JP4438090B2 - Glass powder for conductor paste - Google Patents

Glass powder for conductor paste Download PDF

Info

Publication number
JP4438090B2
JP4438090B2 JP2004274343A JP2004274343A JP4438090B2 JP 4438090 B2 JP4438090 B2 JP 4438090B2 JP 2004274343 A JP2004274343 A JP 2004274343A JP 2004274343 A JP2004274343 A JP 2004274343A JP 4438090 B2 JP4438090 B2 JP 4438090B2
Authority
JP
Japan
Prior art keywords
glass
glass powder
powder
conductor paste
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004274343A
Other languages
Japanese (ja)
Other versions
JP2006089310A (en
Inventor
直人 新藤
恵 河原
能生 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2004274343A priority Critical patent/JP4438090B2/en
Publication of JP2006089310A publication Critical patent/JP2006089310A/en
Application granted granted Critical
Publication of JP4438090B2 publication Critical patent/JP4438090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Description

本発明は、コンデンサ、インダクタ等の積層セラミック電子部品(以下単に「積層電子部品」と言う)の端子電極を形成するのに適した導体ペーストに好適に用いられる導体ペースト用ガラス粉末に関する。 The present invention is a capacitor, relates to a glass powder for a conductive paste suitably used for the conductor paste suitable for forming terminal electrodes of multilayer ceramic electronic components (hereinafter simply referred to as "multilayer electronic component") such as an inductor.

積層電子部品は、一般に次のようにして製造される。   A laminated electronic component is generally manufactured as follows.

先ず、誘電体、磁性体等の未焼成セラミックシート上に、内部電極用導体ペーストを所定のパターンで印刷する。このシートを複数枚積み重ね、圧着してセラミックシートと内部電極ペースト層とが交互に積層された未焼成の積層体を得る。得られた積層体を所定の形状のチップに切断した後、高温で焼成してセラミック素体(以下単に「素体」と言う)とする。次いで、該素体の内部電極の露出する端面に、導電性粉末と、ガラス粉末等の無機結合剤とを有機ビヒクルに分散させた端子電極ペーストをディッピング、刷け塗り、スクリーン印刷等種々の方法により塗布し、乾燥後、高温で焼成して、内部電極と電気的に接続した端子電極を形成する。この後、必要に応じて該端子電極上にニッケルめっき層を形成した後、半田付け性の良いスズ若しくはその合金からなるめっき層が、電気めっきにより形成される。内部電極材料としては、従来、Pd、Ag、Ag−Pd、Pt等の貴金属が用いられており、また、近年ではNiやCu等の卑金属材料も用いられるようになってきている。   First, a conductor paste for internal electrodes is printed in a predetermined pattern on an unfired ceramic sheet such as a dielectric or magnetic material. A plurality of sheets are stacked and pressure-bonded to obtain an unfired laminate in which ceramic sheets and internal electrode paste layers are alternately laminated. The obtained laminated body is cut into chips having a predetermined shape, and then fired at a high temperature to form a ceramic body (hereinafter simply referred to as “element body”). Next, various methods such as dipping, brushing and screen printing of terminal electrode paste in which conductive powder and inorganic binder such as glass powder are dispersed in an organic vehicle are exposed on the exposed end face of the internal electrode of the element body After coating, drying and baking at a high temperature, a terminal electrode electrically connected to the internal electrode is formed. Thereafter, a nickel plating layer is formed on the terminal electrode as necessary, and then a plating layer made of tin or an alloy thereof having good solderability is formed by electroplating. Conventionally, noble metals such as Pd, Ag, Ag—Pd, and Pt have been used as the internal electrode material, and in recent years, base metal materials such as Ni and Cu have also been used.

一方、端子電極にはこれら内部電極材料と良好な電気的接続を形成しやすい金属が用いられ、Ag、Au、Pd、Pt、Ni、Co、Cuやこれらの合金が用いられている。特に端子電極材料に卑金属を用いる場合は、卑金属が酸化して導電性が低下するのを防止するため、非酸化性雰囲気中、即ち、窒素や水素−窒素などの不活性雰囲気中もしくは還元性雰囲気中において、ピーク温度700〜900℃程度で焼成が行われる。このような非酸化性雰囲気中で焼成しても導電性、接着性等、電極特性の優れた端子電極を形成するためには、端子電極に含まれる無機結合剤として、非酸化性雰囲気中で焼成しても安定な耐還元性ガラスを用いる必要がある。   On the other hand, for the terminal electrode, a metal that easily forms a good electrical connection with these internal electrode materials is used, and Ag, Au, Pd, Pt, Ni, Co, Cu, and alloys thereof are used. In particular, when a base metal is used as the terminal electrode material, in order to prevent the base metal from being oxidized and lowering the conductivity, in a non-oxidizing atmosphere, that is, in an inert atmosphere or reducing atmosphere such as nitrogen or hydrogen-nitrogen. Inside, baking is performed at a peak temperature of about 700 to 900 ° C. In order to form a terminal electrode having excellent electrode characteristics such as conductivity and adhesiveness even when baked in such a non-oxidizing atmosphere, an inorganic binder contained in the terminal electrode is used in the non-oxidizing atmosphere. It is necessary to use a reduction-resistant glass that is stable even when fired.

また、端子電極膜に電気めっき処理を行う際、酸性の電気めっき液によってガラス成分が変質し溶解することでガラスの構造が破壊され、素体との接着強度が大きく低下することがある。また、この際にガラス成分の溶けた部分や、焼成膜中のボイド等から電極膜中に浸み込んだめっき液が原因となり、絶縁抵抗の低下や素体クラックの発生を招く他、浸入しためっき液が半田リフロー時に熱せられてガス化し、溶融した半田が飛び散る所謂「半田爆ぜ現象」を引き起こすことがある。このため、積層電子部品の端子電極を形成する導体ペーストに使用されるガラスには、酸性めっき液に侵されにくく、且つ、緻密な焼成膜を形成し得る特性が要求されている。   In addition, when electroplating the terminal electrode film, the glass component may be altered and dissolved by the acidic electroplating solution, thereby destroying the glass structure and greatly reducing the adhesive strength with the element body. In addition, at this time, due to the plating solution infiltrated into the electrode film from the melted portion of the glass component or the void in the fired film, the insulation resistance was lowered and the cracks of the element body were caused. The plating solution is heated and gasified during solder reflow, which may cause a so-called “solder explosion phenomenon” in which molten solder scatters. For this reason, the glass used for the conductor paste forming the terminal electrode of the laminated electronic component is required to have a characteristic that it is difficult to be affected by the acidic plating solution and can form a dense fired film.

