with a faster cooling rate than the other part in the cast iron product,
In order to reduce the cooling rate of the easy cooling part of the cast iron product to be cooled in the mold, a gap is formed between the outer peripheral surface of the easy cooling part and the inner wall surface of the cavity to prevent heat from being drawn into the mold. After
When the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened and the cast iron product is taken out, and the entire cast iron product is removed from the cooling rate in the mold. A cast iron method characterized by slow cooling at a slow cooling rate.
鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間の隙間を、前記易冷却部分の外周面に接触している金型のキャビティ内壁面の少なくとも一部を後退して形成する請求項1記載の鋳鉄方法。   A clearance between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity is formed by retreating at least a part of the inner wall surface of the mold contacting the outer peripheral surface of the easy-cooling portion. The cast iron method according to Item 1. 金型として、鋳鉄製品の易冷却部分の外周面と接触するキャビティの内壁面を形成する部分を、金型の他部に対し独立して移動可能に形成した分割金型を用いる請求項2記載の鋳鉄方法。   3. A split mold in which a portion that forms an inner wall surface of a cavity that comes into contact with an outer peripheral surface of an easy-cooling portion of a cast iron product is used as a mold so as to be independently movable with respect to the other portion of the mold. Cast iron method. 金型として、鋳鉄製品の易冷却部分の外周面と先端面が接触するピンを、金型の他部に対し独立して移動可能に形成した金型を用いる請求項2記載の鋳鉄方法。   The cast iron method according to claim 2, wherein the mold is a mold in which a pin that contacts an outer peripheral surface and a tip surface of an easy-cooling portion of a cast iron product is movable independently of the other part of the mold. 金型から取り出した鋳鉄製品を室温下で放冷する請求項1〜4のいずれか一項記載の鋳鉄方法。   The cast iron method according to any one of claims 1 to 4, wherein the cast iron product taken out from the mold is allowed to cool at room temperature. 金型から鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つ前記オーステナイト相がパーライト相に変態するA1変態温度以上の温度とする請求項1〜5のいずれか一項記載の鋳鉄方法。 The temperature to retrieve the cast iron product from the mold, in the state diagram of the iron alloy poured into the cavity, A 1 transformation of and the austenite phase at a eutectic temperature below the austenite phase and the graphite crystallizes together is transformed into pearlite The cast iron method according to any one of claims 1 to 5, wherein the temperature is equal to or higher than the temperature. 金型を型開きして鋳鉄製品を取り出す温度を、1147〜727℃とする請求項6記載の鋳鉄方法。   The cast iron method according to claim 6, wherein a temperature at which the mold is opened and a cast iron product is taken out is 1147 to 727 ° C. 金型を型開きして前記鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相がパーライト相に変態するA1変態温度未満の温度とする請求項1〜5のいずれか一項記載の鋳鉄方法。 The temperature of the mold and the mold is opened extracting the cast iron products, in the state diagram of the iron alloy poured into the cavity, of the preceding claims in which the austenite phase is to a temperature of A less than 1 transformation temperature to transform to pearlite phase The cast iron method according to any one of claims. 金型を型開きして前記鋳鉄製品を取り出す鋳鉄製品の温度を、727℃未満とする請求項8記載の鋳鉄方法。   The cast iron method according to claim 8, wherein the temperature of the cast iron product from which the mold is opened to take out the cast iron product is less than 727 ° C. 金型として、湯口から注湯された鋳鉄溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型を用いる請求項1〜9のいずれか一項記載の鋳鉄方法。   The cast iron method according to any one of claims 1 to 9, wherein the mold is a gravity cast iron mold in which a cast iron melt poured from a gate is filled in a cavity by gravity. 金型として、注湯した鋳鉄溶湯が凝固した鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間形成時期及び鋳鉄製品の取出時期を制御し得る冷却特性を有する金型を用いる請求項1〜10のいずれか一項記載の鋳鉄方法。   As a mold, a mold having a cooling characteristic capable of controlling a gap formation time and a cast iron product take-off time between the outer peripheral surface of the easy-cooling portion of the cast iron product and the inner wall surface of the cavity where the cast iron molten metal is solidified. The cast iron method according to any one of claims 1 to 10, which is used. 金型として、炭素(C)が0.45重量%の鋼(S45C)から成る金型を用いる請求項11記載の鋳鉄方法。   The cast iron method according to claim 11, wherein a mold made of steel (S45C) containing 0.45% by weight of carbon (C) is used as the mold. 鋳鉄製品を鋳造する金型内のキャビティに注湯した鋳鉄溶湯が凝固するとき、前記鋳鉄製品内に他部よりも冷却され易い易冷却部分が存在する鋳鉄製品を鋳造する鋳鉄用金型において、
