JP2006326595A - Bore pin for casting cylinder block - Google Patents

Bore pin for casting cylinder block Download PDF

Info

Publication number
JP2006326595A
JP2006326595A JP2005149109A JP2005149109A JP2006326595A JP 2006326595 A JP2006326595 A JP 2006326595A JP 2005149109 A JP2005149109 A JP 2005149109A JP 2005149109 A JP2005149109 A JP 2005149109A JP 2006326595 A JP2006326595 A JP 2006326595A
Authority
JP
Japan
Prior art keywords
bore pin
bore
cylinder block
mass
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005149109A
Other languages
Japanese (ja)
Inventor
Eisuke Ogawa
衛介 小川
Kenichiro Shimizu
健一郎 清水
Shigehiro Matsuno
茂弘 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005149109A priority Critical patent/JP2006326595A/en
Publication of JP2006326595A publication Critical patent/JP2006326595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bore pin for casting a cylinder block, which bore pin has the longevity longer than that of a bore pin made of a conventional material by reducing its wear caused in its drawing-out by keeping the fitting accuracy between the bore pin and a liner high through reducing the thermal expansion coefficient of the bore pin. <P>SOLUTION: The bore pin for casting the cylinder block is made of a ferrous alloy having a mean thermal expansion coefficient of 8×10<SP>-6</SP>/°C to 11×10<SP>-6</SP>/°C within the range from the room temperature to 100°C, and the ferrous alloy is a high speed steel alloy and is composed of an Fe alloy containing 1.0 to 4.0 mass% of C, 0.1 to 2.0 mass% of Si, 0.1 to 2.0 mass% of Mn, 0 to 4.5 mass% of Ni, 10.0 to 20.0 mass% of Cr, 0 to 9.0 mass% of Mo, 0 to 10.0 mass% of W, and 1.0 to 10.0 mass% of V. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用エンジン等のシリンダブロックを鋳造する際に用いるボアピンに関する。   The present invention relates to a bore pin used when casting a cylinder block of an automobile engine or the like.

自動車用エンジンのシリンダブロックは、軽量化を図るためにアルミニウム合金等の軽合金材料をダイキャスト法等で鋳造して成形される。そして、シリンダブロックにはピストンが摺動する部位であるシリンダボアが気筒の数に応じて形成される。しかしながら、シリンダボアをアルミニウム合金等の軽合金材料単体で形成した場合、ピストンの摺動に対して十分な耐摩耗性を得られない。このため、シリンダブロック成形の際に鋳型内のシリンダボア部に耐摩耗性材料からなる円筒状のライナ(スリーブとも称される)を配置しておき、このライナを軽合金で鋳ぐるむことによりシリンダボアを形成することが行なわれている。   A cylinder block of an automobile engine is formed by casting a light alloy material such as an aluminum alloy by a die casting method or the like in order to reduce the weight. In the cylinder block, cylinder bores, which are parts where the piston slides, are formed according to the number of cylinders. However, when the cylinder bore is formed of a single light alloy material such as an aluminum alloy, sufficient wear resistance against sliding of the piston cannot be obtained. For this reason, a cylindrical liner (also referred to as a sleeve) made of a wear-resistant material is placed in the cylinder bore portion in the mold during cylinder block molding, and the cylinder bore is formed by casting the liner with a light alloy. Has been made.

シリンダボアの内面に設ける耐摩耗性に優れたライナとして、鋳鉄や、アルミニウム合金中に炭化ケイ素粒子や強化繊維等の強化材を分散させた複合材料などが用いられている。   As a liner having excellent wear resistance provided on the inner surface of a cylinder bore, cast iron or a composite material in which reinforcing materials such as silicon carbide particles and reinforcing fibers are dispersed in an aluminum alloy is used.

この種のライナを備えたシリンダブロックを成形する場合、鋳型のキャビティ内にボアピン(入子とも称される)を突出させ、そのボアピンにライナを嵌め込んで保持させた状態で、キャビティ内にアルミニウム合金等の溶湯を充填する。このようなシリンダブロック鋳造用ボアピンに係わる先行技術として例えば以下のものが挙げられる。   When molding a cylinder block with this type of liner, a bore pin (also referred to as a nesting) protrudes into the cavity of the mold, and the liner is fitted into the bore pin and held in the aluminum. Fill with molten metal such as alloy. Examples of prior art relating to such a cylinder block casting bore pin include the following.