従来、このような目的から、端子電極には一般にBa系や、Zn系のガラスが用いられてきた(特許文献1)。また、Si成分の多いアルカリシリケートガラスを用いることも検討されている(特許文献2、特許文献3)。
特開2003−246644号公報 特開2003−347148号公報 特開2002−25337号公報
Conventionally, for these purposes, Ba-based and Zn-based glasses have been generally used for terminal electrodes (Patent Document 1). In addition, the use of alkali silicate glass with a large amount of Si component has been studied (Patent Documents 2 and 3).
JP 2003-246644 A JP 2003-347148 A JP 2002-25337 A

近年、積層セラミック部品に対する高容量化、高性能化、信頼性の向上の要求はますます厳しくなっている。特に小型大容量の積層セラミックコンデンサにおいては、小型化に伴って端子電極の薄膜化の要求が高まっており、膜厚が50μm以下のもの、さらには膜厚が20μmの薄いものも要求されるようになってきた。このように薄い電極膜で、従来と同等以上の優れた電極特性を得るためには、より緻密で、素体との接着強度が大きく、また耐めっき液性の優れていることが必要である。   In recent years, demands for higher capacity, higher performance, and higher reliability for multilayer ceramic parts have become increasingly severe. In particular, in a small-sized and large-capacity multilayer ceramic capacitor, there is an increasing demand for thinning of the terminal electrode with downsizing, and a thin film having a film thickness of 50 μm or less and a thin film with a film thickness of 20 μm is also required It has become. In order to obtain excellent electrode characteristics equal to or better than those of conventional electrodes with such a thin electrode film, it is necessary to be denser, have higher adhesion strength to the element body, and have excellent plating solution resistance. .

しかし前記Ba系ガラスやZn系ガラスを用いたペーストは、端子電極をこのような要求に応えて薄膜化した場合、十分な特性が得られなくなるという問題があり、比較的耐酸性が良好なZn系ガラスを用いた場合でも耐めっき液性が不十分となる。これは次のように考えられる。   However, the paste using Ba-based glass or Zn-based glass has a problem that sufficient characteristics cannot be obtained when the terminal electrode is thinned in response to such a requirement, and Zn having relatively good acid resistance. Even when the glass is used, the plating solution resistance is insufficient. This is considered as follows.

即ち、従来のBa系ガラスやZn系ガラスは、ガラス自体の耐酸性はそれほど高くない。しかし、これらのガラスは、導電性粉末とともに焼成される際、ボイドの少ない緻密な焼成膜構造を形成することによって、めっき液の膜への浸み込みを抑制すると共に、特にZn系ガラスの場合にはガラスと素体との間により強固な反応層が形成され、接着強度や膜強度が高められて、めっき液が浸み込んでも強度劣化が起こりにくくなっていると考えられる。それ故、Ba系ガラスやZn系ガラスにおいては、電極膜に或る程度の厚みがある場合には、その焼成膜構造により、焼成膜全体として耐めっき液性を備えるが、電極の膜厚が薄くなってくると、これらのガラスでは限界がある。   That is, conventional Ba-based glass and Zn-based glass are not so high in acid resistance of the glass itself. However, when these glasses are baked together with conductive powders, by forming a dense fired film structure with few voids, the penetration of the plating solution into the film is suppressed, and particularly in the case of Zn-based glass It is considered that a strong reaction layer is formed between the glass and the element body, and the adhesive strength and the film strength are increased, so that the strength deterioration is less likely to occur even when the plating solution penetrates. Therefore, in the Ba-based glass and Zn-based glass, when the electrode film has a certain thickness, the entire fired film has a plating solution resistance due to the fired film structure. As they get thinner, these glasses have limitations.

一方、前記アルカリシリケートガラスを用いると、ガラス自体の耐酸性が大きく、電極膜の耐めっき液性は或る程度向上する。しかし、軟化点を下げるためにアルカリ金属成分を多く含むため、流動性が大きく、ガラスが素体に浸み込んで素体強度の低下やクラックを引き起こしやすい。また、電極表面にガラス浮きを起こし、めっきや半田が付きにくくなる問題もある。   On the other hand, when the alkali silicate glass is used, the acid resistance of the glass itself is large, and the plating solution resistance of the electrode film is improved to some extent. However, since it contains a large amount of an alkali metal component in order to lower the softening point, the fluidity is large, and the glass is likely to soak into the element body and cause a decrease in element strength and cracks. In addition, there is a problem that glass floats on the electrode surface and plating and soldering are difficult to adhere.

本発明者らは、端子電極に酸性めっき液を用いて電気めっき処理する際、ガラス自体が十分な耐酸性を有し、かつ端子電極焼成膜が十分な緻密性を持っていないと、特に薄い電極膜を形成する際に十分な耐めっき液性が得られず、積層部品の信頼性を低下させると考えた。そして、ガラスのめっき液に対する溶解性が小さく、且つ、焼成時に適切な流動特性を示すようなガラスを使用することにより、耐めっき液性が改善されることを見出し、更にガラスの組成について種々の検討を行った結果、本発明に到達したものである。   The inventors of the present invention are particularly thin when the terminal electrode is electroplated using an acidic plating solution and the glass itself has sufficient acid resistance and the terminal electrode fired film does not have sufficient denseness. It was considered that sufficient plating solution resistance could not be obtained when forming the electrode film, and the reliability of the laminated part was lowered. And, it is found that the resistance of the plating solution is improved by using a glass having a low solubility in the plating solution of glass and exhibiting appropriate flow characteristics at the time of firing. As a result of investigation, the present invention has been achieved.

上述した背景のもとに成された本発明の目的は、緻密で、素体との接着強度が高く、且つ、耐めっき液性が極めて優れ、薄膜化にも対応可能な端子電極を形成することのできる導体ペーストに好適に用いられる導体ペースト用ガラス粉末を提供することにある。 The object of the present invention based on the above-mentioned background is to form a terminal electrode that is dense, has high adhesive strength with the element body, has extremely excellent plating solution resistance, and can cope with thinning. and to provide a glass powder for a conductive paste suitably used for can Ru conductors paste it.

本発明は、以下の構成からなる。   The present invention has the following configuration.

