JP2011187225A - Electronic component, and manufacturing method thereof - Google Patents

Electronic component, and manufacturing method thereof Download PDF

Info

Publication number
JP2011187225A
JP2011187225A JP2010049391A JP2010049391A JP2011187225A JP 2011187225 A JP2011187225 A JP 2011187225A JP 2010049391 A JP2010049391 A JP 2010049391A JP 2010049391 A JP2010049391 A JP 2010049391A JP 2011187225 A JP2011187225 A JP 2011187225A
Authority
JP
Japan
Prior art keywords
copper powder
external electrode
electronic component
conductive paste
fine copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010049391A
Other languages
Japanese (ja)
Other versions
JP5476631B2 (en
Inventor
Mitsuhiro Kusano
満洋 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010049391A priority Critical patent/JP5476631B2/en
Publication of JP2011187225A publication Critical patent/JP2011187225A/en
Application granted granted Critical
Publication of JP5476631B2 publication Critical patent/JP5476631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electronic components in which there is no blister failure while securing denseness of an external electrode, and to provide a manufacturing method thereof. <P>SOLUTION: The electronic components includes: a laminate 3 to have a plurality of ceramic layers 2 and internal electrodes 4, 5; and the external electrodes 6, 7 which are formed on an outer surface of the laminate 3, which are electrically connected to the internal electrodes 4, 5, and on which a conductive paste is coated and baked. The conductive paste contains: a copper powder; a glass frit; and organic vehicles. The copper powder is constituted by mixing 0 to 70 vol.% of coarse copper powder of the average particle diameter of 1.0 to 3.0 μm and 30 to 100 vol.% of fine copper powder of the average particle diameter of 0.1 to 0.8 μm. When a sintered density of the external electrodes 6, 7 is 80%, carbon amount in the external electrode is 0.007 wt.% or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子部品およびその製造方法に関する。特に銅粉を含む導電性ペーストを焼き付けてなる外部電極を備える電子部品およびその製造方法に関する。   The present invention relates to an electronic component and a manufacturing method thereof. In particular, the present invention relates to an electronic component including an external electrode formed by baking a conductive paste containing copper powder and a method for manufacturing the electronic component.

従来から、複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されている外部電極と、を備える電子部品が知られている。電子部品の例としては、例えば積層セラミックコンデンサが挙げられる。   2. Description of the Related Art Conventionally, there is known an electronic component that includes a laminate having a plurality of ceramic layers and internal electrodes, and an external electrode that is formed on the outer surface of the laminate and is electrically connected to the internal electrodes. ing. As an example of the electronic component, for example, a multilayer ceramic capacitor can be cited.

外部電極は、通常、導電性ペーストを積層体の外表面上に塗布した後、これを焼き付けて形成される。導電性ペーストには、内部電極との相性やコストの面から、銅がよく使用されている。また、導電性ペーストに含まれる銅粉には、酸化の抑制や凝集の改善のため、あらかじめ表面処理が行われることが多い。導電性ペーストとしては、例えば特許文献1に記載されているものが知られている。特許文献1記載の銅粉は、脂肪酸アミンで表面処理されたものである。   The external electrode is usually formed by applying a conductive paste on the outer surface of the laminate and then baking it. Copper is often used for the conductive paste from the viewpoint of compatibility with internal electrodes and cost. In addition, the copper powder contained in the conductive paste is often subjected to surface treatment in advance in order to suppress oxidation and improve aggregation. As an electrically conductive paste, what is described, for example in patent document 1 is known. The copper powder described in Patent Document 1 is surface-treated with a fatty acid amine.

特開2006−4734号公報JP 2006-4734 A

積層セラミックコンデンサにおいては、近年、大容量化が要請されている。積層セラミックコンデンサの体積を一定にしたまま容量を増大しようとすると、外部電極を薄層化して、その分積層体の体積を大きくして容量を増大することが考えられる。しかしながら、外部電極を薄層化する際に従来の銅粉を用いた場合には、外部電極の層厚に対する銅粉の粒子数が少なくなるため、積層体の表面が露出するなど、外部電極の緻密性が低下する問題が生じた。   In recent years, there has been a demand for a large capacity for multilayer ceramic capacitors. In order to increase the capacity while keeping the volume of the multilayer ceramic capacitor constant, it is conceivable to increase the capacity by thinning the external electrode and increasing the volume of the multilayer body accordingly. However, when the conventional copper powder is used when thinning the external electrode, the number of particles of the copper powder with respect to the layer thickness of the external electrode is reduced, so that the surface of the laminate is exposed. There arises a problem that the compactness is lowered.

その対策として、本発明者は、微粒の銅粉を用いて、外部電極の層厚に対する銅粉の粒子数を多くして、外部電極の緻密性を確保することを試みた。ところが、微粒の銅粉を用いた場合には、銅の焼結開始温度が低下する。そのため、特許文献1のように脂肪酸アミンで表面処理された銅粉を用いた場合には、脂肪酸アミンに含まれる炭素が残存したまま銅の焼結が進んでしまう。その結果、残留する炭素が外部電極の内部に封止され、この炭素がガス化することにより、外部電極と積層体との間にブリスタ(膨れ)不良が発生する問題が生じた。ブリスタ不良は、製品の外観を損なうばかりでなく、外部電極と内部電極との密着強度を低下させるものである。また、このブリスタ不良は、表面処理が行われていない銅粉においても発生した。   As a countermeasure, the inventor tried to secure the denseness of the external electrode by using fine copper powder to increase the number of particles of the copper powder with respect to the layer thickness of the external electrode. However, when fine copper powder is used, the sintering start temperature of copper decreases. Therefore, when copper powder surface-treated with a fatty acid amine is used as in Patent Document 1, sintering of copper proceeds while carbon contained in the fatty acid amine remains. As a result, the remaining carbon is sealed inside the external electrode, and this carbon is gasified, resulting in a problem that a blister (swelling) defect occurs between the external electrode and the laminate. Blister defects not only impair the appearance of the product, but also reduce the adhesion strength between the external electrode and the internal electrode. Moreover, this blister defect also occurred in copper powder that was not surface-treated.

本発明は上記の課題に鑑みなされたものであって、外部電極の緻密性を確保しつつ、ブリスタ不良の発生しない電子部品およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an electronic component that does not cause blister defects while ensuring the denseness of external electrodes, and a method for manufacturing the same.

本発明者は、導電性ペーストに一定比率以上の微粒銅粉を混合することにより、外部電極の緻密性を確保できることを見出した。また、外部電極の焼結密度が80%の時点での外部電極中の炭素量とブリスタ不良との間には相関があり、外部電極中の炭素量が0.007wt%以下である場合に、ブリスタが発生しないことを見出した。焼結密度が80%の時点とは、外部電極が焼結による収縮を開始する前後の温度である。   The present inventor has found that the denseness of the external electrode can be secured by mixing fine copper powder in a certain ratio or more into the conductive paste. Further, there is a correlation between the amount of carbon in the external electrode and the blister defect when the sintered density of the external electrode is 80%, and when the amount of carbon in the external electrode is 0.007 wt% or less, It was found that no blister occurred. The point in time when the sintered density is 80% is the temperature before and after the external electrode starts to shrink due to sintering.