該金型内で冷却される鋳鉄製品の易冷却部分の外周面と接触する金型のキャビティ内壁面の少なくとも一部を形成する金型部分が後退し、前記易冷却部分の外周面とキャビティの内壁面との間に形成された隙間によって、前記金型への熱引きが阻止されて、前記易冷却部分の冷却速度が緩和されるように、前記金型部分が金型の他部に対し独立して移動可能に設けられ、
且つ前記鋳鉄製品の他部の温度が、室温よりも高温の所定温度に到達したとき、前記鋳鉄製品の全体を金型内での冷却速度よりも遅い冷却速度で徐冷できるように、前記鋳鉄製品の全体を金型から取出可能に形成されていることを特徴とする鋳鉄用金型。
When the cast iron melt poured into the cavity in the mold for casting the cast iron product solidifies, in the cast iron mold for casting the cast iron product in which there exists an easy-cooling portion that is more easily cooled than the other part in the cast iron product,
The mold part forming at least a part of the cavity inner wall surface of the mold that comes into contact with the outer peripheral surface of the easy-cooling part of the cast iron product cooled in the mold recedes, and the outer peripheral surface of the easy-cooling part and the cavity The gap between the inner wall surface prevents the heat from being drawn to the mold and reduces the cooling rate of the easy-cooling portion. It can be moved independently,
And when the temperature of the other part of the cast iron product reaches a predetermined temperature higher than room temperature, the cast iron product is gradually cooled at a cooling rate slower than the cooling rate in the mold. A cast iron mold characterized in that the entire product can be removed from the mold.
金型が、鋳鉄製品の易冷却部分の外周面と接触するキャビティの内壁面を形成する金型部分が金型の他部に対し独立して移動可能に設けられた分割金型である請求項13記載の鋳鉄用金型。   The mold is a split mold in which a mold part that forms an inner wall surface of a cavity that comes into contact with an outer peripheral surface of an easy-cooling part of a cast iron product is provided so as to be independently movable with respect to the other part of the mold. 13. A mold for cast iron according to 13. 金型が、鋳鉄製品の易冷却部分の外周面と先端面が接触するピンが金型の他部に対し独立して移動可能に設けられた金型である請求項13記載の鋳鉄方法。   The cast iron method according to claim 13, wherein the mold is a mold in which a pin that contacts an outer peripheral surface and a front end surface of an easy-cooling portion of the cast iron product is independently movable with respect to the other part of the mold. 金型が、湯口から注湯された鋳鉄溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型である請求項13〜15のいずれか一項記載の鋳鉄用金型。   The mold for cast iron according to any one of claims 13 to 15, wherein the mold is a mold for gravity cast iron in which a molten cast iron poured from a gate is filled into the cavity by gravity. 金型が、注湯した鋳鉄溶湯が凝固した鋳鉄製品の易冷却部分の外周面とキャビティの内壁面との間に隙間形成時期及び鋳鉄製品の取出時期を制御し得る冷却特性を有する金型である請求項13〜16のいずれか一項記載の鋳鉄用金型。   The mold has a cooling characteristic that can control the gap formation time and cast iron product removal time between the outer peripheral surface of the easy cooling part of the cast iron product and the inner wall surface of the cavity where the cast iron melt that has been poured is solidified. The cast iron mold according to any one of claims 13 to 16. 金型が、炭素(C)が0.45重量%の鋼(S45C)から成る金型である請求項17記載の鋳鉄用金型。   The mold for cast iron according to claim 17, wherein the mold is a mold made of steel (S45C) containing 0.45% by weight of carbon (C).
JP2006006509A 2006-01-13 2006-01-13 Cast iron method and cast iron mold Expired - Fee Related JP4934321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006509A JP4934321B2 (en) 2006-01-13 2006-01-13 Cast iron method and cast iron mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006509A JP4934321B2 (en) 2006-01-13 2006-01-13 Cast iron method and cast iron mold