(1)SiO、Al、RO(Rはアルカリ金属)及びR’O(R’はアルカリ土類金属)、又はこれらの成分に更にBを含有する導体ペースト用ガラス粉末であって、該ガラス粉末重量%による含有率で下記成分
SiO 42.0〜65.0%、R O 8.0〜18.0%、R’O 4.0〜20.0%、B 0〜18%、Al 3.0〜18.0%、La 0〜15%を含有し、下記式(1)を満たすと共に、該ガラス粉末の軟化点Ts〔℃〕及びガラス転移点Tg〔℃〕が、130≦(Ts−Tg)≦280を満たすことを特徴とする導体ペースト用ガラス粉末。
(RO+R’O+B)/SiO≦0.95 ・・・・・ (1)
(1) For conductor paste containing SiO 2 , Al 2 O 3 , R 2 O (R is an alkali metal) and R′O (R ′ is an alkaline earth metal), or B 2 O 3 in these components . a glass powder, the following components the glass powder at a content by weight%
SiO 2 42.0~65.0%, R 2 O 8.0~18.0%, R'O 4.0~20.0%, B 2 O 3 0~18%, Al 2 O 3 3. 0 to 18.0%, La 2 O 3 0 to 15%, satisfying the following formula (1), and the glass powder has a softening point Ts [° C.] and a glass transition point Tg [° C.] of 130 ≦ A glass powder for conductor paste , characterized by satisfying (Ts−Tg) ≦ 280.
(R 2 O + R′O + B 2 O 3 ) / SiO 2 ≦ 0.95 (1)

(2)銅若しくは銅を主成分とする金属粉末を含有する導体ペーストに用いられることを特徴とする上記(1)記載の導体ペースト用ガラス粉末。 (2) The glass powder for a conductor paste according to the above (1), which is used for a conductor paste containing copper or a metal powder containing copper as a main component .

(3)非酸化性雰囲気で焼成後、酸性めっき処理が行われる電極の形成に用いられる導体ペーストであることを特徴とする上記(1)又は(2)に記載の導体ペースト用ガラス粉末。 (3) The glass powder for a conductor paste according to (1) or (2) above, which is a conductor paste used for forming an electrode that is subjected to an acid plating treatment after firing in a non-oxidizing atmosphere .

本発明の導体ペースト用ガラス粉末には、ガラス自体の特性として十分な耐酸性が備わっている。それ故、このガラス粉末を含む導体ペーストを用いて形成された積層電子部品の端子電極は、緻密性及びセラミック素体との接着強度が優れていると共に、薄膜であっても優れた耐めっき液性を示し、めっき液の浸み込みによる接着強度の低下や剥離等の問題を生ずることなく信頼性の高い積層電子部品を提供する。しかも前記導体ペーストは非酸化性雰囲気でも焼成が可能である。 The glass powder for conductor paste of the present invention has sufficient acid resistance as a characteristic of the glass itself. Resistant Therefore, the terminal electrodes of the multilayer electronic component of the glass powder is formed by using a including conductive paste, as well as adhesive strength between compactness and ceramic body are good, excellent even thin Provided is a highly reliable multilayer electronic component that exhibits a plating solution property and does not cause problems such as a decrease in adhesion strength and peeling due to the penetration of the plating solution. Moreover, the conductor paste can be fired even in a non-oxidizing atmosphere.

本発明の導体ペーストにおいて導電性粉末は特に限定されず、積層電子部品の端子電極形成用の導体ペーストにおいて通常用いられるAu、Ag、Pt、Pd、Cu、Ni、Co等の金属粉末を用いることができるが、特にCuを含む導電性粉末を用いた場合に本発明の作用効果をより享受することができる。Cuを含む導電性粉末としては、Cu粉末の他、Cuの合金粉末やこれらと他の導電性金属との混合粉末でもよく、またCu粉末の表面に金属酸化物、ガラス、セラミックなどの無機材料を存在させた金属−無機複合粉末や、金属酸化物、ガラス、セラミックなどの粉末や他の金属粉末にCuを被覆した金属−無機複合粉末を用いることもできる。   In the conductor paste of the present invention, the conductive powder is not particularly limited, and metal powders such as Au, Ag, Pt, Pd, Cu, Ni, and Co that are usually used in the conductor paste for forming terminal electrodes of laminated electronic components are used. However, in particular, when the conductive powder containing Cu is used, the effects of the present invention can be enjoyed more. The conductive powder containing Cu may be Cu powder, Cu alloy powder, mixed powder of these and other conductive metals, or inorganic material such as metal oxide, glass, ceramic on the surface of Cu powder. It is also possible to use metal-inorganic composite powder in which Cu is present, metal-inorganic composite powder obtained by coating a metal oxide, glass, ceramic powder or other metal powder with Cu.

本発明の導体ペーストに使用されるガラス粉末は、アルカリ金属成分とアルカリ土類金属成分を含有するSiO−Al系ガラスにおいて、特定のガラス構成成分の比率、更にはガラス軟化点Tsとガラス転移点Tgとの温度の差(Ts−Tg)が制御されたものであることを特徴とする。 The glass powder used for the conductor paste of the present invention is a SiO 2 —Al 2 O 3 -based glass containing an alkali metal component and an alkaline earth metal component, the ratio of specific glass components, and further the glass softening point Ts. The temperature difference (Ts−Tg) between the glass transition point Tg and the glass transition point Tg is controlled.

以下、図1に基づいて説明する。図1は、一般に市販されているガラス粉末をサンプルパンに入れ、示差熱分析を行って得られたDTA曲線である。図1に見られるように、ガラス粉末に熱を加えるとガラス転移点Tgや屈伏点等の特定の温度において吸熱や発熱が生じる。最初に出現する吸熱の開始温度はガラス転移点Tgであることが知られている。   Hereinafter, a description will be given based on FIG. FIG. 1 is a DTA curve obtained by placing a commercially available glass powder in a sample pan and conducting differential thermal analysis. As can be seen in FIG. 1, when heat is applied to the glass powder, endotherm and heat generation occur at specific temperatures such as the glass transition point Tg and the yield point. It is known that the initial temperature of the endotherm that appears first is the glass transition point Tg.

