JP4561574B2 - Conductive paste for multilayer ceramic component terminal electrode - Google Patents

Conductive paste for multilayer ceramic component terminal electrode Download PDF

Info

Publication number
JP4561574B2
JP4561574B2 JP2005294849A JP2005294849A JP4561574B2 JP 4561574 B2 JP4561574 B2 JP 4561574B2 JP 2005294849 A JP2005294849 A JP 2005294849A JP 2005294849 A JP2005294849 A JP 2005294849A JP 4561574 B2 JP4561574 B2 JP 4561574B2
Authority
JP
Japan
Prior art keywords
glass
terminal electrode
component
weight
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005294849A
Other languages
Japanese (ja)
Other versions
JP2007103845A (en
Inventor
義和 投野
恵 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2005294849A priority Critical patent/JP4561574B2/en
Publication of JP2007103845A publication Critical patent/JP2007103845A/en
Application granted granted Critical
Publication of JP4561574B2 publication Critical patent/JP4561574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層セラミック部品端子電極用導体ペーストに係り、特に、コンデンサ、インダクタなどの積層セラミック部品の端子電極を形成するのに適した積層セラミック部品端子電極用導体ペーストに関する。   The present invention relates to a conductor paste for multilayer ceramic component terminal electrodes, and more particularly to a conductor paste for multilayer ceramic component terminal electrodes suitable for forming terminal electrodes of multilayer ceramic components such as capacitors and inductors.

一般に、コンデンサやインダクタなどの積層セラミック部品は、次のようにして製造される。
まず、誘電体や磁性体などの未焼成セラミックシートと内部電極ペースト層とを交互に複層積み重ねて未焼成の積層体とし、この積層体を切断後、高温で焼成してセラミック素体(以下、「素体」とする)とする。次いで、導電性粉末とガラスなどの無機結合剤粉末とをビヒクル中に分散させた積層セラミック部品端子電極用導体ペーストを、素体から内部電極の露出する端子面に、ディッピング、刷け塗り、スクリーン印刷など種々の方法により塗布する。その後、乾燥させてから高温で焼成して、内部電極と電気的に接続した端子電極を形成する。端子電極上には、ニッケルメッキ層と、半田付性の良いスズ若しくはその合金からなるスズメッキ層と、が必要に応じて順次形成されて積層セラミック部品となる。
In general, multilayer ceramic parts such as capacitors and inductors are manufactured as follows.
First, unfired ceramic sheets such as dielectrics and magnetic bodies and internal electrode paste layers are alternately stacked to form an unfired laminate, and this laminate is cut and then fired at a high temperature to form a ceramic body (hereinafter referred to as “fired”). , "Element body"). Next, the conductive paste for the laminated ceramic component terminal electrode in which the conductive powder and the inorganic binder powder such as glass are dispersed in the vehicle is dipped, brushed and screened on the terminal surface where the internal electrode is exposed from the element body. It is applied by various methods such as printing. Then, after drying, baking at a high temperature forms a terminal electrode electrically connected to the internal electrode. On the terminal electrode, a nickel plating layer and a tin plating layer made of tin having good solderability or an alloy thereof are sequentially formed as necessary to form a multilayer ceramic component.

内部電極材料としては、パラジウム、銀−パラジウム、白金などの貴金属が用いられていたが、省資源やコストダウンに加え、パラジウムの酸化膨張に起因するデラミネーションやクラックの発生を防止するために、ニッケルや銅などの卑金属が用いられるようになってきている。このため、端子電極用導体ペーストにも内部電極材料と良好な電気的接合を形成しやすいニッケル、コバルト、銅などの導電性粉末が使用されている。また、焼成の際に内部電極や端子電極に含有される卑金属が酸化して導電性が低下するのを防止するために、非酸化性雰囲気中、即ち窒素や水素−窒素などの不活性雰囲気中もしくは還元性雰囲気中において、最高温度700〜900℃程度で行われる。   As internal electrode materials, noble metals such as palladium, silver-palladium, and platinum were used, but in addition to resource saving and cost reduction, in order to prevent delamination and cracks due to oxidative expansion of palladium, Base metals such as nickel and copper are being used. For this reason, conductive powders such as nickel, cobalt, and copper, which are easy to form a good electrical connection with the internal electrode material, are also used for the terminal electrode conductor paste. In addition, in order to prevent the base metal contained in the internal electrode and terminal electrode from being oxidized and reducing the conductivity during firing, in a non-oxidizing atmosphere, that is, in an inert atmosphere such as nitrogen or hydrogen-nitrogen. Alternatively, it is performed at a maximum temperature of about 700 to 900 ° C. in a reducing atmosphere.

中でも、銅系の導電性粉末を含む導体ペーストの場合、非酸化性雰囲気中で焼成しても安定な耐還元性ガラスを無機結合剤として用いる必要がある。また、端子電極上に電気メッキ処理を行う場合、電気メッキ液が酸性のためガラス成分が変質又は溶解してしまい、ガラスの構造が破壊され、素体との接着強度が大きく低下することがある。また、端子電極上に電気メッキ処理を行う際に、ガラス成分の溶けた部分や、焼成膜中のボイドなどから電極膜中に浸み込んだメッキ液が原因となり、絶縁抵抗の低下や素体クラックの発生を招く他、浸入したメッキ液が半田リフロー時に熱せられてガス化し、溶融した半田が飛び散るいわゆる「半田爆ぜ現象」を引き起こすことがある。   In particular, in the case of a conductor paste containing a copper-based conductive powder, it is necessary to use a reduction-resistant glass that is stable even when fired in a non-oxidizing atmosphere as an inorganic binder. In addition, when electroplating is performed on the terminal electrode, the glass component may be altered or dissolved due to the acidity of the electroplating solution, the glass structure may be destroyed, and the adhesive strength with the element body may be greatly reduced. . In addition, when performing electroplating on the terminal electrode, the plating solution that has penetrated into the electrode film from the part where the glass component is melted or the void in the fired film causes a decrease in insulation resistance or the element body. In addition to incurring cracks, the invading plating solution may be heated and gasified during solder reflow to cause a so-called “solder explosion phenomenon” in which molten solder scatters.

