JP4318761B2 - Casting method for Fe-C-Si alloy castings - Google Patents

Casting method for Fe-C-Si alloy castings Download PDF

Info

Publication number
JP4318761B2
JP4318761B2 JP01199397A JP1199397A JP4318761B2 JP 4318761 B2 JP4318761 B2 JP 4318761B2 JP 01199397 A JP01199397 A JP 01199397A JP 1199397 A JP1199397 A JP 1199397A JP 4318761 B2 JP4318761 B2 JP 4318761B2
Authority
JP
Japan
Prior art keywords
casting
point
graphite
eutectic
casting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01199397A
Other languages
Japanese (ja)
Other versions
JPH10195586A (en
Inventor
治男 椎名
毅巳 菅原
雅之 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP01199397A priority Critical patent/JP4318761B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to DE69735063T priority patent/DE69735063T2/en
Priority to CA002236639A priority patent/CA2236639C/en
Priority to PCT/JP1997/003058 priority patent/WO1998010111A1/en
Priority to DE69736933T priority patent/DE69736933T2/en
Priority to EP97937868A priority patent/EP0864662B1/en
Priority to US09/077,169 priority patent/US6136101A/en
Priority to EP04007289A priority patent/EP1460143B1/en
Priority to EP04007288A priority patent/EP1460138B1/en
Priority to DE69736997T priority patent/DE69736997T2/en
Priority to DE69737048T priority patent/DE69737048T2/en
Priority to EP04007290A priority patent/EP1460144B1/en
Publication of JPH10195586A publication Critical patent/JPH10195586A/en
Priority to US09/669,219 priority patent/US6527878B1/en
Application granted granted Critical
Publication of JP4318761B2 publication Critical patent/JP4318761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はFe−C−Si系合金鋳物の鋳造方法に関する。
【0002】
【従来の技術】
本出願人は、先に、鋳造後のFe−C−Si系合金鋳物に存する炭化物、即ち、主としてセメンタイトを熱処理により微細球状化することによって、前記鋳物の機械的強度を、機械構造用炭素鋼と同程度まで向上させることのできる技術を開発した(特願平8−250953号明細書および図面参照)。
【0003】
【発明が解決しようとする課題】
前記熱処理後のFe−C−Si系合金鋳物の金属組織には、微細球状化したセメントタイトだけでなく黒鉛も存在する。この黒鉛には、熱処理前、したがって鋳造後の前記鋳物が元々有していたものと、前記熱処理中にセメントタイトの一部が分解して生じたC(炭素)に起因するものとが含まれ、この黒鉛量が一定量を超えると、熱処理後のFe−C−Si系合金鋳物の機械的強度の向上が妨げられる。
【0004】
【課題を解決するための手段】
本発明は、前記熱処理により生じる黒鉛量が略一定していることから、鋳造により生じる黒鉛量を所定値に抑え、これにより前記熱処理による機械的強度向上を実現し得るようにした前記Fe−C−Si系合金鋳物の鋳造方法を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、鋳造後、炭化物の微細球状化熱処理を施されるFe−C−Si系合金鋳物の鋳造方法であって、特定の組成範囲にあるC及びSi、並びに不可避不純物を含む残部FeのFe−C−Si系合金よりなる鋳造材料を、液相状態および固液共存状態の一方の状態にして鋳型に充填する第1工程と、前記第1工程で鋳型に充填した前記鋳造材料を、共晶温度域まで冷却して凝固させる第2工程と、前記第2工程で凝固させた前記鋳造材料を冷却する第3工程とを順次行い、前記第2工程における前記鋳造材料の平均凝固速度V1 をV1 ≧500℃/min に設定すると共に、前記第3工程における前記鋳造材料の共析変態終了温度域までの平均冷却速度V2 をV2 ≧900℃/min に設定し、前記特定の組成範囲は、C含有量をx軸とし、またSi含有量をy軸としたとき、座標(1.95,0.7)に対応する第1の点と、座標(3.03,0.7)に対応する第2の点と、座標(2.42,3)に対応する第3の点と、座標(1.45,3)に対応する第4の点とを結んで得られ、且つ第2,第3の点およびその両点を結ぶ第1の線分が50重量%共晶線上に在り、且つまた第1,第4の点およびその両点を結ぶ第2の線分が0重量%共晶線上に在る略平行四辺形の図形の範囲内であり、ただし、前記組成範囲の限界を示す前記図形の輪郭上の組成から、前記第2,第3の点及び前記第1の線分上の組成、ならびに前記第1,第4の点及び前記第2の線分上の組成が除かれることを特徴とするFe−C−Si系合金鋳物の鋳造方法が提供される。
【0006】
共晶量Ecは黒鉛の面積率に関係する。そこで、共晶量EcをEc<50重量%に設定(即ち鋳造材料のC及びSiを前記特定の組成範囲に設定)し、また平均凝固速度V1 をV1 ≧500℃/min に設定すると、Fe−C−Si系合金鋳物に晶出する黒鉛量を、その面積率A1 においてA1 <5%に抑制することが可能である。また前記平均冷却速度V2 をV2 ≧900℃/min に設定すると、Fe−C−Si系合金鋳物における黒鉛の析出を妨げてその面積率A1 を凝固時のA1 <5%に維持することが可能である。
【0007】