本発明に係る電子部品は、複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されており、導電性ペーストを焼き付けてなる外部電極と、を備える電子部品において、前記導電性ペーストは、銅粉と、ガラスフリットと、有機ビヒクルと、を含み、前記銅粉は、平均粒径が1.0μm〜3.0μmの粗粒銅粉0〜70vol%と、0.1〜0.8μmの微粒銅粉30〜100vol%と、を混合して構成され、前記外部電極の焼結密度が80%の時点での外部電極中の炭素量が0.007wt%以下であることを特徴としている。   An electronic component according to the present invention includes a laminate having a plurality of ceramic layers and internal electrodes, and is formed on an outer surface of the laminate and electrically connected to the internal electrodes, and is baked with a conductive paste. In the electronic component comprising the external electrode, the conductive paste includes copper powder, glass frit, and an organic vehicle, and the copper powder has an average particle size of 1.0 μm to 3.0 μm. Coarse grained copper powder 0 to 70 vol% and 0.1 to 0.8 μm fine grained copper powder 30 to 100 vol%, and the external electrode when the sintered density of the external electrode is 80% The carbon content is 0.007 wt% or less.

また、本発明に係る電子部品は、前記微粒銅粉に内包している炭素量が0.007wt%以下であることが好ましい。   In the electronic component according to the present invention, it is preferable that the amount of carbon included in the fine copper powder is 0.007 wt% or less.

また、本発明に係る電子部品は、前記微粒銅粉は有機物による表面処理がされていないことが好ましい。   In the electronic component according to the present invention, the fine copper powder is preferably not subjected to a surface treatment with an organic substance.

また、本発明に係る電子部品は、前記微粒銅粉は脂肪酸で表面処理されていることが好ましい。   In the electronic component according to the present invention, the fine copper powder is preferably surface-treated with a fatty acid.

また、本発明は、複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されている外部電極と、を備える電子部品の製造方法であって、銅粉と、ガラスフリットと、有機ビヒクルと、を含み、前記銅粉は、平均粒径が1.0μm〜3.0μmの粗粒銅粉0〜70vol%と、0.1〜0.8μmの微粒銅粉30〜100vol%と、を混合して構成される導電性ペーストを前記積層体の外表面上に塗布する工程と、前記導電性ペーストが塗布された積層体を、300〜800℃の温度範囲を50〜400℃/分の昇温速度で、かつ、少なくとも500〜700℃の温度範囲を2.4×10-3mol%≦H2O/N2≦1.2×10-1mol%の条件で熱処理して、前記導電性ペーストを焼き付けてなる外部電極を形成する工程と、を備える電子部品の製造方法にも向けられる。 The present invention also provides an electronic component comprising: a laminate having a plurality of ceramic layers and internal electrodes; and an external electrode formed on an outer surface of the laminate and electrically connected to the internal electrodes. The copper powder includes copper powder, glass frit, and an organic vehicle, and the copper powder has 0 to 70 vol% of coarse-grained copper powder having an average particle diameter of 1.0 to 3.0 μm, 0 The process of apply | coating the electrically conductive paste comprised by mixing 30-100 vol% of 0.1-0.8 micrometer fine copper powder on the outer surface of the said laminated body, and the laminated body by which the said conductive paste was apply | coated The temperature range of 300-800 ° C. is 50-400 ° C./min, and the temperature range of at least 500-700 ° C. is 2.4 × 10 −3 mol% ≦ H 2 O / N 2 ≦ 1.2 × 10 -1 was heat-treated at mol% of conditions, the conductive page Forming an external electrode formed by baking the door, also directed to a method of manufacturing an electronic component comprising a.

本発明では、導電性ペーストに一定比率以上の微粒銅粉を混合することにより、外部電極の緻密性を確保した。また、外部電極の焼結密度が80%の時点での外部電極の炭素量を一定値以下にすることにより、ブリスタ不良の発生しない電子部品を提供することができる。   In the present invention, the fineness of the external electrode is ensured by mixing fine copper powder of a certain ratio or more into the conductive paste. Further, by setting the carbon amount of the external electrode at a time when the sintered density of the external electrode is 80% or less, it is possible to provide an electronic component in which no blister failure occurs.

本発明の一実施形態に係る電子部品の断面図である。It is sectional drawing of the electronic component which concerns on one Embodiment of this invention.

以下において、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

図1は、本発明の一実施形態に係る電子部品の断面図である。本実施形態は、電子部品1が積層セラミックコンデンサの例である。   FIG. 1 is a cross-sectional view of an electronic component according to an embodiment of the present invention. In the present embodiment, the electronic component 1 is an example of a multilayer ceramic capacitor.

電子部品1は、積層体3と、一対の外部電極6および7とを備えている。積層体3は直方体状であり、複数のセラミック層2と内部電極4および5とを有している。セラミック層2は誘電体セラミックからなる。また、内部電極4および5は、積層体3の内部に、セラミック層2間の特定の界面に沿って形成されている。内部電極4および5は、導電成分として、例えばニッケルまたはニッケル合金を含んでいる。内部電極4と内部電極5とは、交互に配置され、間にセラミック層2を介在させた状態で互いに対向している。   The electronic component 1 includes a laminate 3 and a pair of external electrodes 6 and 7. The laminated body 3 has a rectangular parallelepiped shape and includes a plurality of ceramic layers 2 and internal electrodes 4 and 5. The ceramic layer 2 is made of a dielectric ceramic. The internal electrodes 4 and 5 are formed inside the multilayer body 3 along a specific interface between the ceramic layers 2. The internal electrodes 4 and 5 contain, for example, nickel or a nickel alloy as a conductive component. The internal electrodes 4 and the internal electrodes 5 are alternately arranged and face each other with the ceramic layer 2 interposed therebetween.

外部電極6および7は、積層体3の外表面上であって、相対向する端部上に形成されている。一方の外部電極6は内部電極4と電気的に接続されている。また、他方の外部電極7は内部電極5と電気的に接続されている。外部電極6および7は、積層体3の外表面上に導電性ペーストを塗布して、焼き付けることによって形成される。   The external electrodes 6 and 7 are formed on the outer surface of the multilayer body 3 and on opposite ends. One external electrode 6 is electrically connected to the internal electrode 4. The other external electrode 7 is electrically connected to the internal electrode 5. The external electrodes 6 and 7 are formed by applying and baking a conductive paste on the outer surface of the laminate 3.