そこで、導体ペーストのガラス成分には、耐メッキ液性を備え、かつ、緻密な焼成膜を形成しうる特性が要求されており、亜鉛系やバリウム系のガラスを用いることが検討されている(特許文献1、特許文献2参照)。また、アルカリ・シリケートガラスを用いることも検討されている(特許文献3、特許文献4参照)。
特開2002−100526号公報 特開2003−246644号公報 特開2002−25337号公報 特開2003−347148号公報
Therefore, the glass component of the conductor paste is required to have a plating solution resistance and a characteristic capable of forming a dense fired film, and the use of zinc-based or barium-based glass has been studied ( (See Patent Document 1 and Patent Document 2). In addition, the use of alkali silicate glass has been studied (see Patent Document 3 and Patent Document 4).
Japanese Patent Laid-Open No. 2002-1000052 JP 2003-246644 A JP 2002-25337 A JP 2003-347148 A

しかしながら、近年、積層セラミック部品に対する高容量化、高性能化、信頼性の向上の要求はますます厳しくなっている。特に、小型大容量の積層セラミックコンデンサにおいては、小型化に伴って端子電極の薄膜化の要求が高まっており、膜厚が50μm以下のもの、さらには20μm程度のものも要求されるようになってきた。このように薄い端子電極で、従来と同等以上の優れた電極特性を得るためには、より緻密で、素体との接着強度が大きく、また耐メッキ液性の優れていることが必要である。   However, in recent years, demands for higher capacity, higher performance, and higher reliability for multilayer ceramic parts have become increasingly severe. In particular, in a small-sized and large-capacity monolithic ceramic capacitor, there is an increasing demand for thinning of the terminal electrode as the size is reduced, and a film thickness of 50 μm or less, and further about 20 μm is required. I came. In order to obtain excellent electrode characteristics equal to or better than those of conventional terminals with such a thin terminal electrode, it is necessary to be denser, have higher adhesion strength to the element body, and have excellent plating solution resistance. .

ここで、バリウム系や亜鉛系のガラスを用いる場合、導電性粉末とともに焼成される際に、ボイドの少ない緻密な焼成膜構造を形成し、メッキ液の電極膜への浸み込みを抑制することが知られている。特に、亜鉛系のガラスの場合、ガラスと素体との間により強固な反応層が形成されるため、接着強度や膜強度が向上するとともに、強度劣化を防止することができる。しかしながら、バリウム系や亜鉛系のガラス自体は耐酸性がそれほど高くなく、焼成後の端子電極の耐メッキ液性を向上させるためには、膜厚を在る程度以上厚く形成する必要がある。   Here, when using barium-based or zinc-based glass, a dense fired film structure with few voids is formed when fired together with conductive powder, and the penetration of the plating solution into the electrode film is suppressed. It has been known. In particular, in the case of zinc-based glass, a stronger reaction layer is formed between the glass and the element body, so that the adhesive strength and film strength can be improved and strength deterioration can be prevented. However, the barium-based and zinc-based glasses themselves are not so high in acid resistance, and in order to improve the plating solution resistance of the terminal electrode after firing, it is necessary to form the film more than the thickness.

アルカリ・シリケートガラスを用いる場合は、ガラス自体の耐酸性が高いため、端子電極の耐メッキ液性は或る程度向上するが、ガラス軟化点を低下させるために多量のアルカリ金属成分を添加する必要がある。そのため、ガラス成分の流動性が高くなって素体に浸み込んでしまい、素体強度の低下やクラックの発生を引き起こしやすくなってしまう。また、ガラス成分の流動性が高いと端子電極の表面にガラス浮きが起こり、メッキ付性や半田付性が低下してしまう。
一方、このような問題を解消させるためにアルカリ金属成分の含有量を減らすとともに、軟化点を下げるための融剤としてアルカリ土類金属などを配合した場合、流動性に劣るために端子電極の膜密度が低下してしまう。すると端子電極膜中の空孔からメッキ液が浸透したり、また、素体の端子面の縁部(以下、「コーナー部」とする)の膜厚の薄い部分で電極剥離が発生してしまうという問題が生じる。
When using alkali-silicate glass, the acid resistance of the glass itself is high, so that the plating solution resistance of the terminal electrode is improved to some extent, but a large amount of alkali metal component must be added to lower the glass softening point. There is. Therefore, the fluidity of the glass component is increased and the glass component is soaked into the element body, which tends to cause a decrease in element body strength and generation of cracks. Moreover, if the fluidity of the glass component is high, glass floats on the surface of the terminal electrode, and the plating property and the soldering property are deteriorated.
On the other hand, in order to solve such problems, the content of the alkali metal component is reduced, and when an alkaline earth metal or the like is blended as a flux for lowering the softening point, the film of the terminal electrode is deteriorated due to poor fluidity. Density decreases. Then, the plating solution penetrates from the pores in the terminal electrode film, and electrode peeling occurs at the thin portion of the edge portion (hereinafter referred to as “corner portion”) of the terminal surface of the element body. The problem arises.