特許文献1には、シリンダブロック鋳造用金型内のシリンダボアを形成すべき位置に、スリーブを装着するボアピンを配設して、ボアピンにその軸線方向に沿って基端部側から先端部側へ冷却室を形成すると共に、ボアピンの基端部側に、その開口端を冷却室内に臨ませて冷却液配管を挿入配設してなるボアピンの冷却構造において、冷却液配管の開口端の位置を金型配設時に、金型のシリンダヘッド接合部形成面位置またはこの位置近傍の金型の内方位置としたシリンダブロック鋳造用ボアピンの冷却構造が記載されている。   In Patent Document 1, a bore pin for mounting a sleeve is disposed at a position where a cylinder bore in a cylinder block casting mold is to be formed, and the bore pin is moved from the proximal end side to the distal end side along the axial direction thereof. In the cooling structure of the bore pin in which the cooling chamber is formed and the cooling pipe is inserted and disposed on the base end side of the bore pin with the opening end facing the cooling chamber, the position of the opening end of the cooling pipe is A cooling structure of a cylinder block casting bore pin at the position of the mold head cylinder joint joint forming surface or the inner position of the mold near this position when the mold is disposed is described.

特許文献2には、シリンダボアを成形するための入子となるボア金型用ピンを有する鋳造金型に、ボア部を形成する筒状のシリンダライナを、そのボア金型ピンを挿入させて配置する工程と、鋳造金型内にアルミニウム合金溶湯を注湯し、鋳ぐるんで凝固させる工程とを含んでなるシリンダブロックの鋳造方法であって、ボア金型ピンは、鋳造後のシリンダライナの内周面が真円となるように、鋳造後の残留応力によるシリンダライナの内周面の変形を見込んでその断面が異形状に調製されているシリンダブロックの鋳造方法が記載されている。   In Patent Document 2, a cylindrical cylinder liner that forms a bore portion is inserted into a casting mold having a bore mold pin that becomes a nest for forming a cylinder bore, and the bore mold pin is inserted. A cylinder block casting method including a step of pouring a molten aluminum alloy into a casting mold, and solidifying by casting. A bore mold pin is formed in a cylinder liner after casting. A cylinder block casting method is described in which the inner surface of the cylinder liner is deformed by the residual stress after casting so that the outer surface is a perfect circle.

特許文献3には、アルミニウム溶湯又はアルミニウム合金溶湯を、入子を有する鋳型内に注湯するステップと、溶湯が、入子及び鋳型の内側面によって形成された溶湯の流路が急激に絞られて細くなる挟路部を流れるステップと、この挟路部を流れた後、鋳型及び入子の間のキャビティに溶湯が充填保持されるステップと、このキャビティに充填保持された溶湯が凝固されるステップとを含んでなるアルミニウム又はアルミニウム合金の鋳造方法において、挟路部に近接する入子の端面に凹部を設け、凹部に溶湯が流れ込むことにより挟路部の溶湯の凝固を遅らせる鋳造方法が記載されている。   In Patent Document 3, a step of pouring molten aluminum or molten aluminum alloy into a mold having an insert and a flow path of the melt formed by the insert and the inner surface of the mold are rapidly narrowed. The step of flowing through the narrowed narrow passage portion, the step of filling and holding the molten metal in the cavity between the mold and the insert after flowing through the narrow passage portion, and the molten metal filled and held in the cavity are solidified. A step of providing a recess in the end face of the nest adjacent to the niche part and delaying solidification of the melt in the niche part by flowing the melt into the recess. Has been.

特開平6−71405号公報JP-A-6-71405 特開2002−153967号公報JP 2002-153967 A 特開2002−178133号公報JP 2002-178133 A

前述したようにライナを備えたシリンダブロックを成形する場合、金型のキャビティ内にボアピンを突出させ、そのボアピンにライナを嵌め込んで保持させた状態で、キャビティ内にアルミニウム合金等の溶湯を充填する。そして、鋳型内の溶湯が凝固した後に、鋳型内からライナを鋳ぐるんだシリンダブロックを取り出すとともに、ボアピンからライナを引き抜く。   When molding a cylinder block with a liner as described above, a bore pin is projected into the mold cavity, and the liner is fitted into the bore pin, and the cavity is filled with a molten metal such as an aluminum alloy. To do. Then, after the molten metal in the mold is solidified, the cylinder block in which the liner is cast is taken out from the mold, and the liner is pulled out from the bore pin.