外部電極3は、めっき液の浸入による電子部品1の特性劣化を抑制するため、一般には30〜100μm程度の厚みに形成される。しかし、近年、積層セラミックコンデンサには大容量化が要請されている。本発明では、外部電極の薄層化による大容量化を進めるため、外部電極3の層厚が10〜20μmとなるように形成されている。   The external electrode 3 is generally formed to a thickness of about 30 to 100 μm in order to suppress the deterioration of the characteristics of the electronic component 1 due to the penetration of the plating solution. However, in recent years, there has been a demand for a large capacity for multilayer ceramic capacitors. In the present invention, in order to increase the capacity by thinning the external electrode, the layer thickness of the external electrode 3 is formed to be 10 to 20 μm.

なお、図示していないが、外部電極6および7の表面上には、必要に応じてめっき層が形成される。めっき層は、はんだとの接合性を確保するために設けられる。めっき層は、例えば電解めっき法によって形成される。めっき層は、下地としてのニッケルめっき層と、その上に形成されるすずめっき層またははんだめっき層とを備えることが好ましい。   Although not shown, a plating layer is formed on the surfaces of the external electrodes 6 and 7 as necessary. A plating layer is provided in order to ensure bondability with solder. The plating layer is formed by, for example, an electrolytic plating method. The plating layer preferably includes a nickel plating layer as a base and a tin plating layer or a solder plating layer formed thereon.

本発明に用いられる導電性ペーストは、銅粉と、ガラスフリットと、有機ビヒクルと、を含んでいる。銅粉は塗布後の焼結により、外部電極中の導電性金属となる。また、ガラスフリットは、塗布後の焼結により、外部電極中のガラスとなる。ガラスフリットは、焼結助剤として外部電極の緻密化を促進する役割と、外部電極中の空孔を充填して外部電極のシール性を確保する役割とを果たす。   The conductive paste used in the present invention contains copper powder, glass frit, and an organic vehicle. The copper powder becomes a conductive metal in the external electrode by sintering after coating. Further, the glass frit becomes glass in the external electrode by sintering after coating. The glass frit plays a role of promoting the densification of the external electrode as a sintering aid and a role of filling the voids in the external electrode to ensure the sealing performance of the external electrode.

本発明においては、銅粉は、平均粒径が1.0μm〜3.0μmの粗粒銅粉0〜70vol%と、0.1〜0.8μmの微粒銅粉30〜100vol%とを混合して構成される。銅粉に一定比率以上の微粒銅粉が含まれることにより、外部電極の層厚に対する銅粉の粒子数を多くして、外部電極の緻密性を確保する。   In the present invention, the copper powder is prepared by mixing 0 to 70 vol% of coarse copper powder having an average particle diameter of 1.0 to 3.0 μm and 30 to 100 vol% of fine copper powder of 0.1 to 0.8 μm. Configured. By containing fine copper powder of a certain ratio or more in the copper powder, the number of particles of the copper powder with respect to the layer thickness of the external electrode is increased to ensure the denseness of the external electrode.

粗粒銅粉と微粒銅粉の混合比率は、粗粒銅粉が0〜70vol%の範囲内で、微粒銅粉が30〜100vol%の範囲内とする必要がある。微粒銅粉が30vol%未満の場合には、外部電極の緻密性が低下するためである。   As for the mixing ratio of the coarse copper powder and the fine copper powder, it is necessary that the coarse copper powder is in the range of 0 to 70 vol% and the fine copper powder is in the range of 30 to 100 vol%. This is because when the fine copper powder is less than 30 vol%, the denseness of the external electrode is lowered.

微粒銅粉の平均粒径は、0.1〜0.8μmとする必要がある。本明細書中における平均粒径は、走査型電子顕微鏡(SEM)により、銅粉の画像を撮影し、画像解析により3000個の粒子径を測定した平均値である。平均粒径が0.1μm未満の場合には、銅粉の凝集が顕著となり、十分に分散できなかったり、酸化が進みやすかったりというおそれがある。微粒銅粉は、例えば液槽還元法により作製する。   The average particle diameter of the fine copper powder needs to be 0.1 to 0.8 μm. The average particle size in the present specification is an average value obtained by taking an image of copper powder with a scanning electron microscope (SEM) and measuring 3000 particle sizes by image analysis. When the average particle size is less than 0.1 μm, the aggregation of the copper powder becomes remarkable, and there is a possibility that it cannot be sufficiently dispersed or the oxidation is likely to proceed. The fine copper powder is produced, for example, by a liquid bath reduction method.

粗粒銅粉の平均粒径は、1.0〜3.0μmとする必要がある。平均粒径が3.0μmを超える場合には、外部電極の緻密性が低下する。粗粒銅粉は、例えばアトマイズ法により作製する。   The average particle diameter of coarse-grained copper powder needs to be 1.0-3.0 micrometers. When the average particle size exceeds 3.0 μm, the density of the external electrode is lowered. Coarse-grained copper powder is produced, for example, by an atomizing method.

本発明においては、外部電極の焼結密度が80%の時点での外部電極中の炭素量が0.007wt%以下であることを特徴としている。外部電極が80%の時点の焼結密度は、熱処理の途中の導電性ペーストを形成した積層体を熱処理炉から取り出して、電極断面を研磨により露出させ、その観察像の画像処理により算出することで測定する。   In the present invention, the amount of carbon in the external electrode when the sintered density of the external electrode is 80% is 0.007 wt% or less. The sintered density at the time when the external electrode is 80% is calculated by taking out the laminate formed with the conductive paste in the middle of the heat treatment from the heat treatment furnace, exposing the cross section of the electrode by polishing, and processing the observation image. Measure with

外部電極中の炭素量は、後述する銅粉中に内包している炭素や、有機ビヒクル中の有機物の、熱処理後の残存量である。外部電極中の炭素量は、例えば炭素・硫黄分析装置(Carbon/Sulfur analyzer:CS計)を用いて測定される。   The amount of carbon in the external electrode is the amount of carbon contained in copper powder, which will be described later, or the organic matter in the organic vehicle after heat treatment. The amount of carbon in the external electrode is measured using, for example, a carbon / sulfur analyzer (CS meter).

微粒銅粉は、微粒銅粉中に内包している炭素量が0.007wt%以下であることが好ましい。微粒銅粉に内包している炭素量は、熱処理前の銅粉の段階で含まれている炭素量である。内包とは、微粒銅粉の粒子の内部に含まれることを意味する。内包している炭素量は、例えば、500℃程度の熱処理により表面や付着したカーボンを燃焼させた後、CS計で測定する。   The fine copper powder preferably has a carbon content of 0.007 wt% or less in the fine copper powder. The amount of carbon included in the fine copper powder is the amount of carbon contained at the stage of the copper powder before the heat treatment. The inclusion means that it is contained inside the particles of fine copper powder. The amount of carbon contained is measured by, for example, a CS meter after burning the surface or attached carbon by a heat treatment of about 500 ° C.

また、微粒銅粉は、有機物による表面処理がされていないことが好ましい。かかる場合には、導電性ペーストに含まれる炭素量が少なくなるため、ブリスタの発生を抑制することができる。   The fine copper powder is preferably not subjected to a surface treatment with an organic substance. In such a case, since the amount of carbon contained in the conductive paste is reduced, the generation of blisters can be suppressed.