また、銅系の導電性粉末を含有する導体ペーストは、前述の通り非酸化性雰囲気中で焼成する必要がある。そのため、ビヒクル成分の焼成、除去が完全に行われにくく、端子電極の膜中にビヒクル成分の分解物である残留カーボンが発生してしまうという問題がある。特に、ガラス成分の低温での流動性が高い場合、焼成段階の初期にガラスが軟化流動して緻密過ぎる膜構造を作ってしまい、ビヒクル成分を閉じ込めてしまうため、残留カーボンが増加するという問題があった。
残留カーボンは、引き続く高温焼成段階でセラミック誘導体の一部を還元するため、素体の劣化やクラックを引き起こすことがある。また、高温焼成段階でガス化して端子電極膜中にブリスタを発生させ、端子電極膜の一部がドーム状に盛り上がる現象が生じてしまうという問題がある。
In addition, the conductor paste containing the copper-based conductive powder needs to be fired in a non-oxidizing atmosphere as described above. Therefore, there is a problem that the firing and removal of the vehicle component are not easily performed, and residual carbon, which is a decomposition product of the vehicle component, is generated in the terminal electrode film. In particular, when the flowability of the glass component at a low temperature is high, the glass softens and flows in the initial stage of the firing stage, creating a film structure that is too dense and trapping the vehicle component, which increases the residual carbon. there were.
Residual carbon reduces part of the ceramic derivative in the subsequent high-temperature firing stage, which may cause deterioration of the element body and cracks. Further, there is a problem that gasification occurs at the high temperature firing stage to generate blisters in the terminal electrode film, and a phenomenon that a part of the terminal electrode film swells in a dome shape occurs.

本発明者らは、端子電極に酸性メッキ液を用いて電気メッキ処理する際、ガラス自体の耐酸性が高いこと、並びに、かつ、焼成後の端子電極膜の緻密性が十分であること、という条件が同時に満たされていない場合には、端子電極の薄膜化に対応できるような十分な耐メッキ液性が得られず、積層セラミック部品の信頼性を低下させると考えた。そこで、メッキ液に対する溶解性が小さく、かつ、焼成段階で適切な流動性を示すようなガラスを使用することにより、焼成後の端子電極膜の耐メッキ液性が大幅に改善されるとともに、良好な膜密度、接着強度及びメッキ付性を有することを見いだし、ガラス成分の組成について種々の検討を行った。   The present inventors say that when the terminal electrode is electroplated using an acidic plating solution, the acid resistance of the glass itself is high, and the denseness of the terminal electrode film after firing is sufficient. When the conditions are not satisfied at the same time, it is considered that sufficient plating solution resistance that can cope with the thinning of the terminal electrode cannot be obtained, and the reliability of the multilayer ceramic component is lowered. Therefore, by using a glass that has low solubility in the plating solution and that exhibits appropriate fluidity in the firing step, the plating solution resistance of the terminal electrode film after firing is greatly improved and good. Various film density, adhesive strength, and plating properties were found, and various studies were made on the composition of the glass component.

本発明の目的は、緻密で、素体との接着強度が高く、耐メッキ液性に優れ、薄膜化にも対応可能な端子電極を形成することのできる積層セラミック部品端子電極用導体ペーストを提供することにある。   An object of the present invention is to provide a conductor paste for a laminated ceramic component terminal electrode capable of forming a terminal electrode that is dense, has high adhesive strength with an element body, is excellent in plating solution resistance, and can be used for thinning. There is to do.

前記課題を解決するために、請求項1に記載の発明は、積層セラミック部品端子電極用導体ペーストにおいて、
銅を含む導電性粉末、ガラス粉末及びビヒクルを主成分とし、前記ガラス粉末中の各成分の含有量が、SiO 7〜12重量%、Al 11〜15重量%、B 15〜28重量%、BaO 25〜45重量%、CaO 5〜15重量%、ZnO 7〜25重量%、SiO+B 25〜35重量%、であることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a conductor paste for a multilayer ceramic component terminal electrode,
The main component is a conductive powder containing copper, glass powder and vehicle, and the content of each component in the glass powder is 7 to 12% by weight of SiO 2 , 11 to 15% by weight of Al 2 O 3 , and B 2 O 3. 15 to 28% by weight, BaO 25 to 45% by weight, CaO 5 to 15% by weight, ZnO 7 to 25% by weight, SiO 2 + B 2 O 3 25 to 35% by weight.

請求項2に記載の発明は、請求項1に記載の積層セラミック部品端子電極用導体ペーストにおいて、
前記ガラス粉末中の各成分の含有量の重量比が、下記式(1)及び(2)を満たすことを特徴とする。
0.25≦Al/(Al+SiO+B)≦0.35 …(1)
0.1≦CaO/(CaO+BaO)≦0.4 …(2)
The invention according to claim 2 is the conductor paste for the multilayer ceramic component terminal electrode according to claim 1,
The weight ratio of the content of each component in the glass powder satisfies the following formulas (1) and (2).
0.25 ≦ Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) ≦ 0.35 (1)
0.1 ≦ CaO / (CaO + BaO) ≦ 0.4 (2)