そこで、ボアピンは十分な耐熱性とともに、耐摩耗性材料からなるライナから引き抜かれるため十分な耐摩耗性が要求される。従来のボアピンとして、JIS SKD61相当の熱間工具鋼や、さらにこれに焼入れ、焼戻し等の熱処理を施した後、軟窒化処理を施して耐熱性、耐摩耗性を付与したものなどが使用されている。   Therefore, the bore pin is required to have sufficient heat resistance since it is pulled out from the liner made of the wear-resistant material together with sufficient heat resistance. As a conventional bore pin, a hot tool steel equivalent to JIS SKD61, or one that has been subjected to heat treatment such as quenching and tempering and then subjected to soft nitriding treatment to impart heat resistance and wear resistance, etc. is used. Yes.

一方、シリンダブロックのシリンダボアは形成位置の精度が高く要求されるため、ボアピンとライナは互いに緊密に嵌合されている。また、ボアピンは溶湯や繰り返して使用される鋳型の熱の影響を受けて昇温して熱膨張する。   On the other hand, since the cylinder bore of the cylinder block is required to have a high precision in the formation position, the bore pin and the liner are closely fitted to each other. Further, the bore pin is heated and expands under the influence of the heat of the molten metal or the mold that is repeatedly used.

このような状態の中では、ボアピンとライナとを脱着する場合に両者がかじりやすくなる。このため、従来のボアピンにおいては、ボアピン表面の摩耗が著しくなり、シリンダボアの形成位置精度を良好に維持できなくなる、また損傷して耐用寿命が短くなるという問題があった。   In such a state, when the bore pin and the liner are attached and detached, both are easily gnawed. For this reason, in the conventional bore pin, there is a problem that the wear on the surface of the bore pin becomes remarkable, the accuracy of the formation position of the cylinder bore cannot be maintained well, and the service life is shortened due to damage.

この課題に鑑みて本発明の目的は、ボアピンの熱膨張係数を小さくすることでボアピンとライナ間は精度が良好なまま嵌合が維持され、引き抜き時の摩耗を低減させることで、従来材料に比べて耐用寿命が長いシリンダブロック鋳造用ボアピンを提供することである。   In view of this problem, the object of the present invention is to reduce the thermal expansion coefficient of the bore pin so that the fitting between the bore pin and the liner is maintained with good accuracy, and the wear during pulling is reduced, thereby reducing the wear of the conventional material. The object is to provide a cylinder block casting bore pin having a longer service life compared to the above.

本発明のシリンダブロック鋳造用ボアピンは、シリンダブロックを鋳造する際にライナに嵌め込んで用いられるボアピンであって、室温から100℃における平均熱膨張係数が8×10−6/℃〜11×10−6/℃である鉄基合金からなることを特徴とする。 The bore pin for casting a cylinder block according to the present invention is a bore pin that is used by being fitted into a liner when casting a cylinder block, and has an average coefficient of thermal expansion of 8 × 10 −6 / ° C. to 11 × 10 from room temperature to 100 ° C. It is made of an iron-base alloy having a temperature of −6 / ° C.

前記本発明において、鉄基合金がハイス系合金であることを特徴とする。   In the present invention, the iron-base alloy is a high-speed alloy.

前記本発明において、鉄基合金が質量%で、C:1.0〜4.0%、Si:0.1〜2.0%、Mn:0.1〜2.0%、Ni:0〜4.5%、Cr:10.0〜20.0%、Mo:0〜9.0%、W:0〜10.0%、V:1.0〜10.0%を含有するFe基合金からなることを特徴とする。   In the present invention, the iron-based alloy is in mass%, C: 1.0 to 4.0%, Si: 0.1 to 2.0%, Mn: 0.1 to 2.0%, Ni: 0 to Fe-based alloy containing 4.5%, Cr: 10.0 to 20.0%, Mo: 0 to 9.0%, W: 0 to 10.0%, V: 1.0 to 10.0% It is characterized by comprising.

前記本発明において、鉄基合金が質量%でさらに、Co:10.0%以下、Nb:10.0%以下のうちいずれか一種以上を含有することを特徴とする。   In the present invention, the iron-base alloy further contains at least one of Co: 10.0% or less and Nb: 10.0% or less in terms of mass%.

前記本発明において、鉄基合金がライナより室温から100℃における平均熱膨張係数が小さいことを特徴とする。   In the present invention, the iron-based alloy has a smaller average thermal expansion coefficient from room temperature to 100 ° C. than the liner.

本発明のシリンダブロック鋳造用ボアピンでは、熱膨張係数をライナより小さくしたため膨張せず、引き抜き時の摩耗を低減でき、さらに合金を耐摩耗性の優れるハイス系合金としており、従来の熱間工具鋼に比べ格段に耐摩耗性を向上させることができる。   In the bore block for cylinder block casting of the present invention, the thermal expansion coefficient is made smaller than that of the liner, so that it does not expand, wear during drawing can be reduced, and the alloy is made of a high-speed alloy having excellent wear resistance. Compared to the above, the wear resistance can be remarkably improved.