ただし、共晶量EcがEc≧50重量%では(即ち鋳造材料のC及びSiが前記特定の組成範囲に無ければ)、平均凝固速度V1 および平均冷却速度V2 をそれぞれV1 ≧500℃/min およびV2 ≧900℃/min に設定しても、黒鉛の面積率A1 がA1 ≧5%となる。また平均凝固速度V1 がV1 <500℃/min では、共晶量EcをEc<50重量%に設定(即ち鋳造材料のC及びSiを前記特定の組成範囲に設定)しても黒鉛の面積率A1 がA1 ≧5%となる。さらに平均冷却速度V2 がV2 <900℃/min では、黒鉛の面積率A1 <5%を維持することができない。
【0008】
本発明方法による鋳造後、炭化物の微細球状化熱処理を施されるFe−C−Si系合金鋳物において、金属組織内に存する黒鉛の面積率A1 をA1 <5%にできるので、熱処理後の黒鉛の面積率A2 をA2 <8%に抑制して、Fe−C−Si系合金鋳物の機械的強度、特に、ヤング率を、例えば球状黒鉛鋳鉄のそれよりも向上させることが可能である。
【0009】
【発明の実施の形態】
図1に示す加圧鋳造装置1はFe−C−Si系合金よりなる鋳造材料を用いてチクソキャスティング法、またはダイカスト法の適用下で鋳物を鋳造するために用いられる。その加圧鋳造装置1は、鉛直な合せ面2a,3aを有する固定金型2および可動金型3よりなる鋳型mを備え、両合せ面2a,3a間に鋳物成形用キャビティ4が形成される。固定金型2に、半溶融鋳造材料5を設置し、また溶湯を保持するチャンバ6が形成され、そのチャンバ6はゲート7を介してキャビティ4に連通する。また固定金型2に、チャンバ6に連通するスリーブ8が水平に付設され、そのスリーブ8にチャンバ6に挿脱される加圧プランジャ9が摺動自在に嵌合される。スリーブ8は、その周壁上部に材料および溶湯用挿入口10を有する。固定および可動金型2,3には、それぞれキャビティ4に近接するように冷却液通路11が設けられている。
【0010】
表1は、Fe−C−Si系合金よりなる鋳造材料の例1〜9に関するCおよびSi含有量(残部は不可避不純物を含むFe)、共晶量Ec、液相線温度、共晶温度および共析変態終了温度をそれぞれ示す。
【0011】
【表1】

Figure 0004318761
【0012】
先ず、鋳造材料の例1〜8を用い、次のようなチクソキャスティング法の適用下で、材料の例1〜8に対応する鋳物の例1〜8を鋳造した。
(a) 第1工程
鋳造材料を1220℃まで誘導加熱して、固相と液相とが共存する半溶融鋳造材料を調製した。この材料の固相率RはR=70%であった。次いで、図1の加圧鋳造装置1において、固定および可動金型2,3の温度を制御すると共にそのチャンバ6内に前記半溶融鋳造材料5を設置し、加圧プランジャ9を作動させてその鋳造材料5をキャビティ4に充填した。この場合、半溶融鋳造材料5の充填圧力は36MPaであった。
(b) 第2工程
加圧プランジャ9をストローク終端に保持することによってキャビティ4内に充填された半溶融鋳造材料5に加圧力を付与し、その加圧下で半溶融鋳造材料5を共晶温度域まで冷却することで凝固させて鋳物を得た。この場合、半溶融鋳造材料5の平均凝固速度V1 はV1 =600℃/min に設定された。
(c) 第3工程
鋳物を約400℃まで冷却し、次いで離型した。この場合、鋳物の共析変態終了温度域までの平均冷却速度V2 はV2 ≧1304℃/min に設定された。鋳物の例1〜8における共析変態終了温度は表1に示した通りであり、この温度よりも約100℃低い温度およびその近傍を共析変態終了温度域とする。
【0013】
次に、鋳造材料の例9を用い、次のようなダイカスト法の適用下で、材料の例9に対応する鋳物の例9を鋳造した。
(a) 第1工程
鋳造材料を1400℃にて溶解して、固相率が0%の溶湯を調製した。次いで、図1の加圧鋳造装置1において、固定および可動金型2,3の温度を制御すると共にそのチャンバ6内に前記溶湯を保持させ、加圧プランジャ9を作動させてその溶湯をキャビティ4に充填した。この場合、溶湯の充填圧力は36MPaであった。
(b) 第2工程
加圧プランジャ9をストローク終端に保持することによってキャビティ4内に充填された溶湯に加圧力を付与し、その加圧下で溶湯を共晶温度域まで冷却することで凝固させて鋳物を得た。この場合、溶湯の平均凝固速度V1 はV1 =600℃/min に設定された。
(c) 第3工程
鋳物を約400℃まで冷却し、次いで離型した。この場合、鋳物の共析変態終了温度域までの平均冷却速度V2 は、前記同様に、V2 ≧1304℃/min に設定された。
【0014】
鋳物、つまり鋳放し品の例1〜9について、黒鉛の面積率A1 を測定した。この面積率A1 は、テストピースを研磨し、エッチングを行うことなく、画像回析装置(IP−1000PC、旭化成社製)を用いて求められた。
【0015】
鋳放し品の例1〜9に熱処理を施して炭化物、主としてセメントタイトの微細球状化を行い、次いで熱処理後の鋳物、つまり熱処理品の例1〜9について、前記同様の方法で黒鉛の面積率A2 を測定し、またヤング率E、引張強さおよび硬さを求めた。
【0016】
表2は鋳放し品に対する熱処理条件を示す。
【0017】
【表2】
Figure 0004318761
【0018】
表3は、鋳放し品の例1〜9における黒鉛の面積率A1 ならびに熱処理品の例1〜9における黒鉛の面積率A2 、ヤング率E、引張強さおよび硬さを示す。
【0019】
【表3】
Figure 0004318761
【0020】
図2は、表1,3に基づいて、共晶量Ecと、鋳放し品および熱処理品における黒鉛の面積率A1 ,A2 との関係をグラフ化したものである。図2から、鋳放し品に熱処理を施すと、黒鉛量が増加することが判る。
【0021】
図3は、表2に基づいて、熱処理品の例1〜9における黒鉛の面積率A2 とヤング率Eとの関係をグラフ化したものである。
【0022】
図3から明らかなように、黒鉛の面積率A2 をA2 <8%に設定すると、熱処理品の例1〜5のごとく、それらのヤング率EをE≧170GPaにして球状黒鉛鋳鉄のそれ(E=162GPa)よりも確実に向上させることができる。これを実現するためには、図2に示すように、共晶量Ec<50重量%において、鋳放し品における黒鉛の面積率A1 をA1 <5%に設定することが必要である。
【0023】
また図3から明らかなように黒鉛の面積率A2 をA2 ≦1.4%に設定すると、熱処理品の例1のごとく、そのヤング率EをE≧200GPaにして機械構造用炭素鋼のそれ(E=202GPa)と同程度まで向上させることができる。これを実現するためには、図2に示すように、共晶量Ec<50重量%において、鋳放し品における黒鉛の面積率A1 をA1 ≦0.3%に設定することが必要である。
【0024】
次に、鋳造材料の例2を用い、前記と同様のチクソキャスティング法を実施して平均凝固速度V1 および平均冷却速度V2 と、黒鉛の面積率A1 との関係を調べたところ、表4の結果を得た。
【0025】
【表4】
Figure 0004318761
【0026】
図4は表4に基づいて、平均凝固速度V1 および平均冷却速度V2 と、黒鉛の面積率A1 との関係をグラフ化したものである。図4から明らかなように、鋳放し品における黒鉛の面積率A1 をA1 <5%にするためには、平均凝固速度V1 をV1 ≧500℃/min に設定し、また平均冷却速度V2 をV2 ≧900℃/min に設定することが必要である。前記のような速い平均凝固速度V1 は、金型、黒鉛型等の熱伝導率の高い型を用いることによって達成される。