また、酸化防止や凝集改善のため、表面処理をする場合においても、微粒銅粉は脂肪酸で表面処理されていることが好ましい。脂肪酸は燃焼しやすいため、ブリスタの発生を抑制することができる。また、表面処理により微粒銅粉の凝集が抑制されるため、平滑な外部電極を得ることができるためである。   In addition, in order to prevent oxidation and improve aggregation, it is preferable that the fine copper powder is surface-treated with a fatty acid even when the surface treatment is performed. Since fatty acids are easy to burn, generation of blisters can be suppressed. Moreover, since aggregation of fine copper powder is suppressed by surface treatment, a smooth external electrode can be obtained.

次に、本発明に係る電子部品の製造方法について説明する。   Next, a method for manufacturing an electronic component according to the present invention will be described.

まず、複数のセラミック層と内部電極とを有する積層体を用意する。具体的には、例えば、セラミックグリーンシート上に、内部電極用ペーストを所定のパターンで印刷する。このシートを複数枚積み重ね、圧着して、セラミックグリーンシートと内部電極層とが交互に積層された未焼成の積層体を得る。得られた未焼成の積層体を所定の形状のチップに切断した後、高温で焼成する。   First, a laminate having a plurality of ceramic layers and internal electrodes is prepared. Specifically, for example, an internal electrode paste is printed in a predetermined pattern on a ceramic green sheet. A plurality of these sheets are stacked and pressure-bonded to obtain an unfired laminate in which ceramic green sheets and internal electrode layers are alternately laminated. The resulting unfired laminate is cut into chips having a predetermined shape and then fired at a high temperature.

得られた積層体の外表面上に、導電性ペーストを塗布する。塗布は、例えば浸漬塗布工法で行う。   A conductive paste is applied on the outer surface of the obtained laminate. The application is performed, for example, by a dip coating method.

そして、導電性ペーストが塗布された積層体を熱処理して、外部電極を形成する。この時、熱処理は300〜800℃の温度範囲を50〜400℃/分の昇温速度で行うことが好ましい。300〜800℃の温度範囲は、主として炭素が燃焼する温度範囲である。昇温速度が50℃/分未満の場合には、外部電極の表面に亀裂が発生するおそれがある。また、昇温速度が400℃/分を超える場合には、ブリスタが発生するおそれがある。   And the laminated body with which the electrically conductive paste was apply | coated is heat-processed, and an external electrode is formed. At this time, the heat treatment is preferably performed in a temperature range of 300 to 800 ° C. at a rate of temperature increase of 50 to 400 ° C./min. The temperature range of 300 to 800 ° C. is a temperature range where carbon mainly burns. When the rate of temperature increase is less than 50 ° C./min, there is a possibility that cracks may occur on the surface of the external electrode. In addition, blistering may occur when the rate of temperature rise exceeds 400 ° C./min.

また、熱処理時には、炭素を燃焼させつつ、銅の酸化を防ぐために、窒素を主成分として、酸素濃度を20ppm以下となるように制御することが好ましい。そのため、窒素に対する水の量を、少なくとも500〜700℃の温度範囲で2.4×10-3mol%≦H2O/N2≦1.2×10-1mol%の条件としておくことが好ましい。窒素雰囲気中の熱処理炉内に水を一定量存在させて、水性ガス反応により炭素を燃焼させるためである。500〜700℃の温度範囲は、銅の緻密化が不十分であり、かつ水性ガス反応によりCとH2Oが反応する温度範囲である。窒素に対する水の量が2.4×10-2mol%未満の場合には、ブリスタが発生する。また、窒素に対する水の量が1.2×10-1mol%を超える場合には、内部電極と外部電極の接合性が低下するおそれがある。 Further, during the heat treatment, it is preferable to control the oxygen concentration to be 20 ppm or less with nitrogen as a main component in order to prevent copper oxidation while burning carbon. Therefore, the amount of water with respect to nitrogen is set to a condition of 2.4 × 10 −3 mol% ≦ H 2 O / N 2 ≦ 1.2 × 10 −1 mol% in a temperature range of at least 500 to 700 ° C. preferable. This is because a certain amount of water is present in a heat treatment furnace in a nitrogen atmosphere and carbon is burned by a water gas reaction. The temperature range of 500 to 700 ° C. is a temperature range in which the densification of copper is insufficient and C and H 2 O react by a water gas reaction. Blistering occurs when the amount of water relative to nitrogen is less than 2.4 × 10 −2 mol%. In addition, when the amount of water with respect to nitrogen exceeds 1.2 × 10 −1 mol%, the bondability between the internal electrode and the external electrode may be reduced.

以下において、この発明による効果を確認するために実施した実験例について説明する。   Below, the experiment example implemented in order to confirm the effect by this invention is demonstrated.

[実験例1]
実験例1では、微粒銅粉中に内包している炭素量を変えた場合における、外部電極の緻密性とブリスタの発生率を評価した。また、微粒銅粉の表面処理状態を変えた場合における、外部電極の緻密性とブリスタの発生率を評価した。
[Experimental Example 1]
In Experimental Example 1, the denseness of the external electrode and the occurrence rate of blisters were evaluated when the amount of carbon contained in the fine copper powder was changed. In addition, the density of external electrodes and the incidence of blisters were evaluated when the surface treatment state of the fine copper powder was changed.

最初に、粗粒銅粉と微粒銅粉の二種類の銅粉を用意した。粒径の小さい微粒銅粉は液槽還元法により作製した。そして、還元剤の種類を変えることで微粒銅粉中の炭素量が0.012wt%であるものと0.007wt%であるものを作製した。微粒銅粉については、表面処理されていないものと、脂肪族アミンとしてアルキルアミンで表面処理されたものと、脂肪酸としてステアリン酸で表面処理されたものとを用いた。粒径の大きい粗粒銅粉はアトマイズ法により作製した。粗粒銅粉中の炭素量は、0.007wt%であるものを使用した。また、粗粒銅粉は表面処理がされていないものを使用した。   First, two types of copper powders, coarse copper powder and fine copper powder, were prepared. Fine copper powder having a small particle size was prepared by a liquid bath reduction method. Then, by changing the kind of the reducing agent, the carbon content in the fine copper powder was 0.012 wt% and 0.007 wt%. As for the fine copper powder, those that were not surface-treated, those that were surface-treated with alkylamine as an aliphatic amine, and those that were surface-treated with stearic acid as a fatty acid were used. Coarse copper powder having a large particle size was prepared by an atomizing method. The carbon content in the coarse-grained copper powder was 0.007 wt%. Moreover, the coarse-grained copper powder used what was not surface-treated.