一般的にライナに使用される鋳鉄の熱膨張係数は11×10−6/℃〜12×10−6/℃であるのに対し、本発明の鉄基合金は8×10−6/℃〜11×10−6/℃と鋳鉄より小さくする。 Generally, the thermal expansion coefficient of cast iron used for a liner is 11 × 10 −6 / ° C. to 12 × 10 −6 / ° C., whereas the iron-based alloy of the present invention has a thermal expansion coefficient of 8 × 10 −6 / ° C. 11 × 10 −6 / ° C. and smaller than cast iron.

本発明の鉄基合金は、SKD61鋼に比べVやCrを多量に含んだ高合金材であり、炭化物が微細に分散しているため耐摩耗性が十分得られる。鉄基合金中には、MC系炭化物、M2C系炭化物、M6C系炭化物、M系炭化物、M43系炭化物およびM23系炭化物のいずれか一種以上が比較的多く含まれるので耐摩耗性を著しく向上させることができる。 The iron-based alloy of the present invention is a high alloy material containing a large amount of V and Cr as compared with SKD61 steel, and sufficient wear resistance is obtained because carbides are finely dispersed. Among iron-based alloys, one or more of MC carbide, M 2 C carbide, M 6 C carbide, M 7 C 3 carbide, M 4 C 3 carbide and M 23 C 6 carbide are compared. Therefore, the wear resistance can be remarkably improved.

さらに、硬さを確保するために、特に硬質であるMC系炭化物およびM2C系炭化物の面積率の総和は10%以上が好ましい。また、針状やネットワーク状の共晶炭化物量が過多になると必要な機械的特性、特に靭性が確保できなくなるが、MC系炭化物を適切に晶出させることで、M2C系炭化物、M73系炭化物のネットワークを分断し靭性を確保できる。 Furthermore, in order to ensure hardness, the sum of the area ratios of particularly hard MC-based carbides and M 2 C-based carbides is preferably 10% or more. Further, if the amount of eutectic carbides in the form of needles or networks is excessive, necessary mechanical properties, particularly toughness, cannot be ensured. However, by properly crystallizing MC carbides, M 2 C carbides, M 7 It is possible to cut the C 3 carbide network to ensure toughness.

本発明のシリンダブロック鋳造用ボアピンに係わる鉄基合金の化学成分(質量%)は以下の範囲が望ましい。   The chemical composition (mass%) of the iron-based alloy related to the bore block for casting a cylinder block of the present invention is preferably in the following range.

C:1.0〜4.0%
Cは、耐摩耗性向上のための炭化物の形成と、基地への固溶による焼入れ・焼戻し時の基地硬さの向上に必要である。Cは、耐摩耗性の向上に寄与するMC、M2C、M6C、M73、M43、M236系炭化物を生成する。Cが1.0%未満では耐摩耗性を向上させるために有効な炭化物の晶出が少なく、また基地に固溶するCが不足し、焼入れによっても十分な基地硬さが得られなくなる。一方、4.0%を超えると炭化物が粗大化しその晶出量も過大となり、靭性が劣化しやすい。
C: 1.0-4.0%
C is necessary for the formation of carbide for improving the wear resistance and the improvement of the hardness of the base during quenching and tempering by solid solution in the base. C produces MC, M 2 C, M 6 C, M 7 C 3 , M 4 C 3 , and M 23 C 6 -based carbides that contribute to improved wear resistance. When C is less than 1.0%, there is little crystallization of carbide effective for improving the wear resistance, and there is not enough C dissolved in the matrix, and sufficient matrix hardness cannot be obtained even by quenching. On the other hand, if it exceeds 4.0%, the carbides become coarse and the amount of crystallization becomes excessive, and the toughness tends to deteriorate.

Si:0.1〜2.0%
Siの含有量は0.1〜2.0%が好ましい。Siは、脱酸剤として作用し、またM6C系炭化物中に固溶してW、Moなどの元素を置換して含有されるため、W、Moなどの高価な元素の節減を図るために有効である。Siが0.1%未満では脱酸効果が不足して鋳造欠陥を生じやすい。また、2.0%を超えると脆化が生じやすい。
Si: 0.1 to 2.0%
The Si content is preferably 0.1 to 2.0%. Since Si acts as a deoxidizer and is contained in M 6 C-based carbide as a solid solution by substituting elements such as W and Mo, it is intended to save expensive elements such as W and Mo. It is effective for. If Si is less than 0.1%, the deoxidation effect is insufficient and casting defects are likely to occur. Moreover, when it exceeds 2.0%, embrittlement tends to occur.