そこで以下の説明においては、ガラス粉末の転移点Tgは示差熱分析により得られたDTA曲線から求めたものを記しており、具体的には、DTA曲線上でベースラインの接線と、ガラス転移による吸熱領域における屈曲後の急峻な位置における接線との交点から求めた値を記載している。   Therefore, in the following description, the transition point Tg of the glass powder is the one obtained from the DTA curve obtained by differential thermal analysis, and specifically, the tangent of the baseline on the DTA curve and the glass transition. A value obtained from an intersection with a tangent at a steep position after bending in the endothermic region is described.

また、図1においてガラス粉末はガラス転移点Tgを過ぎると焼結を開始し、温度Tsまでは粉末の形状を保持し表面が荒れた状態となっている。そして該温度Tsの直前では、粉末同士が最も焼き締まった状態になるが、該温度Tsを越えると流動し始め、急激に粉末としての形状を保つことができなくなって試料表面に光沢を呈し始める様子が観察される。   Further, in FIG. 1, when the glass powder passes the glass transition point Tg, the sintering starts, and the shape of the powder is maintained and the surface is rough until the temperature Ts. Immediately before the temperature Ts, the powders are in the most compacted state. However, when the temperature Ts is exceeded, the powder begins to flow, and the shape of the powder cannot be maintained rapidly, and the sample surface begins to show gloss. The situation is observed.

そこで以下においてガラス粉末の軟化点Tsとは、このような状態変化が出現する温度Tsを言い、具体的には、DTA曲線上でガラス軟化によって生じる屈曲点の前後の急峻な位置において、それぞれ引いた各接線の交点から求めた値を記載している。   Therefore, in the following, the softening point Ts of the glass powder means a temperature Ts at which such a state change appears. Specifically, it is subtracted at a steep position before and after the bending point caused by glass softening on the DTA curve. The values obtained from the intersections of the tangent lines are shown.

本発明のガラス粉末において、ガラス軟化点Tsとガラス転移点Tgとの差(Ts−Tg)の値は、130℃以上280℃以下の範囲内でなければならない。(Ts−Tg)の値は、現象的にはガラスが粘性を持ち始めてから流動を始めるまでの温度に対応する。この値が130℃を下回る場合には、ガラスが素体中に浸透しやすくなり、素体にダメージを与えやすくなる。また、280℃を上回ると、高温で流動しにくくなり、金属粉末の焼結が阻害されて端子電極が緻密になりにくくなる。好ましくは、(Ts−Tg)は150℃以上250℃以下の範囲内である。また、ガラス転移点Tgは500℃以下であることが好ましい。   In the glass powder of the present invention, the difference (Ts−Tg) between the glass softening point Ts and the glass transition point Tg must be within a range of 130 ° C. or higher and 280 ° C. or lower. The value of (Ts−Tg) corresponds to the temperature from the start of the glass flow until the glass starts to flow. When this value is less than 130 ° C., the glass is likely to penetrate into the element body, and the element body is easily damaged. Moreover, when it exceeds 280 degreeC, it will become difficult to flow at high temperature, sintering of metal powder will be inhibited and a terminal electrode will become difficult to become dense. Preferably, (Ts−Tg) is in the range of 150 ° C. or more and 250 ° C. or less. Moreover, it is preferable that the glass transition point Tg is 500 degrees C or less.

なお、一般にはアルカリ金属成分やアルカリ土類金属成分を多く含むガラスは耐酸性・耐水性が劣るとされている。しかし、本発明者らによる研究によれば、上述した各成分を特定の比率に制御することで、耐酸性・耐水性に優れ、非酸化性雰囲気焼成でも安定で、セラミック素体との接着強度の大きい緻密な焼成膜を形成し得るガラス粉末が得られた。   In general, glass containing a large amount of alkali metal components and alkaline earth metal components is considered to have poor acid resistance and water resistance. However, according to the study by the present inventors, by controlling each of the above-mentioned components to a specific ratio, it has excellent acid resistance and water resistance, is stable even in non-oxidizing atmosphere firing, and has an adhesive strength with a ceramic body. A glass powder capable of forming a dense fired film having a large thickness was obtained.

以下、本発明で用いるガラスの組成範囲について説明する。なお、以下において本発明のガラスを構成する各成分の含有率%は、特に断らない限り、ガラスの全重量を基にしての重量百分率である。   Hereinafter, the composition range of the glass used in the present invention will be described. In addition, unless otherwise indicated, the content rate% of each component which comprises the glass of this invention below is the weight percentage based on the total weight of glass.

SiO及びBはガラス形成成分として働き、好ましくはSiOは42.0〜65.0%、Bは0〜18%の範囲で含まれる。SiOがこの範囲を下回るとガラス粉末の耐酸性が低下し、上回ると粘性が高くなって焼結しにくくなる。またBがこの範囲を上回ると耐酸性、耐水性が悪くなり、耐めっき液性が低下する。B/SiOは0.25以下が望ましい。 SiO 2 and B 2 O 3 function as glass forming components, preferably SiO 2 is included in the range of 42.0 to 65.0%, and B 2 O 3 is included in the range of 0 to 18%. When SiO 2 is below this range, the acid resistance of the glass powder is lowered, and when it is above, the viscosity becomes high and sintering becomes difficult. The acid resistance when B 2 O 3 exceeds this range, the water resistance is poor, plating solution resistance decreases. B 2 O 3 / SiO 2 is desirably 0.25 or less.

O及びR’Oは融剤として働き、ガラス軟化点を低下させ、流動性を向上させる効果がある。RO又はR’Oの一方が含まれない場合には、ガラスが結晶化したり、或いは焼成膜が詰まり過ぎてガラス浮きが発生するといった問題が発生しやすくなる。好ましくは、ROは8.0〜18.0%、R’Oは4.0〜20.0%の範囲で含まれる。 R 2 O and R′O act as a flux and have the effect of lowering the glass softening point and improving fluidity. When one of R 2 O and R′O is not included, a problem that the glass crystallizes or the fired film is too clogged and the glass floats easily occurs. Preferably, R 2 O is included in a range of 8.0 to 18.0% and R′O is included in a range of 4.0 to 20.0%.

Oのアルカリ金属の種類は限定されないが、混合アルカリ効果によって、より高い耐酸性を期待できることから、Li、Na、K、Rb、Cs等から選ばれる2種類以上を含むことが望ましい。またR’Oのアルカリ土類金属の種類も限定されないが、同様の理由によりBe、Mg、Ca、Sr、Ba等から選ばれる2種類以上を含むことが望ましい。 Although the kind of alkali metal of R 2 O is not limited, it is desirable to include two or more kinds selected from Li, Na, K, Rb, Cs and the like because higher acid resistance can be expected due to the mixed alkali effect. Moreover, although the kind of alkaline-earth metal of R'O is not limited, it is desirable that two or more kinds selected from Be, Mg, Ca, Sr, Ba and the like are included for the same reason.