【0027】
図5,6(a)は鋳放し品の例2における金属組織を示す顕微鏡写真であり、図5は研磨後に、また図6(a)はナイタル液によるエッチング後にそれぞれ該当する。図5において、黒点状部分が微細黒鉛であり、その面積率A1 はA1 =0.4%である。図6において、網目状セメンタイトが島状のマルテンサイトを取囲むように存在することが判る。 図7は、鋳放し品の例2に熱処理を施して得られた熱処理品の例2(表3参照)の金属組織を示す顕微鏡写真である。図7において、黒点状および黒線状部分が黒鉛であり、その面積率A2 はA2 =2%である。薄灰色部分はフェライト、濃灰色の層状部分はパーライトである。
【0028】
図8(a)は鋳放し品の例24 の金属組織を示す顕微鏡写真であり、ナイタル液によるエッチング後に該当する。図8において、少量の網目状セメンタイトと、比較的多くの大、小黒鉛が観察される。この場合の黒鉛の面積率A1 はA1 =6.1%である。
【0029】
図9は、Fe−C−Si系合金よりなる鋳造材料におけるCおよびSi含有量と共晶量Ecとの関係を示す。
【0030】
本発明における鋳造材料としては、下記のような特定の組成範囲にあるC及びSi、並びに不可避不純物を含む残部FeよりなFe−C−Si系合金が用いられる。この組成範囲は、図9においてC含有量をx軸とし、またSi含有量をy軸としたとき、座標(1.95,0.7)に対応する第1の点a1 、座標(3.03,0.7)に対応する第2の点a2 、座標(2.42,3)に対応する第3の点a3 、座標(1.45,3)に対応する第4の点a4 を結んで得られ、且つ第2,第3の点a 2 ,a 3 およびその両点a 2 ,a 3 を結ぶ第1の線分b 1 が50重量%共晶線上に在り、且つまた第1,第4の点a 1 ,a 4 およびその両点a 1 ,a 4 を結ぶ第2の線分b 2 が0重量%共晶線上に在る略平行四辺形の図形の範囲内である。ただし、前記組成範囲の限界を示す前記図形の輪郭b上の組成から、50重量%共晶線上に在る第2,第3の点a2 ,a3 およびそれらを結ぶ第1の線分b1 上の組成、ならびに0重量%共晶線上に在る第1,第4の点a1 ,a4 およびそれらを結ぶ第2の線分b2 上の組成は除かれる。
【0031】
ただし、共晶量EcがEc≧50重量%では黒鉛量が増加し、一方、Ec=0重量%では炭化物が生成されない。またSi含有量がSi<0.7重量%では、鋳造温度の上昇を来たし、一方、Si>3重量%ではシリコフェライトが生じるため鋳物の機械的特性が低下傾向となる。
【0032】
【発明の効果】
本発明によれば、熱処理後において球状黒鉛鋳鉄よりも優れると共に機械構造用炭素鋼と同等の機械的特性、特に、高いヤング率Eを示すFe−C−Si系合金鋳物を量産することが可能な鋳造方法を提供することができる。
【図面の簡単な説明】
【図1】 加圧鋳造装置の縦断面図である。
【図2】 共晶量Ecと黒鉛の面積率A1 ,A2 との関係を示すグラフである。
【図3】 各種鋳物(熱処理品)のヤング率Eを示すグラフである。
【図4】 平均凝固速度V1 および平均冷却速度V2 と黒鉛の面積率A1 との関係を示すグラフである。
【図5】 鋳物(鋳放し品)の例2における研磨後の金属組織を示す顕微鏡写真である。
【図6】 (a)は、鋳物(鋳放し品)の例2におけるエッチング後の金属組織を示す顕微鏡写真、(b)は(a)の要部写図である。
【図7】 鋳物(熱処理品)の例2の金属組織を示す顕微鏡写真である。
【図8】 (a)は、鋳物(鋳放し品)の例24 におけるエッチング後の金属組織を示す顕微鏡写真、(b)は(a)の要部写図である。
【図9】 CおよびSi含有量と、共晶量Ecとの関係を示すグラフである。
【符号の説明】
4 キャビティ
5 半溶融鋳造材料
9 加圧プランジャ
11 冷却液通路
m 鋳型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a casting method for Fe-C-Si alloy castings.
[0002]
[Prior art]
The present applicant has previously made the mechanical strength of the casting carbon steel for mechanical structure by making the carbide existing in the cast Fe-C-Si alloy cast, that is, cementite, mainly into fine spheroids by heat treatment. (See Japanese Patent Application No. 8-250953 and drawings).
[0003]
[Problems to be solved by the invention]
In the metal structure of the Fe—C—Si alloy casting after the heat treatment, not only fine spheroidized cementite but also graphite exists. This graphite includes what was originally possessed by the casting before heat treatment, and thus after casting, and that caused by C (carbon) generated by the decomposition of a part of cementite during the heat treatment. If the amount of graphite exceeds a certain amount, improvement of the mechanical strength of the Fe—C—Si alloy casting after heat treatment is hindered.
[0004]
[Means for Solving the Problems]
In the present invention, since the amount of graphite generated by the heat treatment is substantially constant, the amount of graphite generated by casting is suppressed to a predetermined value, and thereby the mechanical strength can be improved by the heat treatment. An object is to provide a casting method for a Si-based alloy casting.
[0005]