Mn:0.1〜2.0%
Mnの含有量は0.1〜2.0%が好ましい。Mnは、Siと同様に脱酸作用がある。また、不純物であるSをMnSとして固定する作用がある。Mnが0.1%未満では脱酸性に乏しい。また、2.0%を超えると残留オーステナイトを生じやすく、安定して十分な硬さを維持できない。
Mn: 0.1 to 2.0%
The Mn content is preferably 0.1 to 2.0%. Mn has a deoxidizing action like Si. Moreover, there exists an effect | action which fixes S which is an impurity as MnS. When Mn is less than 0.1%, deacidification is poor. On the other hand, if it exceeds 2.0%, retained austenite tends to be generated, and sufficient hardness cannot be maintained stably.

Ni:0〜4.5%
Niは必ずしも添加を必要としないが、添加した場合、焼入性を向上させ高硬度化させる効果を有する。Ni含有量が4.5%を超えると残留オーステナイトが過剰となりかえって高硬度が得られなくなる。より好ましいNi含有量は0〜2.0%である。
Ni: 0 to 4.5%
Ni does not necessarily need to be added, but when added, it has the effect of improving hardenability and increasing hardness. If the Ni content exceeds 4.5%, the retained austenite becomes excessive and high hardness cannot be obtained. A more preferable Ni content is 0 to 2.0%.

Cr:10.0%〜20.0%
Crは本発明の最も特徴とする元素でありCと結合し炭化物を晶出生成し、また基地に固溶し基地硬さを上げることで、耐摩耗性を向上させる。
また、Crが10.0%を超えると熱膨張係数が低いクロム炭化物(Cr、C23)が多量に生成し、そのため鉄基合金の熱膨張係数が11×10−6/℃よりも小さくなる。炭化物が20.0%を超えると、靭性が低下するため好ましくない。
Cr: 10.0% to 20.0%
Cr is the most characteristic element of the present invention, and combines with C to crystallize and generate carbides. Further, it dissolves in the matrix and increases the hardness of the matrix, thereby improving the wear resistance.
Further, when Cr exceeds 10.0%, a large amount of chromium carbide (Cr 7 C 3 , C 23 C 6 ) having a low thermal expansion coefficient is generated, and thus the thermal expansion coefficient of the iron-based alloy is 11 × 10 −6 / It becomes smaller than ℃. If the carbide content exceeds 20.0%, the toughness decreases, which is not preferable.

Mo:0〜9.0%
Moは必ずしも添加を必要としないが、添加した場合、Crと同様にCと結合して硬質のM2C、M6C系炭化物を生成する。また高温で焼戻しを行う場合、その二次硬化に強く寄与する元素である。Mo含有量が9.0%を超えると、CとVとMoのバランスにおいて、M2C、M6C系炭化物が多く晶出しすぎ、靭性が低下する。より好ましいMo含有量は1.0〜8.0%である。
Mo: 0 to 9.0%
Mo does not necessarily need to be added, but when added, it combines with C like Cr and produces hard M 2 C and M 6 C carbides. Moreover, when tempering at high temperature, it is an element which contributes strongly to the secondary hardening. When the Mo content exceeds 9.0%, in the balance of C, V, and Mo, a large amount of M 2 C and M 6 C carbides are crystallized, and the toughness decreases. A more preferable Mo content is 1.0 to 8.0%.

W:0〜10.0%
Wは必ずしも添加を必要としないが、添加した場合、基地の焼入れ性を上げ、Cと結合して硬質のM2C、M6C系炭化物を生成する。また、WはCrやMoと同様に硬い炭化物を生成するため、これらの元素に置換して添加することもできる。W含有量が10.0%を超えると、M6C系炭化物が粗大化し脆性が劣化するので好ましくない。
W: 0 to 10.0%
W does not necessarily need to be added, but when added, it enhances the hardenability of the matrix and combines with C to produce hard M 2 C and M 6 C carbides. Further, W produces hard carbides like Cr and Mo, and can be substituted for these elements and added. If the W content exceeds 10.0%, the M 6 C carbide is coarsened and the brittleness deteriorates, which is not preferable.