上記のように作製した微粒銅粉と粗粒銅粉について、平均粒径と構成比率を変えた銅粉と、ガラスフリットと、有機ビヒクルとを混合して、三本ロールミルにより解砕および分散させて導電性ペーストを作製した。銅粉と、ガラスフリットと、有機ビヒクルとの混合比は、体積比で20:5:75の割合とした。ガラスフリットには、平均粒径1.0μm、軟化点約600℃のB−Si−Zn−R2Oガラスを用いた。また、有機ビヒクルはアクリル樹脂20重量%を含んだものを使用した。そして、それぞれ異なる条件で作製した銅粉に対応して、分子量の異なるアクリル樹脂を用いて、導電性ペーストの粘度をいずれも10〜15Pa・sとした。 About the fine copper powder and coarse copper powder produced as described above, the copper powder having a different average particle diameter and composition ratio, glass frit, and organic vehicle are mixed, and pulverized and dispersed by a three-roll mill. Thus, a conductive paste was produced. The mixing ratio of copper powder, glass frit, and organic vehicle was 20: 5: 75 by volume. As the glass frit, B—Si—Zn—R 2 O glass having an average particle diameter of 1.0 μm and a softening point of about 600 ° C. was used. The organic vehicle used contained 20% by weight of an acrylic resin. And according to the copper powder produced on different conditions, respectively, the viscosity of the electrically conductive paste was 10-15 Pa.s using the acrylic resin from which molecular weight differs.

作製した導電性ペーストを、1.0×0.5×0.5mmサイズで4.7μFの静電容量の積層体に浸漬塗布法により塗布した。その後150℃で10分間の乾燥を行った。   The produced conductive paste was applied by a dip coating method to a laminated body having a 1.0 × 0.5 × 0.5 mm size and a capacitance of 4.7 μF. Thereafter, drying was performed at 150 ° C. for 10 minutes.

その後、塗布された積層体を熱処理して外部電極を形成した。熱処理条件は以下のようにした。まず、300〜800℃の温度範囲で昇温速度を150℃/分とした。そして、800℃で5分間保持した。その後、降温速度を100℃/分として室温まで降温した。また、熱処理雰囲気は、全温度範囲で窒素ガスを投入して、酸素濃度が20ppm以下となるように制御した。具体的には、窒素に対する水の量を、H2O/N2=1.2×10-2mol%となるように添加した。 Thereafter, the applied laminate was heat-treated to form external electrodes. The heat treatment conditions were as follows. First, the heating rate was set to 150 ° C./min in the temperature range of 300 to 800 ° C. And it hold | maintained at 800 degreeC for 5 minute (s). Thereafter, the temperature was lowered to room temperature at a temperature lowering rate of 100 ° C./min. The heat treatment atmosphere was controlled by introducing nitrogen gas over the entire temperature range so that the oxygen concentration was 20 ppm or less. Specifically, the amount of water relative to nitrogen was added so that H 2 O / N 2 = 1.2 × 10 −2 mol%.

各条件の外部電極について、焼結密度が80%の時点の炭素量を測定した。具体的には、あらかじめ熱処理温度と外部電極の焼結密度との関係を把握しておき、焼結密度が80%の時点の試料を熱処理炉から取り出して、その炭素量をCS計で測定した。なお、CS計の検出限界は0.005wt%である。   About the external electrode of each condition, the carbon content at the time when the sintered density was 80% was measured. Specifically, the relationship between the heat treatment temperature and the sintering density of the external electrode was previously grasped, the sample at the time when the sintering density was 80% was taken out from the heat treatment furnace, and the carbon content was measured with a CS meter. . The detection limit of the CS meter is 0.005 wt%.

また、得られた各条件の外部電極について、外部電極の緻密性とブリスタの発生率を評価した。外部電極の緻密性は、10個の試料について評価した。まず、外部電極の断面を鏡面研磨で露出させて、外部電極とセラミック層の界面を観察した。そして、セラミックまで達する不連続部が1ヶ所でもあった場合に×と判定した。ブリスタは、20個の外観観察を行い、ブリスタの発生率を算出した。   In addition, the density of the external electrode and the occurrence rate of blisters were evaluated for the obtained external electrode under each condition. The compactness of the external electrode was evaluated for 10 samples. First, the cross section of the external electrode was exposed by mirror polishing, and the interface between the external electrode and the ceramic layer was observed. And it was determined as x when there was even one discontinuous part reaching the ceramic. The blisters were observed for 20 appearances, and the blister occurrence rate was calculated.

また、銅粉が凝集した状態で導電性ペーストを作製した場合には、外部電極に凸部が発生する。この凸部はない方が望ましいが、銅粉の分散条件や保管状態で改善できるものである。凸部発生率は、100個の試料について評価した。凸部発生率は、外部電極の表面を観察して、直径50μm以上の凸部が認められたものの比率を算出した。   Further, when the conductive paste is produced in a state where the copper powder is aggregated, a convex portion is generated on the external electrode. Although it is desirable not to have this convex part, it can improve with the dispersion | distribution conditions and storage state of copper powder. The convex portion occurrence rate was evaluated for 100 samples. The convex portion occurrence rate was calculated by observing the surface of the external electrode and calculating the ratio of the convex portions having a diameter of 50 μm or more.

表1〜4に、微粒銅粉中に内包している炭素量と、微粒銅粉の表面処理状態を変えた場合において、それぞれ微粒銅粉と粗粒銅粉の平均粒径と構成比率を変えて、特性への影響を評価した結果を示す。表1に、微粒銅粉中に内包している炭素量が0.007wt%で、微粒銅粉に表面処理がされていない条件の評価結果を示す。また、表2に、微粒銅粉中に内包している炭素量が0.007wt%で、微粒銅粉に脂肪酸で表面処理がされている条件の評価結果を示す。表3に、微粒銅粉中に内包している炭素量が0.007wt%で、微粒銅粉に脂肪酸アミンで表面処理がされている条件の評価結果を示す。そして、表4に、微粒銅粉中に内包している炭素量が0.012wt%で、表面処理がされていない条件の評価結果を示す。   In Tables 1 to 4, when the amount of carbon contained in the fine copper powder and the surface treatment state of the fine copper powder are changed, the average particle diameter and the composition ratio of the fine copper powder and the coarse copper powder are changed. The results of evaluating the influence on the characteristics are shown. Table 1 shows the evaluation results of conditions in which the amount of carbon contained in the fine copper powder is 0.007 wt% and the fine copper powder is not surface-treated. Table 2 shows the evaluation results of the conditions in which the amount of carbon contained in the fine copper powder is 0.007 wt% and the fine copper powder is surface-treated with a fatty acid. Table 3 shows the evaluation results of conditions in which the amount of carbon contained in the fine copper powder is 0.007 wt% and the fine copper powder is surface-treated with a fatty acid amine. Table 4 shows the evaluation results of the conditions in which the amount of carbon contained in the fine copper powder is 0.012 wt% and the surface treatment is not performed.