本発明においては、上述したSiO、B、RO、R’Oに関して下記式(1)が成り立つことが重要である。
(RO+R’O+B)/SiO≦0.95 ・・・・・ (1)
式(1)において (RO+R’O+B)/SiOの値が0.95を上回ると、耐酸性及び耐水性が悪くなり、耐めっき液性と端子電極の緻密性の両立が困難になる。また、(RO+R’O+B)/SiOは0.30以上であることが望ましい。これを下回ると流動性が悪くなる。
In the present invention, it is important that the following formula (1) holds for the above-described SiO 2 , B 2 O 3 , R 2 O, and R′O.
(R 2 O + R′O + B 2 O 3 ) / SiO 2 ≦ 0.95 (1)
In the formula (1), if the value of (R 2 O + R′O + B 2 O 3 ) / SiO 2 exceeds 0.95, the acid resistance and water resistance are deteriorated, and both the plating solution resistance and the denseness of the terminal electrode are compatible. It becomes difficult. Further, (R 2 O + R′O + B 2 O 3 ) / SiO 2 is desirably 0.30 or more. Below this value, the fluidity will deteriorate.

Al及びLaは共に耐酸性等の化学的耐久性を改善し、また特にAlは代表的な中間酸化物としてガラス化を促進する。好ましくはAlは3.0〜18.0%、Laは0〜15%の範囲で含まれる。Alがこの範囲を下回ると結晶化しやすくなり、逆に上回るとガラスの軟化点が上昇して、(Ts−Tg)の値を130〜280℃の範囲内に制御することが困難になる。Laはガラスを低融化させる効果があるが、15%以上含むとガラスの素体への浸み込みが促進される。 Both Al 2 O 3 and La 2 O 3 improve chemical durability such as acid resistance. In particular, Al 2 O 3 promotes vitrification as a typical intermediate oxide. Preferably, Al 2 O 3 is contained in a range of 3.0 to 18.0%, and La 2 O 3 is contained in a range of 0 to 15%. When Al 2 O 3 falls below this range, it becomes easy to crystallize, and when it exceeds, the glass softening point rises, making it difficult to control the value of (Ts−Tg) within the range of 130 to 280 ° C. Become. La 2 O 3 has the effect of lowering the melting temperature of the glass, but when it is contained in an amount of 15% or more, penetration of the glass into the body is promoted.

その他、本発明のガラス粉末中に含まれる成分として、酸化マンガン、酸化銅の一種以上を含んでもよい。酸化マンガン、酸化銅は、Cu粉末との濡れを高める作用を有し、また脱バインダー性を向上させる。共に5%程度でガラス中に含まれることで十分な効果があり、好ましくは0〜10%の範囲で含まれる。   In addition, as a component contained in the glass powder of the present invention, one or more of manganese oxide and copper oxide may be included. Manganese oxide and copper oxide have the effect of increasing the wettability with Cu powder, and also improve the binder removal property. Both are included in the glass at about 5%, so that there is a sufficient effect, and the range of 0 to 10% is preferable.

本発明のガラス粉末には、これらの他、特性に影響のない範囲で少量の他の酸化物、例えばSn、Ni、Fe、Co等の酸化物を含有させることができる。   In addition to these, the glass powder of the present invention may contain a small amount of other oxides such as Sn, Ni, Fe, Co and the like within a range not affecting the characteristics.

なお、ガラス粉末中にZnOが含まれている場合、ガラス粉末は基板に含まれる酸化チタンと反応し、反応層をつくりやすくなる。それ故、例えば積層セラミックコンデンサの端子電極用導体ペーストに用いた場合には、チタン酸バリウム系や酸化チタン系の誘電体と反応して、セラミック素体とガラスの接着強度の向上に寄与する他、素体端部における内部電極の露出が不十分で内部電極の端部がセラミックで覆われているような場合に、そのセラミックを溶解することによって内部電極と端子電極の接合性を改善する作用をも期待することができる。しかしながら、その一方で、ZnOが含まれていることにより、酸化チタンとの反応相である結晶相が過度に生成し、逆に接着強度及び素体のセラミックの強度を劣化させるという問題が発生する原因にも成り得る。   In addition, when ZnO is contained in glass powder, glass powder will react with the titanium oxide contained in a board | substrate, and will become easy to produce a reaction layer. Therefore, for example, when used as a conductor paste for terminal electrodes of multilayer ceramic capacitors, it reacts with dielectric materials such as barium titanate and titanium oxide to contribute to the improvement of the adhesive strength between the ceramic body and glass. When the internal electrode is not sufficiently exposed at the end of the element body and the end of the internal electrode is covered with ceramic, the ceramic is dissolved to improve the bondability between the internal electrode and the terminal electrode. Can also be expected. On the other hand, however, since ZnO is contained, a crystal phase that is a reaction phase with titanium oxide is excessively generated, and conversely, there arises a problem that the adhesive strength and the strength of the ceramic body are deteriorated. It can also be a cause.

そこで本発明の導体ペーストにおいては、本発明のガラス粉末に加えて、ZnOを主成分とするZn系ガラス粉末を混合して用いることが望ましい。この場合、各ガラス粉末の焼成中の挙動が異なるため、上述したような問題は発生せず、酸化チタン成分を含む積層電子部品に対する接着強度と耐めっき液性の向上を両立することができる。   Therefore, in the conductor paste of the present invention, in addition to the glass powder of the present invention, it is desirable to mix and use a Zn-based glass powder containing ZnO as a main component. In this case, since the behavior during firing of each glass powder is different, the above-described problem does not occur, and both the adhesion strength to the laminated electronic component containing the titanium oxide component and the improvement of the plating solution resistance can be achieved.