V:1.0〜10.0%
Vは、耐摩耗性の向上に最も寄与する硬質なMC系炭化物、M43系炭化物を形成する。Vが1.0%未満では炭化物の生成が少なく耐摩耗性が不足する。Vが10.0%を超えると、C含有量とのバランスにより、初晶としてオーステナイト、もしくはMC、M43系炭化物が晶出する。オーステナイトが初晶で晶出すれば硬さが不十分となる。また、MC、M43系炭化物が初晶で晶出すれば凝固中に凝集偏析して脆性の劣化を引き起こすので好ましくない。より好ましいVの含有量は、2.0〜8.0%である。
V: 1.0-10.0%
V forms a hard MC-based carbide, M 4 C 3 -based carbide, which contributes most to the improvement of wear resistance. When V is less than 1.0%, the generation of carbide is small and the wear resistance is insufficient. When V exceeds 10.0%, austenite, MC, or M 4 C 3 carbides are crystallized as primary crystals due to the balance with the C content. If austenite crystallizes in the primary crystal, the hardness becomes insufficient. Further, if MC and M 4 C 3 type carbides are crystallized as primary crystals, it is not preferable since they cause segregation during aggregation and cause brittle deterioration. A more preferable content of V is 2.0 to 8.0%.

残部はFeおよび不純物元素とする。さらに、前記に加えてCo、Nbのいずれか一種以上を含有させることができる。   The balance is Fe and impurity elements. Furthermore, in addition to the above, any one or more of Co and Nb can be contained.

Co:10.0%以下
Coは炭化物の生成とは無関係に基地に固溶し、強靭性を増すとともに高温硬さと耐摩耗性を向上する効果がある。Coが10.0%を超えるとその効果が飽和し、かつ高価になるのでこれを上限とした。
Co: 10.0% or less Co is dissolved in the base irrespective of the formation of carbides, and has the effect of increasing toughness and improving high-temperature hardness and wear resistance. If Co exceeds 10.0%, the effect is saturated and expensive, so this was made the upper limit.

Nb:10.0%以下
NbはVと同様に、耐摩耗性の向上に最も寄与する硬質なMC系炭化物、M43系炭化物を形成する。Nbが10.0%を超えると、靭性が低下するとともに、C含有量とのバランスにより、初晶としてオーステナイト、もしくはMC、M43系炭化物が晶出する。オーステナイトが初晶で晶出すれば硬さが不十分となる。また、MC、M43が初晶で晶出すれば凝固中に凝集偏析して脆性の劣化を引き起こす。
Nb: 10.0% or less Nb, like V, forms a hard MC-based carbide, M 4 C 3 -based carbide, which contributes most to the improvement of wear resistance. When Nb exceeds 10.0%, toughness is reduced, and austenite, MC, or M 4 C 3 carbide is crystallized as the primary crystal due to the balance with the C content. If austenite crystallizes in the primary crystal, the hardness becomes insufficient. Further, if MC and M 4 C 3 are crystallized as primary crystals, they are aggregated and segregated during solidification to cause brittle deterioration.

本発明の実施例を図面に基づいて説明する。図1は本発明の実施例のボアピンを示す概略断面図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing a bore pin according to an embodiment of the present invention.

本発明のボアピン1として、化学成分が質量%でC:2.2%、Si:0.8%、Mn:0.4%、Cr:15.1%、Mo:5.7%、V:6.5%、Fe:残部のハイス系合金材のインゴットを1450℃で溶解し、鋳型に鋳込んでボアピンの母材2を作成した。その後、母材2を所定の形状に加工しボアピン1を製造した。このようにして製造したボアピン1の室温から100℃における平均熱膨張係数は9.2×10−6/℃であった。 As the bore pin 1 of the present invention, the chemical components are C: 2.2%, Si: 0.8%, Mn: 0.4%, Cr: 15.1%, Mo: 5.7%, V: An ingot of 6.5% Fe: the remaining high-speed alloy material was melted at 1450 ° C. and cast into a mold to prepare a base material 2 of a bore pin. Thereafter, the base material 2 was processed into a predetermined shape to manufacture the bore pin 1. The average thermal expansion coefficient of the bore pin 1 thus produced from room temperature to 100 ° C. was 9.2 × 10 −6 / ° C.

また、ボアピン1の内部に中空の冷却室5を設けてもよい。冷却室5内に水等の冷却液を流し込み、ボアピン1を冷却してボアピン1の熱膨張を抑えて、嵌め込まれたライナ3の引き抜きをより一層容易にする。4は鋳型であり、ボアピン1の基部がボルトなどにより固定されている。   Further, a hollow cooling chamber 5 may be provided inside the bore pin 1. A cooling liquid such as water is poured into the cooling chamber 5 to cool the bore pin 1 to suppress thermal expansion of the bore pin 1 and make it easier to pull out the fitted liner 3. Reference numeral 4 denotes a mold, and a base portion of the bore pin 1 is fixed by a bolt or the like.