本発明の積層セラミック部品端子電極用導体ペーストに含まれるガラス粉末には、ガラス自体の特性として十分な耐酸性を有するとともに、焼成段階で適度な挙動を示すような流動性を有する。そのため、本発明の積層セラミック部品端子電極用導体ペーストを用いて形成された積層セラミック部品の端子電極は、空孔やブリスタが少なく、緻密性及び素体との接着性が優れている。また、端子電極の膜厚を薄くしても優れた耐メッキ液性を示し、メッキ液の浸み込みによる接着強度の低下や半田爆ぜなどの問題を生ずることがない。また、ガラス浮きによる半田付性の低下や電極剥離(特にコーナー部での剥離)を生じない信頼性の高い積層セラミック部品を提供する。   The glass powder contained in the conductor paste for a laminated ceramic component terminal electrode of the present invention has sufficient acid resistance as a characteristic of the glass itself, and has fluidity that exhibits an appropriate behavior in the firing stage. Therefore, the terminal electrode of the multilayer ceramic component formed using the conductor paste for the multilayer ceramic component terminal electrode of the present invention has few pores and blisters, and is excellent in denseness and adhesion to the element body. Further, even if the terminal electrode is made thin, it exhibits excellent plating solution resistance, and does not cause problems such as a decrease in adhesive strength and solder explosion due to penetration of the plating solution. Further, the present invention provides a highly reliable multilayer ceramic component which does not cause a decrease in solderability due to glass floating and electrode peeling (particularly peeling at a corner).

以下に、本発明に係る積層セラミック部品端子電極用導体ペースト(以下、「導体ペースト」とする)について、詳細に説明する。本実施形態における導体ペーストは、銅を含む導電性粉末、ガラス粉末及びビヒクルを主成分とする。   Hereinafter, the conductor paste for multilayer ceramic component terminal electrodes according to the present invention (hereinafter referred to as “conductor paste”) will be described in detail. The conductive paste in the present embodiment is mainly composed of conductive powder containing copper, glass powder, and vehicle.

本発明に用いられる銅を含む導電性粉末としては、銅粉末の他、銅の合金粉末やこれらと他の導電性金属との混合粉末でもよく、また銅粉末の表面に金属酸化物、ガラス、セラミックなどの無機材料を存在させた金属−無機複合粉末や、金属酸化物、ガラス、セラミックなどの粉末や他の金属粉末に銅を被覆した金属−無機複合粉末を用いることもできる。   The conductive powder containing copper used in the present invention may be copper powder, copper alloy powder or mixed powder of these and other conductive metals, and metal oxide, glass, A metal-inorganic composite powder in which an inorganic material such as ceramic is present, a metal-inorganic composite powder in which a metal oxide, glass, ceramic powder, or other metal powder is coated with copper can also be used.

本発明に用いられるガラス粉末としては、各成分の含有量が、SiO 7〜12重量%、Al 11〜15重量%、B 15〜28重量%、BaO 25〜45重量%、CaO 5〜15重量%、ZnO 7〜25重量%、SiO+B 25〜35重量%、である。
また、下記式(1)及び(2)を満たすことが好ましい。
0.25≦Al/(Al+SiO+B)≦0.35 …(1)
0.1≦CaO/(CaO+BaO)≦0.4 …(2)
The glass powder used in the present invention, the content of each component, SiO 2 7 to 12 wt%, Al 2 O 3 11~15 wt%, B 2 O 3 15~28 wt%, BaO 25 to 45 weight %, CaO 5-15 wt%, ZnO 7-25 wt%, SiO 2 + B 2 O 3 25-35 wt%.
Moreover, it is preferable to satisfy | fill following formula (1) and (2).
0.25 ≦ Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) ≦ 0.35 (1)
0.1 ≦ CaO / (CaO + BaO) ≦ 0.4 (2)

以下、ガラス粉末に含まれる各成分について詳しく説明する。   Hereinafter, each component contained in the glass powder will be described in detail.

SiOはガラス形成酸化物であり、耐酸性に大きな影響を及ぼす。SiOの含有量が12%を超えるとガラス浮きが発生しやすくなり、メッキ付性が悪くなる。7.0%未満であると耐酸性が下がり、メッキ液浸漬時にガラス成分が溶解しやすくなる。 SiO 2 is a glass-forming oxide and greatly affects acid resistance. When the content of SiO 2 exceeds 12%, glass floating tends to occur, and the plating property is deteriorated. If it is less than 7.0%, the acid resistance is lowered, and the glass component is easily dissolved when immersed in the plating solution.

もガラス形成酸化物であり、流動性を良好にする成分である。その含有量が28%を超えると耐酸性が下がる傾向がある。15%未満であると流動性が低下し、端子電極の膜密度が低下する。 B 2 O 3 is also a glass-forming oxide and is a component that improves fluidity. If the content exceeds 28%, the acid resistance tends to decrease. If it is less than 15%, the fluidity is lowered and the film density of the terminal electrode is lowered.

Alは中間酸化物であり、耐酸性に大きな影響を及ぼす。その含有量が15%を超えるとガラス作製時の冷却過程において失透しやすくなる。11%未満であると耐酸性が低下する。 Al 2 O 3 is an intermediate oxide and greatly affects acid resistance. If its content exceeds 15%, it tends to devitrify during the cooling process during glass production. Acid resistance falls that it is less than 11%.

BaOはガラス修飾酸化物であり、ガラスを安定化させ、流動性を良好にする。その含有量が45%を超えると耐酸性が低下する。25%未満ではガラス浮きが生じ、メッキ付性が低下する。   BaO is a glass-modified oxide that stabilizes the glass and improves fluidity. When the content exceeds 45%, the acid resistance decreases. If it is less than 25%, glass floats and the plating property is lowered.

CaOもガラス修飾酸化物であり、ガラスを安定化させ、耐酸性を向上させる。その含有量が15%を超えるとガラス転移点が急激に上昇する。5.0%未満では耐酸性が低下する。   CaO is also a glass-modified oxide that stabilizes the glass and improves acid resistance. When the content exceeds 15%, the glass transition point rises rapidly. If it is less than 5.0%, the acid resistance decreases.