In order to achieve the above object, according to the present invention, there is provided a casting method of Fe-C-Si based alloy casting which is subjected to micro-spheroidizing heat treatment of carbide after casting, wherein C and Si in a specific composition range, And a casting material made of an Fe—C—Si alloy of the balance Fe containing inevitable impurities in one of a liquid phase state and a solid-liquid coexistence state and filling the mold with the casting mold in the first step In the second step, the casting material filled in the second step is cooled to the eutectic temperature range and solidified by a second step, and the third step of cooling the casting material solidified in the second step is performed. it sets the average solidification rate V 1 of the said casting material to V 1 ≧ 500 ℃ / min, the average cooling rate V 2 to eutectoid transformation finish temperature region of the casting material in the third step V 2 ≧ 900 ° C. set / min, the specific composition range When the C content is the x-axis and the Si content is the y-axis, the first point corresponding to the coordinates (1.95, 0.7) and the coordinates (3.03, 0.7) Obtained by connecting the corresponding second point, the third point corresponding to the coordinates (2.42, 3), and the fourth point corresponding to the coordinates (1.45, 3); , The third line and the first line connecting both points are on the 50 wt% eutectic line, and the second line connecting the first and fourth points and both points is 0 wt%. Within the range of the substantially parallelogram figure on the eutectic line, but from the composition on the outline of the figure showing the limit of the composition range, the second and third points and the first line There is provided a method for casting an Fe—C—Si based alloy casting characterized in that the composition on the minute and the composition on the first, fourth and second line segments are removed .
[0006]
The eutectic amount Ec is related to the area ratio of graphite. Therefore, when the eutectic amount Ec is set to Ec <50 wt% (that is, C and Si of the casting material are set to the specific composition range), and the average solidification rate V 1 is set to V 1 ≧ 500 ° C./min. The amount of graphite crystallized in the Fe—C—Si alloy casting can be suppressed to A 1 <5% at the area ratio A 1 . When the average cooling rate V 2 is set to V 2 ≧ 900 ° C./min, the precipitation of graphite in the Fe—C—Si alloy casting is hindered and the area ratio A 1 is maintained at A 1 <5% during solidification. Is possible.
[0007]
However, when the eutectic amount Ec is Ec ≧ 50% by weight (that is, when C and Si of the casting material are not in the specific composition range) , the average solidification rate V 1 and the average cooling rate V 2 are V 1 ≧ 500 ° C., respectively. / Min and V 2 ≧ 900 ° C./min, the area ratio A 1 of graphite is A 1 ≧ 5%. In addition, when the average solidification rate V 1 is V 1 <500 ° C./min, the eutectic amount Ec is set to Ec <50 wt% (that is, C and Si of the casting material are set to the specific composition range). The area ratio A 1 is A 1 ≧ 5%. Further, when the average cooling rate V 2 is V 2 <900 ° C./min, the area ratio A 1 <5% of the graphite cannot be maintained.