表1、表2の結果から明らかなように、平均粒径が4.0μmの粗粒銅粉が混合している条件1−1〜1−4および条件2−1〜2−4では、外部電極に不連続部がみられ、緻密性が低下した。また、微粒銅粉の割合が20vol%と小さい条件1−6、1−11、1−16、2−6、2−11および2−16においても、外部電極に不連続部がみられ、緻密性が低下した。   As is clear from the results of Tables 1 and 2, in conditions 1-1 to 1-4 and conditions 2-1 to 2-4 in which coarse copper powder having an average particle size of 4.0 μm is mixed, A discontinuous portion was observed in the electrode, and the compactness decreased. Further, even in the conditions 1-6, 1-11, 1-16, 2-6, 2-11 and 2-16 in which the proportion of the fine copper powder is as small as 20 vol%, discontinuous portions are seen in the external electrodes, and the dense Decreased.

一方、表3の結果から明らかなように、表面処理が脂肪酸アミンの場合には、条件3−6〜3−20でブリスタが発生した。これは、脂肪族アミンの場合には、脂肪酸に比べて燃焼性が悪く、炭素として残存しやすいためと考えられる。また、表4の結果から明らかなように、微粒銅粉中に内包している炭素量が0.012wt%である場合には、全ての条件でブリスタが発生した。これは、微粒銅粉中に内包している炭素が燃焼・除去されなかったためと考えられる。   On the other hand, as is apparent from the results in Table 3, blisters were generated under conditions 3-6 to 3-20 when the surface treatment was a fatty acid amine. This is presumably because aliphatic amines are less combustible than fatty acids and tend to remain as carbon. Further, as is clear from the results in Table 4, blisters were generated under all conditions when the amount of carbon contained in the fine copper powder was 0.012 wt%. This is presumably because the carbon contained in the fine copper powder was not burned or removed.

また、表1と表2を比較すると、脂肪酸で表面処理がされている表2では、凸部が発生しておらず、平滑な外部電極が得られることが分かる。これは、表面処理により銅粉の凝集が抑えられたためと考えられる。   Moreover, when Table 1 and Table 2 are compared, it can be seen that in Table 2 where the surface treatment is performed with fatty acid, no convex portions are generated and a smooth external electrode is obtained. This is considered because the aggregation of copper powder was suppressed by the surface treatment.

表1〜4より、焼結密度80%の時点の外部電極中の炭素量とブリスタの発生率とは相関があり、外部電極中の炭素量が0.007wt%以下である場合に、ブリスタの発生が抑えられることが分かった。また、緻密性の観点から、粗粒銅粉の平均粒径は1.0〜3.0μmの範囲内として、微粒銅粉の平均粒径は0.1〜0.8μmの範囲内とする必要があることが分かった。この時、微粒銅粉の平均粒径に対する粗粒銅粉の平均粒径の比率は、3.75〜10の範囲内である。また、粗粒銅粉が0〜70vol%の範囲内として、微粒銅粉が30〜100vol%の範囲内とする必要があることが分かった。   From Tables 1-4, the amount of carbon in the external electrode at a sintering density of 80% and the occurrence rate of blisters are correlated, and when the amount of carbon in the external electrode is 0.007 wt% or less, It was found that the occurrence was suppressed. In addition, from the viewpoint of compactness, the average particle diameter of the coarse copper powder must be in the range of 1.0 to 3.0 μm, and the average particle diameter of the fine copper powder must be in the range of 0.1 to 0.8 μm. I found out that At this time, the ratio of the average particle diameter of the coarse copper powder to the average particle diameter of the fine copper powder is in the range of 3.75-10. Moreover, it turned out that a coarse-grained copper powder needs to be in the range of 0-70 vol%, and a fine-grained copper powder needs to be in the range of 30-100 vol%.

[実験例2]
実験例2では、熱処理の昇温速度と熱処理炉中の雰囲気を変えた場合における、ブリスタの発生率と亀裂の発生率を評価した。評価は、実験例1の条件のうち、条件2−20の導電性ペーストについて行った。条件2−20は、平均粒径が0.1μmの微粒銅粉を100%用いたものであり、最も焼結性が高くブリスタが発生しやすいものである。また、銅粉中に内包している炭素量が0.007wt%以下であり、脂肪酸で表面処理がされているものである。
[Experiment 2]
In Experimental Example 2, the blister generation rate and crack generation rate were evaluated when the heating rate of heat treatment and the atmosphere in the heat treatment furnace were changed. Evaluation was performed about the conductive paste of the conditions 2-20 among the conditions of Experimental example 1. FIG. Condition 2-20 uses 100% fine copper powder having an average particle size of 0.1 μm, and has the highest sinterability and is liable to generate blisters. Moreover, the amount of carbon included in the copper powder is 0.007 wt% or less, and the surface treatment is performed with a fatty acid.

熱処理条件は以下のようにした。300〜800℃の温度範囲の昇温温度を10〜500℃/分と変えた。そして、800℃で5分保持した。その後、降温速度を100℃/分として室温まで降温した。熱処理雰囲気は、窒素に対する水の添加量をH2O/N2=1.2×10-3〜1.5×10-1mol%と変えた。 The heat treatment conditions were as follows. The temperature elevation temperature in the temperature range of 300 to 800 ° C. was changed to 10 to 500 ° C./min. And it hold | maintained at 800 degreeC for 5 minutes. Thereafter, the temperature was lowered to room temperature at a temperature lowering rate of 100 ° C./min. In the heat treatment atmosphere, the amount of water added to nitrogen was changed to H 2 O / N 2 = 1.2 × 10 −3 to 1.5 × 10 −1 mol%.

得られた試料について、熱処理後の外部電極を20個外観観察して、ブリスタの発生率と亀裂の発生率を算出した。また、内部電極と外部電極との接合性の評価としてCap取得率を評価した。窒素に対する水の量を多くし過ぎた場合には、炉内雰囲気が酸化側となり、内部電極と外部電極の間の接合性の低下が懸念されるためである。Cap取得率は、積層セラミックコンデンサの静電容量の設計値に対する実際の容量値の比率であり、100%に近くなるほど接合性が良好であることを示す。Cap取得率は97%以下を判定基準とした。   About the obtained sample, the external appearance of 20 external electrodes after heat treatment was observed, and the occurrence rate of blisters and the occurrence rate of cracks were calculated. Moreover, Cap acquisition rate was evaluated as evaluation of the adhesiveness of an internal electrode and an external electrode. This is because if the amount of water with respect to nitrogen is excessively increased, the atmosphere in the furnace becomes the oxidation side, and there is a concern that the bondability between the internal electrode and the external electrode may deteriorate. The Cap acquisition rate is the ratio of the actual capacitance value to the design value of the capacitance of the multilayer ceramic capacitor, and the closer to 100%, the better the bondability. The Cap acquisition rate was determined to be 97% or less.

表5に、熱処理の昇温速度と、熱処理炉中の雰囲気を変えた場合における、ブリスタの発生率、亀裂の発生率、およびCap取得率を示す。   Table 5 shows the blister generation rate, crack generation rate, and Cap acquisition rate when the heating rate of heat treatment and the atmosphere in the heat treatment furnace are changed.