ZnOもガラス修飾酸化物であり、ガラスを安定化させ、結晶化温度を調整する。その含有量が25%を超えると耐酸性が著しく悪くなる。7.0%未満では流動性が低下し、端子電極の膜密度が低下する。   ZnO is also a glass-modified oxide, which stabilizes the glass and adjusts the crystallization temperature. When the content exceeds 25%, the acid resistance is remarkably deteriorated. If it is less than 7.0%, the fluidity is lowered and the film density of the terminal electrode is lowered.

また、SiOとBとの合計量は、焼成段階における流動性を調整するファクターである。35%を超えると流動性が高くなりすぎてガラス浮きが発生しやすくなり、端子電極のメッキ付性が悪くなるとともにブリスタを生じる傾向がある。25%未満であると流動性が低下し、端子電極の膜密度が低下する。 The total amount of SiO 2 and B 2 O 3 is a factor that adjusts the fluidity in the firing stage. If it exceeds 35%, the fluidity becomes too high and glass floating tends to occur, and the terminal electrode tends to have poor plating properties and blisters. If it is less than 25%, the fluidity is lowered and the film density of the terminal electrode is lowered.

Al/(Al+SiO+B)で表される値は、耐酸性に影響を与える重要なファクターの一つである。0.25未満であると耐酸性が下がり、メッキ液浸漬時にガラス成分が溶解してしまうのを抑制できなくなる。0.35を超えると流動性が低下し、端子電極の膜密度が低下する。 The value represented by Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) is one of the important factors affecting the acid resistance. If it is less than 0.25, the acid resistance decreases, and it becomes impossible to suppress the dissolution of the glass component during immersion of the plating solution. If it exceeds 0.35, the fluidity is lowered and the film density of the terminal electrode is lowered.

また、本発明においては、CaO/(CaO+BaO)で表される値も、耐酸性に影響を与える重要なファクターの一つである。0.1より小さいと耐酸性が下がり、メッキ液浸漬時にガラス成分が溶解してしまう。0.4を超えると、ガラス成分と素体の濡れ性が悪くなるために積層セラミック部品のコーナー部で電極剥離が発生し易くなる。   In the present invention, the value represented by CaO / (CaO + BaO) is also an important factor that affects acid resistance. If it is less than 0.1, the acid resistance is lowered, and the glass component is dissolved when the plating solution is immersed. If it exceeds 0.4, the wettability between the glass component and the element body deteriorates, so that electrode peeling tends to occur at the corners of the multilayer ceramic component.

ガラス粉末にはこの他、特性に影響のない範囲で少量の他の酸化物、例えばアルカリ金属、ストロンチウム、マンガン、銅、スズ、鉄又はコバルトなどの酸化物を含有させることができる。   In addition, the glass powder may contain a small amount of other oxides such as alkali metal, strontium, manganese, copper, tin, iron, or cobalt within a range not affecting the properties.

ガラス粉末の大きさは特に限定されるものではないが、通常、平均粒径0.1〜10μmのものが用いられる。なお、端子電極の表面にガラス浮きが生じやすい場合には、ガラス粉末の粒径を調整することによって防止することが可能である。そのため、本発明のガラス粉末としては、好ましくは平均粒径0.5〜5μm、さらに好ましくは1〜4μmのものが用いられる。   Although the magnitude | size of glass powder is not specifically limited, Usually, a thing with an average particle diameter of 0.1-10 micrometers is used. In addition, when glass floating tends to occur on the surface of the terminal electrode, it can be prevented by adjusting the particle size of the glass powder. Therefore, the glass powder of the present invention preferably has an average particle size of 0.5 to 5 μm, more preferably 1 to 4 μm.

このようなガラス粉末は、溶融急冷法、ゾルゲル法、アトマイズ法など、いかなる方法で得られたものでもよい。例えば、各成分の原料化合物を混合し、溶融、急冷、粉砕する通常の方法で製造することができる。この場合、スタンプミルなどにより粗粉砕したのち所定の粒径にするためにボールミルや遊星ボールミルを用いての湿式粉砕、或いは遊星ボールミルやジェットミルなどを用いての乾式粉砕することが好ましい。この他、噴霧培焼法、噴霧熱分解法、或いは成分元素を含む原料粉末を仮焼したものを粉砕し、これを気相中に分散させた状態で熱分解すると共にガラス化させる方法でも製造することができる。これらの方法では、微細で粒度の揃った球状のガラス粉末を得ることができ、別途粉砕処理を行う必要がないので好ましい。   Such glass powder may be obtained by any method such as a melt quench method, a sol-gel method, or an atomization method. For example, it can be produced by an ordinary method in which raw material compounds of each component are mixed, melted, quenched, and pulverized. In this case, it is preferable to perform coarse pulverization using a stamp mill or the like and then wet pulverization using a ball mill or a planetary ball mill or dry pulverization using a planetary ball mill or jet mill to obtain a predetermined particle size. In addition to this, it is also possible to produce by spraying and calcination method, spray pyrolysis method, or calcination of raw powder containing component elements, and then pyrolyzing and vitrifying the material powder dispersed in the gas phase can do. These methods are preferable because a fine glass particle having a uniform particle size can be obtained and it is not necessary to perform a separate pulverization treatment.