比較例として従来材であるSKD61鋼を用いて同一のボアピンを作成した。該ボアピンの室温から100℃における平均熱膨張係数は11.7×10−6/℃であった。 As a comparative example, the same bore pin was made using SKD61 steel which is a conventional material. The average thermal expansion coefficient of the bore pin from room temperature to 100 ° C. was 11.7 × 10 −6 / ° C.

これらの本発明のボアピンと従来材のボアピンを実際に自動車エンジンのシリンダブロックのダイカスト鋳造に用いたところ、本発明の鉄基合金製のボアピン表面の耐摩耗性を著しく向上させることができ、シリンダボアの形成位置精度を長期間にわたって良好に維持でき、従来材料に比べて約2倍の耐用寿命であることを確認できた。   When these bore pins of the present invention and conventional bore pins are actually used for die casting of a cylinder block of an automobile engine, the wear resistance of the surface of the bore pin made of the iron-based alloy of the present invention can be remarkably improved. It was confirmed that the formation position accuracy of the film could be maintained well over a long period of time, and the service life was about twice that of the conventional material.

なお、本発明のボアピンの表面に、窒化処理、クロム窒化処理、超硬溶射、セラミックス溶射、各種メッキ等の表面処理を施しても良い。   The surface of the bore pin of the present invention may be subjected to a surface treatment such as nitriding treatment, chromium nitriding treatment, superhard spraying, ceramic spraying, various platings and the like.

本発明のシリンダブロック鋳造用ボアピンによれば、シリンダブロックの鋳造において、ボアピン表面の耐摩耗性を著しく向上させることができ、シリンダボアの形成位置精度を良好に維持でき、従来材料に比べて耐用寿命が長いので、高品質のシリンダブロックを安定して製造できる。   According to the cylinder block casting bore pin of the present invention, the wear resistance of the bore pin surface can be remarkably improved in the casting of the cylinder block, the formation accuracy of the cylinder bore can be maintained well, and the service life is longer than that of the conventional material. Therefore, high quality cylinder blocks can be manufactured stably.

本発明の実施例のボアピンを示す概略断面図である。It is a schematic sectional drawing which shows the bore pin of the Example of this invention. 本発明の他の実施例のボアピンを示す概略断面図である。It is a schematic sectional drawing which shows the bore pin of the other Example of this invention.

符号の説明Explanation of symbols

1 ボアピン、 2 母材、 3 ライナ、 4 鋳型、 5 冷却室   1 Bore pin, 2 Base material, 3 Liner, 4 Mold, 5 Cooling chamber

Claims (5)

シリンダブロックを鋳造する際にライナに嵌め込んで用いられるボアピンであって、室温から100℃における平均熱膨張係数が8×10−6/℃〜11×10−6/℃である鉄基合金からなることを特徴とするシリンダブロック鋳造用ボアピン。 A bore pin that is used by being fitted into a liner when casting a cylinder block, from an iron-based alloy having an average coefficient of thermal expansion from room temperature to 100 ° C. of 8 × 10 −6 / ° C. to 11 × 10 −6 / ° C. A bore pin for casting a cylinder block. 前記鉄基合金がハイス系合金であることを特徴とする請求項1に記載のシリンダブロック鋳造用ボアピン。 The bore block for cylinder block casting according to claim 1, wherein the iron-based alloy is a high-speed alloy. 前記鉄基合金が質量%で、C:1.0〜4.0%、Si:0.1〜2.0%、Mn:0.1〜2.0%、Ni:0〜4.5%、Cr:10.0〜20.0%、Mo:0〜9.0%、W:0〜10.0%、V:1.0〜10.0%を含有するFe基合金からなることを特徴とする請求項1または2に記載のシリンダブロック鋳造用ボアピン。 The iron-based alloy is in mass%, C: 1.0 to 4.0%, Si: 0.1 to 2.0%, Mn: 0.1 to 2.0%, Ni: 0 to 4.5% Cr: 10.0 to 20.0%, Mo: 0 to 9.0%, W: 0 to 10.0%, and V: 1.0 to 10.0%. The bore pin for cylinder block casting according to claim 1 or 2, characterized by the above-mentioned. 前記鉄基合金が質量%でさらに、Co:10.0%以下、Nb:10.0%以下のうちいずれか一種以上を含有することを特徴とする請求項1〜3に記載のシリンダブロック鋳造用ボアピン。 4. The cylinder block casting according to claim 1, wherein the iron-based alloy further contains at least one of Co: 10.0% or less and Nb: 10.0% or less in terms of mass%. Bore pin for. 前記鉄基合金がライナより室温から100℃における平均熱膨張係数が小さいことを特徴とする請求項1〜4に記載のシリンダブロック鋳造用ボアピン。 The bore block for cylinder block casting according to claim 1, wherein the iron-based alloy has a smaller average thermal expansion coefficient from room temperature to 100 ° C. than the liner.
JP2005149109A 2005-05-23 2005-05-23 Bore pin for casting cylinder block Pending JP2006326595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149109A JP2006326595A (en) 2005-05-23 2005-05-23 Bore pin for casting cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149109A JP2006326595A (en) 2005-05-23 2005-05-23 Bore pin for casting cylinder block