Zn系ガラス粉末としては種々知られているR’O−ZnO−B系、R’O−ZnO−B−MnO系、R’O−ZnO系、R’O−ZnO−MnO系、R’O−ZnO−SiO系、ZnO−B系等のガラス粉末(R、R’は、それぞれ上記と同様にアルカリ金属、アルカリ土類金属である)を用いることができ、中でも、特許文献1に記載されているZnOを40〜60%、Bを15〜35%、SiOを1〜16%含有する硼珪酸亜鉛系Pbフリーガラス粉末を使用することが好ましい。 Various known R′O—ZnO—B 2 O 3 system, R′O—ZnO—B 2 O 3 —MnO 2 system, R′O—ZnO system, and R′O—ZnO are known as Zn glass powder. -MnO 2 -based, R'O-ZnO-SiO 2 -based, ZnO-B 2 O 3 -based glass powder (R and R 'are alkali metal and alkaline earth metal as described above) are used. Among them, a borosilicate zinc-based Pb-free glass powder containing 40-60% ZnO, 15-35% B 2 O 3 and 1-16% SiO 2 described in Patent Document 1 is used. It is preferable to do.

本発明のガラス粉末とZn系ガラス粉末とを混合する場合、その比率は重量比で6:1〜3:2の範囲内であることが好ましい。   When mixing the glass powder of this invention and Zn-type glass powder, it is preferable that the ratio exists in the range of 6: 1-3: 2 by weight ratio.

但し、本発明は、本発明のガラス粉末自体にZnOを含むことを除外するものではなく、特性に影響のない範囲であれば含まれていても構わない。   However, the present invention does not exclude the inclusion of ZnO in the glass powder itself of the present invention, and may be included as long as it does not affect the characteristics.

本発明のガラス粉末は、各成分の原料化合物を混合、溶融、急冷、粉砕して製造する一般的な方法の他、ゾルゲル法、噴霧熱分解法、アトマイズ法等の方法で製造することができる。   The glass powder of the present invention can be produced by a method such as a sol-gel method, a spray pyrolysis method, an atomizing method, etc. in addition to a general method of producing by mixing, melting, quenching, and pulverizing raw material compounds of each component. .

本発明のガラス粉末の大きさは特に限定されるものではないが、通常、平均粒径 0.1〜10μmのものが用いられる。なお、端子電極表面にガラス浮きが生じやすい場合には、ガラス粉末の粒径を制御することによって防止できることがある。それ故、本発明のガラス粉末としては、好ましくは平均粒径0.5〜5μm、更に好ましくは1〜4μmのものが用いられる。   Although the magnitude | size of the glass powder of this invention is not specifically limited, Usually, a thing with an average particle diameter of 0.1-10 micrometers is used. In addition, when glass floating tends to occur on the surface of the terminal electrode, it may be prevented by controlling the particle size of the glass powder. Therefore, the glass powder of the present invention preferably has an average particle size of 0.5 to 5 μm, more preferably 1 to 4 μm.

本発明のガラス粉末を含む導体ペーストにおいて、導電性粉末に対する上記ガラス粉末の配合比率は特に限定されるものではないが、通常、導電性粉末100重量部に対して1〜20重量部程度配合される。   In the conductive paste containing the glass powder of the present invention, the mixing ratio of the glass powder to the conductive powder is not particularly limited, but is usually about 1 to 20 parts by weight with respect to 100 parts by weight of the conductive powder. The

導体ペースト中のビヒクルとしては特に限定はなく、通常、使用されている有機バインダーや溶剤等を適宜選択して配合する。例えば有機バインダーとしては、セルロース類、アクリル樹脂、フェノール樹脂、アルキッド樹脂、ロジンエステル等が、また溶剤としてはアルコール系、エーテル系、エステル系、炭化水素系等の有機溶剤や水、これらの混合溶剤が挙げられる。この他、通常、添加されるような可塑剤や、高級脂肪酸や脂肪酸エステル系などの分散剤、界面活性剤等を適宜配合することができる。ビヒクルの配合量は特に限定されるものではなく、無機成分をペースト中に保持し得る適切な量で、用途や塗布方法に応じて適宜調整される。   The vehicle in the conductor paste is not particularly limited, and usually used organic binders and solvents are appropriately selected and blended. For example, as organic binders, celluloses, acrylic resins, phenol resins, alkyd resins, rosin esters, etc., and as solvents, alcohol-based, ether-based, ester-based, hydrocarbon-based organic solvents, water, and mixed solvents thereof Is mentioned. In addition, plasticizers that are usually added, dispersants such as higher fatty acids and fatty acid esters, surfactants, and the like can be appropriately blended. The blending amount of the vehicle is not particularly limited, and is an appropriate amount capable of retaining the inorganic component in the paste, and is appropriately adjusted according to the use and application method.

本発明の導体ペーストには、上記成分以外に通常配合されるような無機成分、例えばアルミナ、シリカ、酸化銅、酸化マンガン、チタン酸バリウム、酸化チタン等の金属酸化物や、誘電体層と同質のセラミック粉末、モンモリロナイトなどを、目的に応じて適宜添加することができる。   In addition to the above components, the conductive paste of the present invention usually contains inorganic components such as alumina, silica, copper oxide, manganese oxide, barium titanate, titanium oxide and the like, and the same quality as the dielectric layer. The ceramic powder, montmorillonite, and the like can be appropriately added depending on the purpose.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

実施例1
表1に示す酸化物組成になるようにガラス原料をそれぞれ調合し、白金ルツボを用いて約1300〜1450℃で溶融し、次いでグラファイト上に流出させて空冷して得られたガラスをスタンプミルで平均粒径35μm程度に粗粉砕後、アルミナボ−ルを用いたボールミルにより微粉砕し平均粒径が約4μmのガラス粉末A〜Mを得た。また平均粒径を約1.5μmとする以外は同様にしてガラス粉末Nを作製した。さらにまた、ガラス原料を約1150℃で溶融し、平均粒径を約1.5μmとする以外は同様にして、亜鉛系のガラス粉末Zを作製した。なお、表1中に*印がついているガラス粉末は、本発明の範囲外のものである。
Example 1
Each glass raw material was prepared so as to have the oxide composition shown in Table 1, and melted at about 1300 to 1450 ° C. using a platinum crucible, and then the glass obtained by flowing out onto graphite and air-cooling was obtained with a stamp mill. After roughly pulverizing to an average particle size of about 35 μm, glass powders A to M having an average particle size of about 4 μm were obtained by pulverizing with a ball mill using an alumina ball. A glass powder N was produced in the same manner except that the average particle size was about 1.5 μm. Furthermore, a zinc-based glass powder Z was produced in the same manner except that the glass raw material was melted at about 1150 ° C. and the average particle size was about 1.5 μm. The glass powders marked with * in Table 1 are outside the scope of the present invention.