300〜800℃の温度範囲の昇温速度が10℃/分である条件5−1〜5−8、および30℃/分である条件5−9〜5−16では、全ての条件で外部電極の表面に亀裂が発生した。昇温速度が小さい場合には、ガラスフリットが軟化する前に局所的に銅粉が固相焼結してドメインを形成し、その後ガラスを介した液相焼結で銅粉の収縮が進む。そのため銅粉が収縮した際にドメイン間の間隔が大きくなり、表面に亀裂が顕在化する。一方、昇温速度が500℃/分である条件5−49〜5−56ではブリスタが発生した。昇温速度が大きい場合には、炭素が十分燃焼する前に銅の緻密化が進み、その後に炭素が燃焼したためと考えられる。   In conditions 5-1 to 5-8 in which the rate of temperature increase in the temperature range of 300 to 800 ° C. is 10 ° C./min, and conditions 5-9 to 5-16 in which the temperature rising rate is 30 ° C./min, the external electrode is used under all conditions. Cracks occurred on the surface. When the rate of temperature rise is small, the copper powder is locally solid-phase sintered to form a domain before the glass frit is softened, and then the shrinkage of the copper powder proceeds by liquid phase sintering via glass. Therefore, when the copper powder contracts, the interval between the domains becomes large, and cracks become apparent on the surface. On the other hand, blisters were generated under conditions 5-49 to 5-56 where the temperature rising rate was 500 ° C./min. When the rate of temperature increase is large, it is considered that the densification of copper progressed before the carbon burned sufficiently, and then the carbon burned.

また、窒素に対するH2O量がH2O/N2=1.2×10-3mol%である条件5−17、5−25、5−33および5−41ではブリスタが発生した。水の量が少ない場合には、炭素が十分に燃焼しなかったためと考えられる。一方、窒素に対するH2O量がH2O/N2=1.5×10-1mol%である条件5−24、5−32、5−40および5−48ではCap取得率が低い結果となった。これは、熱処理時の雰囲気が酸化側になりすぎ、内部電極と外部電極の接合性が低下したためと考えられる。 In addition, blisters were generated under the conditions 5-17, 5-25, 5-33 and 5-41 where the amount of H 2 O relative to nitrogen was H 2 O / N 2 = 1.2 × 10 −3 mol%. This is probably because when the amount of water was small, the carbon did not burn sufficiently. On the other hand, in the conditions 5-24, 5-32, 5-40 and 5-48 where the amount of H 2 O with respect to nitrogen is H 2 O / N 2 = 1.5 × 10 −1 mol%, the result of low Cap acquisition rate It became. This is presumably because the atmosphere during the heat treatment became too oxidizing and the bondability between the internal electrode and the external electrode was lowered.

以上より、300〜800℃の温度範囲を50〜400℃/分の昇温速度で、かつ、2.4×10-3mol%≦H2O/N2≦1.2×10-1mol%の条件で熱処理すると、ブリスタや亀裂が発生せず、内部電極との接合性に優れた外部電極を形成できることが分かった。 From the above, the temperature range of 300 to 800 ° C. is increased at a rate of temperature increase of 50 to 400 ° C./min, and 2.4 × 10 −3 mol% ≦ H 2 O / N 2 ≦ 1.2 × 10 −1 mol. % Heat treatment, it was found that blisters and cracks did not occur and an external electrode excellent in bondability with the internal electrode could be formed.

1 電子部品
2 セラミック層
3 積層体
4,5 内部電極
6,7 外部電極
DESCRIPTION OF SYMBOLS 1 Electronic component 2 Ceramic layer 3 Laminated body 4,5 Internal electrode 6,7 External electrode

Claims (5)

複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されており、導電性ペーストを焼き付けてなる外部電極と、を備える電子部品において、
前記導電性ペーストは、銅粉と、ガラスフリットと、有機ビヒクルと、を含み、
前記銅粉は、平均粒径が1.0〜3.0μmの粗粒銅粉0〜70vol%と、0.1〜0.8μmの微粒銅粉30〜100vol%と、を混合して構成され、
前記外部電極の焼結密度が80%の時点での外部電極中の炭素量が0.007wt%以下である電子部品。
A laminated body having a plurality of ceramic layers and internal electrodes, and an external electrode formed on the outer surface of the laminated body, electrically connected to the internal electrodes, and formed by baking a conductive paste. In electronic components,
The conductive paste includes copper powder, glass frit, and an organic vehicle,
The copper powder is composed by mixing 0 to 70 vol% of coarse copper powder having an average particle diameter of 1.0 to 3.0 [mu] m and 30 to 100 vol% of fine copper powder of 0.1 to 0.8 [mu] m. ,
An electronic component in which the amount of carbon in the external electrode is 0.007 wt% or less when the sintered density of the external electrode is 80%.
前記微粒銅粉に内包している炭素量が0.007wt%以下である、請求項1に記載の電子部品。   The electronic component according to claim 1, wherein the amount of carbon contained in the fine copper powder is 0.007 wt% or less. 前記微粒銅粉は有機物による表面処理がされていない、請求項1または2に記載の電子部品。   The electronic component according to claim 1, wherein the fine copper powder is not surface-treated with an organic substance. 前記微粒銅粉は脂肪酸で表面処理されている、請求項1または2に記載の電子部品。   The electronic component according to claim 1, wherein the fine copper powder is surface-treated with a fatty acid. 複数のセラミック層と内部電極とを有する積層体と、前記積層体の外表面上に形成され、前記内部電極と電気的に接続されている外部電極と、を備える電子部品の製造方法であって、
銅粉と、ガラスフリットと、有機ビヒクルと、を含み、前記銅粉は、平均粒径が1.0〜3.0μmの粗粒銅粉0〜70vol%と、0.1〜0.8μmの微粒銅粉30〜100vol%と、を混合して構成される導電性ペーストを前記積層体の外表面上に塗布する工程と、
前記導電性ペーストが塗布された積層体を、300〜800℃の温度範囲を50〜400℃/分の昇温速度で、かつ、少なくとも500〜700℃の温度範囲を2.4×10-3mol%≦H2O/N2≦1.2×10-1mol%の条件で熱処理して、前記導電性ペーストを焼き付けてなる外部電極を形成する工程と、
を備える、電子部品の製造方法。
A method of manufacturing an electronic component comprising: a laminate having a plurality of ceramic layers and internal electrodes; and an external electrode formed on an outer surface of the laminate and electrically connected to the internal electrodes. ,
Copper powder, glass frit, and an organic vehicle, the copper powder having an average particle size of 1.0 to 3.0 μm, coarse copper powder of 0 to 70 vol%, and 0.1 to 0.8 μm Applying a conductive paste constituted by mixing fine copper powder 30 to 100 vol% on the outer surface of the laminate;
The laminated body coated with the conductive paste has a temperature range of 300 to 800 ° C. at a rate of temperature increase of 50 to 400 ° C./min, and a temperature range of at least 500 to 700 ° C. is 2.4 × 10 −3. a step of heat-treating under the conditions of mol% ≦ H 2 O / N 2 ≦ 1.2 × 10 −1 mol% to form an external electrode formed by baking the conductive paste;
An electronic component manufacturing method comprising:
JP2010049391A 2010-03-05 2010-03-05 Electronic component and manufacturing method thereof Active JP5476631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049391A JP5476631B2 (en) 2010-03-05 2010-03-05 Electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049391A JP5476631B2 (en) 2010-03-05 2010-03-05 Electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011187225A true JP2011187225A (en) 2011-09-22
JP5476631B2 JP5476631B2 (en) 2014-04-23