[0008]
In an Fe—C—Si alloy casting in which a carbide is subjected to a micro-spheroidizing heat treatment after casting according to the method of the present invention, the area ratio A 1 of graphite existing in the metal structure can be A 1 <5%. The area ratio A 2 of graphite can be suppressed to A 2 <8%, and the mechanical strength of the Fe—C—Si alloy casting, in particular, the Young's modulus, can be improved, for example, than that of spheroidal graphite cast iron. It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A pressure casting apparatus 1 shown in FIG. 1 is used for casting a casting under application of a thixocasting method or a die casting method using a casting material made of an Fe—C—Si alloy. The pressure casting apparatus 1 includes a fixed mold 2 having vertical mating surfaces 2a and 3a and a mold m composed of a movable mold 3, and a casting molding cavity 4 is formed between the mating surfaces 2a and 3a. . A chamber 6 for installing a semi-molten casting material 5 and holding a molten metal is formed in the fixed mold 2, and the chamber 6 communicates with the cavity 4 through a gate 7. Further, a sleeve 8 communicating with the chamber 6 is horizontally attached to the fixed mold 2, and a pressure plunger 9 inserted into and removed from the chamber 6 is slidably fitted to the sleeve 8. The sleeve 8 has a material and molten metal insertion port 10 at the upper part of the peripheral wall. The fixed and movable molds 2 and 3 are each provided with a coolant passage 11 so as to be close to the cavity 4.
[0010]
Table 1 shows C and Si contents (the balance is Fe containing inevitable impurities), eutectic amount Ec, liquidus temperature, eutectic temperature, and the like regarding casting materials examples 1 to 9 made of an Fe-C-Si alloy. The eutectoid transformation end temperature is shown respectively.
[0011]
[Table 1]
Figure 0004318761
[0012]
First, casting examples 1 to 8 corresponding to material examples 1 to 8 were cast using the casting materials Examples 1 to 8 under the application of the following thixocasting method.
(A) 1st process The casting material was induction-heated to 1220 degreeC, and the semi-molten casting material in which a solid phase and a liquid phase coexisted was prepared. The solid phase ratio R of this material was R = 70%. Next, in the pressure casting apparatus 1 of FIG. 1, the temperature of the fixed and movable molds 2 and 3 is controlled, the semi-molten casting material 5 is installed in the chamber 6, and the pressure plunger 9 is operated to The casting material 5 was filled into the cavity 4. In this case, the filling pressure of the semi-molten casting material 5 was 36 MPa.
(B) Second Step By holding the pressure plunger 9 at the end of the stroke, a pressure is applied to the semi-molten casting material 5 filled in the cavity 4, and the semi-molten casting material 5 is subjected to the eutectic temperature under the pressure. The product was solidified by cooling to an area to obtain a casting. In this case, the average solidification rate V 1 of the semi-molten cast material 5 was set to V 1 = 600 ° C./min.
(C) Third step The casting was cooled to about 400 ° C and then released. In this case, the average cooling rate V 2 up to the eutectoid transformation end temperature range of the casting was set to V 2 ≧ 1304 ° C./min. The eutectoid transformation end temperatures in casting examples 1 to 8 are as shown in Table 1, and a temperature lower than this temperature by about 100 ° C. and the vicinity thereof are defined as eutectoid transformation end temperature ranges.
[0013]
Next, the casting example 9 corresponding to the material example 9 was cast using the casting material example 9 under the application of the following die casting method.
(A) 1st process The casting material was melt | dissolved at 1400 degreeC and the molten metal whose solid phase rate is 0% was prepared. Next, in the pressure casting apparatus 1 of FIG. 1, the temperature of the fixed and movable molds 2 and 3 is controlled, the molten metal is held in the chamber 6, the pressure plunger 9 is operated, and the molten metal is transferred to the cavity 4. Filled. In this case, the filling pressure of the molten metal was 36 MPa.
(B) Second step The pressurizing plunger 9 is held at the end of the stroke to apply pressure to the molten metal filled in the cavity 4, and the molten metal is solidified by cooling to the eutectic temperature range under the pressure. To obtain a casting. In this case, the average solidification rate V 1 of the molten metal was set to V 1 = 600 ° C./min.
(C) Third step The casting was cooled to about 400 ° C and then released. In this case, the average cooling rate V 2 up to the eutectoid transformation end temperature range of the casting was set to V 2 ≧ 1304 ° C./min as described above.
[0014]
The graphite area ratio A 1 was measured for Examples 1 to 9 of the castings, that is, the as-cast products. The area rate A 1 is polished test pieces, without etching, using the image diffraction apparatus (IP-1000PC, manufactured by Asahi Kasei Corporation) was determined.
[0015]
The as-cast examples 1 to 9 were subjected to a heat treatment to finely spheroidize carbides, mainly cementite, and then the heat treated castings, that is, the heat treated articles 1 to 9 were subjected to the same method as described above. A 2 was measured and Young's modulus E, tensile strength and hardness were determined.