本発明に用いられるビヒクルとしては特に限定はなく、通常銀ペーストのビヒクルとして使用されている有機バインダや溶剤などが適宜選択して配合される。例えば有機バインダとしては、セルロース類、アクリル樹脂、フェノール樹脂、アルキッド樹脂、ロジンエステルなどが、また溶剤としてはアルコール系、エーテル系、エステル系、炭化水素系などの有機溶剤や水、これらの混合溶剤が挙げられる。この他通常添加されるような可塑剤や、高級脂肪酸や脂肪酸エステル系などの分散剤、界面滑性剤などを適宜配合することができる。ビヒクルの配合量は特に限定されるものではなく、無機成分をペースト中に保持し得る適切な量で、用途や塗布方法に応じて適宜調整される。   The vehicle used in the present invention is not particularly limited, and an organic binder, a solvent and the like which are usually used as a vehicle for silver paste are appropriately selected and blended. For example, as organic binders, celluloses, acrylic resins, phenol resins, alkyd resins, rosin esters, etc., and as solvents, alcohol-based, ether-based, ester-based, hydrocarbon-based organic solvents, water, and mixed solvents thereof Is mentioned. In addition, plasticizers that are usually added, dispersants such as higher fatty acids and fatty acid esters, interfacial lubricants, and the like can be appropriately blended. The blending amount of the vehicle is not particularly limited, and is an appropriate amount capable of retaining the inorganic component in the paste, and is appropriately adjusted according to the use and application method.

本発明の導体ペーストには、前記成分以外に通常配合されるような無機成分、例えば、アルミナ、シリカ、酸化銅、酸化マンガン、チタン酸バリウム、酸化チタンなどの金属酸化物や、誘導体層と同質のセラミック粉末、モンモリロナイトなどを目的に応じて適宜添加することができる。   In addition to the above-mentioned components, the conductive paste of the present invention usually contains inorganic components, for example, metal oxides such as alumina, silica, copper oxide, manganese oxide, barium titanate, and titanium oxide, and the same quality as the derivative layer. The ceramic powder, montmorillonite and the like can be appropriately added depending on the purpose.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

まず、以下の手順で実施例1〜5に係るガラス粉末を調合した。
表1に示すような酸化物組成になるように各成分を秤量し、十分に混合した後白金ルツボ中に投入し、大気中1400℃で60分間溶融し、次いでグラファイト上に流出させて空冷して得られたガラスをスタンプミルで粉砕後、遊星ボールミルを用いて湿式粉砕を行い、平均粒径3.3μmのガラス粉末を得た。
また、同様にして表1に示すような酸化物組成で各成分を秤量し、比較例1〜6に係るガラス粉末を調合した。

Figure 0004561574
First, the glass powder which concerns on Examples 1-5 was prepared with the following procedures.
Each component was weighed so as to have an oxide composition as shown in Table 1, mixed well, then put into a platinum crucible, melted in the atmosphere at 1400 ° C. for 60 minutes, then allowed to flow out onto graphite and air-cooled. The glass obtained in this manner was pulverized by a stamp mill and then wet pulverized using a planetary ball mill to obtain a glass powder having an average particle size of 3.3 μm.
Similarly, each component was weighed with an oxide composition as shown in Table 1, and glass powders according to Comparative Examples 1 to 6 were prepared.
Figure 0004561574

得られた各ガラス粉末の熱特性を示すガラス転移点Tgを、示差熱分析装置を用いて測定した。その測定結果を表1に示す。   The glass transition point Tg which shows the thermal characteristic of each obtained glass powder was measured using the differential thermal analyzer. The measurement results are shown in Table 1.

また、焼成後の端子電極の耐メッキ液性の指標の一つとなる各ガラス粉末の耐酸性を以下のようにして調べた。
ガラス粉末10重量部を、アクリル樹脂系バインダをベンジルアルコールに溶解した有機ビヒクル3重量部中に分散したペーストを作製し、チタン酸バリウムを焼結して作られた平板上に印刷、乾燥させた後、酸素濃度が約5ppmの窒素雰囲気中800℃で焼成して、膜厚約20μmのガラス被膜を形成した。その後、ガラス被膜が形成された基板をpHが約4の酸性有機スズメッキ浴に2時間浸漬し、浸漬前後の重量変化から、ガラス皮膜の残存率(重量%)を測定し、残存率が30%以上のものを○、10〜30%のものを△、10%未満のものを×と評価した。その測定結果を表1に示す。
In addition, the acid resistance of each glass powder, which is one of the indicators of the plating solution resistance of the terminal electrode after firing, was examined as follows.
A paste in which 10 parts by weight of glass powder was dispersed in 3 parts by weight of an organic vehicle in which an acrylic resin binder was dissolved in benzyl alcohol was prepared, printed on a flat plate made by sintering barium titanate, and dried. Thereafter, it was baked at 800 ° C. in a nitrogen atmosphere having an oxygen concentration of about 5 ppm to form a glass film having a thickness of about 20 μm. Thereafter, the substrate on which the glass film was formed was immersed in an acidic organic tin plating bath having a pH of about 4 for 2 hours, and the residual ratio (% by weight) of the glass film was measured from the change in weight before and after the immersion. The above were evaluated as ◯, 10-30% as △, and less than 10% as x. The measurement results are shown in Table 1.

続いて、以下の手順で導体ペーストを作製し、各実施例及び比較例に係る端子電極を形成した。
銅粉末(平均粒径4μm、フレーク状)100重量部とガラス粉末10重量部を、アクリル樹脂系バインダをテルピネオールに溶解したビヒクル40重量部と共にロールミルで混練して電極ペーストを作製した。得られた電極ペーストを、ニッケル内部電極を有する外径寸法2.0mm×1.2mm×1.2mmのチタン酸バリウム系積層セラミックコンデンサ素体の端子面に、焼成膜厚が40μmとなるようにディッピング法で塗布し、乾燥後、酸素濃度5ppmの窒素雰囲気中860℃で焼成し、端子電極を形成した。
Then, the conductor paste was produced in the following procedures, and the terminal electrode according to each example and comparative example was formed.
An electrode paste was prepared by kneading 100 parts by weight of copper powder (average particle size 4 μm, flakes) and 10 parts by weight of glass powder together with 40 parts by weight of a vehicle in which an acrylic resin binder was dissolved in terpineol, using a roll mill. The obtained electrode paste is applied to the terminal surface of a barium titanate-based multilayer ceramic capacitor body having an outer diameter of 2.0 mm × 1.2 mm × 1.2 mm having a nickel internal electrode so that the fired film thickness is 40 μm. After applying by dipping method and drying, it was baked at 860 ° C. in a nitrogen atmosphere having an oxygen concentration of 5 ppm to form a terminal electrode.