Publications (1)

Publication Number Publication Date
JP2006326595A true JP2006326595A (en) 2006-12-07

Family

ID=37548864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149109A Pending JP2006326595A (en) 2005-05-23 2005-05-23 Bore pin for casting cylinder block

Country Status (1)

Country Link
JP (1) JP2006326595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574360A (en) * 2017-09-06 2018-01-12 马鞍山市万兴耐磨金属制造有限公司 A kind of rich chromium cast iron high-strength alloy wear-resistant ball and its manufacture method
CN107962151A (en) * 2017-11-30 2018-04-27 马鞍山市华威冶金机械有限公司 A kind of casting technique with high vanadium ferrochrome production Bitruder barrel liner
CN111394646A (en) * 2020-03-30 2020-07-10 河北领启机械设备有限公司 Wear-resistant cast iron for manufacturing flow passage component of slurry pump and heat treatment process of wear-resistant cast iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574360A (en) * 2017-09-06 2018-01-12 马鞍山市万兴耐磨金属制造有限公司 A kind of rich chromium cast iron high-strength alloy wear-resistant ball and its manufacture method
CN107962151A (en) * 2017-11-30 2018-04-27 马鞍山市华威冶金机械有限公司 A kind of casting technique with high vanadium ferrochrome production Bitruder barrel liner
CN107962151B (en) * 2017-11-30 2019-11-08 马鞍山市华威冶金机械有限公司 A kind of casting technique with high vanadium ferrochrome production Bitruder barrel liner
CN111394646A (en) * 2020-03-30 2020-07-10 河北领启机械设备有限公司 Wear-resistant cast iron for manufacturing flow passage component of slurry pump and heat treatment process of wear-resistant cast iron

Similar Documents

Publication Publication Date Title
US8528513B2 (en) Cast steel piston for internal combustion engines
JP2017185548A (en) Centrifugal casting hot-rolling compound roll
CN103140595B (en) Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JPH10328804A (en) Injection sleeve for die cast machine, bush for die cast machine and die cast machine using them
JP2006326595A (en) Bore pin for casting cylinder block
US5983977A (en) Sleeve for die casting machines and die casting machine using the same
JP2010168639A (en) Steel for die-casting mold
BR112019014439B1 (en) COMPOSITE ROLLER FOR LAMINATION AND ITS PRODUCTION METHOD
JP7167483B2 (en) Steel for die casting molds and die casting molds
JP2006272362A (en) Bore pin for casting cylinder block
JP3987694B2 (en) Casting method for cast iron molded products
JP2004082209A (en) Hot rolling compound roll manufactured by centrifugal casting
JP2006272359A (en) Bore pin for casting cylinder block
JP2006326597A (en) Bore pin for cylinder block casting
JP2005290406A (en) Member for nonferrous molten metal
JPH11199962A (en) Composite rolling for rolling
JP2004216413A (en) Sleeve for die-casting
JP2006289772A (en) Composite cylinder for molding machine
JP2593759B2 (en) Wear-resistant phosphorus eutectic cast iron
JP2004291079A (en) Erosion resistant member for non-ferrous molten metal
WO2020226037A1 (en) Spheroidal graphite cast iron, method for manufacturing spheroidal graphite cast iron, and parts for vehicle wheel periphery
JP2005256088A (en) Spheroidal graphite cast-iron member
JP2005305451A (en) Member for non-ferrous molten metal
JP4264897B2 (en) Non-ferrous metal parts
JP3904335B2 (en) Fe-based alloy material for thixocasting and casting method using the same