[0016]
Table 2 shows the heat treatment conditions for the as-cast product.
[0017]
[Table 2]
Figure 0004318761
[0018]
Table 3 shows the area ratio A 1 of graphite in Examples 1 to 9 of the as-cast products and the area ratio A 2 , Young's modulus E, tensile strength, and hardness of Examples 1 to 9 of the heat-treated products.
[0019]
[Table 3]
Figure 0004318761
[0020]
FIG. 2 is a graph showing the relationship between the eutectic amount Ec and the area ratios A 1 and A 2 of graphite in the as-cast product and the heat-treated product based on Tables 1 and 3. It can be seen from FIG. 2 that the amount of graphite increases when heat treatment is performed on the as-cast product.
[0021]
FIG. 3 is a graph showing the relationship between the area ratio A 2 and the Young's modulus E of graphite in Examples 1 to 9 of heat-treated products based on Table 2.
[0022]
As is apparent from FIG. 3, when the area ratio A 2 of graphite is set to A 2 <8%, the Young's modulus E is set to E ≧ 170 GPa as in the heat treated products 1 to 5, and that of the spheroidal graphite cast iron (E = 162 GPa) can be improved more reliably. In order to realize this, as shown in FIG. 2, it is necessary to set the area ratio A 1 of graphite in the as-cast product to A 1 <5% when the eutectic amount Ec <50% by weight.
[0023]
Further, as is clear from FIG. 3, when the area ratio A 2 of graphite is set to A 2 ≦ 1.4%, the Young's modulus E is set to E ≧ 200 GPa as in heat-treated product Example 1, and the carbon steel for mechanical structure is used. It can be improved to the same extent as that (E = 202 GPa). In order to realize this, as shown in FIG. 2, it is necessary to set the area ratio A 1 of the graphite in the as-cast product to A 1 ≦ 0.3% when the eutectic amount Ec <50% by weight. is there.
[0024]
Next, the relationship between the average solidification rate V 1 and average cooling rate V 2 and the area ratio A 1 of graphite was examined by performing the thixocasting method similar to the above using Example 2 of the casting material. A result of 4 was obtained.
[0025]
[Table 4]
Figure 0004318761
[0026]
FIG. 4 is a graph showing the relationship between the average solidification rate V 1 and average cooling rate V 2 and the area ratio A 1 of graphite based on Table 4. As is apparent from FIG. 4, in order to make the area ratio A 1 of graphite in the as-cast product A 1 <5%, the average solidification rate V 1 is set to V 1 ≧ 500 ° C./min, and the average cooling is performed. It is necessary to set the speed V 2 to V 2 ≧ 900 ° C./min. The fast average solidification rate V 1 as described above is achieved by using a mold having high thermal conductivity such as a mold or a graphite mold.
[0027]
5 and 6 (a) are photomicrographs showing the metal structure in Example 2 of an as-cast product, FIG. 5 corresponds to after polishing, and FIG. 6 (a) corresponds to after etching with a night liquid. In FIG. 5, the black spots are fine graphite, and the area ratio A 1 is A 1 = 0.4%. In FIG. 6, it can be seen that the reticulated cementite exists so as to surround the island martensite. FIG. 7 is a photomicrograph showing the metal structure of Example 2 (see Table 3) of the heat-treated product obtained by heat-treating Example 2 of the as-cast product. In FIG. 7, black spots and black line portions are graphite, and the area ratio A 2 is A 2 = 2%. The light gray part is ferrite and the dark gray layered part is pearlite.
[0028]
8 (a) is a micrograph showing a cast product of Example 2 4 metallographic corresponds after etching by nital solution. In FIG. 8, a small amount of reticulated cementite and relatively large and small graphite are observed. In this case, the area ratio A 1 of graphite is A 1 = 6.1%.
[0029]
FIG. 9 shows the relationship between the C and Si contents and the eutectic amount Ec in a casting material made of an Fe—C—Si based alloy.
[0030]
The casting material according to the present invention, C and Si in a specific composition range as follows, as well as Fe-C-Si based alloy ing than the remainder Fe including inevitable impurities is used. In FIG. 9, when the C content is the x axis and the Si content is the y axis in FIG. 9, the first point a 1 corresponding to the coordinates (1.95, 0.7), the coordinates (3 .03, 0.7) , a second point a 2 corresponding to coordinates (2.42, 3 ) , a fourth point corresponding to coordinates (1.45, 3 ) a first line segment b 1 obtained by connecting a 4 and connecting the second and third points a 2 , a 3 and both points a 2 , a 3 is on a 50 wt% eutectic line, and Further, the first and fourth points a 1 and a 4 and the second line segment b 2 connecting the two points a 1 and a 4 are within the range of the substantially parallelogram figure on the 0 wt% eutectic line . It is. However, from the composition on the contour b of the figure indicating the limit of the composition range, the second and third points a 2 and a 3 existing on the 50 wt% eutectic line and the first line segment b connecting them. The composition on 1 and the composition on the first and fourth points a 1 and a 4 on the 0 wt% eutectic line and the second line b 2 connecting them are excluded.
[0031]
However, when the eutectic amount Ec is Ec ≧ 50% by weight, the amount of graphite increases, whereas when Ec = 0% by weight, no carbide is generated. On the other hand, when the Si content is Si <0.7 wt%, the casting temperature rises. On the other hand, when Si> 3 wt%, silicoferrite is generated and the mechanical properties of the casting tend to be lowered.