次いで端子電極上に電気メッキにより、ニッケルメッキ膜及びスズメッキ膜を順次形成し、それぞれについて、以下の要領で、膜密度、ブリスタ、メッキ付性及び電極剥離の評価を行った。   Next, a nickel plating film and a tin plating film were sequentially formed on the terminal electrode by electroplating, and the film density, blister, plating property, and electrode peeling were evaluated in the following manner.

膜密度は、各端子電極の断面(端子面に対し垂直な面)を走査電子顕微鏡で観察し、空孔率が0.6%未満を○、0.6%以上3%未満を△、3%以上を×と評価した。
ブリスタは、端子電極の表面にブリスタの発生が検出されなかった場合は○、ブリスタ発生率が30%未満を△、30%以上を×と評価した。
メッキ付性は、端子電極の表面に連続なメッキ膜が形成されたものを○、不連続となったものを×と評価した。なお、ガラス浮きがある場合にメッキ膜は不連続となりやすい。
電極剥離は、端子電極が素体のコーナー部に完全に密着している場合を○、剥離している場合を×とした。
As for the film density, the cross section (surface perpendicular to the terminal surface) of each terminal electrode is observed with a scanning electron microscope, and the porosity is less than 0.6% ○, 0.6% or more and less than 3% Δ3 % Or more was evaluated as x.
The blister was evaluated as ◯ when no blister was detected on the surface of the terminal electrode, Δ when the blister generation rate was less than 30%, and × when 30% or more.
The plating property was evaluated as ○ when the continuous plating film was formed on the surface of the terminal electrode, and × when it was discontinuous. In addition, when there is glass floating, the plating film tends to be discontinuous.
In the electrode peeling, the case where the terminal electrode was completely adhered to the corner portion of the element body was marked with ◯, and the case where the terminal electrode was peeled was marked with x.

表1からわかるように、比較例1に関しては、SiO、Al及びCaOの含有量が少なく、SiO+B、Al/(Al+SiO+B)及びCaO/(CaO+BaO)の値も小さくなっており、耐酸性が著しく低下している。比較例2に関しては、Bの含有量が多く、SiO+Bの値が大きく、Al/(Al+SiO+B)の値が小さくなっており、ブリスタが多数発生するとともにメッキ付性が著しく低下している。比較例3に関しては、SiO+Bの値が小さくなっており、焼成後の端子電極に空孔が発生してしまい膜密度が低下している。比較例4に関しては、AlとBaOの含有量が少なく、SiO+BとCaO/(CaO+BaO)の値が大きく、Al/(Al+SiO+B)の値が小さくなっており、耐酸性が低下するとともに電極剥離が発生している。比較例5に関しては、Alの含有量が少なく、Al/(Al+SiO+B)の値も小さくなっており、ブリスタが多数発生するとともにメッキ付性が著しく低下している。比較例6に関しては、AlとBaOの含有量が少なく、SiO+BとCaO/(CaO+BaO)の値が大きくなる一方、Al/(Al+SiO+B)の値は小さくなっており、メッキ付性が著しく低下している。 As can be seen from Table 1, regarding Comparative Example 1, the contents of SiO 2 , Al 2 O 3 and CaO are small, and SiO 2 + B 2 O 3 , Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) The values of CaO / (CaO + BaO) are also small, and the acid resistance is remarkably lowered. Respect Comparative Example 2, the content of B 2 O 3 is large, the value of SiO 2 + B 2 O 3 is large, the value of Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3) is decreased In addition, a large number of blisters are generated and the plating property is remarkably lowered. Regarding Comparative Example 3, the value of SiO 2 + B 2 O 3 is small, and voids are generated in the terminal electrode after firing, resulting in a decrease in film density. Regarding Comparative Example 4, the contents of Al 2 O 3 and BaO are small, the values of SiO 2 + B 2 O 3 and CaO / (CaO + BaO) are large, and Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O). The value of 3 ) is small, the acid resistance is lowered, and electrode peeling occurs. With respect to Comparative Example 5, the content of Al 2 O 3 is small, the value of Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) is also small, and a large number of blisters are generated and the plating property is increased. Is significantly reduced. Regarding Comparative Example 6, the content of Al 2 O 3 and BaO is small, and the values of SiO 2 + B 2 O 3 and CaO / (CaO + BaO) are increased, while Al 2 O 3 / (Al 2 O 3 + SiO 2 + B). The value of 2 O 3 ) is small, and the plating property is remarkably lowered.