また、前記粗粉砕した状態のガラス粉末A〜N及びZについてDTA測定を行い、ガラス転移点Tgとガラス軟化点Tsを求め、(Ts−Tg)を算出した。   Further, DTA measurement was performed on the coarsely pulverized glass powders A to N and Z to obtain a glass transition point Tg and a glass softening point Ts, and (Ts−Tg) was calculated.

次に、ガラスの耐めっき液性の試験を次のようにして行った。   Next, the glass plating solution resistance test was performed as follows.

各ガラス粉末 10重量部を、アクリル樹脂系バインダーをベンジルアルコールに溶解した有機ビヒクル 3重量部中に分散したペーストを作製し、チタン酸バリウムを焼結して作られた平板上に印刷、乾燥させた後、酸素濃度が約5ppmの窒素雰囲気中800℃で焼成して、膜厚20μm程度のガラス皮膜を形成した。その後、ガラス皮膜が形成された基板をpHが約4の有機スズめっき浴に2時間浸漬し、浸漬前後の重量変化を調べ、ガラス皮膜の残存率を耐めっき液性の指標とした。   A paste in which 10 parts by weight of each glass powder is dispersed in 3 parts by weight of an organic vehicle in which an acrylic resin binder is dissolved in benzyl alcohol is prepared, printed on a flat plate made by sintering barium titanate, and dried. After that, it was baked at 800 ° C. in a nitrogen atmosphere having an oxygen concentration of about 5 ppm to form a glass film having a thickness of about 20 μm. Thereafter, the substrate on which the glass film was formed was immersed in an organotin plating bath having a pH of about 4 for 2 hours, the change in weight before and after the immersion was examined, and the residual rate of the glass film was used as an index of the plating solution resistance.

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 0004438090
Figure 0004438090

<実施例2>
次に、Cu粉末 100重量部とガラス粉末A 7重量部を、アクリル樹脂系バインダーをテルピネオールに溶解したビヒクル 40重量部と共にロールミルで混練して導体ペーストを作製し、これを試料1とした。
<Example 2>
Next, 100 parts by weight of Cu powder and 7 parts by weight of glass powder A were kneaded by a roll mill together with 40 parts by weight of a vehicle in which an acrylic resin binder was dissolved in terpineol to prepare a conductor paste.

ガラス粉末をガラス粉末B〜Mにした以外は試料1と同様にして、試料2〜13を作製した。   Samples 2 to 13 were produced in the same manner as Sample 1 except that the glass powder was changed to glass powders B to M.

次に試料1〜13を、Ni内部電極を有する外形寸法が2.0mm×1.2mm×1.2mmのチタン酸バリウム系積層セラミックコンデンサ素体表面の端子部に、焼成膜厚が40μmとなるようにディッピング法で塗布し、乾燥させた後、酸素濃度が約5ppmの窒素雰囲気中800℃で焼成し、端子電極を形成した。次いで端子電極上に電気めっきによりNiめっき膜及びSnめっき膜を形成し、それぞれについて、以下の要領で、膜密度(緻密性)、素体への浸み込みの有無、耐熱衝撃性、引っ張り強度、容量不良の測定を行った。結果を表2に示す。
〔膜密度〕各コンデンサチップ(以下、単に「チップ」と言う)の端子電極付近断面を走査型電子顕微鏡で観察し、焼成膜中の気孔の状態を調べた。
〔素体への浸み込みの有無〕各チップの端子電極付近断面を走査型電子顕微鏡で観察し、ガラスの素体への浸み込みによって素体中に発生するマイクロクラックの有無を調べた。
〔耐熱衝撃性〕各チップ20個を350℃に設定した半田浴に10秒間浸漬した後、自然空冷し、各チップ中にクラックの発生した比率が0%の場合には○、10%以下の場合には△、10%より高い場合には×とした。
〔引っ張り強度〕対向する2つの端子電極に、リード線が電極表面に対して垂直になるようにそれぞれ半田付けし、強度測定器を用いてリード線を反対方向に引っ張り、電極部分や電極と素体との界面部分が破壊された時の値を調べた。
〔容量不良〕内部電極との接合性を見るために、各チップの静電容量を測定し、設計値の±10%以内のものを○、それ以上離れているものを×とした。
Next, samples 1 to 13 were fired to a thickness of 40 μm on the terminal portion on the surface of the barium titanate-based multilayer ceramic capacitor body having a Ni internal electrode and an outer dimension of 2.0 mm × 1.2 mm × 1.2 mm. After being applied by dipping method and dried as described above, it was baked at 800 ° C. in a nitrogen atmosphere having an oxygen concentration of about 5 ppm to form a terminal electrode. Next, an Ni plating film and an Sn plating film are formed on the terminal electrode by electroplating, and the film density (denseness), presence / absence of penetration into the element body, thermal shock resistance, and tensile strength are as follows. The capacity defect was measured. The results are shown in Table 2.
[Film Density] The cross section near the terminal electrode of each capacitor chip (hereinafter simply referred to as “chip”) was observed with a scanning electron microscope to examine the state of pores in the fired film.
[Presence / absence of penetration into the element body] A cross section of each chip near the terminal electrode was observed with a scanning electron microscope to examine the presence or absence of microcracks generated in the element body due to penetration of the glass element body. .
[Thermal shock resistance] 20 chips were immersed in a solder bath set at 350 ° C. for 10 seconds, and then naturally air-cooled. When the ratio of cracks in each chip was 0%, it was less than 10%. In some cases, Δ, and more than 10%, ×.
[Tensile strength] Solder each of the two terminal electrodes facing each other so that the lead wire is perpendicular to the electrode surface, and pull the lead wire in the opposite direction using a strength measuring instrument. The value when the interface with the body was destroyed was examined.
[Capacity failure] In order to check the bondability with the internal electrode, the electrostatic capacity of each chip was measured, and a chip within ± 10% of the design value was marked with ◯, and a chip far apart was marked with ×.

Figure 0004438090
Figure 0004438090

<実施例3>
ガラス粉末Nを用いた以外は試料1と同様にして試料14−1を作製した。
<Example 3>
Sample 14-1 was produced in the same manner as Sample 1 except that glass powder N was used.

更に、ガラス粉末をガラス粉末Nと亜鉛系ガラス粉末Zとをそれぞれ5:2、1:1の重量比で混合した混合ガラス 7重量部とした以外は、試料14−1と同様にして試料14−2、14−3を作製した。   Further, the sample 14 was the same as the sample 14-1, except that the glass powder was 7 parts by weight of the mixed glass obtained by mixing the glass powder N and the zinc-based glass powder Z at a weight ratio of 5: 2, 1: 1. -2 and 14-3 were produced.