[0032]
【The invention's effect】
According to the present invention, it is possible to mass-produce Fe-C-Si alloy castings that are superior to spheroidal graphite cast iron after heat treatment and have the same mechanical characteristics as carbon steel for mechanical structures, particularly high Young's modulus E A simple casting method can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a pressure casting apparatus.
FIG. 2 is a graph showing the relationship between the eutectic amount Ec and the area ratios A 1 and A 2 of graphite.
FIG. 3 is a graph showing Young's modulus E of various castings (heat-treated products).
FIG. 4 is a graph showing the relationship between the average solidification rate V 1 and average cooling rate V 2 and the area ratio A 1 of graphite.
FIG. 5 is a photomicrograph showing the metal structure after polishing in Example 2 of a casting (as-cast product).
6A is a photomicrograph showing the metal structure after etching in Example 2 of a cast product (as-cast product), and FIG. 6B is a main part copy of FIG.
7 is a photomicrograph showing the metal structure of Example 2 of a casting (heat treated product). FIG.
8 (a) is a casting (cast product) photomicrograph showing the metal structure after etching in Example 2 4, (b) is a tracing of an essential portion showing in (a).
FIG. 9 is a graph showing the relationship between the C and Si content and the eutectic amount Ec.
[Explanation of symbols]
4 Cavity 5 Semi-molten casting material 9 Pressure plunger 11 Coolant passage m Mold

Claims (1)

鋳造後、炭化物の微細球状化熱処理を施されるFe−C−Si系合金鋳物の鋳造方法であって、
特定の組成範囲にあるC及びSi、並びに不可避不純物を含む残部FeのFe−C−Si系合金よりなる鋳造材料を、液相状態および固液共存状態の一方の状態にして鋳型に充填する第1工程と、
前記第1工程で鋳型に充填した前記鋳造材料を、共晶温度域まで冷却して凝固させる第2工程と、
前記第2工程で凝固させた前記鋳造材料を冷却する第3工程とを順次行い、
前記第2工程における前記鋳造材料の平均凝固速度V1 をV1 ≧500℃/min に設定すると共に、前記第3工程における前記鋳造材料の共析変態終了温度域までの平均冷却速度V2 をV2 ≧900℃/min に設定し、
前記特定の組成範囲は、C含有量をx軸とし、またSi含有量をy軸としたとき、座標(1.95,0.7)に対応する第1の点(a 1 )と、座標(3.03,0.7)に対応する第2の点(a 2 )と、座標(2.42,3)に対応する第3の点(a 3 )と、座標(1.45,3)に対応する第4の点(a 4 )とを結んで得られ、且つ第2,第3の点(a 2 ,a 3 )およびその両点(a 2 ,a 3 )を結ぶ第1の線分(b 1 )が50重量%共晶線上に在り、且つまた第1,第4の点(a 1 ,a 4 )およびその両点(a 1 ,a 4 )を結ぶ第2の線分(b 2 )が0重量%共晶線上に在る略平行四辺形の図形の範囲内であり、ただし、前記組成範囲の限界を示す前記図形の輪郭(b)上の組成から、前記第2,第3の点(a 2 ,a 3 )及び前記第1の線分(b 1 )上の組成、ならびに前記第1,第4の点(a 1 ,a 4 )及び前記第2の線分(b 2 )上の組成が除かれることを特徴とする、Fe−C−Si系合金鋳物の鋳造方法。
A casting method of an Fe-C-Si alloy casting in which a fine spheroidizing heat treatment of carbide is performed after casting,
A casting material made of a Fe-C-Si alloy of C and Si in a specific composition range and the balance Fe containing inevitable impurities is filled into a mold in one of a liquid phase state and a solid-liquid coexisting state. 1 process,
A second step of cooling and solidifying the casting material filled in the mold in the first step to a eutectic temperature range;
Sequentially performing a third step of cooling the casting material solidified in the second step,
The average cooling rate V 1 of the said casting material in the second step and sets the V 1 ≧ 500 ℃ / min, the average cooling rate V 2 to eutectoid transformation finish temperature region of the casting material in the third step Set V 2 ≥900 ° C / min ,
The specific composition range includes a first point (a 1 ) corresponding to coordinates (1.95, 0.7) and coordinates when the C content is on the x-axis and the Si content is on the y-axis. A second point (a 2 ) corresponding to (3.03, 0.7), a third point (a 3 ) corresponding to coordinates (2.42, 3 ), and coordinates (1.45, 3 ) And the fourth point (a 4 ) corresponding to the second point (a 4 ), and the first point connecting the second point (a 2 , a 3 ) and both points (a 2 , a 3 ). A second line segment in which the line segment (b 1 ) is on the 50 wt% eutectic line and connects the first and fourth points (a 1 , a 4 ) and both points (a 1 , a 4 ). (B 2 ) is within the range of the substantially parallelogram figure present on the 0 wt% eutectic line, provided that the second on the basis of the composition on the outline (b) of the figure indicating the limit of the composition range. , third point (a 2, a 3) and the first Min (b 1) the composition on, and the first, fourth point (a 1, a 4) and the second segment (b 2), wherein that the composition on is removed, Fe- C-Si alloy casting casting method.