一方、本発明の組成のガラス粉末は、各成分の含有量をSiO 7〜12重量%、Al 11〜15重量%、B 15〜28重量%、BaO 25〜45重量%、CaO 5〜15重量%、ZnO 7〜25重量%、SiO+B 25〜35重量%であり、その上更に下記式(1)及び(2)を満たしている。
0.25≦Al/(Al+SiO+B)≦0.35 …(1)
0.1≦CaO/(CaO+BaO)≦0.4 …(2)
そのため、耐酸性に優れており、そのガラス粉末を用いることにより、緻密で、素体との接着強度が強く、かつ、耐メッキ液性に優れ、薄膜化にも対応可能な端子電極が形成される。
On the other hand, in the glass powder of the composition of the present invention, the content of each component is 7 to 12% by weight of SiO 2, 11 to 15% by weight of Al 2 O 3, 15 to 28% by weight of B 2 O 3, and 25 to 45% by weight of BaO. %, CaO 5 to 15 wt%, ZnO 7 to 25 wt%, SiO 2 + B 2 O 3 25 to 35 wt%, and further satisfy the following formulas (1) and (2).
0.25 ≦ Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) ≦ 0.35 (1)
0.1 ≦ CaO / (CaO + BaO) ≦ 0.4 (2)
Therefore, it has excellent acid resistance, and by using the glass powder, it is possible to form a terminal electrode that is dense, has high adhesion strength with the element body, has excellent plating solution resistance, and can be used for thinning. The

Claims (2)

銅を含む導電性粉末、ガラス粉末及びビヒクルを主成分とし、前記ガラス粉末中の各成分の含有量が、SiO 7〜12重量%、Al 11〜15重量%、B 15〜28重量%、BaO 25〜45重量%、CaO 5〜15重量%、ZnO 7〜25重量%、SiO+B 25〜35重量%、であることを特徴とする積層セラミック部品端子電極用導体ペースト。 The main component is a conductive powder containing copper, glass powder and vehicle, and the content of each component in the glass powder is 7 to 12% by weight of SiO 2 , 11 to 15% by weight of Al 2 O 3 , and B 2 O 3. 15 to 28% by weight, BaO 25 to 45% by weight, CaO 5 to 15% by weight, ZnO 7 to 25% by weight, SiO 2 + B 2 O 3 25 to 35% by weight Conductor paste for electrodes. 前記ガラス粉末中の各成分の含有量の重量比が、下記式(1)及び(2)を満たすことを特徴とする請求項1に記載の積層セラミック部品端子電極用導体ペースト。
0.25≦Al/(Al+SiO+B)≦0.35 …(1)
0.1≦CaO/(CaO+BaO)≦0.4 …(2)
2. The conductor paste for a multilayer ceramic component terminal electrode according to claim 1, wherein the weight ratio of the content of each component in the glass powder satisfies the following formulas (1) and (2).
0.25 ≦ Al 2 O 3 / (Al 2 O 3 + SiO 2 + B 2 O 3 ) ≦ 0.35 (1)
0.1 ≦ CaO / (CaO + BaO) ≦ 0.4 (2)
JP2005294849A 2005-10-07 2005-10-07 Conductive paste for multilayer ceramic component terminal electrode Active JP4561574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294849A JP4561574B2 (en) 2005-10-07 2005-10-07 Conductive paste for multilayer ceramic component terminal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294849A JP4561574B2 (en) 2005-10-07 2005-10-07 Conductive paste for multilayer ceramic component terminal electrode

Publications (2)

Publication Number Publication Date
JP2007103845A JP2007103845A (en) 2007-04-19
JP4561574B2 true JP4561574B2 (en) 2010-10-13

Family

ID=38030456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294849A Active JP4561574B2 (en) 2005-10-07 2005-10-07 Conductive paste for multilayer ceramic component terminal electrode

Country Status (1)

Country Link
JP (1) JP4561574B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064896A (en) * 2007-09-05 2009-03-26 Taiyo Yuden Co Ltd Wire-winded type electronic component
KR20110067509A (en) * 2009-12-14 2011-06-22 삼성전기주식회사 Paste compound for termination electrode and multilayer ceramic capacitor comprising the same and manufactuaring method thereof
JP6029819B2 (en) * 2011-10-07 2016-11-24 太陽誘電株式会社 Electronic component and manufacturing method thereof
KR20130065199A (en) * 2011-12-09 2013-06-19 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
JP6076331B2 (en) * 2012-03-19 2017-02-08 株式会社村田製作所 Ceramic electronic components
WO2017057246A1 (en) * 2015-10-01 2017-04-06 昭栄化学工業株式会社 Conductive paste and terminal electrode forming method for laminated ceramic part
JP7284311B1 (en) 2022-03-31 2023-05-30 株式会社ノリタケカンパニーリミテド External electrode paste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239410A (en) * 1988-07-28 1990-02-08 Shoei Chem Ind Co Conductive composed material for ceramic capacitor terminal electrode
JPH08180731A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239410A (en) * 1988-07-28 1990-02-08 Shoei Chem Ind Co Conductive composed material for ceramic capacitor terminal electrode
JPH08180731A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor

Also Published As

Publication number Publication date
JP2007103845A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US6841495B2 (en) Glass and conductive paste using the same
KR100680461B1 (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
JP6354970B2 (en) Method for forming terminal electrode of conductive paste and multilayer ceramic component
JP4805268B2 (en) Copper termination ink containing lead-free and cadmium-free glass for capacitors
JP4958904B2 (en) Copper terminal ink containing lead-free and cadmium-free glass for capacitors
JP4561574B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP3827060B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP2007294633A (en) Ceramic electronic component and conductive paste therefor
JP5476630B2 (en) Conductive paste and electronic components
JP4427785B2 (en) Conductive paste for terminal electrodes of multilayer ceramic electronic components
JP5056828B2 (en) Conductor paste
JP2657008B2 (en) Metallized composition for ceramics
JP4438090B2 (en) Glass powder for conductor paste
JP4211783B2 (en) Conductive paste and multilayer ceramic electronic components
JP2005019185A (en) Copper conductive paste and laminated ceramic electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250