Family

ID=44793294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049391A Active JP5476631B2 (en) 2010-03-05 2010-03-05 Electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5476631B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115426A (en) * 2011-11-30 2013-06-10 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and fabrication method thereof
CN103594139A (en) * 2012-08-17 2014-02-19 三星电机株式会社 Metal powder, electronic component and method of producing the same
JP6004034B1 (en) * 2015-04-21 2016-10-05 住友金属鉱山株式会社 Copper powder
JP2018111856A (en) * 2017-01-11 2018-07-19 日立化成株式会社 Copper paste for bonding, sintered body, bonded body, semiconductor device and methods for producing them
CN113724912A (en) * 2021-08-27 2021-11-30 华昇电子材料(无锡)有限公司 High-sintering compactness copper slurry for MLCC and preparation method thereof
US20230207204A1 (en) * 2021-12-29 2023-06-29 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
CN116705508A (en) * 2023-07-14 2023-09-05 广东微容电子科技有限公司 Multilayer ceramic capacitor, method for improving compactness of outer electrode of multilayer ceramic capacitor, and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167713A (en) * 1989-11-27 1991-07-19 Sumitomo Metal Ind Ltd Conductive paste burnable at low temperature and burning method thereof
JPH08245270A (en) * 1994-12-06 1996-09-24 Philips Electron Nv Method for calcining and sintering of ceramic electronic part
JP2000260225A (en) * 1999-03-05 2000-09-22 Murata Mfg Co Ltd Electroconductive paste
JP2005039179A (en) * 2003-06-30 2005-02-10 Kyocera Corp Ceramic electronic part and its manufacturing method
JP2006073836A (en) * 2004-09-02 2006-03-16 Kyocera Chemical Corp Ceramic electronic component and conductive paste therefor
JP2007223863A (en) * 2006-02-24 2007-09-06 Tdk Corp Dielectric porcelain composition and method of manufacturing the same
JP2009074152A (en) * 2007-09-21 2009-04-09 Mitsui Mining & Smelting Co Ltd Method for producing copper powder, and copper powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167713A (en) * 1989-11-27 1991-07-19 Sumitomo Metal Ind Ltd Conductive paste burnable at low temperature and burning method thereof
JPH08245270A (en) * 1994-12-06 1996-09-24 Philips Electron Nv Method for calcining and sintering of ceramic electronic part
JP2000260225A (en) * 1999-03-05 2000-09-22 Murata Mfg Co Ltd Electroconductive paste
JP2005039179A (en) * 2003-06-30 2005-02-10 Kyocera Corp Ceramic electronic part and its manufacturing method
JP2006073836A (en) * 2004-09-02 2006-03-16 Kyocera Chemical Corp Ceramic electronic component and conductive paste therefor
JP2007223863A (en) * 2006-02-24 2007-09-06 Tdk Corp Dielectric porcelain composition and method of manufacturing the same
JP2009074152A (en) * 2007-09-21 2009-04-09 Mitsui Mining & Smelting Co Ltd Method for producing copper powder, and copper powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115426A (en) * 2011-11-30 2013-06-10 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and fabrication method thereof
US8941971B2 (en) 2011-11-30 2015-01-27 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and fabrication method thereof
CN103594139A (en) * 2012-08-17 2014-02-19 三星电机株式会社 Metal powder, electronic component and method of producing the same
KR101434024B1 (en) * 2012-08-17 2014-08-25 삼성전기주식회사 Metal powder, electronic device and method of producing the same
JP6004034B1 (en) * 2015-04-21 2016-10-05 住友金属鉱山株式会社 Copper powder
JP2016204700A (en) * 2015-04-21 2016-12-08 住友金属鉱山株式会社 Copper powder
JP2018111856A (en) * 2017-01-11 2018-07-19 日立化成株式会社 Copper paste for bonding, sintered body, bonded body, semiconductor device and methods for producing them
CN113724912A (en) * 2021-08-27 2021-11-30 华昇电子材料(无锡)有限公司 High-sintering compactness copper slurry for MLCC and preparation method thereof
US20230207204A1 (en) * 2021-12-29 2023-06-29 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11817268B2 (en) * 2021-12-29 2023-11-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
CN116705508A (en) * 2023-07-14 2023-09-05 广东微容电子科技有限公司 Multilayer ceramic capacitor, method for improving compactness of outer electrode of multilayer ceramic capacitor, and electronic device

Also Published As

Publication number Publication date
JP5476631B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5476631B2 (en) Electronic component and manufacturing method thereof
US10529486B2 (en) Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
TWI479510B (en) A method for producing conductor film using high speed sintering
CA2502375C (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
JP6292014B2 (en) Conductive paste and ceramic electronic components
JP2012174797A (en) Conductive paste for photogravure used for multilayer ceramic capacitor internal electrode
JP2006290719A (en) Glass frit for dielectrics, dielectric ceramic composition, multilayer ceramic capacitor, and method for production thereof
JP5262445B2 (en) Conductive paste for multilayer ceramic capacitor internal electrode
TW201539502A (en) Electrode foil for aluminum electrolytic capacitor and production method for same
JP2011138704A (en) Conductive paste and ceramic capacitor
JP4916107B2 (en) Conductive paste and ceramic electronic component using the same
JP2008277066A (en) Conductive paste, conductive paste drying film, and laminated ceramic capacitor using same
JP4561574B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP2008294163A (en) Printing paste for absorbing electrode bump, and method for manufacturing laminated ceramic electronic component
JP4487596B2 (en) Method for manufacturing multilayer unit for multilayer ceramic electronic component
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
JP2012004189A (en) Multilayer ceramic capacitor
JP3698032B2 (en) Terminal electrode paste for multilayer ceramic electronic components
JP2016115448A (en) Conductive paste and ceramic electronic component
JP2005228610A (en) Conductive paste and ceramic electronic component
JP2017143202A (en) Paste for internal electrodes, method for manufacturing the same, and multilayer ceramic capacitor
JP2004323306A (en) Burning-down sheet and method for manufacturing ceramic laminate using the same
JP3699617B2 (en) Multilayer ceramic capacitor
JP2009146732A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP2011175750A (en) Conductive paste, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5476631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150