JP01199397A 1996-09-02 1997-01-07 Casting method for Fe-C-Si alloy castings Expired - Lifetime JP4318761B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP01199397A JP4318761B2 (en) 1997-01-07 1997-01-07 Casting method for Fe-C-Si alloy castings
DE69737048T DE69737048T2 (en) 1996-09-02 1997-09-02 Process for the preparation of a semi-solid thixocasting material
PCT/JP1997/003058 WO1998010111A1 (en) 1996-09-02 1997-09-02 Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
DE69736933T DE69736933T2 (en) 1996-09-02 1997-09-02 Process for the heat treatment of an iron-based cast article and the article produced by this process
EP97937868A EP0864662B1 (en) 1996-09-02 1997-09-02 Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
US09/077,169 US6136101A (en) 1996-09-02 1997-09-02 Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
DE69735063T DE69735063T2 (en) 1996-09-02 1997-09-02 MOLDING MATERIAL FOR THIXOGLING, METHOD FOR THE PRODUCTION OF HALF-RESISTANT MOLDING MATERIAL FOR THIXOGLING, METHOD FOR THIXOGLING, IRON BASED CASTING AND METHOD FOR THE HEAT TREATMENT OF IRON BASE CASTING PIECES
EP04007288A EP1460138B1 (en) 1996-09-02 1997-09-02 A process for preparing a thixocast semi-molten casting material
DE69736997T DE69736997T2 (en) 1996-09-02 1997-09-02 Process for producing an iron-based thixocasting material
CA002236639A CA2236639C (en) 1996-09-02 1997-09-02 Thixocast casting material, process for preparing thixocast semi-molten casting material, thixocasting process, fe-based cast product, and process for thermally treating fe-based cast product
EP04007290A EP1460144B1 (en) 1996-09-02 1997-09-02 A process for thermally treating an Fe-based cast product and the product obtained by the process
EP04007289A EP1460143B1 (en) 1996-09-02 1997-09-02 A process for preparing an Fe-based thixocast material
US09/669,219 US6527878B1 (en) 1996-09-02 2000-09-25 Thixocast casting material, process for preparing thixocasting semi-molten casting material, thixocast process, fe-based cast product, and process for thermally treating fe-based cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01199397A JP4318761B2 (en) 1997-01-07 1997-01-07 Casting method for Fe-C-Si alloy castings

Publications (2)

Publication Number Publication Date
JPH10195586A JPH10195586A (en) 1998-07-28
JP4318761B2 true JP4318761B2 (en) 2009-08-26

Family

ID=11793116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01199397A Expired - Lifetime JP4318761B2 (en) 1996-09-02 1997-01-07 Casting method for Fe-C-Si alloy castings

Country Status (1)

Country Link
JP (1) JP4318761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004198A1 (en) * 1998-07-14 2000-01-27 Honda Giken Kogyo Kabushiki Kaisha Fe ALLOY MATERIAL FOR THIXOCASTING AND METHOD FOR HEATING THE SAME
ES2536506T3 (en) 2006-02-28 2015-05-26 Daikin Industries, Ltd. Compressor sliding part, sliding part preform, spiral part and compressor
JP5329744B2 (en) * 2006-03-17 2013-10-30 ダイキン工業株式会社 Scroll member of scroll compressor
EP2853746B1 (en) 2006-03-03 2017-07-19 Daikin Industries, Ltd. Compressor and manufacturing method thereof
JP4894486B2 (en) * 2006-03-03 2012-03-14 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JPH10195586A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
EP0864662B1 (en) Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
JP4318761B2 (en) Casting method for Fe-C-Si alloy castings
JP4934321B2 (en) Cast iron method and cast iron mold
JPS59232649A (en) Metallic mold for molding plastic
JP3876099B2 (en) Fe-based alloy material for thixocasting
JPS5922780B2 (en) wear-resistant cast iron
JP4541545B2 (en) Method for producing pseudo-spherical graphite iron (CGI)
JP2007327083A (en) Spheroidal graphite cast iron and its production method
JP3768778B2 (en) Method for producing thick spheroidal graphite cast iron product
JP4109734B2 (en) Heat treatment method for Fe castings
WO2018043685A1 (en) Spherical graphite cast iron semi-solid casting method and semi-solid cast product
JPS61119351A (en) Production of cast iron material having fine spheroidal graphite
JP3290603B2 (en) Fe-C-Si based alloy casting obtained under application of thixocasting method
US3744997A (en) Metallurgical grain refinement process
JP3904335B2 (en) Fe-based alloy material for thixocasting and casting method using the same
JP7220428B2 (en) Method for manufacturing spheroidal graphite cast iron casting
JP3214814B2 (en) Method of heating Fe-based casting material for thixocasting
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH0776753A (en) Thin spheroidal graphite cast iron product and production thereof
JPH01107958A (en) Casting and casting method thereof
JP3382608B2 (en) Al-Mg based casting material for thixocasting and method of heating Mg-Al based casting material
JP2001240934A (en) Method for producing spheroidal graphite cast iron
JP3290615B2 (en) Free-cutting Fe-based members
JP2006122917A (en) Method for casting cast iron and cast iron product
JP4162461B2 (en) Spheroidal graphite cast iron and manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070906

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

EXPY Cancellation because of completion of term