次に、各試料を酸素濃度約5ppmの窒素雰囲気中800℃、酸素濃度約5ppmの窒素雰囲気中780℃、酸素濃度約10ppmの窒素雰囲気中780℃と3つの焼成条件で焼成した以外は、実施例2と同様にして端子電極を形成し、Niめっき膜、Snめっき膜を形成した後、各チップについて膜密度、素体への浸み込みの有無、耐熱衝撃性、引っ張り強度、容量不良の試験を行った結果を表3に示す。   Next, each sample was fired under three firing conditions: 800 ° C. in a nitrogen atmosphere with an oxygen concentration of about 5 ppm, 780 ° C. in a nitrogen atmosphere with an oxygen concentration of about 5 ppm, and 780 ° C. in a nitrogen atmosphere with an oxygen concentration of about 10 ppm. After forming the terminal electrode and forming the Ni plating film and the Sn plating film in the same manner as in Example 2, the film density, presence / absence of penetration into the element body, thermal shock resistance, tensile strength, capacity failure of each chip Table 3 shows the results of the test.

Figure 0004438090
Figure 0004438090

一般に市販されているガラス粉末をサンプルパンに入れ、示差熱分析を行って得られたDTA曲線である。It is the DTA curve obtained by putting glass powder generally marketed in a sample pan, and performing a differential thermal analysis.

Claims (3)

SiO、Al、RO(Rはアルカリ金属)及びR’O(R’はアルカリ土類金属)、又はこれらの成分に更にBを含有する導体ペースト用ガラス粉末であって、該ガラス粉末重量%による含有率で下記成分
SiO 42.0〜65.0%、R O 8.0〜18.0%、R’O 4.0〜20.0%、B 0〜18%、Al 3.0〜18.0%、La 0〜15%を含有し、下記式(1)を満たすと共に、該ガラス粉末の軟化点Ts〔℃〕及びガラス転移点Tg〔℃〕が、130≦(Ts−Tg)≦280を満たすことを特徴とする導体ペースト用ガラス粉末。
(RO+R’O+B)/SiO≦0.95 ・・・・・ (1)
SiO 2 , Al 2 O 3 , R 2 O (R is an alkali metal) and R′O (R ′ is an alkaline earth metal), or a conductive paste glass powder further containing B 2 O 3 in these components. The glass powder has the following components in content by weight%
SiO 2 42.0~65.0%, R 2 O 8.0~18.0%, R'O 4.0~20.0%, B 2 O 3 0~18%, Al 2 O 3 3. 0 to 18.0%, La 2 O 3 0 to 15%, satisfying the following formula (1), and the glass powder has a softening point Ts [° C.] and a glass transition point Tg [° C.] of 130 ≦ A glass powder for conductor paste , characterized by satisfying (Ts−Tg) ≦ 280.
(R 2 O + R′O + B 2 O 3 ) / SiO 2 ≦ 0.95 (1)
銅若しくは銅を主成分とする金属粉末を含有する導体ペーストに用いられることを特徴とする請求項1記載の導体ペースト用ガラス粉末。 2. The glass powder for a conductor paste according to claim 1, wherein the glass powder is used for a conductor paste containing copper or a metal powder containing copper as a main component . 非酸化性雰囲気で焼成後、酸性めっき処理が行われる電極の形成に用いられる導体ペースト用であることを特徴とする請求項1又は2に記載の導体ペースト用ガラス粉末。 The glass powder for a conductor paste according to claim 1 or 2, wherein the glass powder for a conductor paste is used for a conductor paste used for forming an electrode subjected to an acid plating treatment after firing in a non-oxidizing atmosphere .
JP2004274343A 2004-09-22 2004-09-22 Glass powder for conductor paste Active JP4438090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274343A JP4438090B2 (en) 2004-09-22 2004-09-22 Glass powder for conductor paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274343A JP4438090B2 (en) 2004-09-22 2004-09-22 Glass powder for conductor paste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009236914A Division JP5056828B2 (en) 2009-10-14 2009-10-14 Conductor paste

Publications (2)

Publication Number Publication Date
JP2006089310A JP2006089310A (en) 2006-04-06
JP4438090B2 true JP4438090B2 (en) 2010-03-24

Family

ID=36230638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274343A Active JP4438090B2 (en) 2004-09-22 2004-09-22 Glass powder for conductor paste

Country Status (1)

Country Link
JP (1) JP4438090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427596A (en) * 2015-03-17 2017-12-01 石塚硝子株式会社 Deodorization vitrifying agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260770B2 (en) * 2013-10-28 2018-01-17 日本電気硝子株式会社 Glass, glass powder, composite powder and glass plate with colored layer
JP7369008B2 (en) * 2019-10-29 2023-10-25 株式会社村田製作所 Conductive paste and laminated electronic components
JP2023120508A (en) * 2022-02-18 2023-08-30 デンカ株式会社 Powder and powder manufacturing method
CN116189957A (en) * 2023-03-30 2023-05-30 南京汇聚新材料科技有限公司 Copper conductive paste for inductor and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427596A (en) * 2015-03-17 2017-12-01 石塚硝子株式会社 Deodorization vitrifying agent
CN107427596B (en) * 2015-03-17 2020-10-02 石塚硝子株式会社 Deodorizing glass agent

Also Published As

Publication number Publication date
JP2006089310A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US6841495B2 (en) Glass and conductive paste using the same
KR100680461B1 (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
JP4805268B2 (en) Copper termination ink containing lead-free and cadmium-free glass for capacitors
TWI704118B (en) Conductive paste and method for forming terminal electrode of multilayer ceramic part
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
KR102292562B1 (en) conductive paste
TWI483269B (en) Conductive paste
JP4561574B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP3827060B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP5641216B2 (en) Method for manufacturing ceramic electronic component and ceramic electronic component
JP4438090B2 (en) Glass powder for conductor paste
JP5056828B2 (en) Conductor paste
JP5556518B2 (en) Conductive paste
JP2007294633A (en) Ceramic electronic component and conductive paste therefor
JP2005019185A (en) Copper conductive paste and laminated ceramic electronic part
JP4702021B2 (en) Ceramic substrate with conductor layer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250