Publications (2)

Publication Number Publication Date
JP2007185696A true JP2007185696A (en) 2007-07-26
JP4934321B2 JP4934321B2 (en) 2012-05-16

Family

ID=38341221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006509A Expired - Fee Related JP4934321B2 (en) 2006-01-13 2006-01-13 Cast iron method and cast iron mold

Country Status (1)

Country Link
JP (1) JP4934321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182875A1 (en) * 2013-05-09 2014-11-13 Dresser-Rand Company Physical property improvement of iron castings using carbon nanomaterials
JP6142953B1 (en) * 2016-10-25 2017-06-07 株式会社アクティ Casting method and a pair of molds
JP6265358B1 (en) * 2017-05-08 2018-01-24 株式会社アクティ A pair of molds and a manufacturing method thereof
CN114535544A (en) * 2022-03-14 2022-05-27 广东鸿泰南通精机科技有限公司 Aluminum alloy die casting air cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317235A (en) * 1987-06-19 1988-12-26 Mazda Motor Corp Die casting method
JPH08206778A (en) * 1995-02-01 1996-08-13 Kosei Aruminiyuumu Kogyo Kk Casting die
JPH0957414A (en) * 1995-08-24 1997-03-04 Toyota Motor Corp Centrifugal forming method
JP2000045011A (en) * 1998-07-27 2000-02-15 Izumi Kogyo Kk Spheroidal graphite cast iron and production of spheroidal graphite cast iron
JP2002192328A (en) * 2000-12-22 2002-07-10 Suzuki Motor Corp Method for manufacturing spheroidal graphite cast iron member
JP2004243359A (en) * 2003-02-13 2004-09-02 Aisin Takaoka Ltd Method for manufacturing cast iron shaft
JP2004257422A (en) * 2003-02-24 2004-09-16 Aisin Takaoka Ltd Method of producing rotor for disk brake

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317235A (en) * 1987-06-19 1988-12-26 Mazda Motor Corp Die casting method
JPH08206778A (en) * 1995-02-01 1996-08-13 Kosei Aruminiyuumu Kogyo Kk Casting die
JPH0957414A (en) * 1995-08-24 1997-03-04 Toyota Motor Corp Centrifugal forming method
JP2000045011A (en) * 1998-07-27 2000-02-15 Izumi Kogyo Kk Spheroidal graphite cast iron and production of spheroidal graphite cast iron
JP2002192328A (en) * 2000-12-22 2002-07-10 Suzuki Motor Corp Method for manufacturing spheroidal graphite cast iron member
JP2004243359A (en) * 2003-02-13 2004-09-02 Aisin Takaoka Ltd Method for manufacturing cast iron shaft
JP2004257422A (en) * 2003-02-24 2004-09-16 Aisin Takaoka Ltd Method of producing rotor for disk brake

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182875A1 (en) * 2013-05-09 2014-11-13 Dresser-Rand Company Physical property improvement of iron castings using carbon nanomaterials
JP6142953B1 (en) * 2016-10-25 2017-06-07 株式会社アクティ Casting method and a pair of molds
JP6265358B1 (en) * 2017-05-08 2018-01-24 株式会社アクティ A pair of molds and a manufacturing method thereof
CN114535544A (en) * 2022-03-14 2022-05-27 广东鸿泰南通精机科技有限公司 Aluminum alloy die casting air cooling device
CN114535544B (en) * 2022-03-14 2024-04-05 广东鸿泰南通精机科技有限公司 Air cooling device for aluminum alloy die castings

Also Published As

Publication number Publication date
JP4934321B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP2014039958A (en) Coagulation microstructure of molding mold molded by aggregate-using casting mold
JP4934321B2 (en) Cast iron method and cast iron mold
US20230392237A1 (en) Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
JP2010131635A (en) Die-cast molding method for iron and die-cast molded body
JP4918384B2 (en) Method for producing spheroidal graphite cast iron casting
JP5726043B2 (en) Spheroidal graphite cast iron steel pipe forming roll and method for producing the same
Lakshmi et al. Induction reheating of A356. 2 aluminum alloy and thixocasting as automobile component
JP3987694B2 (en) Casting method for cast iron molded products
JP2007327083A (en) Spheroidal graphite cast iron and its production method
JP2010149129A (en) Holder for die-casting die, and method for producing the same
JP2005095911A (en) Method for continuously casting spheroidal graphite cast iron
JP4318761B2 (en) Casting method for Fe-C-Si alloy castings
JP2006122917A (en) Method for casting cast iron and cast iron product
JP2001509085A (en) Semi-solid metal forming method
JP3768778B2 (en) Method for producing thick spheroidal graphite cast iron product
Sheikh Production of carbide-free thin ductile iron castings
KR20020082057A (en) A composition for cast iron having high strength and the method of manufacturing thereof
WO2018043685A1 (en) Spherical graphite cast iron semi-solid casting method and semi-solid cast product
RU2507026C2 (en) Method of production of cast bimetallic moulds of ferrite steel-aluminium cast iron alloy
JPS61119351A (en) Production of cast iron material having fine spheroidal graphite
JP6932737B2 (en) Manufacturing method of spheroidal graphite cast iron and spheroidal graphite cast iron, and parts for automobile suspension
JP2011038183A (en) Cast iron component for vehicle
RU2661986C1 (en) Method for producing high-manganese steel castings
JPS5952019B2 (en) Small cylinder liner manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees